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The purpose of the current problem is to analyze the nano boundary layer flow and heat transfer of the
modified second grade fluid over a non-linearly stretching surface. A newly introduced boundary condi-
tion of zero nanoparticle mass flux is incorporated for the analysis. The appropriate local similarity trans-
formations are employed to transform the modeled partial differential equations of momentum,
temperature and concentration into coupled non-linear ordinary differential equations. The governing
boundary value problem is numerically integrated by the help of shooting method along with Runge-
Kutta Fehlberg scheme. The ascendancy of arising thermophysical parameters on the temperature and
concentration profiles is graphically displayed. The detail study reveals that a decay in the nanoparticle
concentration profile is found for growing values of the Brownian motion parameter while the increasing
values of the thermophoresis parameter results in increment of the concentration of nanofluid. Moreover,
the nanoparticle concentration became weaker with the developing values of the Lewis number. In addi-
tion, the numerical results are validated by providing exact solutions for special case and excellent com-
patibility between the two results is achieved.
� 2018 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

In the last two decades, the notion of nanotechnology has been
universally exploited in the problems ascribing the conventional
heat transfer in order to boost the heat transfer characteristics of
several fluids. Nanofluids are basically very stable colloidal suspen-
sions composed of nanometer sized particles termed as nanoparti-
cles ð1—100 nmÞwhich have considerably large surface area due to
which they are probable for enhancing the heat transfer rate. On
account of a remarkable increase in thermal conductivity, nanoflu-
ids found practical utility in industrial, technological and various
pharmaceutical processes. Nanofluids are primarily used as cool-
ants in transformers, vehicles, computers and many other elec-
tronic devices. Nanotechnology is efficiently applied in designing
various military devices, nuclear reactors, space technology and
also utilized in treating several diseases like cancer infected tis-
sues. Choi [1] bestowed a theoretical model for the enrichment
of thermal transport properties of nanofluids with base fluid. He
succinctly described the technology for the production of nanopar-
ticles and reconnoiter the fact that these fluids have hefty perti-
nence for many industries. Buongiorno [2] scrutinized various
mechanisms that could be authoritative for the noteworthy
increase in convective heat transfer in nanofluids. Out of those slip
mechanisms, thermophoresis and Brownian diffusion are much
significant in nanofluids. Buongiorno presented a model for con-
vective transport in nanofluid in order to cope with the problems
which were originating in previous dispersion models. Kim et al.
[3] summarized that a paramount increase in critical heat flux
(CHF) can be attained at a small-scale nanoparticles concentration
that is even less than 0:1% by volume. Kuznetsov and Nield [4]
constructed a similar solution for the natural convection boundary
layer flow of nanofluid over a vertical plate using the Buongiorno’s
model. Khan and Pop [5] critiqued the numerical solution for the
laminar flow of a nanofluid over a linearly stretching surface. A
similarity solution was constructed embodying the consequence
of Brownian motion and thermophoresis. The analytical as well
as numerical solutions for the flow of a nanofluids over stretching
surfaces were established by Gorder et al. [6]. Roberts and Walker
[7] framed out the convective performance of nanofluids in com-
mercially procurable liquid systems for computational processing
units (CPUs). The obtained results showed the same desired out-
come in real systems as they take on for experimental systems.
Makinde and Aziz [8] devoted their study to seek the numerical
solutions for the boundary layer flow of nanofluid induced due to
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a stretching sheet by taking into account the convective heating
boundary condition. An extensive study of convective transport
in nanofluid over a convectively heated surface was set up by Aziz
and Khan [9]. Das et al. [10] performed a numerical investigation to
probe the influence of thermal radiation on the flow of a nanofluid
over an unsteady heated stretching surface. Aly and Vajravelu [11]
surveyed the consequence of the second order slip condition on the
nano boundary layer flows through a porous medium over stretch-
ing surfaces and thus calculated the exact and numerical solutions
in the presence of transverse magnetic field. Mabood and Mas-
troberardino [12] contemplated the development of MHD bound-
ary layer flow and melting heat transfer of water based
nanofluid. The consequence of viscous dissipation on the electri-
cally conducting fluid over a stretching sheet is demonstrated
and the numerical solutions are constructed by Runge-Kutta Fehl-
berg method. Haq et al. [13] summarized the impact of combine
effects of velocity and thermal slip on the MHD boundary layer
flow of nanofluid considering the effect of zero normal flux of nano
particles at the wall. Numerical investigations are performed by
incorporating the development of stagnation point flow by taking
the thermal radiation effect into account.

