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A B S T R A C T

A novel silicon-on-insulator (SOI) lateral double-diffused metal-oxide-semiconductor (LDMOS) structure has
been proposed. The new structure features a substrate field plate (SFP) and a variable-k dielectric buried layer
(VKBL). The SFP and VKBL improve the breakdown voltage by introducing new electric field peaks in the surface
electric field distribution. Moreover, the SFP reduces the specific ON-resistance through an enhanced auxiliary
depletion effect on the drift region. The simulation results indicate that compared to the conventional SOI
LDMOS structure, the breakdown voltage is improved from 118 V to 221 V, the specific ON-resistance is de-
creased from 7.15 mΩ·cm2 to 3.81mΩ·cm2, the peak value of surface temperature is declined by 38 K.

Introduction

Silicon-on-insulator (SOI) technology has great advantages over
bulk silicon technology in manufacturing power integrated circuit (IC),
such as ideal isolation performance, low power dissipation and free of
latch-up effect [1–4]. However, the vertical breakdown voltage (VB, V)
supported by the SOI layer and the buried oxide layer is low, which
limits the application of the SOI device in the high voltage field. In
order to address this limitation, some works have been carried out
[5–10]. A feasible method for increasing the VB,V is to change the triple
relationship (EI≈ 3ES) between the electric field in the buried oxide
layer (EI) and the electric field in the SOI layer (ES) using the low-k
dielectric buried layer [11,12]. Nevertheless, the low-k dielectric with
the low thermal conductivity aggravates self-heating effect [13]. On
another aspect, the longer drift region is usually adopted for the higher
lateral breakdown voltage (VB,L). Unfortunately, the specific ON-re-
sistance (Ron,sp) is approximately proportional to the 2.5 times of the
breakdown voltage (BV) in the conventional LDMOS, which dramati-
cally worsens Ron,sp as the BV increases. To alleviate the contradiction
between BV and Ron,sp, the reduced surface field (RESURF) technology,
the field plate technology and the super-junction technology are widely
used [14–17]. However, the field plate biased to the gate will increase
Cgd and reduce the second mechanism in RF power LDMOS devices
[18,19]. The field plate biased to the source can decrease Cgd, but the
JFET effect degrades the drain current [20]. In order to make the
substrate share VB, V and alleviate the self-heating effect, Partial SOI
technology has been adopted in some works [21–29]. However, the
higher leakage current and thermomechanical stress in the PSOI

LDMOS lead to significant device reliability problems [30].
In this paper, we propose a novel silicon-on-insulator lateral double-

diffused metal-oxide-semiconductor (LDMOS) with substrate field plate
and variable-k dielectric buried layer (SFP-VK LDMOS). The substrate
field plate (SFP) composed of polysilicon not only introduces new
electric field peaks and modulates the surface electric field, but also
depletes the drift region auxiliarily. The variable-k dielectric buried
layer (VKBL) further optimizes the surface electric field. Meanwhile, the
electric field of dielectric buried layer is enhanced by the low-k di-
electric under the drain. In addition, the higher thermal conductivity of
polysilicon and the window connected SFP with the substrate alleviate
self-heating effect. Compared to the conventional field plate structure,
the higher FOM of SFP-VK LDMOS is achieved. The Cgs and Cgd which
affect the dynamic performances of the device are reduced in the pro-
posed structure. Moreover, SFP located in the dielectric buried layer has
little impact on the current flowing along the surface of device, so the
current degradation caused by hot carrier effect and JFET effect is
suppressed.

Structure and mechanism

The schematic cross section of the proposed SFP-VK LDMOS is il-
lustrated in Fig. 1(a). The step SFP is inserted into the dielectric buried
layer, and connected to the substrate through a silicon window under
the source. The VKBL is divided into two parts. One is low-k dielectric
buried layer located at the drain side, and another is silica. In the lateral
direction, the SFP and VKBL introduce two new electric field peaks,
which reduce the electric field peaks at the two PN junctions in the
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lateral P-well/N-drift/N+ structure, and modulate the electric field
distribution together along the device surface. In the vertical direction,
the low-k dielectric buried layer share more vertical voltage under the
drain than the silica in the conventional SOI-LDMOS structure, thus
shields the silicon layer and avoid the premature breakdown under the
drain.

