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In this letter, we apply two different ansatzs for constructing the lump soliton and mixed lump strip solutions of
(3+1)-dimensional soliton equation, which is associating with the Hirota bilinear form. These lump soliton
solutions rationally localized in all directions in the space. The solutions of interactions between a lump and a
stripe are shown by graphic illustration of some special solutions which would give us a better understanding on
the evolution of solutions of waves.

Introduction

In soliton theory [1-7], exact solutions, integrable systems, Painleve
analysis and Hamiltonian structure are the hot topics. And the exact
solutions of mathematical equations play a vital role in the proper
understanding on qualitative features of the concerned phenomena and
processes in nonlinear science, such as nonlinear optics, plasma physics
and others. Deriving an exact solution of nonlinear partial differential
equations (PDEs) is important, which could help us understand the
complexity of the phenomena based on integer or fractional order de-
rivatives. And the exact solution could also help us to analyze the sta-
bility of these systems and validate the results of numerical analysis in
nonlinear PDEs. In recent years, localizing in all directions in the space,
the lump solution attracted much attention [8-10], which is a kind
rational function solution [11-13]. There are some recent studies on the
topic have been obtained on lump solutions, lump-soliton solutions and
its interactions, and others [14-19]. The Kadomtsev-Petviashvili
equation [20] have been found to possess lump solutions. And lump
solutions can be obtained through the Hirota bilinear form, which plays
an important role in mathematical physics and engineering fields, or
their generalized counterparts. Once a nonlinear equation is written in
bilinear form by a dependent variable transformation, multi-soliton
solutions, rational solutions, Wronskian and Pfaffan forms of N-soliton
solution can be obtained [21-23].

In this paper, we consider the (3 +1)-dimensional soliton equation
[24] as follows,

BU—(2Us + Upe—20Ully)y + 2(Ux 05 Uy)y = O, 6

under the transformation
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u = =3(Inf ), (2)

we can change the (3 + 1)-dimensional soliton equation into the bilinear
form

(3DyD,—2D,D,—D,D)f + f= 0, 3)
Or, equivalently
e =3fSe =2 + 200 + fooly + g =Sy Moy =0 Q)

Where f= f(x).zt) and the derivatives D,,D,,D, are the Hirota op-
erators [21] defined by

a b
D0t 9 = () (- o) S gD mnsmr

The (3+1)-dimensional soliton Eq. (1) has been studied by many
authors in recent years. for example, its algebraic-geometrical solutions
have been explicitly given in the form of Riemann theta functions by
using a nonlinearized method of Lax pair, the N-soliton solution and its
Wronskian form of solution have been discussed and derived by using
the Hirota method and Wronskian technique [23], the bilinear Back-
lund transformation and explicit solutions have also been obtained
based on the Hirota bilinear method [25], and some periodic wave
solutions have been found in Ref. [22].

The aim of this letter is to study the periodic wave solutions of
(3+1)-dimensional soliton Eq. (1), which is associating with the Hirota
bilinear form. And the graphic illustration of some special solutions
would give us a better understanding on the evolution of solutions of
waves.
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Lump solutions of the (3 +1)-dimensional soliton equation

In this section, we consider the (3 4+ 1)-dimensional soliton equation,
that is

M =32 + 2000 + ooy + ghe =Sy My = O- )

Here, we will find the lump soliton solutions to Hirota bilinear Eq.
(4) by making the following assumption:

f=g+n+ay, (6)
and

g=mqmX+ ay+ at + asz + as

h = agx + a7y + agt + agz + aj @

where a;(1 < i < 11) are all real parameters to be determined. To obtain
the lump solutions, we notice that the conditions guaranteeing the good
definiteness of f, positiveness of and localization of f in all directions in
the space need to be satisfied.

To get the lump solutions, substituting (6) with (7) into Eq. (5), we
get a polynomial of the variables x,y,z,t. Eliminating the coefficients of
the polynomial yields a set of algebraic system in a;(i = 1,2,...,11).
Solving this system of equations with the help of symbolic computation,
we can obtain the following solutions of parameters:

Case 1.

3a1apaq +3a1a7a9 — 3a2a6a9 + 3a4a6a7
2a22+ 2cz72

G =0, @ =0, G = > 04 = 04, A5 = A5, g = Qg
(022 + a2)(@? + a)(a1a2 + aga7)
an = s

3ajaza9 — 3ajaqa7 + 3axa4a6 + 3apazay
’ (a1a7 — azae)(azag — agay)

24242
2a3 +2af
a7 = @y, A9 = Ay, A1p = o,

ag =

(€))

where —(@@2*asa)
(a1a7 — azae)(aza9 — asaz)
constants.

<0 and a;(i = 1,2,4,5,6,7,9,10) are arbitrary

Case 2.