Due to diversified applicability of non-linear fluid flows in
industrial and technological fields, researchers have advised dis-
tinct non-Newtonian fluid models [14–25] based on different
constitutive relations. Amongst these models the power-law
model is broadly used to envision the shear-thinning and thick-
ening characteristics. Likewise, second grade fluid being an ele-
mentary subclass of differential type fluid can competently
visualize the normal stress effects. Subsequently, a renowned
model is proposed by Man and Sun [26] known as generalized
second grade fluid, by combining both the second grade model
and the power-law model. Generalized second grade model not
only anticipates the shear-thinning and shear-thickening regimes
but can also execute the normal stress behavior of fluids since
the viscosity could be a function of rate of deformation. Aksoy
et al. [27] computed the boundary layer equations for the mod-
ified second grade fluid and integrated them using a numerical
finite difference technique to obtain the stretching sheet solu-
tions. This work was further extended by Khan and Rahman
[28] in consideration of boundary layer flow and heat transfer
of modified second grade fluid over a non-linear stretching
sheet. Some latest work on the modified second grade fluid
includes [29–31].

The present work is based on the boundary layer flow and
heat transfer of modified second grade nanofluid. The stretching
solutions are computed numerically using a more realistic condi-
tion [32,33] when the nanofluid particle concentration is not
intensely controlled on the boundary even though it is passively
allowed. The mathematical model is developed and solved
numerically by the shooting method along with Runge-Kutta
Fehlberg scheme. The important results are tabulated and graph-
ically portrayed.

Mathematical model

Governing equations

A steady two-dimensional boundary layer flow and heat trans-
fer of a modified second grade nanofluid is designed over a non-
linear stretching surface coinciding with the plane y ¼ 0 while
the flow would be perpendicular to the plane of the sheet (i.e.
y P 0). The sheet being put up at a constant temperature Tw is con-
tinuously stretched with a non-linear velocity u ¼ cxs where c,
s > 0 such that s represents the stretching rate of the sheet and c
symbolize the power-law exponent parameter. The mass flux of
the nanoparticles at the wall is taken to be zero while for consid-
erably large value of y, the ambient values of concentration and
temperature are C1 and T1, respectively.

The extra stress tensor s for the modified second grade fluid sat-
isfies [15]

s ¼ �pIþ lP
m
2A1 þ a1A2 þ a2A

2
1; ð1Þ

where p is the pressure, m, a1, a2 and l are the material constants,

while P ¼ 1
2 trA

2
1

��� ��� with A1 and A2 being the first and second Rivlin-

Ericksen tensors, respectively.
For the problem under consideration, the governing conserva-

tion equations of mass, momentum, energy and concentration for
the flow of an incompressible modified second grade nanofluid
[27,28] take the form
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In the above equations u and v , respectively, display the compo-
nents of velocity in the x- and y-directions, T and C characterize
the temperature and the nanoparticle volume fraction, m the
power-law index, a1 the material moduli, kf the thermal conductiv-
ity and cf the specific heat of the fluid at constant pressure. More-
over, DB corresponds to the Brownian diffusion coefficient, DT the
thermophoresis diffusion coefficient and s ¼ ðqcÞp

ðqcÞf

� �
the ratio of

effective heat capacity of the nanoparticle material ði:e ðqcÞpÞ to
heat capacity of the fluid ði:e ðqcÞf Þ.

