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ARTICLE INFO ABSTRACT

The ion exchange creates the optical buried waveguides, whereas it is the method that the glass doping occurs
with the condition of existence of the mobile metal ions. The most common ion used is silver (Ag+) due to its
broad variation in the refractive index. The proposed application presented in this work is to use the microring
resonator (MRR) system based on the buried waveguides simulated by the ion exchange method. The passive
MRRs are realized as the multi-wavelength transceiver, applicable in optical technologies such as the optical
sensing, Terahertz (THz) communication and optical switching. The cross-sectional view of the simulated buried
optical waveguide for the Ag + concentrations of 0.8 mol/m? is presented. The fundamental mode propagation is
simulated using the time-domain traveling wave method, where the simulation of the optical power flow density
and the electric field distributions of the buried waveguides were performed. The two coupled MRRs are used to
generate tunable dual-wavelength with spacing in the range of Terahertz (THz). As results, the dual wavelengths
in the range between 0.25 and 0.96 THz were generated at the throughput and drop port of the MRRs system.
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Introduction

Many research investigations have shown that the ion exchange
technique is applicable to generate waveguide structures [1-3]. In
order to control the absorption of the glass materials, the ion exchange
can be utilized [4]. As advantages of using ion exchange technique, low
optical losses are observed in waveguides, where this technique has
high compatibility with optical fiber assembly [5,6]. The ions from a
molten salt have the different ionic radius and polarizability from those
of Na+, such as stress in the glass matrix. The silver (Ag+) is the most
common ion due to broad variation in the refractive index comparable
to thallium (Tl1+) and potassium (K+). To reduce the fabrication dif-
ficulties for integrated optical components, which become more and
more complex at present, modeling procedures accomplish an in-
creasing interest [7]. Thin glass films, can be used as the substrate to
produce buried waveguide using sol-gel coating, flame hydrolysis de-
position, and chemical vapor deposition methods [8]. Several deposi-
tion steps and etching make these methods time consuming costly. The
highest motivations for using the ion exchange in the glass was to use
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optical waveguide as sensors, where the glass has minimal optical at-
tenuation and it is rugged against a diversity in case of atmospheric,
mechanical and thermal strains [9-12]. Glass is a multitude of forms
and compositions [13,14]. The solid-state process over the molten salt
ion exchange can be performed in a variety of temperatures even at low
temperature, with ease of charge control process and ion uniformity.
The Ag+ from the AgNOs5 together with the Na+ belong to the glass,
can be melted at relatively low temperatures ranges 220-300 °C,
therefore the Ag+ and Na+ exchange can be performed. Therefore, the
mechanism of the ion exchange can be unselective or have binding
preferences which occurs for only certain ions or classes of ions such as
Ag+ and Na+. In this process, only specific ions can be exchanged
depending on the material chemical structures, in which, the charge
and size of the ion, have significant effects. Compared to the material
absorption and adsorption, ion exchange is a form of sorption, which
can be defined as the physical and chemical process by which one
substance becomes attached to another. The process can be found in
Ref. [1], where an optical sensing device has been realized. The re-
fractive index variation is 0.1 for soda-lime glasses.
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Fig. 1. Presented structure, (a) dimensions of the proposed structure, (b)
Propagating of the fundamental mode, (c) 3D image.
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Simulations and methods

Ion exchange waveguide can be simulated by IONEX software. The
IONEX has an algorithm to solve the differential diffusion equation base
on Finite Difference Method (FDM). In this paper, we present a simple
proposed design for a wavelength division multiplexing (WDM) inter-
connection system based on buried microring resonators (MRRs). The
structure can be shown in Fig. 1.

The concentration of the Ag+ will determine the width and the
depth of the channel. The more uniform surface can be obtained by
controlling the concentration. With the fine surface of the waveguide,
the preparation of the light along the waveguide length will have a
lower loss. Fig. 1(b) presents the propagation of the fundamental mode.
The method used in this study to simulate the waveguide structure of
the MRRs is the time-domain traveling wave which is an efficient tool to
simulate both active and passive waveguides. As shown in Table 1, the
properties of the fundamental mode propagation are presented, where
we have demonstrated the optical power flow density in Fig. 2(a—c).
This plot is presented in three respective viewpoints namely, topside,
the front side (input port) and backside (output port) for the simulated
passive waveguide. Fig. 2(b) shows the incident wave view with the
input center wavelength of 1.55 um which is propagating in the normal
direction to the surface of an input port of the Ag+ buried waveguide.
The Ag+ channel which has the width of 5um and the thickness of
2um can be seen in Fig. 2. The channel has been isolated by the mi-
crolayer of SiO, from the right, left and bottom sides, where its topside
covered by the thin graphene layer of 0.3 um. The buried channel with
aforesaid dimensions evidently indicates a prominent feature for the
complete confinement of optical power along the Ag+ channel. The
optical density profiles, which are formed in cross sections of port 1 and
2 (Fig. 2b and c), accordingly, emphasize on the approximate uni-
formity of the patterns within the channel as well. The graphene layer
as non-metal conductor performs as a perfect blocker of power flow
density and it has shown no signs of power leakage to the topside

Table 1
Fundamental mode properties.

