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A new technique to obtain analytic approximant for eigenvalues is presented here by a simultaneous use
of power series and asymptotic expansions is presented. The analytic approximation here obtained is like
a bridge to both expansions: rational functions, as Padé, are used, combined with elementary functions
are used. Improvement to previous methods as multipoint quasirational approximation, MPQA, are also
developed. The application of the method is done in detail for the 1-D Schrödinger equation with
anharmonic sextic potential of the form VðxÞ ¼ x2 þ kx6 and both ground state and the first excited state
of the anharmonic oscillator.
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Introduction

Harmonic potentials with sextic anharmonic terms has been
treated for several authors [1–7]. This kind of potential play an
important role in spectra of molecules such as ammonia and
hydrogen bounded-solids [8,9], and they might be considered as
a potential model for quark confinement in Quantum Chromody-
namics [10]. An analytic solution of the one dimensional (1-D)
Schrödinger equation of this quantum mechanical system is not
actually known, and numerically computation is the usual way to
obtain the eigenvalues of the equation, as well as perturbation
techniques around the harmonic potential. This leads to approxi-
mations which are usually good for small values of the perturba-
tive parameter k. However, improvements in a recient technique
denoted as multi-point quasi-rational approximant (MPQA), will
allow to obtain precise analytic approximations for any value of
the parameter k, using simultaneously power series and asymp-
totic expansions [11–14]. The present new technique uses rational
approximants, as Pade’s method, but combined with other auxil-
iary functions as fractional powers, exponentials, trigonometricals
and others elementary functions [12].

In recent works, asymptotic Taylor expansion method has been
used as an alternative approach to energy eigenvalue problems of
anharmonic potentials [15]. On the other hand, the technique here
presented is an extension of a previous method, which was first
applied to obtain approximate analytic solutions to plasma disper-
sion function [16], Bessel functions [17], elementary particles [18]
and several other important functions in Physics, most of them are
referred in the review article [11]. Later the procedure was also
applied to find analytic approximant and analytic functions to
Quantum Physics potentials, where not known exact solutions
can be found, as quadratic Zeeman Effect in 2-D [19], Morse poten-
tials with centrifugal terms [20] and others (see Ref. [11]). Anhar-
monic potentials where treated later. The actual case of sextic
anharmonic potentials in 1-D presents new problems which are
solved here. The ground state ðn ¼ 0Þ and the first odd excited
energy state ðn ¼ 1Þ for any positive value of the parameter k is
treated now. (Other excited states could be considered in future
works if they are needed).

Eigenvalues of sextic anharmonic potentials in 1-D with the
form VðxÞ ¼ x2 þ kx6 are study now. No general analytic solutions
to this problem is known, although particular analytical solutions
can be found when the parameters obey certain relations, poten-
tials so called quasi-exactly-solvable, see for instance a good list
of references in [6]. Perturbation theory leads to power expansions,
which are only usually good for small values of k. In the case of
anharmonic quartic potentials general method for any positive k
was presented in previous works [12], using power series and
asymptotic expansions. An improvement of this technique is
presented here using the two previous expansions as well as
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additional power series around some intermediate points
ki;0 < ki < 1. Thus now besides to use the power series around
k ¼ 0 and asymptotic expansions, new power series around inter-
mediate points between zero and infinity are also include.

The accuracy of the analytic form here obtained is very good for
every positive value of the parameter k. The analytic approxima-
tion is more elaborated than that for the quartic anharmonic
potential, but the accuracy is about the same and also a similar
number of terms has been used. The highest relative error of the
approximant for the ground state is about 5 � 10�3, but this error
is usually smaller than 10�5 for most of values of k. Despite numer-
ical calculation allows to determine the eigenvalue for any given
value of k, the formula now developed determines the value of
any k in a very simple way even with an usual pocket calculator,
and with accuracy high enough for most of the applications. Fur-
thermore, the approximate expression can be differenciated or
integrated if it is required.

In the next section, Section ‘‘Theoretical treatment and power
series”, of the paper, the way to obtain a power series in k for
the eigenvalue is derived, as an extension of the MPQA method.
The way to obtain an asymptotic series is more elaborated and it
is develop in Section ‘‘Asymptotic expansion”. The analysis of both
the power series and asymptotic expansion, leads to the form of
the approximate for the actual potential, which will be two rational
functions combined with fractional powers, and its application will
be considered in Section ‘‘Development of the approximation
method through the sextic anharmonic oscillator and its applica-
tion” for both the ground state and the first excited state. The
determination of the parameters, results and discussion of the
accuracy for the approximant will be performed in Section ‘‘Results
and discussion”. Section ‘‘Conclusion”, finally, is devoted to the
Conclusion.