As shown in Fig. 1(a) which depicts the proposed SFP-VK LDMOS, Li
and Ld represent the length of the low-k dielectric buried layer and the
drift region, respectively. Lfp1 and Lfp2 denote the length of the top part
and the bottom part of the SFP, respectively. Tbox and Tsoi are the
thickness of the buried oxide layer and the SOI layer, respectively. Ki1

and Ki2 denote the permittivity of the silica and low-k dielectric, re-
spectively.

In the off state, the SFP is biased to the ground through the silicon
window. The potential of the SFP relative to the drift region is negative,
thus depletes drift region auxiliarily in the vertical direction, as shown
in Fig. 1(b). It is noteworthy that the number of ionized donors varies
with the distance between SFP and SOI layer. The SOI layer/dielectric
buried layer/substrate can be considered as the MIS capacitance. We

assume that C1, C2, C3 and C4 are capacitances per unit area in different
regions, as shown in Fig. 1(c). According to the condition of
d3 > d2 > d1 and Ki1 > Ki2, C1 > C2 > C3 > C4 can be deduced,
so the depletion of the drift region in the vertical direction becomes
gradually weakened from source to drain. It is known that low-K di-
electric improves vertical breakdown voltage, but weakens the deple-
tion in the drift region on the basis of the previous analysis. The in-
troduction of SFP in the dielectric buried layer enhances auxiliary
depletion and offsets the negative effect on drift region concentration
due to low-k dielectric. Therefore, excellent device performance can be
achieved with the combination of the SFP and VKBL.

The performance of the SFP-VK LDMOS is investigated using Silvaco
TCAD. The physical models include CVT, CONSRH, AUGER, CONMOB,
FLDMOB, LAT.TEMP and IMPACT. The Gummel and Newton iterative
algorithms are used to solve the Poisson equation and the drift-diffusion
equation. The conventional LDMOS structure (C-LDMOS) is also simu-
lated for the sake of comparison. The related device parameters of the
two structures are listed in Table 1.

The SFP-VK LDMOS and C-LDMOS have been optimized to satisfy
the RESURF principle. The ionization rate distribution for both the
conventional and the proposed structures at breakdown are given in
Fig. 2(a) and (b). The lower impact generation rate of the device surface
compared to the bulk indicates the surface electric field is reduced and
thus breakdown points are transferred to the bulk.

Fig. 3(a) and (b) illustrate the equipotential contours distributions
at breakdown for the proposed structure and C-LDMOS, respectively. In
Fig. 3(a), the equipotential lines in the SFP-VK LDMOS are very dense
and uniformly spaced along the horizontal direction due to the reshape
effect of the SFP and VKBL. However, the equipotential lines of the C-
LDMOS in Fig. 3(b) mainly distribute in the two ends of the drift region,
and rarely in the middle. It makes the source and drain side easier to
accumulate high electric field and cause surface breakdown. Comparing
the number of equipotential lines in the black dashed rectangular, the

Fig. 1. (a) Schematic cross section of the proposed SFP-VK LDMOS. (b) Schematic of the SFP (solid arrow denotes the direction of the depletion). (c) Depletion
mechanism in the vertical direction.

Table 1
Device parameters used in the simulation.

