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A B S T R A C T

In the present paper, the wave propagation on non-homogenous semiconductor through photo-thermal process
has been studied by using the theory of coupled plasma and thermoelastic wave. Without neglecting the coupling
between the plasma and thermoelastic wave that photo-generated through intensity modulated laser beam and
tightly focused, a semiconducting isotropic elastic medium has non-homogeneity in thermal and elastic prop-
erties are considered. The analytical solutions in the domain of Laplace by the eigenvalues approach were
observed through the transform techniques of Laplace. Silicon-like semiconductor was used to achieve the nu-
merical computations.

Introduction

Essentially, considering qualitatively what happen when a laser
beam with energy E was an incident on a semiconducting material that
has forbidden gap of width Eg? If >E Eg an electron will be traveled the
valence band to an energy level of energy equals to −E Eg, above the
conduction band edge. Then such electron or carrier will relax to one of
the empty levels nearby the conduction band bottom namely non-ra-
diative transition. relaxation process will be followed by the formation
of hole-electron pairs through recombination. Electron and hole plasma
will take place before recombination. The plasma density is controlled
by the diffusion behavior which is the same of the heat flow of the
thermal source. Thus, modulation of incident laser intensity behind the
thermal wave, a modulated plasma density can be observed i.e., a
plasma wave. In Semiconductors, an electronic deformation (ED) which
is periodically malleable desaturation in material produced by the
photoexcited carriers that may leads to locally strain in the material
produces plasma waves. These waves behave as well as the thermal
wave produced due to local periodic elastic desaturation.

Recently, the photoacoustic (PA) and photothermal (PT) methods
were taken as diagnostic tools with high sensitivity to the electronic
transport and thermal processes in microelectronic structures.
Generally, semiconductor is characterized by its high electric resistivity
that decreased by the increase of temperature. The semiconductor re-
sistivity can be reduced by doping which is main in the design of
semiconductor junctions. The behavior of charge carriers at the junc-
tion, is the main of manufacturing of diode, transistor, solar cells

semiconducting detector and all modern solid state devices. Pure or
intrinsic semiconductor such as Si is widely used in semiconducting
industrial. Unlike metals the conduction in pure Si through electrons-
holes and electrons that may be released from atoms within the crystal
by thermal, and thus decrease silicon's electrical resistivity with higher
temperatures.

Previously, Todorovic et al. [1–3] introduced an experimental and
theoretical outcome on micro-mechanical structure of the thermos-
elastic and plasma fields. But, their study is restricted on one dimension
(1D). Their theoretical analysis to describes the two phenomena that
gives information about the properties of carrier recombination and
transport in semiconductor. The effect of the electronic and thermos-
elastic deformation in semiconductor has been studied by [4–6] with
neglecting the coupling the plasma and thermoelastic relations. When a
probe beam was focused on the material surface there are local ther-
moelastic deformations due to the excitation [7,8]. On the other hand,
Song et al. [9,10] study in detail, the thermoelastic vibrations of the
photoexcited microcantilever. The photothermal and generalized ther-
moelastic theories were used to investigate the reflection of plane
waves in a semiconductor medium [11,12]. Abbas [13] investigated the
photothermal waves in a semiconductor material photogenerated by a
focused laser beam. Abbas [14] studied the dual phase lag model on
photo-thermal interactions in an infinite semiconducting media contain
a cylindrical hole. Abbas and Aly [15] presented the generalized model
on photo-thermal-elastic waves in a semiconducting medium. Abbas
et al. [16] investigated the photo-thermal interaction in a semi-
conducting material under two-temperature theory.
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In the present paper, we attempt to study the analytical solutions of
plasma-thermo-elastic waves photo-generated by a focused laser beam
in a nonhomogeneous semiconducting material. Based on Laplace
transform and eigenvalues approach, the dimensionless of basic equa-
tions are handled by employing an analytical–numerical technique. The
numerical computations are made for silicon-like semiconducting ma-
terial, and the outcomes are graphically represented.

Formulation of the problem

Generally, to understand the transport mechanism in a semi-
conductor considering simultaneously coupled of the plasma and the
thermos-elastic waves their variables such as carriers density rn t( , ),
distribution of temperature ∗ rT t( , ) as well as components of elastic
displacement ru t( , )i . The photo-thermal theory in main based on three
relationships for the motion, plasma and heat condition respectively
[12,17]:
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The constitutive relations were written as:

= + + − −σ μ u u λu γ N γ T δ( ) ( ) ,ij i j j i k k n t ij, , , (4)

where =i j k, , 1, 2, 3, = −N n no, no is the equilibrium carrier con-
centration, = −∗T T To, To is the reference temperature, σij are the stress
components, λ μ, are the Lame's constants, = +γ λ μ d(3 2 )n n, dn is the
coefficient of electronic deformation, ρ is the density of medium, ui are
the components of displacement, ce is the specific heat at constant
strain, = +γ λ μ α(3 2 )t t , αt is the linear thermal expansion coefficient, τ
is the lifetime of the photogenerated carrier, r is the position vector, De
is the carrier diffusion coefficient, t is the time, K is the thermal con-
ductivity, and = ∂
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n
T

1 o [17]. Now, we consider the problem of a
semiconducting plane ⩾z 0 and the state of the medium depends only
on z and the time variable t . Therefore, Eqs. (1)–(4) can be rewritten as:
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In this study, we assume the non-homogeneous properties of the ma-
terial are characterized by
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where f z( ) is a continuous and non-dimensional function,
ρ μ λ γ E, , , ,o o o o go and Ko are the values of ρ μ λ γ E, , , , g and K in the
homogeneous case, respectively. Substituting from Eq. (9) in Eqs.
(6)–(8) can be obtain
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Applications

Initially, it must be considering the initial and boundary conditions.
The initial conditions of the problem are assumed to be homogeneous
and are supplemented by considering the boundary =z 0 is adjacent to

Fig. 1. The variation of temperature with the distance for different values of
non-homogeneous parameter m case (i).