Theoretical treatment and power series

The equation of interest, is the Schrödinger equation given by:

� �h
2m

d2

dz2
þ 1
2
mx2z2 þ az6

 !
w ¼ Ew; ð1Þ

This equation is usually written using atomic units
ð�h ¼ m ¼ x ¼ 1Þ, and a conventional change of variables as

� d2

dx2
þ x2 þ kx6

 !
w ¼ �w; ð2Þ

This equation, Eq. (2), is a particular case of more general equation
considered in previous paper [11,12]

� d2

dx2
þ xa þ kxb

 !
w ¼ Ew ð3Þ

The perturbative parameter k is assume to be positive in order
to simplify the treatment. The eigenvalues will depend on this
parameters.

For small values of k, the expansion for the energy eigenvalues
and eigenfunctions around k ¼ 0, are written as

E ¼
X1
k¼0

Ekk
k; w ¼

X1
k¼0

wkk
k; ð4Þ

where the sub-index k represent the perturbation order of the
energy level of the system. Introducing the expansions given by
Eq. (4), and demanding to be satisfied at every order in k, the follow-
ing system of differential equations is obtained [11,12]
Lwk þ x6wk�1 ¼
Xk
q¼0

Ek�qwq for k P 1; ð5Þ

where, the operator L is defined as

L ¼ � d2

dx2
þ x2: ð6Þ

It is important to note that, since k is arbitrary, the associated wave
functions w0;w1; ::; will have the same properties than the eigen-
function w.

For the ground state E0 ¼ 1, and w0ðxÞ / expð�x2=2Þ. Following
a similar procedure than in Ref. [12], the solution for w will be

wk ¼
X6k
q¼0

pqx
q

 !
exp � x2

2

� �
para k � 1; ð7Þ

where the pq’s are coefficients of an arbitrary polynomial to be
determined.

An extension and improvement of previous method can be done
in the case of expansion around intermediate points kb (where,
0 < kb < 1). Hence, calling kb ¼ b, the equations will be written as

� d2

dx2
þ x2 þ kbx6

 !
wðx; kbÞ ¼ EðkbÞwðx; kbÞ; ð8Þ
Asymptotic expansion

An extension of the method have been done in order to obtain
an expression for the asymptotic expansion corresponding to
k ! 1. In this case, the following change of variables has to be
done [11,12]

x ¼ kay; with a ¼ � 1
2þ b

; ð9Þ

where b is defined in Eq. (3), and in this work, b ¼ 6. Therefore, the
new Schrödinger equation, will be

� d2

dy2
þ ~ky2 þ y6

 !
~w ¼ ~E~w; ð10Þ

where, the new variables, ~k and ~E, are given by

~k ¼ k�
2þa
2þb ¼ k�

1
2; ~E ¼ k�

2
aþbE ¼ k�

1
4E: ð11Þ

So that, the perturbative solution of Eq. (10) will be

~E ¼
X1
k¼0

~Ek
~kk; ~wn ¼

X1
k¼0

~wk
~kk: ð12Þ

resulting in a system of equations analog to that developed for the
power series in k

~L~wk þ y2~wk�1 ¼
Xk
q¼0

~Ek�q
~wq for k � 1; ð13Þ

where, now, the operator ~L is written as

~L ¼ � d2

dy2
þ y6: ð14Þ

In this way, the expansion given by Eq. (12) for ~E can be re-written
in terms of ~k instead of k. In the case of sextic anharmonic oscillator
(a ¼ 2 and b ¼ 6) it is obtained

E ¼ k�2a
X1
k¼0

~kk~Ek ð15Þ



Table 2
Coefficients of the asymptotic expansion of the eigenvalues for the sextic anharmonic
oscillator obtained solving the differential equation, Eq. (13), using the shooting
method.

Coeffis. n ¼ 0 n ¼ 1

~E0 1.144802449 4.3385987182
~E1 0.316606042 1.2866508137
~E2 �0.007874753 �0.4797062708
~E3 0.001694326 0.0714618752
~E4 �0.000058640 �0.0002161802
~E5 0.000009989 0.0000251953

Table 3
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Changing now from ~k to k, and following the procedure
described in previous section (Section ‘‘Theoretical treatment and
power series”), the asymptotic expansion will be written as

~E ¼ k1=4
X1
k¼0

~E2k

kk
þ k�1=4

X1
k¼0

~E2kþ1

kk
ð16Þ

There are two expansions, now for ~E, one with factor k1=4 and
another, with the factor k�1=4. The structure of the expansion given
by Eq. (16), has negative integer powers of kmultiplied by fractional
power of k. This means that the approximants to be built, must be
divided in a fractional similar way in order to match the behavior
of each piece.

