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ABSTRACT

Shear Strength Prediction Methods for Grouted
Masonry Shear Walls

Patrick B. Dillon
Department of Civil & Environmental Engineering, BYU

Doctor of Philosophy

The research in this dissertation is divided between three different approaches for predicting
the shear strength of reinforcement masonry shear walls. Each approach provides increasing accu-
racy and precision in predicting the shear strength of masonry walls. The three approaches were
developed or validated using data from 353 wall tests that have been conducted over the past half
century. The data were collected, scrutinized, and synthesized using principles of meta-analysis.

Predictions made with current Masonry Standards Joint Committee (MSJC) shear strength
equation are unconservative and show a higher degree of variation for partially-grouted walls.
The first approach modifies the existing MSJC equation to account for the differences in nom-
inal strength and uncertainty between fully- and partially-grouted walls. The second approach
develops a new shear strength equation developed to perform equally well for both fully- and
partially-grouted walls to replace and improve upon the current MSJC equation. The third ap-
proach develops a methodology for creating strut-and-tie models to analyze or design masonry
shear walls. It was discovered that strut-and-tie modeling theory provides the best description of
masonry shear wall strength and performance.

The masonry strength itself provides the greatest contribution to the overall shear capacity
of the wall and can be represented as diagonal compression struts traveling from the top of the
wall to the compression toe. The shear strength of masonry wall is inversely related to the shear
span ratio of the wall. Axial load contributes to shear strength, but to a lesser degree than what
has been previously believed. The prevailing theory about the contribution of horizontal shear
reinforcement was shown to not be correct and the contribution is much smaller than was originally
assumed by researchers. Horizontal shear reinforcement principally acts by resisting diagonal
tensile forces in the masonry and by helping to redistribute stresses in a cracked masonry panel.
Vertical reinforcement was shown to have an effect on shear strength by precluding overturning of
the masonry panel and by providing vertical anchorages to the diagonal struts.

Keywords: masonry, full grouting, partial grouting, shear, strength prediction, linear regression
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NOMENCLATURE

Ac area of confinement (internal vertical) reinforcement
At area of flexural (external vertical) reinforcement
Ag gross shear area of wall
Ah area of bond beam reinforcement
A j area of joint reinforcement
Anv net shear area of wall
Av total area of (horizontal) shear reinforcement
c cohesion of masonry unit/mortar joint interface
dv shear length of the wall
Em Elastic modulus of masonry
f ′b compressive strength of masonry unit
f ′m compressive strength of the concrete
f ′g compressive strength of grout
f ′j compressive strength of mortar
f ′m compressive strength of the masonry
f ′m(eff) effective compressive strength of masonry
f ′m(gro) predicted compressive strength of grouted prism
f ′m(ung) predicted compressive strength of ungrouted prism
f yc tensile strength of confinement reinforcement
f yh tensile strength of bond beam reinforcement
f y j tensile strength of joint reinforcement
f yt tensile strength of flexural reinforcement
f yv tensile strength of reinforcement
f y yield strength of reinforcement
h
t prisms aspect ratio
he height from base to inflection point
hg geometric height of wall
k mean prism strength correction factor
lc length of contact between masonry panel corner and external frame
lw length of masonry wall
Mu ultimate moment demand
P applied vertical axial load (force)
Pu ultimate vertical load on the wall
sc horizontal spacing of confinement reinforcement
sh vertical spacing of bond beam reinforcement
s j vertical spacing of joint reinforcement
st horizontal spacing of flexural reinforcement
sv vertical spacing of shear reinforcement
sgh horizontal grout spacing of partially grouted walls
sgv vertical grout spacing of partially grouted walls
t thickness of masonry wall, equal to tsp
ts shear thickness of wall, taken as the total face shell thickness for partially-grouted

walls and as tsp otherwise
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tsp specified thickness of wall
Vn nominal (predicted) shear capacity
Vnm nominal shear strength provided by masonry
Vnp nominal shear strength provided by axial load
Vns nominal shear strength provided by reinforcement
Vu ultimate shear demand
w width of masonry prism in narrowest dimension
ws width of compressive strut
wt minimum of reinforcement diameter plus twice the clear cover and the wall

thickness
αs strut inclination angle (measured from the vertical)
αd angle between the struts and the center line of the wall diagonal
βi strut inclination factor
βn node efficiency factor
βs strut efficiency factor
ε strain in a member or element
ε statistical model error
εmu crushing strain of masonry
εrup cracking strain of masonry
ε s tensile strain in the concrete in the direction of the tensile tie
γg grouted shear wall factor
ν ratio of net to gross masonry area
φ resistance (or strength reduction) factor
ϕ friction angle of masonry unit/mortar joint interface
σ0 applied vertical axial load (stress)
σ1 principal tensile stress
σ2 principal compressive stress
τ shear stress
τmax peak shear stress in wall
θ angle between the panel diagonal and the bed joints
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CHAPTER 1. INTRODUCTION

1.1 Background

Masonry is the most enduring building method used by mankind. Despite its lengthy period

of use and widespread usage throughout the world, masonry remains today one of the least under-

stood building media (Schneider, 1969). The lack of understanding of masonry can be attributed

to—among other things—its heterogeneous composition, its anisotropic behavior, and negative

stigma resulting from the poor seismic performance of unreinforced masonry during the first part

of the twentieth century. The development of grouted, reinforced masonry during the past century

has done much to dispel the poor perception of masonry, but it has also complicated its study by

introducing new mechanisms and behaviors into the medium. Masonry research has accelerated

in the past few decades due to the advent of numerical modeling procedures (e.g., finite element

analysis), improved computational power, and advanced testing machines.

One of the relatively recent developments in reinforced masonry has been the practice of

partial grouting. In partially-grouted masonry walls, only the cells containing reinforcement are

grouted, leaving the remaining cells hollow. This practice saves on the construction costs for labor,

materials, and weight, but introduces stress patterns that are different from those found in fully-

grouted masonry walls. Significant research has been conducted on partially-grouted masonry

walls to understand the effects that different design parameters have on stresses and behavior.

Research has shown that partially-grouted masonry walls can be a practical lateral load-resisting

system under seismic loading (Schultz et al., 1998).