2apag9aq

3(a1a4 +agag)(as — ag)(ag + ag) _ — —
» Q4 =0y, A5 =05, A7 = —5— >,
u4 —ag

z(a% + 092)a2

G =0, =0, =

3(as —a9)(as +ag)(aiag — asae)
2(a‘%+a92)a2 ’

ag = Qg, Ag = Qg = A9, (g = o,

(a12 + ag)az (a1 a‘% - ulagz +2a4apa9 )(a42 + agz)2

a =
1 (a42—a92)a9(2ala§u9+201a4a93—aj“06+a5a§‘)’

9

az(a1a? — ajad + 2a4apa9)
where e

>0 and a;(i = 1,2,4,5,6,9,10)

(a} - agz)ag (2a1a2ag + 2a1a4a93 - afas + aﬁaé‘)
are arbitrary constants.

Thus, these parameters in the case 1 yields a class of positive
quadratic solution to Eq. (5), have

(a)

Fig. 1. This figure shows lump solution of Eq. (15) with t = 0 (a) Perspective view of the wave. (b) 2D-Density plot. (c) 2D-gradient vector-field plot.

(b)
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f _ [ tBaazaq +3a1a7a9 — 3a2a6a9 + 3a4apa7)
- 2a3 +2a7

2
+ xa; + ya, + za, + a5)

+ ( t(3ajaxag — 3ajasaz + 3azasae + 3agazag)

2
2a22+211,% + xa¢ + ya, + za9 + alo)

(a2? + a2)(a1? + a@)(a1az + agay)
(a1a7 — azae)(a2a9 — agaz)

’ 10

which, in turn, generates of lump solutions to Eq. (1) through trans-
formation (2) as

12(a1g + agh)>~6(ai + ad)f
U = f2 s

where the function f is defined by (10), and the function g and h are
given by

an

_ tBmazas +3mazag — 3axaeag + 3a4a6ay)
- 2a22 + 2a72

+ xa; + ya, + za4 + as,

_ t@Baazag —3ajasa7 + 3azaga6 + 3asazay)
203 +2a?

+ xag + ya, + zag + ayo. (12)

By the same manipulation as illustrated above, we can obtain an-
other lump solution for the case 2, that is

12(aig + agh)*—6(ai + ad)f
U = f2 s

where the function f,g and h are given by

13)

__ 3t(amas +asag)(as —ag)(as + ag)
2(a} +ad)ay

+ xa; + ya, + zas + as,

h= 3t(ag — ag)(ag + ag)(a1a9 — agap)
2(a} +ad)az

Yazagas
+ Xxae + 2%
a4—a9

+ zaq9 + ayo,

f= 3t(a1a4 + apag)(as — ag)(a4 + ag)
Z(H} + agz)az
(

(@%+ aﬁz)az (ala} - a1a92 +2aq4aga9)(as? + a92)2

2
+ xa; + ya, + zas + a5)

2
3t(as — ag)(a4 + ag)(ajag — asae) + xag + 2yajagas4 + zag + am)
a‘% - l192

2(03 + a92)a2

(a4® —a@)ag(2a1azag + 2a1a4a8 — afas + agad)

a4

Now we present graphic state of some special solutions which would
help us be better to understand the lump solutions. At first, we give the
choice of the parameters:

ag=1la,=1a=1a5=1,0a¢=2,a;=3,a9 =1, a = 1, yields

27t% + 120tx + 180ty + 100x2 + 280xy + 192y? + 120¢
+ 240x + 352y—3372

(4562 + 1201x + 1561y + 100x2 + 280xy + 200y + 1681
+ 240x + 320y + 3660)?

u = 600

(15)

Their plots when z =1 and ¢t = 0,10 are depicted in 1 and 2, re-
spectively.
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(b)

Fig. 2. This figure shows lump solution of Eq. (15) with t = 10 (a) Perspective view of the wave. (b) 2D-Density plot. (c) 2D-gradient vector field plot.

Fig. 3.

(b)

This figure shows the mixed lump stripe solution of Eq. (25) with y = 0, t = 0: (a) Perspective view of the wave. (b) 2D-Density plot.

Mixed lump stripe solutions of the (3 +1)-dimensional soliton
equation

To get the mixed lump stripe solutions of Eq. (1), we consider

f= gz + hz +a + etk3+xk1+yk2+zk4+k5’ (16)
and

g=a1x+a2y+a3t+a4z+a5

h = aex + azy + agt + agz + ayo 17)

where a;(1 < i< 11) and k;(j = 1,2,3,4,5) are all real parameters to be
determined.