Parameter SFP-VK LDMOS C-LDMOS

Drift length, Ld 10 μm 10 μm
Drift concentration, Nd 1.9× 1016 cm−3 0.8× 1016 cm−3

Thickness of SOI layer, Tsoi 1 μm 1 μm
Thickness of BOX layer, Tbox 1 μm 1 μm
Top part length of SFP, Lfp1 4 μm –
Bottom part length of SFP, Lfp2 4 μm –
Permittivity of left BOX layer, Ki1 3.9 3.9
Permittivity of right BOX layer, Ki2 2 3.9
Length of right BOX layer, Li 5 μm –
Substrate concentration, Nsub 3× 1014 cm−3 3× 1014 cm−3
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potential distribution of C-LDMOS is more intensive than SFP-VK
LDMOS under the drain, indicating that the low-k dielectric buried
layer in the SFP-VK LDMOS shields the SOI layer. Therefore, the higher
breakdown voltage can be reached in the SFP-VK LDMOS.

Fig. 4(a) shows the comparison of the OFF-state I-V characteristics
between the proposed structure and C-LDMOS. It is obvious that the BV
of the SFP-VK LDMOS reaches 221 V, while that of C-LDMOS is only
118 V. Compared to the C-LDMOS, the BV of the SFP-VK LDMOS has
been improved by 87.3%. Fig. 4(b) provides the comparison of output I-
V characteristic curves between the two structures. When VGS= 7.5 V
and VDS=40 V, the drain current of SFP-VK LDMOS is up to
1.4×10−4 A/μm, which is increased by 37% in comparison with
1.02×10−4 A/μm of C-LDMOS. The drain current of SFP-VK LDMOS
at VGS= 5.5 V is a little smaller than C-LDMOS, but nearly equals at
VGS= 6.5 V due to the quasi-saturation effect of C-LDMOS at
VGS≥ 6.5 V. In the linear region, the curves belonged to SFP-VK
LDMOS are steeper than C-LDMOS, indicating that the lower specific
ON-resistance can be obtained in the former. Therefore, stronger cur-
rent output capability can be achieved in the proposed structure.

Fig. 5(a) shows surface electric field distribution in the two struc-
tures at y= 0.001 μm. For the SFP-VK LDMOS, it is clear that two new
electric peaks A and B are introduced due to the SFP and VKBL.
Moreover, the peaks O and O' decrease compared to the peaks P and P′
of C-LDMOS, indicating a more even electric field distribution along the
surface. It is noted that the average electric field strength of the pro-
posed structure in the central section of the drift region is about
2× 105 V/cm, which is much higher than 7× 104 V/cm of the C-

LDMOS. Therefore, the area under the electric field curve along the
surface of the proposed structure is much larger than that of C-LDMOS,
indicating higher breakdown voltage in the former. Fig. 5(b) illustrates
the electric field distribution in the proposed structure along
y= 0.001 μm and y= 0.999 μm. Obviously, peaks A′ and B′ correspond
to peaks A and B, respectively. This further confirms that the electric
field modulation effect along the surface is produced by the SFP and
VKBL.

Fig. 6 provides the vertical electric field and potential distribution at
breakdown under the drain in the two structures. For the SFP-VK
LDMOS, the EI (represents the electric field strength in the BOX layer) is
approximately 200 V/μm and the ES (represents the electric field
strength in the SOI layer) is about 33 V/μm, which nearly satisfies the
expression EI≈ 6ES. It is noted that the EI in the C-LDMOS is only 95 V/
μm, which is much lower than the EI in the proposed structure due to
the higher permittivity of BOX layer under the drain. As revealed in
Fig. 6, the BOX layer in the proposed structure shares more voltages
than that of the C-LDMOS, leading to a higher vertical breakdown
voltage.

Results and discussion

Fig. 7(a) and (b) show BV of the SFP-VK LDMOS versus the Nd with
different Lfp1, Ki1 and Ki2. As shown in Fig. 7(a), the peak of the
breakdown voltage first increases and then decreases as Ki1 increases
from 2 to 6. Too small or too large Ki1 will increase the difference be-
tween Ki1 and Ki2, which will lead to an exorbitant electric field peak

Fig. 2. The ionization rate distribution at breakdown: (a) SFP-VK LDMOS; (b) C-LDMOS.