One particularly important point of research in the past three decades has been to determine

an accurate and safe equation to predict the lateral in-plane shear strength of partially-grouted ma-

sonry walls. The shear strength equation in the Masonry Standards Joint Committee (MSJC, 2013)

code provisions currently applies to both fully- and partially-grouted masonry construction. The

equation was developed using data primarily from fully-grouted masonry wall tests and does not
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account for the different stress patterns that are present in partially-grouted masonry walls. Three

recent projects (Elmapruk, 2010; Minaie, 2009; Nolph, 2010) were conducted under funding by

the National Concrete Masonry Association (NCMA) and concluded that the MSJC shear equa-

tion over-predicted the shear strength for partially-grouted masonry walls. This is to say that the

equation is unconservative and potentially life-threatening. To address this issue, the MSJC intro-

duced the grouted wall factor γg into the 2013 code to compensate for this reduction in strength

for partially-grouted masonry shear walls.

During the past half century, researchers throughout the world have conducted tests on

hundreds of masonry shear wall specimens. The varied focus of each research study has generated

a large pool of experimental data that covers a wide range of possible design parameters. A select

few studies have compared and analyzed a notable portion of this data pool (Matsumura, 1987;

Okamoto et al., 1987; Anderson and Priestley, 1992; Fattal, 1993). In other studies, researchers

typically report their own experimental results and compare them to experimental results from a

few other specimens with similar parameters to their own. To date, however, the full breadth of

knowledge contained in this large pool of data has yet to be fully utilized.

There are numerous probabilistic tools that are available for analyzing experimental data.

These tools become increasingly powerful as the sample size becomes large and can, in some cases,

be used in lieu of performing additional specimen tests. By leveraging the large sample size of the

pool of masonry shear wall data, certain conclusions can be made with more confidence than can

be done with an individual research study.

1.2 Significance of Research

The most recent MSJC (2013) nominal shear strength equation is given by

Vn = γg

[
4.0 − 1.75

Mu

Vudv

]
Anv

√
f ′m + 0.25Pu + 0.5

Av

s
f ylw (1.1)

where

γg = the partially-grouted modification factor,

Mu = the ultimate moment demand,
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Vu = the ultimate shear demand,

Pu = the ultimate vertical load on the wall,

lw = the shear length of the wall,

Anv = the net shear area of the wall,

Av = the area of (horizontal) shear reinforcement,

s = the vertical spacing of shear reinforcement,

f ′m = the compressive strength of the masonry,

f y = the yield strength of the shear reinforcement, and
Mu

Vu lw
= need not be greater than one.

The nominal shear strength Vn is subject to the upper constraint

Vn ≤




6γgAnv
√

f ′m for
Mu

Vulw
≤ 0.25

4γgAnv
√

f ′m for
Mu

Vulw
≥ 1.0

(1.2)

which is intended to prevent designers from using excessive amounts of reinforcement within the

wall. In using Equation (1.2) the code permits designers to linearly interpolate for intermediate

values of Mu

Vu lw
. The nominal shear strength is reduced by a shear resistance (or strength reduction)

factor φv of 0.8 to obtain the design strength (MSJC, 2013).

In light of the recent studies (Elmapruk, 2010; Minaie, 2009; Nolph, 2010), the MSJC

(2013) has introduced a modification factor into the shear equation for the most recent code edition.

The current grouted wall factor γg is intended to account for the effects of partial grouting in

masonry walls and is to be taken as 0.75 for partially-grouted cases and 1.0 for all other cases.

Hollow, unreinforced masonry are governed under a different code equation and are not included

in this discussion. The 0.75 factor was obtained by dividing 0.9 by 1.16 where 0.9 is the average

over-prediction factor for partially-grouted masonry walls from Minaie (2009) and 1.16 is the

average under-prediction factor for fully-grouted masonry walls from Davis (2008). The factor is

applied to both the masonry and reinforcement components of the shear equation. Additionally,

in the current approach the same shear strength reduction factor, φv is used for both fully and

partially-grouted walls.
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The MSJC (2013) has recognized that there is a research gap in the area of partially-grouted

masonry shear walls than needs to be filled. The MSJC code commentary states that the grouted

wall factor γg is “used to compensate for this reduced strength [in partially-grouted walls] until

methods can be developed to more accurately predict the performance of these elements” MSJC

(2013). It has admitted that the current method is meant as a temporary solution to bridge the gap

in understanding until an accurate approach can be developed. This study will develop accurate

approaches to fill this void and will further the overall knowledge of grouted masonry shear walls.

The principal pitfalls of the current grouted wall factor method are that it is based on the

research of a select few researchers, that it is based on average values, and that part of the factor

was developed from data for fully-grouted walls. The 0.9 over-prediction factor used in developing

the grouted wall factor is based solely on the findings of Minaie (2009) at Drexel University. The

research of Nolph (2010) and Elmapruk (2010) at Washington State University (WSU) yielded

over-prediction factors 0.8 and 0.73 based on their respective experimental data. The data also

suggest that the value of 0.9 obtained by Minaie may be too large, resulting in an grouted wall

factor that is not small enough. To overcome experimental bias, data from many studies should be

used—ideally from all compatible partially-grouted shear wall research available—to determine

any modifications to the MSJC shear equation. Analysis of a greater number of specimens will

increase the number of degrees of freedom in the statistical analysis, increase the statistical power

of the results, and make the data set more representative of the whole population.

The 0.9 and 1.16 factors used in developing the grouted wall factor were based on expected

(i.e., mean) values obtained from the research. The expected values represent a 50 percent chance

of being exceeded and do not account for variability in the specimens or in the experiment. Fur-

thermore, both mean values were from data sets with different variances, meaning that the two

mean values cannot be effectively compared by simply dividing one by the other. The 1.16 value

under-prediction factor could represent the fact that the MSJC shear equation was likely developed

using some sort of tolerance level in predicting shear strength for fully-grouted masonry walls.

Similarly, an equation for partially-grouted shear strength prediction should also contain some

level of tolerance to account for variability in the materials and equations.