Development of the approximation method through the sextic
anharmonic oscillator and its application

The main problem in the MPQA technique is to design the struc-
ture of the approximations in terms of some parameters. In the
Pade method only rational functions are used and they usually
consider power series. Now the situation is more complicated,
because the rational functions are combined with auxiliary ones,
in such a way that the power and the asymptotic expansions,
Eqs. (4) and (16), can be reproduced. In this way, the approxima-
tion function should be a bridge connecting in an efficient way
both expansions, power and asymptotic. Thus though the auxiliary
functions k�1=4 could be right from the asymptotic point of view, it
would not be adequated for the power series, and it must be

replaced for ð1þ lkÞ�1
4, where l is an arbitrary positive parameter

to be determined later. This auxiliary function introduces and
inconvenient point for l1 ¼ �1=k. However, this point is sited in
the negative axis of k, and since here positive k is considered, then,
there is not problem with this unsuitable point. In (Tables 1 and 2),
the coefficients for both the power series and the asymptotic
expansions is presented for the ground state as well as for the first
excited state of the sextic anharmonic oscillator.

The analysis presented above shows that the simplest form for
the approximant is given by

EappðkÞ ¼ ð1þ lkÞ1=4 PaðkÞ
QðkÞ þ ð1þ lkÞ�1=4 PbðkÞ

QðkÞ ; ð17Þ

where the polynomials PaðkÞ; PbðkÞ are

PaðkÞ ¼
XN
k¼0

akk
k; ð18aÞ

PbðkÞ ¼
XN
k¼0

bkk
k; ð18bÞ

and

QðkÞ ¼ 1þ
XN
k¼1

qkk
k; ðq0 ¼ 1Þ ð19Þ

In summary the approximant was constructed using rational func-
tion multiplied by auxiliary ones, chosen in such a way matching
Table 1
Power series coefficients for the ground state and the first odd excited state of the
sextic anharmonic oscillator.

Coeffis. n ¼ 0 n ¼ 1

E0 1 3
E1 15/8 105/8
E2 �3495/128 �47145/128
E3 1239675/1024 27817125/1024
E4 �3342323355/32768 �110913018405/32768
the asymptotic behavior of the eigenvalues. In this way changing,
k by ð1þ lkÞ inside the roots, the correct behavior for k ! 1 and
for k ¼ 0 are obtained. In general, the form of a quasi-rational
approximant is mainly determined by the asymptotic expansion.
This choice for the auxiliary functions requires that the degree of
the polynomials at the numerator must be the same as the ones
in the denominator. Then, for simplicity, a common denominator
QðkÞ for the two parts of the approximant has been chosen, since
any other choice would lead to a system of non-linear equations
for the ak’s, bk’s and qk’s, and the determination of the approximant
would be unnecessarily complicated.

The coefficients of the polynomials in the approximant have to
be found using power series, asymptotic expansion and the expan-
sion around some positive intermediate points kb (0 < kb < 1).
There is some freedom in chosen the terms of each expansion, as
long as the total number of equations from both expansions is
equaled to the total number of coefficients in the approximant.
In general, the approximant will have higher precision with higher
degree.

For the ground state, the eigenfunctions are even in x, so must

be the functions ~wk (and the same applies for wk and wðbÞ
k ). The ini-

tial condition to be used are ~wkð0Þ ¼ 1 and ~w0
kð0Þ ¼ 0. Conversely,

for the first excited level the eigenfunction is odd in x, so the con-
ditions were ~wkð0Þ ¼ 0 and ~w0

kð0Þ ¼ 1.
Now it is necessary to obtain a right number of equations for

the parameters of the approximant. To do this, n0 terms will be
taken from the power series (around k ¼ 0) and na terms from
the asymptotic expansion, thus

XN
k¼0

qkk
k

 ! Xn0
k¼0

Ekk
k

 !
¼ ð1þ lkÞ1=4

XN
k¼0

akk
k

 !

þ ð1þ lkÞ�1=4
XN
k¼0

bkk
k

 !
ð20Þ

Furthermore, the expansions around intermediate points will also
be used with the change k ¼ kbi , that is,
Coefficients of the series at different intermediate points from the first two energy
levels for the sextic anharmonic potential VðxÞ ¼ x2 þ kx6. Values obtained solving the
Schrödinger equation, Eq. (2), by shooting method.

