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The present paper aims to investigate the effect of Prandtl number for unsteady third-grade fluid flow
over a uniformly heated vertical cylinder using Bejan’s heat function concept. The mathematical model
of this problem is given by highly time-dependent non-linear coupled equations and are resolved by
an efficient unconditionally stable implicit scheme. The time histories of average values of momentum
and heat transport coefficients as well as the steady-state flow variables are displayed graphically for dis-
tinct values of non-dimensional control parameters arising in the system. As the non-dimensional param-
eter value gets amplified, the time taken for the fluid flow variables to attain the time-independent state
is decreasing. The dimensionless heat function values are closely associated with an overall rate of heat
transfer. Thermal energy transfer visualization implies that the heat function contours are compact in the
neighborhood of the leading edge of the hot cylindrical wall. It is noticed that the deviations of flow-field
variables from the hot wall for a non-Newtonian third-grade fluid flow are significant compared to the
usual Newtonian fluid flow.
� 2017 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

During the past decades, the concept of boundary layer flow
with heat transfer has gained considerable attention due to its vital
role in industry and manufacturing processes. In particular, the
free convective flow past a cylinder has a broad range of applica-
tions, such as heat exchanger, filtration screens used for clarifying
suspensions, membrane-based separation modules, hot rolling,
food product and polymer fiber spinning, etc.

Also, the study of the rate of heat transfer is significant since the
cooling rate has a wide impact on the quality of the output and it
has many industrial, chemical, residential and commercial applica-
tions. The non-Newtonian fluids with heat transfer have gained
great importance in science and technology applications. These flu-
ids demarcated by a non-linear constitutive correlation between
the strain and the stress. Various mathematical models have
existed and explained the behavior of non-Newtonian relationship
from that of the Newtonian fluids. The non-Newtonian fluid flow
has acquired particular attention because of their rich scientific
applications which include the manufacture of synthetic fluids,
electrorheological fluids, movement of biological fluids, manufac-
ture of plastic products by injection and extrusion, the production
of paints, chemicals in district heating and cooling systems, etc.
Numerous studies [1–4] were carried out upon non-Newtonian flu-
ids with several flow formations. Rani and Reddy [5] examined the
time-dependent free convection flow of the non-Newtonian fluid
past a cylinder with Dufour and Soret effects. Recently, Odelu
et al. [6] studied the mixed convection flow of non-Newtonian
Jeffrey fluid between two parallel plates. Also, Pop [7] analyzed
the non-Newtonian Casson fluid in a cavity with radiation and vis-
cous dissipation effects. Furthermore, Umavathi and Sheremet [8]
examined the flow of non-Newtonian micropolar fluid in a porous
medium using stability analysis.

In general, there are many non-Newtonian fluid theories are
available in the literature because of its versatile applications in
medical technology and industry. Out of those, viscoelastic fluids
gained a unique reputation from the scholars in the research field.
Rivlin and Ericksen [9] have classified the viscoelastic fluids. Trues-
dell and Noll [10] have introduced constitutive equations for the
stress tensor. Depending upon their rheological properties, these
fluids are sorted into many subclasses. A deliberation on various
types of these fluid models can be found in [11–17]. Amongst these
fluids of a differential type model of n-grade, the simplest subclass
is the second-grade fluid model. It can predict the normal stress
differences which are the characteristics of non-Newtonian fluids
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Nomenclature

Cp specific heat at constant pressure
Cf dimensionless average momentum transport coefficient
g0 acceleration due to gravity
Gr Grashof number
k thermal conductivity
Nu average heat transport coefficient
Pr Prandtl number
ro radius of the cylinder
t0 time
t dimensionless time
P fluid pressure
I identity tensor
T 0 temperature
T dimensionless temperature
T� matrix transposition
S1; S2; S3 Rivlin and Ericksen tensors
tr trace
d
dt material time derivative
x axial coordinate
r radial coordinate
u, v velocity components in (x, r) coordinate system
X dimensionless axial coordinate
R dimensionless radial coordinate
U, V dimensionless velocity components in (X, R) directions,

respectively

Greek letters
a1;a2 second-grade fluid parameters
a�
1;a

�
2; b

�
1;b

�
2;b

�
3 rheological material moduli

b third-grade fluid parameter
s Cauchy stress tensor
a thermal diffusivity
bT volumetric coefficient of thermal expansion
q density
l viscosity of the fluid
# kinematic viscosity
w stream function
X dimensionless heat function
X0 heat function