The vast majority of partially-grouted masonry shear wall research has examined a rela-

tively small number of specimens when compared with the number of parameters being tested.
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A few exceptions are the studies in Matsumura (1987), Johal and Anderson (1988), and Tomaže-

vič et al. (1996) which each tested a relatively larger number of specimens. Small-sample testing

has been conducted, understandably, because of the additional expense inherent in performing re-

peated specimen tests. Unfortunately, setting up experimental research programs in this way limits

the number of degrees of freedom in the statistical analysis and makes the tests highly susceptible

to experimental variability and error. Fattal (1993), Matsumura (1987), Nolph (2010), and Voon

(2007) have each proposed other models for partially-grouted shear walls, but they are either too

complex or were developed using too few observations to be adopted into a design standard. Ma-

sonry standards from other countries contain provisions for partially-grouted shear walls, but it is

uncertain whether these equations are equally applicable to the construction practices used in the

United States. In short, no practical model is available to use in the MSJC that can accurately

predict the shear strength of partially-grouted shear walls with a known level of confidence.

Most researchers base their experimental designs on a relative approach by comparing the

effects of different parameters on wall behavior. Only in a few select studies do researchers at-

tempt to estimate absolute population values for masonry shear walls. Using the relative approach

researchers are able to use their results to make conclusions on how their experimental param-

eters either positively or negatively affect wall performance. The two main issues observed in

studies that use this approach are that their conclusions are only comparative in nature and that

too few researchers include replicate specimens in their experimental design. The difficulty with

many qualitative conclusions is that they provide little if any numerical representation of a param-

eter’s effect on the behavior of a wall. For example, it has been observed by Yancey and Scribner

(1989) and Ghanem et al. (1992) that decreasing the spacing of horizontal reinforcement improves

the shear strength of a wall, but no study has definitively shown by what amount reinforcement

spacing affects shear strength. The omission of replicate specimens from a research study limits

the number of statistical degrees of freedom in the data analysis and provides no insight into the

variation between similar specimens.

The statistical analyses for this study will be performed on a data set comprised of all com-

patible fully- and partially-grouted wall tests documented in the literature. Fully-grouted speci-

mens are included in the analysis to provide a baseline against which the partially-grouted shear

wall data can be effectively compared. Since the conglomeration of tests in the dataset includes
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studies from many different regions, the dataset will be more representative of masonry walls

across all regions than any single study could be. Furthermore, since the number of tests far out-

weighs the number of parameters being tested, this analysis has many more degrees of freedom

and the results will more closely estimate those of the entire masonry shear wall population. In all,

the three recommended approaches developed through this research will be more appropriate for

inclusion in a widely-used masonry standard and will provide design engineers effective tools for

use in designing masonry shear walls in the future.

1.3 Objective Scope

The motivation behind this research program is the inherent unconservative nature of the

MSJC (2013) shear equation for partially-grouted masonry shear walls. The objective of this re-

search program is to develop models for predicting the shear capacity of both fully- and partially-

grouted masonry shear walls which are improvements over the current MSJC shear equation. Dur-

ing the course of this program, new insights and understanding of the behavior and performance of

masonry shear walls will be gained by using statistical, meta-analysis, and strut-and-tie modeling

tools which have not been used before in masonry shear wall research.

This project will focus on three approaches for developing improved masonry shear wall

strength prediction models. The first approach will quantify and mitigate the errors in the current

MSJC shear equation. The second approach will develop a new, updated, and more accurate shear

equation to replace the one in the in the MSJC code. The third approach will develop a procedure

for designers to following in creating strut-and-tie models for masonry shear walls.

The dataset used in the three approaches will be created solely from existing fully- and

partially-grouted masonry shear wall specimen data found in the literature. The data will be for-

matted and synthesized to follow the same data reporting standards. The parameters used in con-

structing the strength prediction models will be limited to those collected and presented in the

literature; no new specimen tests will be proposed for use with masonry.
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1.4 Outline of Paper

This dissertation is divided into six parts—each of which in comprised of several chapters—

references, and appendices. The following subsections offer a brief description of the contents of

each part.

Part I

Part I provides a review of the foundational knowledge that will be the basis for aspects

and phases of this study. Chapter 2 provides a primer for the current state of the art of masonry

shears walls. Chapter 3 presents a primer and introduction into the theory of linear least-squares

regression. Chapter 4 provides a detailed introduction into the principles of meta analysis.

Part II

Part II provides details into the process of data analysis used in assembling and analyzing

the dataset for this study. Chapter 5 presents a literature review of the processes used by the origi-

nal researchers to test the specimens analyzed in this study. Chapter 6 details how the dataset was

assembled from the previous research studies and how the data were synthesized to overcome in-

compatibilities between the difference research studies. Chapter 7 finishes Part II with an overview

of the completed dataset and its properties are shown and discussed in detail.

Part III

Part III details the first analysis approach developed in this study. Chapter 8 presents a

literature review of previous studies which analyzed and suggested improvements to existing shear

equations. Chapter 9 outlines the methodology for analyzing the MSJC (2013) equation developed

from the analysis techniques used by previous researchers. Chapter 10 details the results of the

analysis and Chapter 11 provides a discussion of the modified MSJC shear equation.
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Part IV

Part IV details the second analysis approach developed in this study to create a new linear

model for the prediction of masonry shear wall strength. Chapter 12 is a literature review of linear

model building techniques typically employed by statisticians and continues with a review of the

development of the current MSJC shear equation, its precursors, as well as other shear equations

from around the world. Chapter 13 introduces the methodology that will be used in analyzing

the previous shear models and in developing a new, improved shear model for masonry. Chapter

14 presents an investigation of the precursor models which led up to the current MSJC equation.

Chapter 15 is the principal focus of Part IV and details the development of a proposed shear model

to replace the current MSJC shear equation. Chapter 16 presents comparison and discussion of all

of the shear prediction models using the extensive dataset constructed for this study.

Part V

Part V details the third and last approach which was the development of the strut-and-tie

modeling procedures for masonry shear walls. Chapter 17 introduces and explains strut-and-tie

modeling theory and provides a review of uses of the method for masonry from the literature.

Chapter 18 continues with an outline of the methodology used in developing the strut-and-tie

modeling procedures for masonry shear walls. Chapter 19 details the creation of strut-and-tie

models for masonry and development of the modeling procedures for masonry. Chapter 20 presents

a comparison of the performance of the practice with the existing and proposed shear equations

and a discussion of the method’s use in design practice.