To get the mixed lump stripe solutions, substituting (16) with (17)
into Eq. (5), we get a polynomial of the variables x,y,z,t and

96

(b)

Fig. 4. This figure shows the mixed lump stripe solution of Eq. (25) with y = 0, t = 8: (a) Perspective view of the wave. (b) 2D-Density plot.

etks+xki+yka+2katks Eliminating the coefficients of the polynomial yields a
set of algebraic system in a;, (i = 1,2,...,11) and k; (j = 1,2,3,4,5). Solving
this system of equations with the help of symbolic computation, we can
obtain the following solutions of parameters:

Case 1.
@ = aagky © =@ 0= 3madki G = ae ar = az?agk?

17 @ rad)’ 2T BT Ta@kired) 0T T 0T @i+ ad)’
Gi=a;=0,a5= —22M__ 00— aq, a0 = a0, @ L

4 — U7 — U, Ug — 2k2(a22k14+a92)’ 9 — W9, Y10 — “10, Y11 — k/zz(azzkl‘;_'_agz)’

1,3
ki =k, ko = ky, ks = —3k7’, ka = 0, ks = ks,
(18)

where k; (j = 1,2,5) and a; (i = 2,5,9,10) are arbitrary constants.
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Fig. 5. This figure shows the mixed lump stripe solution of Eq. (25) with y = 0, t = 15: (a) Perspective view of the wave. (b) 2D-Density plot.

Case 2. o ek w@k-dapk
8 = Tkt 4ad)  Zkaadkitaay) V%2 T 05
w4 _ 3aagkp - - N Vs 2eefaok?
N = @k BT BT T and gy W 0, as = as, h= HaaiF2ad) T laagiiraad) T 200 ¥ G0
2,209k} 3ag(agkit — 4ag)kf 3tazagh? xaz (azkft - 4a)kp ’
ae = =0,0c = —=——2>= Ao = Ao, A1n = A = o1 = )
6 k4(a1,2k4+4a2) > dg aka(aki+4ad) > 0 9 ©10 10- f ka(aghki+4ad)  2ka(aghi+4ag) Tya +as
20024 4
ax?(aZk — 4ad)k{ 173 214 2\k3 2q0k5 2
= o o h=h k= 2k121 ky = 2 ki, ky = ku, ks = ks, 3as(ag ki’ ~dag)ky e L S 2a9 + o
702 4k (3Kt +4ad) k4(a22k1“+4a2)

19)

a2 a3k — 4ad)kft te 1/4tk3+xk1+ +zk4+k5
where require ajki < 4ada; (i=259,10), and k; (j=14,5) are lekfag 24

arbitrary constants.
Now, we present graphic state of some special solutions which

Thus, these parameters in the case 1 yields a class of positive would help better understand the lump solution (24). First, we give
quadratic solution to Eq. (16) as follows choice of the parameters:
) w=1la=10a9=2,a0=3,k =1, kg =2, ks = 1, yields
f ( tazadk? + xazagky +ya, +a )
= 4 S) 2 5
2y (aght+a3)  ka(akit+ad) -l +e4t+x+4y+2z+1)
5 _
3[[131{1 Xazzagkl3 u= 92 12
94 12y 111t 1 5 15xy 2575  45:z  8xz . o t/4+x+4y+22+1
(zkz(azkl4+u9 ka(aZkt +ad) +2a9 + ayp 617 T T T Y +y WO Ty T TAeHIReke
2
15_y 39 8z t/4+x+4y+2z+1)
o 29 O ) . 31(x/8+ T
kit +a, 2
k3 (agki +ag) (20) Gy ui 1o, 15y 39x o, 2578 +“5J+ 8xz < 44z 24 107 4 el/A+XHAY+22H1)2
16 17 34 16 34 34 256 17

which, in turn, generates of the mixed lump stripe solutions to Eq. (1) ’

through transformation (2) as (25)
Y 12(arg + agh)*—6(a? + a )f FII'SF, tile solution (25) evolution processes are depicted in Figs. 3-5,
73 7 @1 respectively.
where the function f is defined by (20), and the function g and h are .
- Conclusion
given by
staragk} xazadhy In this paper, based on the Hirota bilinear form of the (34 1)-di-
8= Tt rad) | @i tad) tya, +as, mensional soliton equations, we search for lump solutions, mixed lump
3tadky xa?agk} stripe solutions. Some obtained results are showed graphically in order
T 2@k +ad) | ke(adkt+ad) +2as + . (22) to demonstrate that the method is quite effective for handling nonlinear
evolution equations. Meanwhile, the performances of the mentioned
By the same manipulation as illustrated above, we can obtain an- methods above are substantially influential and absolutely reliable for
other lump solution for the case 2, that is finding new exact solutions of other NPDEs.
4 12(a1g + agh)*—6(al + aé)f
2= f? (23) Acknowledgements
where the function f,g and h are given by This work is supported by the Fundamental Research Funds for the

Central Universities (No. 2017XKZD11).
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Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, athttp://dx.doi.org/10.1016/j.rinp.2018.05.022.
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