Subscripts
w wall conditions
f, g grid levels in (X, R) coordinate system
1 ambient conditions

Superscript
h time level
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and does not take into account the shear thickening and shear thin-
ning phenomenon. But the third-grade fluid model is capable of
predicting normal stress differences and shear thickening/shear
thinning phenomenon. The third-grade fluid model has been
extensively used owing to its rich mathematical background
compared with other polar fluid models. The fluids such as slurry
flows, dilute polymer solutions (e.g., polyisobutylene, methyl-
methacrylate in n butyl acetate, polyethylene oxide in water,
etc.), molten plastics (e.g., contraband items, plastic keys), food
rheology polymers mixed with Newtonian solvents, manufacturing
oils and polymer melts like high-viscosity silicone oils are some of
the examples of these third-grade fluids. Analytical treatment has
been done on the third-grade fluid model [18–21]. Hayat et al.
[22] investigated the unsteady flow behavior of a third-grade fluid
with Soret and Dufour effects using similarity transformation tech-
niques. Hayat et al. [23] showed that the velocity profile is higher
for third-grade fluid in comparison with Newtonian and second-
grade fluids for different geometries. Furthermore, few researchers
studied the third-grade fluid model with an entropy concept in a
channel flow [24,25]. Recently, Hayat et al. [26] studied the heat
transfer analysis for third-grade fluid in the presence of Joules
heating, viscous dissipation, and thermal radiation effects. Third-
grade fluid flow model due to a linearly stretching sheet is demon-
strated by Imtiaz et al. [27]. Also, Samuel et al. [28] analyzed the
reactive third-grade fluid flow with irreversibility concept.

Conventionally thermal convection fluid dynamics research
problems are analyzed only with the aid of streamlines and iso-
therms. In a given domain isotherms will furnish information on
the temperature distribution. However, using them to visualize
the direction and heat transfer intensity is not feasible. In convec-
tive flows the direction of heat flux is not normal to the tempera-
ture contours. In these scenarios, the heat lines provide a practical
methodology for visualizing the intensity of thermal energy heat
transfer and this in turn clarifies to the engineer possible channels
for thermal energy transfer to occur from hot to cold walls. Kimura
and Bejan [29] & Bejan [30] originated the heat line concept. For
unsteady problems, Aggarwal and Manhapra [31] studied the heat
lines. Similarly, Rani and Reddy [32] employed the heat lines for
couple stress flows from a slender cylinder. Also, Rani et al. [33]
studied the solutal version of this regime and presented detailed
mass line visualizations. By using similar idea, recently Das and
Basak [34] examined the rate of heat transport at different zones
within the enclosures. Recently, the concept of heat line visualiza-
tion for natural convection in a cavity can be found in [35,36]. More
recently, Bondareva et al. [37,38] studied the heat line concept for
free convection with nanofluid in open cavity. Use of heat lines
approach for convection problem is revealed in [39]. Till date, little
attention is devoted in the reported literature for the heat lines and
first time, an attempt is made to visualize the shear thickening/
shear thinning phenomenon flow behavior using this heat function
concept.

Based on the literature survey, it can be observed that very
scant attention has been paid to the flow over a vertical cylinder
with third-grade fluid. Thus, it is focused to analyze the time-
dependent third-grade fluid flow over a uniformly heated cylinder
in the boundary layer region. A temperature at the wall is taken to
be greater than that of surrounding fluid temperature. The transi-
tory effects of the third-grade fluid flow are studied for the flow
and heat transport coefficients for various controlling parameters
and compared with the usual Newtonian fluid flow. The results
obtained by the implicit finite difference method are corroborated
by the available existing results in the literature.