Part VI

Part VI provides general discussion and conclusions for the entire research study. Chapter

22 discusses the performance of masonry shear walls as an assemblage and details the behavior

leading to the two principal failure modes. Chapter 21 discusses how each design parameter influ-

ences the masonry shear capacity, performance, and failure mode. Chapter 23 presents the overall

conclusions and recommendations from this study.
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Part I

Foundational Knowledge

This part provides a review of the foundational knowledge that will be the basis for aspects

and phases of this study. Chapter 2 provides a primer for the current state of the art of masonry

shears walls. Chapter 3 presents a primer and introduction into the theory of linear least-squares

regression. Chapter 4 provides a detailed introduction into the principles of meta analysis.
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CHAPTER 2. PRIMER: MASONRY

2.1 Introduction

Masonry is the oldest documented construction material known to modernity. This should

not be construed as meaning that masonry was the first building method used by mankind. The

longevity of masonry as a building material has permitted ancient masonry structures to outlast

other ancient structures built from other materials—particularly organic materials such as wood,

thatching, and bone. Since men have historically built from materials that were readily available

to their locale, it is conceivable that separated civilizations concurrently developed disparate con-

struction media that best matched their respective surroundings, climate, and available resources.

Despite the long history of masonry usage, masonry remains today one of the least un-

derstood building materials due to its material properties and common perceptions. Masonry is

a heterogeneous and anisotropic material, making the structural behavior of masonry more diffi-

cult to model, analyze, and explain than for other commonly-used construction materials like steel

and reinforced concrete. The differences within the constituent materials and the manufacturing

processes make the properties of masonry assemblages more variable than those of more homoge-

neous and isotropic materials. More recently, masonry has been affected by vacillations in public

perception about its utility, economy, and overall safety resulting from the poor performance of

unreinforced masonry structures in recent earthquakes.

2.2 History

2.2.1 Ancient

The first documented masonry structures were built in pre-historic times in the Mediter-

ranean basin. In this rocky area with little timber for construction, these primitive structures were

dome-shaped and constructed by stacking stones one upon another. The Mycenaeans would later
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build beehive-shaped structures by developing and using the corbelling method of dome building.

They found that by stacking flat stones such that each course protruded beyond the previous course

in a balanced manner, a dome could be constructed without need for centering. Once both sides

met at the top the horizontal constraint provided lateral stability to the completed dome. This

method was made easier by using smaller, lighter blocks in the higher courses. Eventually, they

would expand this technology to building half-domes and corbelled arches (Escrig, 2006; Fletcher,

1996).

The first use of clay masonry was developed in the Mesopotamian Plains and Nile River

Valley. In these alluvial areas the scarcity of stone and timber compelled the inhabitants to search

for other materials for use in construction. Mesopotamia was first to use unfired mud-bricks and

the practice later spread to Egypt. The early Mesopotamian mud-brick buildings continued the

earlier tradition of constructing either round or oval-shaped structures. Eventually rectangular

structures with arched roofs and stone foundations took over as normal practice (Escrig, 2006;

Fletcher, 1996).

The use of mud bricks facilitated the development and wide-spread use of the arch within

the Fertile Crescent region. The bricks were light enough for a single workman to carry and could

be easily formed or shaped into voussoirs for use in arches. Similar to the earlier domes of the

region, the inhabitants developed new technology whereby an arch was constructed without the

need for centering. Each arch was constructed from concentric, inclined rings. As each ring was

constructed the voussoirs partially rested on the previously completed ring. The friction between

the adjacent rings was sufficient to keep the partially-built ring standing until the key could be

placed (Bagenal, 1980; Fletcher, 1996).

In Egypt, mud-brick masonry became the predominant form of construction, supplanting

the flimsy, clay-covered reed and timber method for the primary structure. The Egyptian style was

different from that of Mesopotamia in that the Egyptians continued to use flat, clay-covered reed

roofs. Since the roof provided little lateral support to the brick walls the Egyptians tapered their

walls from bottom to top for added stability. To preserve vertical surfaces on the interior of their

structures they only battered the exterior faces of their walls. This practice was a distinction of

Egyptian architecture that would influence the design of future structures (Fletcher, 1996).
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Hewn stone first began to be used in Egypt during the Third Dynasty, in the twenty-seventh

century BC. The first royal tombs were flat-roofed mastabas constructed from limestone hewn

from nearby outcroppings. Though the interiors of the mastabas were solid, the common practice

of battering the exterior faces continued. The grandeur of the royal tombs steadily increased with

each pharaoh trying to out-do the accomplishments of the previous. Gradually, the mastabas grew

in height and the battered walls became steeper. This practice continued such that the walls met

at an apex and a pyramid was formed. Through the end of the dynasty, the pyramid became the

design of choice for royal tombs (Fletcher, 1996).

The Egyptians incorporated several innovations into their pyramid construction practices.

One of which was the use of bed joints that were inclined inward to provide lateral stability to

the higher courses. They also used a thin lime-based mortar between the blocks as a lubricant to

aid in positioning them. The Egyptians understood and built arches for other uses—particularly

with mud-brick—but they chose to use large stone lintels or triangular arches in their monumental

structures to span openings (Fletcher, 1996). Their use of these innovations gives the intimation

that the Egyptians understood the principle of masonry arching.

Masonry arching enables most of the downward gravity load above an opening to be trans-

ferred diagonally, through the masonry, to the supports adjacent to the opening. If there is sufficient

lateral restraint around the opening and adequate masonry height above the opening, then the ma-

sonry around and above the opening will behave more like a corbelled arch. In this case the lintel

spanning the opening will not experience the full weight of all the masonry above it but will only

have to support the weight of the triangular section of masonry immediately above it (Drysdale

and Hamid, 2008).