Boundary conditions

The relevant velocity, temperature and concentration boundary
conditions associated with the physical problem under discussion
are

uðx; yÞ ¼ U ¼ cxs; vðx; yÞ ¼ 0; Tðx; yÞ ¼ Tw; Cðx; yÞ

¼ DB
@C
@y

þ DT

T1

@T
@y

at y ¼ 0; ð6Þ

uðx;yÞ ! 0;
@uðx;yÞ

@y
! 0; Tðx;yÞ ! T1; Cðx;yÞ ! C1 as y!1:

ð7Þ
It is worth noting that for a1 ¼ 0, Eqs. (2)–(7) reduce to the bound-
ary layer equations for power-law nanofluid over non-linear
stretching sheet. Furthermore, form ¼ 0 they correspond to the sec-
ond grade nanofluid problem and for m ¼ a1 ¼ 0, we get the nano-
boundary layer equations for Newtonian fluid.

Non-dimensionalization

The governing partial differential equations can be reduced to
corresponding ordinary differential equations by incorporating
the following local similarity transformations
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g ¼ y
x
Re

1
2þm; w ¼ xURe�

1
2þmf ðgÞ; hðgÞ ¼ T � T1
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where w is the stream function defined in the usual way as u ¼ @w
@y

and v ¼ � @w
@x and Re denotes the local Reynolds number given by

Re ¼ qx1þmU1�m

l
: ð9Þ

Substitution of Eq. (8) identically satisfies the continuity equation
while Eqs. (3)–(5) reduces to the following system of non-linear dif-
ferential equations
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The transformed boundary conditions take the form

f ðgÞ ¼ 0; f 0ðgÞ ¼ 1; hðgÞ ¼ 1; Nb/
0ðgÞ þNth

0ðgÞ ¼ 0 at g¼ 0;

ð14Þ

f 0ðgÞ ! 0; hðgÞ ! 0; /ðgÞ ! 0 as g ! 1; ð15Þ
where prime symbolizes the differentiation with respect to the local
similarity variable g. The parameters k, Pr, Le, Nb, Nt defines the gen-
eralized second grade parameter, the generalized Prandtl number,
the Lewis number, the Brownian motion parameter, the ther-
mophoresis parameter, respectively, given by
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Physical quantities of pre-eminent interest

The physical quantities of notable importance are the local skin
friction coefficient Cf x , the local Nusselt number Nux given by

Cfx ¼
sw

1
2qU

2 ; Nux ¼ xqw

kf ðTw � T1Þ ; ð17Þ

where sw is the wall shear stress, qw the wall heat flux and jw the
wall shear stress, formulated as
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The non-dimensional representation of the above quantities can be
written as
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The reduced Sherwood number which represents the dimensionless
mass flux at the wall is identically zero for the problem under
consideration.
Solution methodology

The numerical solution

The governing equations for flow and heat transfer of modified
second grade nanofluid is numerically handled by the help of
Runge-Kutta Fehlberg method. The governing problem is reduced
to corresponding initial value problem and the values of the miss-
ing initial conditions are calculated by Newton’s method.
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Verification of numerical solutions

The appropriateness of numerical scheme is verified in Table 1
by computing the exact solutions and thus providing the compar-
ison between the numerical solutions and exact solutions for spe-
cial case. The numerical values of �f 00ð0Þ and �h0ð0Þ are tabulated
for the case of second grade fluid ðm ¼ 0Þ and for linear stretching
ðs ¼ 1Þ in the absence of nanoparticles. Both the solutions are
found to be in good agreement and thus our numerical methodol-
ogy is verified.

Results and discussion

This section marks the physical interpretation of the behavior of
the physical parameters which arise in the flow and heat transfer
of the modified second grade nanofluid past a stretching surface.
The numerical computation namely the shooting method along
with Runge-Kutta Fehlberg scheme is incorporated to integrate
the governing mathematical model. In the calculations, the default
values of different parameters are taken to be s ¼ 1, k ¼ 0:5,
Nb ¼ 0:5, Nt ¼ 0:5, Pr ¼ 10 and Le ¼ 10 unless otherwise specified.

Fig. 1 analyses the impact of the power-law indexm on the tem-
perature and nanoparticle volume fraction distributions for the
case of linear and quadratic stretching. An inspection of the graph-
ical behavior illustrates that an increment in the value of the
power-law index descends the thermal as well as concentration
boundary layers. It is further revealed that the thermal as well as
concentration boundary layer thickness is greater for the case of
linear stretching.