This research article is arranged in the following ways: Sectio
n ‘‘Mathematical modeling” deals with the physical model of a
third-grade fluid flow over a semi-infinite vertical cylinder with
uniform temperature and its non-dimensionalization. The next
section dealt with the grid generation and the FDM procedure to
solve the complex flow-field PDE’s. In the Section ‘‘Results and dis-
cussion”, the transient 2D flow-field profiles, wall and heat transfer
coefficients are analyzed. Further, comparison between third-grade
and Newtonian fluids are explained. Finally, in Section ‘‘Concluding
remarks” the important observations are made.



Fig. 1. Schematic of the investigated problem and coordinate system.
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Mathematical modeling

Transient 2D laminar buoyancy driven flow of a third-grade
fluid over a cylinder of radius r0 is considered. The flow geometry
along with specified variables is shown in Fig. 1. The rectangular
coordinate system is chosen, in which the axial coordinate
(x-axis) is selected from the foremost verge of the cylinder, while
the radial coordinate (r-axis) is assessed normal to the x-axis. The
neighboring fluid temperature is considered to be stationary and
similar to that of free stream temperature T 0

1. At t0 ¼ 0, the tempera-
ture T 0

1 is uniform for the cylinder and surrounding environment
fluid. Later ðt0 > 0Þ, the temperature of the vertical cylinder is
augmented to T 0

wð> T 0
1Þ and preserved uniformly there afterward.

Governing equations:

The third-grade fluid has the following constituent equations
[10,40]

s ¼ �PI þ lS1 þ a�
1S2 þ a�

2S
2
1 þ b�

1S3 þ b�
2ðS1S2 þ S2S1Þ þ b�

3ðtrS21ÞS1
ð1Þ

where s is a Cauchy stress tensor, P is pressure, I is an identity ten-
sor, a�

i ði ¼ 1;2Þ and b�
i ði ¼ 1;2;3Þ are the rheological material mod-

uli which are temperature-dependent functions in general. It is
noted that from Eq. (1), the coefficients b�

i ði ¼ 1;2;3Þ are zero for
the second-grade fluid, and for the classical Navier-Stokes fluid;
both a�

i ði ¼ 1;2Þ and b�
i ði ¼ 1;2;3Þ are zero. Rivlin and Ericksen ten-

sors Siði ¼ 1;2;3Þ are mentioned as follows:

S1 ¼ rVþ ðrVÞT�

Si ¼ dSi�1

dt
þ Si�1ðrVÞ þ ðrVÞT�Si�1; i ¼ 2;3 . . . : ð2Þ

where r is gradient operator, T� is matrix transposition, V is veloc-
ity field, d

dt is the material time derivative defined as

d
dt

ð�Þ ¼ @

@t
þ V:r

� �
ð�Þ

Thermodynamic compatibility of third-grade fluid has been
shown by Fosdick and Rajagopal [41]. Considering the assumption
that the Helmholtz free energy is minimum at equilibrium and
Clausius-Duhem inequality gives the following constraints.

lP 0; a�
1 P 0; ja�

1 þa�
2j6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24lb�

3

q
; b�

1 ¼ 0; b�
2 ¼ 0; b�

3 P 0

Substituting the above inequalities in Eq. (1), gives the follow-
ing equation

s ¼ �PI þ lS1 þ a�
1S2 þ a�

2S
2
1 þ b�

3ðtrS21ÞS1 ð3Þ
Using the above definitions and assumptions, the boundary

layer equations for the flow of incompressible third-grade fluid
in the absence of body couples along with Boussinesq’s approxima-
tion are given by:

Law of conservation of mass:

@ðruÞ
@x

þ @ðrvÞ
@r

¼ 0 ð4Þ

Law of conservation of momentum:
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where u and v denote the velocity components along the axial (x)
and radial (r) directions, respectively, q is the density and srr , srx,
sxr , sxx are the extra stress components. The flow is assumed to be
along the x-direction only and hence by neglecting along the radial
direction, the momentum and energy equations are given by
[26,42,43]
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Table 2
Grid independence test for selecting time step size.