During the New Kingdom, Egyptian focus shifted away from building pyramids and to-

wards building smaller, more-elaborate tombs and temples. This change in scope led to new design

challenges to overcome. The new designs did not provide the same amount of lateral stability as

was inherent in the pyramids. Similarly, the new structures were to gradually contain more and

more usable space. The new challenge was to find new stable ways of transferring all gravity loads

downward. The Egyptians surmounted this by making another advance in masonry construction,

the use of vertical stone columns. In building the temples, chapels, and other buildings during

12



this period they continued the practice of using stone lintels or triangular arches to span between

columns (Fletcher, 1996).

While the Egyptians were using hewn stone for their monumental structures, the Mesopotami-

ans devised another material that would work well for their larger structures. They discovered that

by firing their mud bricks they became substantially stronger and weathered much better. Together

with bitumen-based mortar they constructed several large edifices and ziggurats, using the fired

brick in areas subject to higher stresses. Later, the Babylonians developed this technology further

by creating glazed bricks, which they used in some of their most important buildings (Fletcher,

1996).

2.2.2 Classical

Through their trade empire, the seafaring Minoans came into contact with the Egyptian ma-

sonry technologies and architecture and spread this knowledge to the Mycenaeans in Greece. The

Greeks continued the column, lintel, and triangular arch components of the Egyptian stonework

and also incorporated the use of corbelled arches which they had previously developed. This

knowledge blossomed into new architectural styles during the Classical and Hellenistic Greek pe-

riods. Additionally, the Greeks expanded the use of stone columns by gradually making them

more slender and by using keys between column sections to align them and resist lateral shear

forces (Fletcher, 1996). A further innovation, the discovery of pozzolanic cement, created a new,

stronger mortar to be used in masonry construction (Hegemier et al., 2003; Malhotra and Mehta,

1996). Much of the Greek architecture and practice was adopted by the Romans at the outset of

Roman rule.

The Romans had a large influence on the further development and spreading of masonry

knowledge. They were skilled at incorporating existing technology from other cultures, innovating

new ones, and spreading them throughout their broad reach. The vastness of the Roman Empire

put them in contact with the masonry technologies of Mesopotamia, Egypt, and Greece (Fletcher,

1996). The first innovation of the Romans was to combine the arch technology from Mesopotamia

with the stonework and concrete technology from Greece to form large stone arches. The Romans

later improved the methods of making and using cement in construction (Malhotra and Mehta,

1996)
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Through Roman masonry technology stone masonry walls became more slender, creating

more usable space within the structure. The next step was to construct walls in an annular manner

to form hollow towers. The cross-section of a tower is efficient because the material at the ex-

tremities of the structure work as a couple to resist lateral and overturning forces. The efficiency

of the shape permitted the exterior walls to be relatively thinner compared to free-standing walls

of comparable height. The Romans constructed many notable masonry walls, cities, and towers

throughout Europe and the Near East during their rule (Drysdale and Hamid, 2008).

The Romans also made new developments in the use of the arch. Unlike previous civiliza-

tions the Romans used centering in constructing their arches and domes due to the larger scale and

their use of concrete. Roman engineers understood that a semi-circular arch was not as efficient

as a parabolic or catenary arch, but determined that the semi-circular shape was simplest to lay

out and construct. Semi-circular arches use a single, constant radius with voussoirs that are all

identically shaped. As Roman construction technology improved parabolic and catenary shapes

were used, as is evident in some of their significant later projects. In the case of all arches, vaults,

and domes, the horizontal component of the interior force causes outward thrust at the base that

must be restrained. Romans discovered that by adjoining barrel vaults perpendicular to the edges

of large domes or other vaults, the in-plane shear strength of the vault could be used to confine the

outward thrust of the much larger dome or vault (Drysdale and Hamid, 2008).

Masonry was developed further by the Byzantines who used domes in a new architectural

style. Unlike the Romans who settled with building domes over circular shaped spaces, the Byzan-

tines discovered means to construct domes over octagonal- and—later—square-shaped spaces by

combining portions of domes of different radii. By using pendentives they could direct the vertical

forces of a large dome into the corners of the structure and the lateral forces were resisted by ei-

ther half domes or barrel vaults. The Byzantines developed the dome further by using a catenary

shape, which enabled them to construct thin-shell vaults and domes that were thinner and lighter

(Bagenal, 1980).

European masonry took on a new form in the Medieval period with the advent of Gothic

architecture. The first defining aspect was the acceptance of the ribbed domes originally invented

by the Muslims. The Europeans took the concept of the ribbed dome and generalized it for use in

vaults (Escrig, 2006). By using ribbed vaults, the ribs could be constructed initially and the other
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portions of the vault could be constructed in sections. This decreased the quantity of centering

that was needed in constructing the vaults. Another characteristic was the use of pointed arches,

originally developed by the Byzantines, which decreased the amount of outward thrust at the base

of the arch. The combination of ribbed vaults and pointed arches led to the creation of the Gothic

vault, a characteristic feature of Gothic architecture (Bagenal, 1980).

The Gothic method of design was two dimensional. This enabled designers to more easily

understand load paths and optimize the designs to bring the materials to the limit of their stress

capacity. This understanding—coupled with the development of flying buttresses—enabled the

Gothic builders to reach astounding heights with their structures. The height and use of ribbed

vaults enabled Gothic structures to include many more windows than had previously been used in

masonry structures. Up to that period, Gothic architecture was the most luminous method that had

yet to be designed and built (Escrig, 2006).

2.2.3 Contemporary

The earliest appearance of modern reinforced masonry technology dates back to the early

nineteenth century when iron hoops were placed in the mortar joints of two brick shafts in London.

This construction technique was investigated further by several engineers throughout England.

Another advance in masonry technology that occurred soon afterward was the discovery and use

of portland cement as a cementitious agent in mortar. Both of these technologies were highly

publicized in 1851 at the Great Exposition of London. The use of reinforced masonry did not

spread to the United Stated and other nations until a century after its initial discovery in England

(Schneider and Dickey, 1994).

The deficiencies of unreinforced masonry were highly publicized after the 1933 Long

Beach earthquake in which 70 schools built of unreinforced masonry were completely destroyed.