Fig. 2 highlights the effect of the thermophoresis parameter Nt

on the temperature and concentration fields for different values



Table 1
Comparison of the variation of �f 00ð0Þ and �h0ð0Þ for the case of the second grade fluid ðm ¼ 0Þ when s ¼ 1.

Exact solution Numerical Solution

k Pr �f 00ð0Þ �h0ð0Þ �f 00ð0Þ �h0ð0Þ
0.5 10 0.81649658 2.3478745 0.81651160 2.3478704
1 0.70710678 2.3715683 0.70716177 2.3715544
1.5 0.63245553 2.3877034 0.63257670 2.3876736
2 0.57735027 2.399595 0.57755736 2.3995450

2 0.95141934 0.9514135
5 1.6081636 1.6081591
7 1.9354025 1.9353982

Fig. 1. Impact of the power-law index m on the temperature and concentration profiles.

Fig. 2. Impact of the thermophoresis parameter Nt on the temperature and concentration profiles.
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of the power-law index. The temperature together with the con-
centration of the nanofluid is increasing function of Nt . The esca-
lated values of Nt lead to enrichment of thermophoresis force
which causes the diffusion of nanoparticles in the ambient fluid
due to temperature gradient resulting in the thickening of thermal
and concentration boundary layers. It is noticeable that a boost in
the thermophoretic effect points deeper penetration of nanoparti-
cles in the ambient fluid causing an increase in nanofluid’s temper-
ature and concentration. Further, the thermal as well as
concentration boundary layer structures are dominant for shear-
thinning fluids.

Fig. 3(a) describe the development of the temperature distribu-
tion corresponding to their dependence on the generalized Prandtl
number Pr. It is visualized from these plots that an uprise in the
values of Pr tends to diminish the thermal boundary layer. From
the physical point of view, the thermal diffusivity becomes weaker
on increasing the values of Pr which restrain the flow of heat into
the fluid resulting in thinning of thermal boundary layer. Fig. 3(b)



Fig. 3. Impact of the generalized Prandtl number Pr on the temperature and concentration profiles.

Fig. 4. Impact of the Brownian motion parameter Nb on concentration profile.

Fig. 5. Impact of the Lewis number Le on the
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render the dependence of the Prandtl number on the nanoparticle
concentration. It is revealed that the concentration boundary layer
overshoots near the wall for upgraded values of Pr and gradually it
lessens away from the boundary.

The consequence of the Brownian motion parameter Nb on the
nanoparticle concentration profile is depicted in Fig. 4 for shear
thinning, second grade and shear thickening fluids. It is revealed
that the uprising values of Nb decreases the nanoparticle concen-
tration and thus a reduction in concentration boundary layer could
be seen. The growing values of the Brownian motion parameter
interrupt the Brownian motion and thus prevent the diffusion of
the nanoparticles in the flow regime which results in the reduction
of the concentration of the nanoparticle volume fraction. The vari-
ation in temperature profile is negligible corresponding to different
values of Nb in correspondence to applicability of the boundary
condition proposed by Kuznetsov and Nield [29].

Fig. 5(a) and (b) demonstrates the variation of the temperature
and nanoparticle concentration profiles for growing values of the
Lewis number Le for shear thinning, second grade and shear thick-
ening fluids. Fig. 5(a) displays that the temperature as well as the
thermal boundary layer increases corresponding to escalating val-
ues of the Lewis number. However, the behavior is much promi-
temperature and concentration profiles.



Fig. 7. Impact of the thermophoresis parameter Nt and the generalized Prandtl number Pr on the local Nusselt number when m ¼ 0:1 is fixed.

Fig. 6. A comparison of the temperature and concentration profiles of the Newtonian, power-law, second grade and modified second grade nanofluids.
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nent for shear-thinning fluid. Fig. 5(b) portrays that the nanoparti-
cle concentration becomes weaker for developing values of the
Lewis number. An increase in the Lewis number scales down the
molecular diffusivity which compels to decay the concentration
boundary layer.