Fig. 3. Equipotential contours distributions at breakdown: (a) SFP-VK LDMOS; (b) C-LDMOS.

Q. Li et al. Results in Physics 10 (2018) 46–54

48



produced by VKBL. Therefore, the optimal value can be reached at
Ki1= 3 or Ki1= 3.9. Similarly, 2 is selected as the optimal value of Ki2.
As illustrated in Fig. 7(b), it is remarkable that the peak of the break-
down voltage decreases from 221 V to 196 V as the Lfp1 increases from
4 μm to 6 μm. Too large Lfp1 means the top part of the SFP extends too
much to the right, which makes the effect of the electric field mod-
ulation become worse. Since too small Lfp1 will weaken the auxiliary
depletion, 4 μm is selected as the optimal value of Lfp1. Similarly, base
on the RESURF principle, 4 μm and 5 μm are selected as the optimal
value of Lfp2 and Li, respectively.

Fig. 8(a) and (b) illustrate the electric field distribution with dif-
ferent Lfp2 and Li along y=0.999 μm. As shown in Fig. 8(a), the electric
peak produced by SFP shifts from A1 to A3 as the Lfp2 increases from
3 μm to 5 μm. Since the field distribution is of the most uniform when
the value of Lfp2 is 4 μm, it is selected as optimal value. Similarly, the
electric peak produced by VKBL shifts from B3 to B1 as the Li increases
from 4 μm to 6 μm, as illustrated in Fig. 8(b). Owing to the more even
electric field distribution, optimal value of Li is selected as 5 μm.

Fig. 9(a) and (b) show Ron,sp of the SFP-VK LDMOS versus the Nd

with different Lfp1 and Lfp2. The insets in Fig. 9(a) and (b) are Ron,sp

versus Nd when BV reaches the maximum value. For
Nd > 1×1016 cm−3, the Ron,sp nearly doesn’t vary with Lfp1 and Lfp2,
because depletion region produced by SFP almost doesn’t affect the

current flowing along the device surface, which is beneficial to the
reduction of Ron,sp. It can be seen from the insets that the Ron,sp get the
minimum value while both Lfp1 and Lfp2 equal 4 μm.

Fig. 10(a) and (b) show dependences of Ron,sp on Ki1, Ki2, Li, Lfp1 and

Fig. 4. (a) OFF-state I-V characteristics. (b) Output I-V characteristics.

Fig. 5. (a) Surface electric field distribution for SFP-VK LDMOS and C-LDMOS. (b) The electric field distribution along y=0.001 μm and y=0.999 μm.

Fig. 6. Vertical electric field and potential distribution at breakdown under the
drain for SFP-VK LDMOS and C-LDMOS.
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Fig. 7. (a) BV of the SFP-VK LDMOS versus the Nd with different Ki1 and Ki2. (b) BV of the SFP-VK LDMOS versus the Nd with different Li, Lfp1 and Lfp2.

Fig. 8. (a) The electric field distribution with different Lfp2 along y=0.999 μm. (b) The electric field distribution with different Li along y= 0.999 μm.
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Lfp2 for the SFP-VK LDMOS. Obviously, the Ron,sp monotonously de-
creased with the increase of Ki2 or the decrease of Li. When Ki2 > 2 or
Li < 5 μm, the curves show a slowly declined trend. It is also clear that
the Ron,sp can obtain minimum values when Lfp1, Lfp2 and Ki1 equal
4 μm, 4 μm and 3.9, respectively. Considering both the BV and Ron,sp,
the optimal values of five parameters are selected, as shown in
Fig. 10(a) and (b).