Time step size
ðDtÞ

Average Nusselt number Nu for Pr = 0.63 and
a1 ¼ a2 ¼ b ¼ 0:2.

0.1 .7477099000000000000000000
0.08 .7477236000000000000000000
0.05 .7476426000000000000000000
0.02 .7475649000000000000000000
0.01 .7474390000000000000000000
Law of conservation of energy:
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The appropriate initial and boundary conditions are as follows:

t0 6 0 : T 0 ¼ T 0
1; v ¼ 0; u ¼ 0 for all x and r

t0 > 0 : T 0 ¼ T 0
w; v ¼ 0; u ¼ 0 at r ¼ r0

T 0 ¼ T 0
1; v ¼ 0; u ¼ 0 at x ¼ 0
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1; v ! 0; u ! 0;
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Initiating the subsequent non-dimensional quantities
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(for the above symbols refer nomenclature) in the Eqs. (4)–(6)
and also in Eq. (7), they reduce to subsequent form
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Table 1
Grid independence test for selecting mesh size.

Grid size Average Nusselt number Nu for Pr = 0.63 and a1 ¼ a2 ¼ b ¼ 0:2.
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100� 500 .7474390000000000000000000
200� 1000 .7473711000000000000000000
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Fig. 2. Comparison of flow field variables.
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Finite difference solution procedure

Let JR ¼ 1
1þðg�1ÞDR. Using Crank-Nicolson method, the finite differ-

ence equations to the above Eqs. (9)–(11) are as follows:
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The results of these equations obtained in the rectangular grid
with Xmin ¼ 0, Xmax ¼ 1, Rmin ¼ 1 and Rmax ¼ 20 where Rmax relates
to R ¼ 1 which lies far away from the boundary layer. Eqs. (15),
(14) at the (h + 1)th stage is specified in the following tri-
diagonal and penta-diagonal forms:

A1uhþ1
f ;g�1 þ B1uhþ1

f ;g þ C1uhþ1
f ;gþ1 ¼ D1

A2xhþ1
f ;g�2 þ B2xhþ1

f ;g�1 þ C2xhþ1
f ;g þ D2xhþ1

f ;gþ1 þ E2xhþ1
f ;gþ2 ¼ F2

where u and x indicates the time-dependent flow-field variables T
and U. Thus, Eqs. (15) and (14) at each interior grid point on a pre-
cise f-level comprise a system of tri-diagonal and penta-diagonal
equations. For more detailed description of this finite difference
scheme can be found in the available literature Rani et al. [44].

Validation of the numerical scheme using grid independent test:

A grid independent test has been conducted for different grid
sizes and the values of the average Nusselt number Nu for the
control parameters Pr = 0.63, a1 ¼ a2 ¼ b ¼ 0:2 on the boundary
R = 1 is shown in Table 1. It is noticed from Table 1 a uniform grid
size of 100 � 500 is enough for this study. Similarly, a time-
independence test has been performed for different time step sizes,
as shown in Table 2. The effective selected time step size Dt
ðt ¼ hDt; h ¼ 0;1;2; . . .Þ is fixed as 0.01.

Results and discussion

The computer-generated flow-field variables in the case of
Newtonian fluids ða1 ¼ a2 ¼ b ¼ 0Þ are similar to those of Lee
et al. [45] for Prandtl number (Pr) = 0.7 and are illustrated in



Fig. 3. Time-dependent velocity profile (U) versus time (t) for various values of
control parameters at the location (a) (1, 1.83); (b) (1, 5.82).

Fig. 5. Simulated time-dependent temperature profile (T) versus time t for different
values of control parameters at the location (1, 1.152).