Fig. 2. The variation of carrier density with the distance for different values of
non-homogeneous parameter m case (i).

Fig. 3. The variation of displacement with the distance for different values of
non-homogeneous parameter m case (i).
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Fig. 4. The variation of stress with the distance for
different values of non-homogeneous parameter m
case (i).

Fig. 5. The variation of temperature with the distance for different values of
non-homogeneous parameter m case (ii).

Fig. 6. The variation of carrier density with the distance for different values of
non-homogeneous parameter m case (ii).

Fig. 7. The variation of displacement with the distance for different values of
non-homogeneous parameter m case (ii).

Fig. 8. The variation of stress with the distance for different values of non-
homogeneous parameter m case (ii).
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vacuum. The boundary conditions can be considered by
Case (I): For >t 0 the surface ( =z 0) is exposed to a laser-pulse heat

flux and traction free, i.e.
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Case (ii): For >t 0 the surface ( =z 0) is exposed to a transient cosine

heat flux and traction free, i.e.
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Case (iii): For >t 0 the surface ( =z 0) is exposed to a constant heat flux
and traction free, i.e.
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where qo is a constant, ω is the heating frequency, tp is the pulse heat
flux characteristic time and so is the velocity of surface recombinations.
For conveniences, the dimensionaless varibles can be given as
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Canceled the primes and rewrite Eqs. (10)–(16) as follow:
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Fig. 9. The variation of temperature with the distance for different values of
non-homogeneous parameter m case (iii).

Fig. 10. The variation of carrier density with the distance for different values of
non-homogeneous parameter m case (iii).

Fig. 11. The variation of displacement with the distance for different values of
non-homogeneous parameter m case (iii).

Fig. 12. The variation of stress with the distance for different values of non-
homogeneous parameter m case (iii).
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Exponential variation of nonhomogeneity

We take = −f z e( ) mz, where m is the non-dimensional constant.
Then the Eqs. (18), (19), (20) and (21) reduce to
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Laplace transform

The definition of Laplace transforms for any function f z t( , ) can be
written as
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where s is the Laplace’s transform parameter. Thus, Eqs. (25)–(28) with
the three cases of boundary conditions (22), (23) and (24) take the
following forms:
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Now, let us proceed to solve the homogeneous coupled differential Eqs.
(30), (31) and (32) by the eigenvalues method which proposed
[18–22]. Eqs. (30)–(32) can be rewritten in matrix-vector differential

equations as follow
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The characteristic Eq. (38) has roots that, are also the eigenvalues of
matrix A are of the form = …ξ i, 1, 2, ,6i . The eigenvectors
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Using Eq. (39) the eigenvector Y corresponding to eigenvalue
=ξ j, 1, 2, 3, 4, 5, 6j easily calculated. The general solutions of Eqs. (37)
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where = …B i, 1, 2, 6i are constants that shown based on the boundary
condition of the problem for three cases. Thus, the general solutions of
the field variables for z and s were given below:
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To obtain the final solution for the distributions of displacement, car-
riers density, temperature and stress, the method of numerical inversion
was adopted based on the Riemann-sum approximation method is used
to observe the numerically results. In such a method, a function in the
Laplace domain were transfored to the time domain as:
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where i is the imaginary number unit and Re is the real part. Numeri-
cally experiments decided that =m t

4.7 in the case of faster con-
vergence, that satisfies equation [23].

Numerical results and discussion

Now, to discuss the above phenomena numerically and shows the
theoretical results, the silicon (Si) medium is considered. All parameters
in this problem considered in SI. If the semiconductor is isotropic and
the silicon sample was considered, the physical constants can be written
as [10]:
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Based on the data set, Figs. 1–12 represent the numerically computed
physical quantities at different values of the distance z. Numerical
computations are carried out for the temperature, the carrier density,
the distributions of both stress and displacement along the z-axis in the
context of coupled photo-thermal theory.

For case (i) the surface ( =z 0) is exposed to a laser-pulse heat flux,
Figs. 1–4 represents the three curves predicted by different values of
non-homogeneous parameter m. From Fig. 1 it was noted that, the
temperature begins by its maxima at =z 0 and gradually reduces with
raises the distance z up to zero beyond a wave front for the theory of
photothermal, that satisfies our theoretical boundary conditions. Fig. 2
represents the variation of carrier density as a function of to the dis-
tance z. It is noticed that the carrier density values are some highest
values on =z 0 and reduces with the raising the distance z to close to
zeros values. The displacement changes versus z are shown in Fig. 3. It
was observed that the displacement shows an ultimate negative value
then it raises gradually up to it attains a peak value at a location
proximately nearby the surface then, its progressively decreases to zero.
The changes of stress versus distance z at various times are shown as in
Fig. 4. It is noticed that, the stress permanently starts by zero value and
terminates at the zero obeying the boundary conditions. In compression
between the solutions, it was found that, the non-homogeneous para-
meter is important phenomena and it was influence on the variations of
field quantities. The photo-thermo-elastic responses in the non-homo-
geneity semiconducting medium are mainly dependent on non-homo-
geneity properties of medium. Therefore, one can design the property of
non-homogeneity m for non-homogeneity structures to reduce the
amplitude of heat stress in order to satisfy different engineering ap-
plications. Figs. 5–8 show the effects of non-homogeneity m in the
physical quantities when the surface ( =z 0) is exposed to a transient

cosine heat flux while Figs. 9–12 display the variations of physical
quantities in the case of the surface ( =z 0) is exposed to a constant heat
flux.
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