Coeffis. n ¼ 0 n ¼ 1

Eðk ¼ 0:5Þ 1.300986965 4.4636830989
Eðk ¼ 1Þ 1.435624613 5.0333959502
Eðk ¼ 2Þ 1.609931940 5.7493477662
Eðk ¼ 5Þ 1.912453821 6.9608571533
Eðk ¼ 20Þ 2.564644694 9.5120884929
Eðk ¼ 50Þ 3.159021221 11.8057799890
Eðk ¼ 100Þ 3.716974733 13.9462066273



Fig. 1. Eigenvalues for the sextic anharmonic oscillator as a function of K ¼ k=ð1þ kÞ: single point shows the power series, triangle points are for the asymptotic expansion
and plane line for the approximant: (a) ground state, and (b) the first excited state.

Fig. 2. Comparison of the relative errors for the eigenvalues given by the
approximant and the exact eigenvalues determined by the shooting method for
the ground state and the first excited state of the sextic anharmonic oscillator.

Table 4
Approximant coefficients for the ground state and the first odd excited state of the
sextic anharmonic potential VðxÞ ¼ x2 þ kx6, using polynomials of degree three for
l ¼ 2.

Coeffis. n ¼ 0 n ¼ 1

a0 8.3786952759 657.31747745
a1 17.253086792 �827.31301406
a2 330.33033420 4157.4219687
a3 6.1575633825 2093.7260144
b0 �7.3786952759 �654.31747745
b1 39.775013122 513.84782811
b2 123.55100908 2064.8581374
b3 2.4083108233 524.96798410
q1 63.031795191 109.74243049
q2 343.98675636 1274.7360399
q3 6.3964033200 573.88895241

Fig. 3. Comparison of the exact eigenvalues calculated using the shooting method
with those determined by the approximant for the ground state of sextic
anharmonic oscillator in terms of k with l ¼ 2.
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1þ
XN
k¼1

qkk
k
bi

 !
Eðkbi Þ ¼ ð1þ lkbi Þ1=4

XN
k¼0

akk
k
bi

 !

þ ð1þ lkbi Þ�1=4
XN
k¼0

bkk
k
bi

 !
; ð21Þ

where Eðkbi Þ are obtained by numerical computation from the dif-
ferential equation using, for instance, the shooting method.
Finally, for the asymptotic expansion, the change k0 ¼ 1=k is
required as well as to match the expansion with the approximant
for each of the two pieces in which it is divided. Therefore, it is
obtained

XN
k¼0

qN�kk
0k

 ! X1
k¼0

~E2kk
0k

 !
¼ 1þ k0

l

� �1=4XN
k¼0

aN�kk
0k ð22Þ

XN
k¼0

qN�kk
0k

 ! X1
k¼0

~E2kþ1k
0k

 !
¼ 1þ k0

l

� ��1=4XN
k¼0

bN�kk
0k ð23Þ
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The number of terms taken from the asymptotic expansion will
be na, that is, the terms ~Ek with k > na are not needed to be calcu-
lated. A set of na linear equations for the coefficients of the approx-
imant will be obtained. Thus, the procedure has to be done in such
a way that the number of equation should be equal to the number
of unknown coefficients.
Results and discussion

In Table 4, the values of the coefficients of the approximant are
shown for both the ground state and the first excited level of the
sextic anharmonic potential, using polynomials of degree three
and choosing l ¼ 2. Each of the eleven coefficients for the ground
state approximant were obtained using the first four terms from
the power series (around k ¼ 0), the first five terms of the asymp-
totic expansion, and the values of E for k ¼ 5 and k ¼ 20. For the
first excited state the eleven coefficients were obtained using four
equation from the power series as well as four of the asymptotic
expansion and the last three equations correspond to the E values
for k ¼ 0:5; k ¼ 5, and k ¼ 20. (The coefficient values are shown in
the Table 3). Thus the eleven parameters in the rational function
were determined as a function of l through eleven linear algebraic
equations.
EappðkÞ ¼ ð1þ 2kÞ�1
4
ð�7:37869527þ 39:77501312kþ 123:55100908k2 þ 2:40831082k3Þ

ð1þ 63:03179519kþ 343:98675636k2 þ 6:39640332k3Þ

þ ð1þ 2kÞ14 ð8:37869527þ 17:25308679kþ 330:33033420k2 þ 6:15756338k3Þ
ð1þ 63:03179519kþ 343:98675636k2 þ 6:39640332k3Þ ð25Þ

EappðkÞ ¼ ð1þ 2kÞ�1
4
ð�654:31747745þ 513:84782811kþ 2064:85813740k2 þ 524:96798410k3Þ