Fig. 4. Simulated time-independent state velocity profile (U) versus R at X = 1.0 for
various values of control parameters.
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Fig. 2. The outcomes are found to be in good covenant. The
influence of the control parameters, namely, Pr [=0.63 (oxygen),
6.2 (dichlorodifluoromethane), 13.4 (sea water at 0 �C)], second-
grade fluid parameters a1;a2 [=0, 0.2] and third-grade fluid param-
eter b [=0, 0.2, 0.8] on the flow field are analyzed. The selected
chemical compounds for the present investigated problem using
Pr is an obvious choice because of its widespread usage in many
industrial applications. For example, dichlorodifluoromethane is
used as a coolant in refrigerators, air conditioners and in automo-
biles, etc. because of its interesting properties such as non-
corrosive to mechanical components, non-toxic, non-flammable,
low boiling point and high heat of vaporization. Similarly, the other
compounds also have many applications.
Flow variables

The simulated velocity (U) against time (t) at (1, 1.83) and
(1, 5.82) locations for different control parameters is graphically
shown in Fig. 3. The U profiles, in Fig. 3a and b, are taken in the
vicinity and far away from the hot cylindrical wall, respectively.
At all positions, the velocity curves augment with time, attains
the temporal maxima then become independent of time. For
instance, a1 ¼ a2 ¼ b ¼ 0:2 and Pr = 0.63, with time the wall veloc-
ity monotonically escalates, reaches temporal maxima and in the
end, reaches the time-independent state. Also, it is perceived that
when t << 1, the conduction dominates the convection. Then the
heat transport coefficient is swayed by the convection effect due



Fig. 7. Average momentum transport coefficient (Cf ) for various values of control
parameters.
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to escalated upward velocities. From Fig. 3a, it is noticed that the
velocities get overshoot before attaining the steady-state. Here,
the overshoot of the U profile diminishes as Pr gets augmented.
The incentive behind this decrement is that increasing Pr values
amplifies the size of velocity diffusion term in Eq. (10), and thus,
there is a lesser amount of resistance to the flow of fluid in the pro-
vince of the temporal maxima of velocity. Also, the time to attain
the temporal maxima increases for rising values of Pr. The tran-
sient characteristics of temperature shown in Fig. 5 are similar to
those of velocity profile and will be discussed later. From Fig. 3a
it is observed that for all values of Pr the transient velocity values
of the third-grade fluid ðb > 0Þ are less than that of the Newtonian
fluid ða1 ¼ a2 ¼ b ¼ 0Þ. While the opposite tendency observed in
Fig. 3b.

Fig. 4 elucidates the steady-state non-dimensional U profile for
different control parameters. Here, it is perceived that the U curves
begin with the no-slip boundary condition, reaches its peak value
and then shrinkages to zero along the radial position (R) satisfying
the far-away boundary conditions. The effect of b and Pr on veloc-
ity profile is revealed in this figure. The time to attain the steady-
state rises with augmenting values of Pr or decreasing b. Since the
influence of velocity diffusion gets amplified for higher Pr values,
and hence the velocity gets minimized. The U profile for the
third-grade fluid gets more deviated from the hot cylindrical wall
compared to that of a Newtonian fluid. Also, adjacent to the hot
cylindrical wall the velocity regarding its magnitude is high for
the Newtonian fluids and is less for the third-grade fluids, while
this trend gets reversed far away from the thermal boundary. For
example, fixing Pr = 0.63, it is noticed that the velocity profile of
the third-grade fluid is less than those of the Newtonian fluid in
the region, 1 < R < 3.7 while the opposite trend is observed for R
> 3.7. Hence there is a significant difference between the transient
velocity profiles of the third-grade fluid and the Newtonian fluid.