Fig. 11(a) and (b) illustrate the lattice temperature distributions in
the proposed structure and C-LDMOS. The substrate temperature is
300 K, and the voltage applied to the gate is 6.5 V. As shown in
Fig. 11(a), the temperature of SFP-VK LDMOS is lower than C-LDMOS.
The max temperature of the SFP-VK LDMOS is 332 K and 343 K at
VDS= 15 V and VDS=20 V, while that of C-LDMOS is 358 K and 381 K.
As revealed in Fig. 11(b), it can be found that the maximum tempera-
ture of SFP-VK LDMOS occurs at the source side and that of C-LDMOS at
the drain side. Moreover, the temperature fluctuation of C-LDMOS is
bigger than SFP-VK LDMOS in the SOI layer. It indicates the heat cannot
be dissipated through the BOX layer of the former in time and accu-
mulates in the SOI layer, which is easier to form local hot spots. In
contrast to C-LDMOS, the higher thermal conductivity of the polysilicon
SFP in the proposed structure makes the temperature decrease steeply
near the SFP, and thus limits the generation of local hot spots.

Fig. 12(a) and (b) show Cgs and Cgd of three different field plate
structures. The same device size is used except the length of the field
plate, which is dependent on the maximum BV. It is noted that the
smallest Cgs is obtained using substrate field plate. Moreover, the Cgd of
substrate field plate structure is closed to that of source field plate
structure. Therefore, the best dynamic performance is achieved in the
substrate field plate structure.

Fig. 13 compares the tradeoff relationship between the BV and Ron,sp

for the proposed device and other LDMOS devices. The results indicate
that the performance of the proposed structure breaks through the limit
of silicon due to the well-distributed surface electric field with the
larger mean of the lateral electric field. It is notable that the highest
FOM value (FOM=BV2/Ron,sp) is obtained in the proposed structure,
which proves to have a better compromise between the BV and Ron,sp.

Fig. 14 shows the simple process flow of SFP-VK LDMOS. Before the
fabrication, two wafers should be prepared. Step (a) is to form the si-
licon window for the connecting between substrate and SFP. Steps (b)
and (c) are to etch the oxide trench for the SFP. Steps (d) and (e) are to
etch polysilicon for the shape of SFP. Steps (f)–(h) are for the formation
of VKBL by etching oxide and CVD low-K dielectric. Step (i) are for the
bonding between wafer1 and wafer2. Step (j) includes the remaining
processes which are the same as traditional CMOS processes.

Fig. 9. (a) Ron,sp of the SFP-VK LDMOS versus the Nd with different Lfp1. (b) Ron,sp of the SFP-VK LDMOS versus the Nd with different Lfp2. (The insets represent Ron,sp

versus Nd at the maximum BV).

Fig. 10. (a) Dependences of Ron,sp on Li, Lfp1 and Lfp2 for the SFP-VK LDMOS. (b) Dependences of Ron,sp on Ki1 and Ki2 for the SFP-VK LDMOS.
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Conclusions

In summary, a novel SFP-VK LDMOS is proposed. The SFP mod-
ulates the surface electric field and enhances the auxiliary depletion
effect in the vertical direction. The VKBL increases the electric field in
the dielectric buried layer under the drain and further optimizes the
surface electric field. The BV is dramatically improved owing to the
well-distributed electric field produced by the SFP and VKBL. Moreover,
the enhanced auxiliary depletion effect of the SFP effectively reduces
the Ron,sp. The BV of the SFP-VK LDMOS is improved by 87.3% and the
Ron,sp is decreased by 46.7% in comparison with the C-LDMOS.
Meanwhile, the temperature characteristics are superior to that of the
C-LDMOS [31–39].
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Fig. 11. (a) The lattice temperature distributions of the SFP-VK LDMOS and C-LDMOS along y= 0.001 μm. (b) The lattice temperature distribution of the SFP-VK
LDMOS and C-LDMOS. (VGS=6.5 V, P= 1mW/μm).

Fig. 12. Capacitance versus gate voltage in three different field plate structures (Vds= 0, f= 1GHz): (a) Cgs; (b) Cgd.

Fig. 13. BV versus Ron,sp tradeoff relationship for different types of LDMOS and
this brief.
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