ð1þ 109:74243049kþ 1274:73603995k2 þ 573:88895241k3Þ

þ ð1þ 2kÞ14 ð657:31747745� 827:31301406kþ 4157:42196879k2 þ 2093:72601442k3Þ
ð1þ 109:74243049kþ 1274:73603995k2 þ 573:88895241k3Þ ð26Þ
The expansion around intermediate points are very important,
since they allowed to build approximants with higher precision
for polynomials of any degree by imposing them to coincide with
the exact eigenvalues at these points. Therefore, not only the rela-
tive error of the approximant at these points are zero but it helps
also to decrease the error in intermediate points. The relative error
is defined as

jEapp � Eshooting j
Eshooting

ð24Þ

In Fig. 1, a comparison between the power series, asymptotic
expansion and the approximant for both ground state (Fig. 1a)
and first odd excited state (Fig. 1b) are presented. Clearly, it is
shown that the approximant will coincide with the power series
for small values of k, and with the asymptotic expansion for large
ones. However, the coincidence with the asymptotic expansion is
better than the power series for the ground state due to the fast
increment of the power series coefficients and the decrement of
the asymptotic expansion ones. On the other hand, Fig. 1b exhibits
the behavior of the approximant for the first excited state com-
pared to both power and asymptotic expansions for the eigenval-
ues of the sextic anharmonic potential which match accurately
with the power series for small values of the parameter k and with
high precision with some values of the asymptotic expansion. The
variable is K ¼ k=ð1þ kÞ in order to compress all the values of k in
the interval ð0;1Þ.

Despite of a few minor differences between the curves, the
approximant for both ground and first excited states in fact
achieved the recovery of the eigenvalues for any values of k > 0,
effectively, acting as a bridge connecting the expansions around
different values of k. For large values of this parameter the approx-
imant for the sextic anharmonic oscillator had a difference about
1% for the ground state and 3:5% for the first odd excited state
both respect to the asymptotic expansion.

In Fig. 2, a comparison of the relative errors of the approximant
for both ground state and first excited state are shown as a func-
tion of the parameter k. It is easy to observe that the large relative
error is for small values of k, which is also a consequence of the dif-
ferent behavior of the coefficients in both expansions, where the
highest is 5:6 � 10�3 for k ¼ 0:5, for the ground state, and
3:1 � 10�3 with k ¼ 0:1, for the first excited level. It is clear that
the relative errors were very small for large values of k, with at
least one order of magnitude below the highest relative errors. Fur-
thermore, from k ¼ 5 to k ¼ 100 the presicion of the approximants
is nearly the same. Eqs. (25) and (26), represent the final form of
the approximant for the two first energy levels, the ground state
and the first odd excited state, respectively, with l ¼ 2.
In the above equations the coefficients a’s, b’s, and q’s, with only
eight decimal digits instead of ten digits as in Table 4 are written
since that is enough to obtain the same relative errors.

In Fig. 3, it is shown the eigenvalues calculated with the approx-
imant, compared with the values obtained numerically by the
shooting method as shown in Table 3. At this scale, there is not dif-
ference between the exact and the approximated eigenvalues.

Conclusion

In this work an improvement and extension has been per-
formed of the MPQA method described in previous papers [11–
14,16–20]. The new technique has been applied to obtain approx-
imations for the ground state of the 1-D Schrödinger equation with
sextic anharmonic potential, VðxÞ ¼ x2 þ kx6, where k is an arbi-
trary parameter. Building the approximant as a degree three poly-
nomial, the accuracy of the approximant is high with a relative
error less than 5 � 10�3. The higher the polynomial degree, the bet-
ter the precision of the approximant.

In order to apply this technique, an expansion in terms of the
parameter k of the eigenvalues has been determined through an
auxiliary system of differential equations, which can be considered
as a Taylor series of the eigenvalues in terms of k. The correspond-
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ing asymptotic expansion has been found using a similar auxiliary
system of equations, but now in terms of a right new parameter
~k ¼ k�

1
2. So that, the idea of the approximant is to build a function

using rational functions together with auxiliary ones, as a bridge
between Taylor and asymptotic expansions.

For the potential here considered the coefficients of the Taylor
series increase very quickly, and in contrast those of the asymp-
totic expansion decrease faster. This is the reason, that the highest
relative errors are found for small values k, and for large k these are
smaller at least in one order of magnitude. In addition to the above
described expansions as it is usually done in MPQA method, and
additional condition have to be imposed to the approximant,
which must have exact values for two intermediate points, k ¼ 5
and k ¼ 20, for example.

The approximant here found is good for any positive value of k,
which is an important advantage compared with polynomials
approximations, which are usually good in an interval of the vari-
able k. Furthermore, the relative errors are so small, that the
approximant here found for the eigenvalues, can be used in most
of the applications of this potential.
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