Simulated transient temperature (T) profile is drawn at
(1, 1.152) with time in Fig. 5. Initially, these patterns increase with
time and later they become independent of time. This transient
behavior of the temperature is observed at other locations also.
For enlarged Pr, initially, the profiles of the third-grade fluid and
Newtonian fluid have concurred with each other. For instance,
when Pr = 6.2, a1 ¼ a2 ¼ b ¼ 0:2, the temperature profile of a
Fig. 6. Simulated time-independent state temperature profile (T) versus R at X = 1.0
for various values of control parameters.
third-grade fluid gets deviated from the Newtonian fluid, which
is approximately at t = 7.6. For all values of Pr, the T profile for
third-grade fluids (b > 0) is higher than usual Newtonian fluids
(a1 ¼ a2 ¼ b ¼ 0).

The temperature profile (T) against R at steady-state about Pr
and b is shown in Fig. 6. These patterns begin with the boundary
value of T = 1 and then reduce to zero. This is because of the veloc-
ity diffusion effect that gets amplified with Pr and higher velocity is
observed in the neighborhood of the hot cylindrical wall. Also, for
amplifying Pr or decreasing b, the time needed to attain time-
independent state for temperature profile gets augmented. Also,
with increasing Pr, the T profile for third-grade fluid is larger than
that of a Newtonian fluid. The critical observation in this figure is,
as b increases, the thermal boundary layer becomes thicker. This
case is reversed with higher Pr, since a higher Pr means, instead
Fig. 8. Average heat transport coefficient (Nu) for various values of control
parameters.
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of thermal diffusion the velocity diffusion tries to diverge from the
hot wall. Also for increasing Pr, the deviation of the steady-state T
curves from the hot cylindrical wall is observed. This variation
increases for a third-grade fluid than the Newtonian fluid. Hence,
in this section, it is remarked that the T profiles for the third-
grade fluid vary significantly with a Newtonian fluid.

Friction and heat transport coefficients

Thermal flow-field transport coefficients for the non-Newtonian
third-grade fluid are significant parameters in the convection heat
transfer studies. The average friction and heat transport coeffi-
cients in non-dimensional form are given by

Cf ¼
Z 1

0

@U
@R

� �
R¼1

dX and Nu ¼ �
Z 1

0

@T
@R

� �
R¼1

dX respectively:

The values of Cf against time (t) for different control parameters
are presented in Fig. 7. It is noted from this figure, for all Pr and b

values the Cf oscillate initially and at last becomes asymptotically
Fig. 9. Time-independent state (a) streamlines (w); (b) isotherms (T) and (c) heat li
steady. Also, for increasing values of Pr or b, the Cf decreases. In

particular, as Pr upsurges, the Cf of a third-grade fluid is not as
much of the Newtonian fluid.

The Nu for several values of Pr and b are revealed in Fig. 8. It is
perceived that the Nu upsurges with Pr. Also, for each Pr value, the
Nu decreases for third-grade fluid and amplifies for a Newtonian
fluid. Amplifying Pr, accelerates the spatial decay of the tempera-
ture field close to the heated surface, yielding an upsurge in the
heat transport coefficient. Also, for a particular Pr, the Nu decreases
with augmenting values of b.
Stream and heat functions

The fluid motion is simulated using the non-dimensional
stream function w, which satisfies the Eq. (9). The relationship
between w, U and V for 2D flows is given as:

U ¼ 1
R
@w
@R

& V ¼ �1
R
@w
@X

ð16Þ
nes (X) for various values of b with fixed values of a1 ¼ a2 ¼ 0:2 and Pr = 0.63.



Fig. 9 (continued)
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This equation yields

@2w

@X2 þ
@2w

@R2 ¼ U þ R
@U
@R

� R
@V
@X

ð17Þ

Similarly, the heat function X0 for the temperature distribution
is defined as

@X0

@x
¼ qrvCpðT 0 � T 0

1Þ � kr
@T 0

@r
ð18aÞ

�1
r
@X0

@r
¼ quCpðT 0 � T 0

1Þ ð18bÞ

Clearly X0 satisfies the steady-state thermal energy Eq. (6). The
non-dimensional heat function X ¼ X0

kðT 0w�T 01Þr0Gr, renders the heat

function dimensionless. It can be noted that the maximum value
of this function equals the overall average Nu on the hot wall.