Fig. 6(a) and (b) display the temperature and nanoparticle con-
centration profiles for the case of the Newtonian nanofluid
ðk ¼ 0; m ¼ 0Þ, the second grade nanofluid ðk–0; m ¼ 0Þ and the
power-law nanofluid ðm–0; k ¼ 0Þ with those of the modified sec-
ond grade nanofluid, respectively. It is noticeable that the modified
second grade nanofluid has the most elevated thermal boundary
layer as compared to the other three fluid models. Moreover, it is
revealed that the boundary layer thickness increases for the mod-
ified second grade nanofluid in comparison with the Newtonian
and power-law nanofluids away from the wall. However, the sec-
ond grade fluid has slightly elevated concentration boundary layer
as comparative to the second grade nanofluid.

The significance of the thermophoresis parameter Nt and the
generalized Prandtl number Pr on the local Nusselt number is
acknowledged in Fig. 7(a) and (b), respectively. It is noticed that
the local Nusselt number is an increasing function of Pr while a
decreasing function of Nt: This is due to the fact that for higher val-
ues of Pr, the convection process is dominant as compared to con-
duction which causes an increment in the heat transfer rate. This
decline due to the rise in the thermophoresis parameter is a conse-
quence of the stronger thermophoretic force that drives the
nanoparticles with high thermal conductivity towards the quies-
cent fluid from the hot sheet.

Table 2 is constructed to scrutinize the heat transfer rate of the
modified second grade nanofluid at the wall Nux for various values
of Pr, s; Nt , Nb and Le for shear-thinning, second grade and shear-
thickening regime. The generalized Prandtl number and the Lewis
number have opposite impact on the local Nusselt number. How-
ever, the heat transfer rate is invariant for the change in the Brow-
nian motion parameter. Furthermore, the stretching parameter has
a descending effect on the local Nusselt number for shear-thinning
fluid while opposite trend is observed for the second grade and
shear-thickening case. Moreover, the effects are more dominant
for shear-thickening fluid as compared to second grade and
shear-thinning fluids.



Table 2
Numerical values of the heat transfer rate for various values of Pr, s, Nt , Nb and Le for
shear-thinning, second grade and shear-thickening fluids.

Pr s Nt Nb Le �h0ð0Þ
m ¼ �0:5 m ¼ 0 m ¼ 0:5

0.7 1 0.5 1 10 0.359850 0.440518 0.471571
2 0.566861 0.704015 0.766499
7 0.602552 0.747405 0.818602

1 0.538927 0.667694 0.731716
2.5 0.533084 0.892486 1.051525
5 0.529190 1.174546 1.440956

0.1 1.422527 1.761280 1.930712
0.3 0.827376 1.025791 1.124418
0.5 0.538233 0.667560 0.731714

0.5 0.538233 0.667560 0.731714
1 0.538233 0.667560 0.731714
2.5 0.538233 0.667560 0.731714

1 1.053695 1.309358 1.434378
5 0.626548 0.777770 0.852401
10 0.538233 0.667560 0.731714
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Final remarks

The flow and heat transfer of a modified second grade nanofluid
over a non-linearly stretching sheet is investigated for the first
time. The analysis is computed by examining the passive control
of nanoparticles at the boundary. Numerical solutions of the gov-
erning problem are calculated and dependence of the pertinent
parameters on the temperature and nanoparticle concentrations
are graphically exhibited. The main findings can be listed as:

� The concentration of the nanoparticles decreased with an
increase in the Brownian motion parameter while its impact
on the temperature and local Nusselt number was negligible.

� The generalized Prandtl number and Lewis number turned to
reduction of the thermal and concentration boundary layer.
However, their elevated values displayed opposite trend in the
case of heat transfer rate.

� Increment in the thermophoretic forces expedited the tempera-
ture and nanoparticle concentration. Moreover, an increase in
thermophoresis parameter resulted in a decrease of heat trans-
fer rate.

� The escalation in the power-law index and the stretching
parameter diminished the thermal and concentration boundary
layers. Furthermore, stretching parameter enlarged the temper-
ature and nanoparticle concentration for the case of shear-
thinning fluid.
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