The State of California subsequently passed laws and new building codes that prohibited the use

of unreinforced masonry (Commission, 2009; Hess, 1979). Over the next four decades, the vast

majority of research on reinforced masonry was conducted within the State of California. The reg-

ulations based on the findings from these research programs were included in the Uniform Building

Code (UBC) (Schneider and Dickey, 1994).
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The understanding of reinforced masonry during the last half century has increased through

the efforts of research institutions, both domestically and internationally. This research has been

aided by more sophisticated testing and data collection systems, the advent of Finite Element

Analysis, greater computational power, and the formation of research coalitions dedicated to the

subject.

2.3 Properties

2.3.1 Materials

Masonry Units

Concrete and clay are the two principal materials used in making masonry units. Load-

bearing clay masonry comes in two types, structural clay tile and hollow clay brick. The latter

type is distinct from the more widely known solid clay bricks that are commonly used as veneers

in many structures worldwide. The term is most frequently used for concrete masonry, particularly

most recently, is concrete masonry unit. Standards for load-bearing structural clay tile, hollow

clay brick, and concrete masonry unit are set forth in ASTM C34, ASTM C652, and ASTM C90,

respectively.

Mortar

Multiple types of mortar are used throughout the literature. The most common type of

mortar used by researchers is portland cement/lime-based mortar, which is also the most widely-

used mortar today in the United States masonry industry. Two other types, masonry cement-

and mortar cement-based mortars, are proprietary blends of portland cement, lime, and/or other

materials that come premixed in bags from the manufacturer. Earlier masonry codes restricted

these latter two mortars from use in seismic force-resisting masonry walls due to the uncertainty in

their performance at the time. Research has been carried out to study the performance of these two

mortars (Johal and Anderson, 1988) and they were found to perform equally as well as portland

cement/lime-based mortars.
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Some researchers (Meli et al., 1968; Meli and Salgado, 1969; Haach et al., 2010b) used

only portland cement-based mortar without lime in their masonry specimens. This is the case in

Latin America and some other countries where lime is not readily available or where it hasn’t

been traditionally used. Lime-less mortar has the advantage of having, in general, higher compres-

sive strength than similarly proportioned mortars with lime include. Additionally, the absence of

lime results in the mortar and concrete masonry having more similar Poisson’s ratios, increasing

material compatibility within masonry assemblages and decreasing assembly anisotropy.

In the United States, mortars are grouped into types based on their proportioning of lime

and are designated as M, S, N, and O. Compressive strength and ductility are related to the mortar

type, with the first type being the strongest and least ductile mortar and the last type being the

weakest but most ductile. Increasing the proportion of lime within mortar decreases the compres-

sive strength of the mortar but increases its ductility. The use of lime in mortar greatly increases

the workability and longevity of wet mortar by increasing its ability to retain moisture. The ease of

use helps to decrease errors in construction and reduce variability within masonry walls. Another

benefit of using lime in mortar is the ability over time for cracks in the mortar to heal through

autogenous healing.

Grout

Masonry grout is a mixture or portland cement concrete wherein the aggregate sizes are

generally limited to sizes smaller than is typically allowed in normal concrete usage. Grout must

have a high slump for it to flow down the masonry cores and fill the voids around the reinforcement.

High-slump grout is made created through the use of plasticizers within the grout mix. Grout has

several purposes within partially grouted masonry walls. The primary purpose is to transfer loads

from the masonry to the reinforcement so that the two act as a unit. The grout also serves to

cover and protect the reinforcement from corrosion, permits the full development of strength in the

reinforcing bars at splices and hooks, and adds to the net shear area of the wall, increasing shear

capacity.
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Reinforcement

Reinforcement used in masonry walls is generally made from steel, though carbon fiber

and other fibrous media are sometimes employed. While the study of other reinforcing materials

in masonry is gaining traction around the world, the widespread use of these other materials is still

years away. This study will focus solely on the two types of steel reinforcement used in masonry

construction, deformed bars and welded wire.

The deformed bars used in masonry are the same as those used in reinforced concrete

design and construction. Deformed bars come in sizes that vary from country to country; the sizes

used for each specimen are reflected in Appendix A. Deformed bars are placed vertically within

the cores of the masonry units and horizontally within bond beams and are grouted in place.

The second type of reinforcement used in masonry walls, welded wire reinforcement, con-

sists of two parallel wires that are attached together in one of two ways. In ladder-type rein-

forcement, short bars that run perpendicular to the two wires are welded onto the wires at regular

intervals. In truss-type reinforcement, a third continuous wire is bent into a zigzag shape and

welded onto the other two bars at its corners. The purposes of the central wires in each type are to

keep the two primary wires at a uniform distance apart, to keep the primary wires straight, and to

provide some lateral anchorage to the wires when they are embedded within the wall.

Both truss- and ladder-type reinforcement are used primarily as horizontal reinforcement

and are placed within the bed joints of the masonry. This reduces labor and materials by avoiding

the use of special units and grouting necessary in forming bond beams. However, the limited size

of the bed joints constrains the amount of welded wire reinforcement that can be included in the

wall. A recent study by Haach et al. (2010b) has determined that welded wire reinforcement can

be effectively used as vertical reinforcement within walls as well.

Reinforcement can be placed in masonry shear walls in two orthogonal directions, hori-

zontally and vertically. In the case of shear walls the horizontal reinforcement is also called shear

reinforcement because it is laid parallel to and is most effective in resisting the lateral in-plane

shear forces. As wall panels develop diagonal shear cracks from increasing shear forces the shear

reinforcement spans these cracks and provides means of resisting the lateral tensile forces from

one side of the crack to the other. For this reason, the two terms are used interchangeably within

the literature.
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The vertical reinforcement is sometimes called the flexural reinforcement because it resists

the tensile forces created by the overturning moment within the wall. This term can be somewhat of

a misnomer because only the vertical reinforcement nearest the ends of the wall is truly effective

in resisting the overturning moment forces within the wall (Ghanem et al., 1992, 1993). The

vertical reinforcement in the interior of the wall panel is not very effective in resisting the in-

plane moment force due to its proximity to the neutral axis. This reinforcement primarily provides

vertical confinement to the masonry and acts in resisting any out-of-plane moment forces.

The MSJC code contains provisions for prescribed reinforcement for specially reinforced

masonry shear walls. Among the prescriptions, the code requires that reinforcement be spaced no

more than 48 inches (1220 mm) in both the vertical and horizontal directions.