Eqs. (18a) and (18b) in terms of X can be re-written as
@X
@X

¼ PrðRVTÞ � R
@T
@R

ð19aÞ
� @X
@R

¼ PrðRUTÞ ð19bÞ

Also, the above equations identically satisfy the thermal equa-
tion Eq. (11) in time-independent state form. Using Eqs. (19a)
and (19b), one can obtain the following heat function equation
(Poisson equation) as

@2X

@X2 þ @2X

@R2 ¼ Pr
@ðVTÞ
@X

� R
@ðUTÞ
@R

� UT
� �

� R
@2T
@X@R

ð20Þ

The values of w and X, are calculated using the central finite dif-
ferences of second-order. The steady-state streamlines, isotherms,
and heat lines are represented in Fig. 9 for different values of b. It
can be viewed that the variation in heat lines occurs in the proxim-
ity of the hot cylindrical wall compared to usual streamlines and



Fig. 9 (continued)
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isotherms. From Fig. 9a, it is seen that the heat transfer strength
from the wall to the third-grade fluid is maximum for cumulative
values of X, and it declines as X decreases. The heat lines shown in
Fig. 9c perceived to have a similar propensity to that of isotherms
as shown in Fig. 9b. However, to understand the flow visualization
and heat transfer mechanism the heat lines are the best tool as
compared to isotherms. Also, as b augments, the maximum value
of X decreases, since the Nu decreases on the hot wall. It is further
noticed that these heat lines move towards far away from the
heated wall for lower values of b, but the reverse trend is seen in
the case of isotherms.

Comparison between third-grade and Newtonian fluid flows

Fig. 10 elucidates the U and T contours for third-grade and
Newtonian fluid flows with the fixed Pr = 0.63. The velocity of
the third-grade fluid (i.e., Fig. 10b) flow is noticed to be smaller
than the usual Newtonian fluid (i.e., Fig. 10a) flow, whereas for
the T distribution the reverse trend is observed. Also, the T con-
tours for the third-grade fluid are to some extent different, with
bigger temperature layer, as compared to Newtonian fluid.
Concluding remarks

Flow visualization is explored using Bejan’s heat line concept to
investigate the time-dependent free convective third-grade fluid
flow past a cylinder. The Crank-Nicolson technique has been
applied to solve the normalized, partial differential conservation
equations for momentum and energy conservation. The physical
characteristics of heat lines are immensely beneficial in visualizing
heat transfer in the 2D domain. Also in a given rectangular compu-
tational domain, the heat lines provide a powerful method for eval-
uating the heat transfer rate at all levels. The simulations are
carried out for different non-dimensional numbers Prandtl number
(Pr), second-grade fluid parameters ða1;a2Þ and third-grade fluid
parameter (b). The time needed for the flow profiles to attain the



Fig. 10. Time-independent state contours of velocity (U) and temperature (T) with fixed value of Pr = 0.63 for (a) Newtonian fluid (a1 ¼ a2 ¼ b ¼ 0); (b) Third-grade fluid
(a1 ¼ a2 ¼ b ¼ 0:2).
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steady-state amplifies with increasing values of Pr or decreasing
values of b. The wall shear stress and heat transport coefficients
at the heated wall decrease as b increases. It is noticed that as b
decreases, the deviations of heat function contours from the hot
cylindrical wall increases. Also, as b increases, the maximum value
of X decreases. Flow visualization indicates that the streamlines
occur in the entire two-dimensional domain, while the isotherms
and heat lines exist in a finite region, which is observed adjacent
to the hot cylindrical wall only. Finally, from this study, it can be
concluded that the flow profiles in both transient and steady-
state condition, average heat and momentum transport coeffi-
cients of the third-grade fluid (b > 0) flow vary considerably from
those of the Newtonian fluid (a1 ¼ a2 ¼ b ¼ 0).
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