Propagation Constant (1/um) Effective Index Mode Loss (1/cm)

13.87 3.42 0.01
Group Index Dispersion (ps/nm/km) Actr (mnz)
3.45 -60.78 5.62
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surface of the guide in Fig. 2a, whereas in SiO, as a substrate, the pe-
netration of power in the regions close to port 2 is quite observable
(Fig. 2¢). Further consideration must be given to the phase constant of
the incident wave. In the plots of optical power flow density and
electric field distributions, the phase constant of zero have been taking
into account and it must be noted that for the rest of phase constants
and in spite of the amount of voltage/energy measured in input/output
port, the best confinement can be observed in the regions highlighted
by red rectangular with solid line in Figs. 2 and 3. The configuration of
the waveguide doesn't allow the electric field to leak into other layers
and mainly confined in Ag+ channel (Fig. 3a, b, and c). Also, the
channel perfectly isolates from topside by graphene layer and no signs
of electric field leakage can be observed as shown in Fig. 3a.

Dual-wavelength applications with THz spacing

In order to obtain wide passband, high quality factor and larger free
spectral range optical signals, the used of coupled microring resonators
is recommended [15]. These devices can be constructed in chains of
micro resonators which offer a very compact and chip forms. The
coupled microring resonators consist of a chain of coupled resonators in
which the light can propagate within the system. In this case the light
propagates by virtue of the coupling between adjacent resonators
[16,17]. These systems can be used to slow down the light or manip-
ulate the light which have many applications in optical delays, inter-
ferometers, filters, and nonlinear optics [18-21]. In Fig. 4, two MRRs
are coupled to generate tunable dual-wavelength, where the first and
second coupled MRRs have a radius of 6.5 and 4.5 um respectively.

The length of the directional couplers is 25 um and it has a coupling
coefficient of 0.02. The output ports of the MRRs are shown as the
through and drop ports. The system could be used for many applica-
tions in applied physics and photonics communications. The input op-
tical field (E;) of the Gaussian spectrum has 100 mW power. When a
Gaussian input spectrum propagates within the MRR, a resonant output
is formed for each round-trip [22-26]. We define the N as the number
of MRRs, B as the bandwidth, f, is the center frequency, and
FSR = fy/M (M is an integer) is the free spectral range of the MRR. The
quality factor (Q factor) of each MRR can be defined as

Q= FSR/qu, )]
Where,

. (2g9-1
g = J2 s1n( N 71). @

N is the number of MRRs (with ¢ = 1 ... N). The field coupling coef-
ficients ¢, of the two couplers for each MRR can be defined as

s
2qu

e = [ + 4Q}/my)V2-1].

3

Therefore, the ¢, is not affected by the distance between two MRRs. The
distance between MRRs determines the out-of-band frequency response
of the MRR [27,28]. In the presented work, with circular MRRs, the
distance between the MRRs is defined as

c ™M
ey FSR l’lefff;)

Lyrr =

4

The throughput output is shown in Fig. 5. Table 2 present spacing
ranges between 0.29 THz and 0.95 THz. The drop output is shown in
Fig. 6 and the Table 3 shows spacing ranges between 0.25 THz and 0.96
THz.

Terahertz radiation finds a large and still expanding range of ap-
plications such as communications [8], imaging [9], Spectroscopy [10],
and safety Aspects [11].
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Fig. 2. Power density flows over the surface of graphene layer (a), at the input port (b) and at the output port (c) of the proposed waveguide under normal incidence
excitation corresponding to A = 1.55 um.

Fig. 3. The electric field distributes over the surface of graphene layer (a), at the input port (b) and at the output port (c) of the proposed waveguide under normal
incidence excitation corresponding to A = 1.55 um.
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Fig. 5. Transmission simulated at the throughput port of the MRRs system.
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Table 2
Throughput output, dual-wavelength spacing.

Spacing number Spacing (nm) Spacing (THz)

1 7.16 0.9
2 4.91 0.61
3 2.6 0.32
4 2.32 0.29
5 4.92 0.61
6 7.62 0.95
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Fig. 6. Transmission simulated at the drop port of the MRRs system.

Table 3
Drop port output, dual-wavelength spacing.

Spacing number Spacing (nm) Spacing (THz)

1 7.3 0.91

2 4.67 0.58

3 2.47 0.3

4 2 0.25

5 5 0.62

6 7.7 0.96
Conclusion

As the conclusion, the ion exchange method is a way to produce the
optical waveguide. In this performed simulation work the Ag + ion with
a concentration of 0.8 mol/m® was applied to the substrates which is
the glass. As mentioned earlier, controlling the Ag+ concentration is
the critical process, where a low concentration causes a deeper and
wider junction of the waveguide. Subsequently, the MRRs system also
based on glass substrates was proposed and the filtering function of the
MRRs on the output optical power was analyzed. Note that the function
of the system is just filtering of the input spectrum and it does not work
as an active laser. The input Gaussian spectrum was spliced to many
center wavelengths; therefore, the dual-wavelength were generated
with spacing in the range of THz. The applications of the THz signals
could be such as terahertz imaging, terahertz time-domain spectro-
scopy, terahertz computing/communications, and sub-mm remote
sensing [29,30]. The future work will be on the fabrication and char-
acterization of the ion exchange based MRR on glass substrates.
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