2.3.2 Assemblages

Masonry units are assembled in several different ways. Methods include traditional mortared

joints, so-called “dry stack” masonry, and thin-bedded joints. The remainder of this dissertation

will refer exclusively to the traditional mortared joint method which is the most common technique

used today. Since masonry assemblages are heterogeneous and anisotropic, the mechanical proper-

ties of the constituent materials cannot be directly equated to the strength of the whole assemblage.

To understand this disparity in strengths, one must look at the complex internal reactions that occur

within a masonry panel.

2.3.3 Joints

Joints are a major source of the anisotropy within masonry assemblages. Bed joints run

horizontally and are generally continuous from one end of a panel to the other. Head joints run

vertically and may or may not run continuously from the bottom to top of a masonry panel, de-

pending on the bond pattern used in laying the wall.

Running bond, the most commonly used bond pattern, is defined in the MSJC code as a

pattern in which the head joints of adjacent courses are offset by a distance of at least a fourth the

length of a masonry unit. Stack bond is defined as a bond pattern in which the head joints of each

consecutive course are aligned so that each head joint runs continuously from the bottom to top of
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the wall. By these definitions, it is possible for a wall to be laid in neither running bond nor stack

bond. In the MSJC code, walls not meeting the requirements for running bond are referred to as

“not laid in running bond.” The term stack bond is not used in the MSJC code; walls laid in stack

bond are included in the group of walls not laid in running bond.

Bed joints are mortared in one of two ways, full bedding or face shell bedding. A fully

bedded joint describes the case when the tops of both face shells and webs of the masonry units

are mortared. A face shell-bedded joint describes when only the tops of the face shells of the

masonry units are mortared. When face shell-bedded walls are partially grouted, the webs around

the grouted columns are also grouted to prevent the grout from leaking into the adjacent cores. In

partially grouted walls, the in-plane shear stresses transferred between masonry webs is insignif-

icantly small, leading to the usage of face shell bedding in a majority of cases. In circumstances

where full bedding would be necessary to provide adequate vertical bearing area within a partially

grouted wall, a fully grouted wall would generally be more practical.

When mortar is placed on a masonry unit, some of the wet cement paste is wicked into

the drier masonry unit by capillary action. Through this the bond between the mortar and masonry

becomes significantly stronger than a comparable bond between mortar and a non-porous material.

To achieve optimum bond strength between the mortar and masonry, the mortar and masonry units

must be within an acceptable range of moisture content. If the masonry unit is too wet, the mortar

will not wick into the masonry. If the masonry unit is too dry, then too much of the moisture in

the mortar will be sucked out and the cement in the mortar will not have enough water to properly

hydrate, forming a weak mortar joint. The standards for masonry and mortar moisture content are

contained in ASTM C270 (2014).

2.3.4 Prisms

Compressive strength parameters are often measured by testing a series of masonry prisms.

Masonry prisms are assemblages that are typically a half to a whole block long and multiple courses

high. Half block-long prisms are the most common, but may not be truly representative of actual

conditions in some cases since they do not contain any head joints. Prisms may be left hollow or

be fully-grouted, though grouted specimens rarely contain any vertical reinforcement. Horizontal
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confinement reinforcement is included in the bed joints in only a few unique cases to study the

confining effect of ties on masonry splitting. One such case is shown by Mayes et al. (1976b).

Masonry prisms tested under vertical compression loading will demonstrate an ultimate net

compression stress less than that of the masonry units or grout. The ultimate stress for the prism

is generally greater than that of the mortar. This phenomenon is related to the three-dimensional

stress states within the masonry prism. Masonry units, mortar, and grout each have a different

Poisson’s ratio. The masonry units have a Poisson’s ratio less than that of the mortar or grout. This

disparity in ratios results in each material expanding laterally at different rates as they are strained

in the vertical direction. These differences in lateral expansion rates induce lateral strains in the

materials because they are all jointly interconnected together.

Since the mortar has a higher Poisson’s ratio than the masonry units, the mortar seeks to

expand laterally more than the adjacent masonry units. This causes the mortar to be confined in

the two lateral directions, placing it into compression in all three coordinate directions. This tri-

dimensional compression state allows the mortar to resist greater compressive loads than it could

in a typical uniaxial compression state. This correlates to research which has determined that

masonry prism strength is not well influenced by deviations in mortar strength.

While the masonry units are confining the mortar, the mortar is inducing outward forces

on the masonry units themselves. This is further compounded by the inclusion of grout within the

masonry cells which induces further outward strains on the masonry. Masonry prisms typically fail

by cracking and spalling of the face shells instigated by the lateral tension induced within it. The

lateral tension results in prisms having lower compression strength than the masonry units alone.

For prism tests to be truly representative of actual conditions they should be at least two

courses high because the top and bottom masonry surfaces are laterally confined by the platens of

the testing machine. Prisms of three courses are more representative because the central course is

laterally unconfined from its top to its bottom, but the results from two-course prism tests can be

used by applying an adjustment factor. Taller prisms may be tested as well, but this is generally

avoided because the added costs are considered to outweigh the benefits. The results from taller

prisms are similarly adjusted to account for slenderness effects. Common failure modes in masonry

prisms include the vertical split, conical break, shear break, semi-conical break, and combinations

of these modes (ASTM C1314, 2014).
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In lieu of testing masonry prisms, the MSJC permits assemblage compressive strength to

be derived using the “Unit Strength Method.” This method allows the strength to be interpolated

from values in a table grouped by the masonry unit compressive strength and mortar type. This

method is considered by many to be overly conservative.

2.3.5 Failure Modes

Partially grouted shear walls demonstrate two distinctive failure modes: a flexural mode

and a shear mode. Both modes of failure can occur at the post-peak loading of a wall due to

the indeterminate nature of reinforced masonry walls. This is referred to in the literature as a

flexural/shear failure.

The flexural mode of failure is characterized by horizontal bed joint cracking in the bottom

courses, yielding of the vertical reinforcement, and ultimately by toe crushing. Flexure failures

have been observed to be more ductile in large part because the failure requires yielding of the re-

inforcement. The amount that the reinforcement yields before crushing commences in the masonry

toe is dependent on the quantity of vertical reinforcement. For large areas of vertical reinforcement,

the reinforcement may yield only slightly or not at all before the masonry begins to crush at the

far end of the wall. For walls with small areas of reinforcement, toe crushing is delayed and the

reinforcement will undergo large amounts of plastic yielding before toe crushing begins. In the

extreme case of plastic yielding, a rocking failure will occur when tested cyclically.

A rocking failure occurs when a continuous flexural crack forms from one end of a wall

to the opposite end, usually in one or more bed joints (Kasparik, 2009) This is precipitated by the

lack of vertical confinement inherent in the small amount of vertical reinforcement. In this case

the wall is split into two parts connected only by the vertical reinforcement. As the lateral load

reverses repeatedly the wall rocks back and forth, causing the reinforcement to yield in tension and

compression with each subsequent cycle. Ultimate failure occurs by gradual disintegration and

trituration of the mortar joint from repeated loading and by fatigue fracture of the reinforcement.

A rocking failure also results in a significant loss in lateral stiffness.

The shear mode of failure is characterized by cracking and disintegration of the interior

wall panel. In some cases the failure can occur suddenly in a brittle manner, but much research

has been conducted to determine means of increasing ductility in shear failures. Cracking occurs
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predominately as diagonal cracks proliferate within the masonry panel. However, in cases of low

vertical confinement walls may experience a sliding shear failure. A sliding shear failure occurs

when a continuous horizontal crack forms from one end of the wall to the other. The upper wall

segment slides along the bottom segment with aggregate-interlock friction and dowel action of

the vertical reinforcement acting as the only lateral force resisting mechanisms (Sveinsson et al.,

1985).

The first sign of shear failure under lateral loading occurs as a 45 degree diagonal crack

starting and spreading from the center of the wall. The diagonal cracking load is dependent on the

tensile strength of the masonry and of the orientation of stresses within the wall by the superposi-

tion of vertical axial stress. This can be observed by using Mohr’s circle to represent the biaxial

stress pattern within the wall (Mayes et al., 1976c). Axial load also increases the aggregate inter-

lock force, increasing the mechanical bond resistance and prolonging the breaking of the chemical

bonds in the cementitious material (Ghanem et al., 1992, 1993; Shing et al., 1990). Since the re-

inforcement is not engaged until the masonry cracks, it is not effective in increasing the cracking

strength of the wall panel. Many researchers have confirmed that the diagonal cracking load is not

influenced by the quantity of reinforcement (Matsumura, 1987; Schultz et al., 1998; Ghanem et al.,

1992, 1993; Shing et al., 1989; Haach et al., 2010a).

Once initial diagonal cracking has taken place within the panel, the horizontal reinforce-

ment begins resisting the lateral forces and helps to keep the crack from opening. Though not

directly operative in resisting the lateral load, it has been shown that distributed vertical reinforce-

ment is also effective in keeping the shear cracks from opening (Ghanem et al., 1992). By keeping

the diagonal crack closed, the masonry along both sides of the crack are able to transfer shear

stresses via crack friction, resulting in an increased lateral capacity beyond the diagonal cracking

load. Without adequate confinement, the diagonal crack will open and the masonry will no longer

provide resistance to the lateral load.

The load at which diagonal cracking first occurs is referred to as the cracking load. The

horizontal cracking load is not discussed in the shear literature though it is discussed in the MSJC

code when referring to flexural strength of walls. At loads beyond the diagonal cracking load

the wall, strength is provided by the horizontal reinforcement and by crack friction. As the load

23



continues to increase additional cracks begin to form in other parts of the masonry panel. These

additional cracks transfer the lateral load via the same mechanisms as the initial diagonal crack.

Shear failure initiates in one of two ways. A brittle shear failure occurs in walls that are

heavily reinforced, in which reinforcement is concentrated into small areas, or which are subjected

to large axial loads (Ghanem et al., 1992; Nolph, 2010). Brittle failure appears as a sudden crushing

of the masonry between adjacent horizontal reinforcement. Ductile shear occurs in walls that are

lightly reinforced with distributed reinforcement and subjected to axial load less than 5 percent

of the compressive strength (Ghanem et al., 1992). Ductile failure initiates as yielding of the

horizontal reinforcement and is followed by sliding along the cracked planes and ultimately by

crushing of the masonry. While a ductile shear failure is more difficult to achieve, modern research

has shown that the implementation of certain provisions can force masonry shear walls to behave

in a ductile manner (Schultz et al., 1998).

2.3.6 Shear Span Ratio

The shear span ratio is a value that has a significant influence on the failure mode of ma-

sonry panels (Matsumura, 1987; Schultz, 1996a,b; Maleki, 2008) and is mentioned by nearly every

author in the literature either directly or indirectly. The definition of the shear span ratio is the ra-

tio of the height of the inflection point to the horizontal length of the wall panel. It is frequently

represented in the code and literature by

Mu

Vulw
(2.1)

where

Mu = the ultimate moment demand at a particular height along the wall panel,

Vu = the ultimate shear demand at the same height along the wall panel, and

lw = the length of the wall panel.
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It is more representative to think of the shear span ratio as being represented by

Mu/Vu

lw
≡

he

lw
(2.2)

where Mu/Vu and he are the effective wall height—or the height of the inflection point.

In wall panels tested under cantilever-type loading, the effective height he and the geometric

height hg of the wall are the same. For wall panels tested with both their top and bottom edges

fixed against rotation (i.e., fixed-fixed or reverse-curvature loading), the inflection point is located

at the mid-height of the wall and the effective height is half the geometric height. This definition of

shear span ratio permits the equations to be used with walls which have other boundary conditions

or loadings (e.g., when the top surface is only partially restrained against rotation).

2.4 Engineering Uncertainty

2.4.1 Development of Strength Design Theory

Prior to the implementation of strength design, structures in the United States were de-

signed using the working stress method, which employed the use of safety factors to account for

the uncertainties in loads, resistance, and models used in structural analysis. Standard-writing

committees developed and adjusted these factors over time based on their increasing experience

with existing structures, perceptions regarding the accuracy of structural analysis methods, and

engineering judgment. The intuition-based design method worked well in producing structures

for which the probability of failure was judged to be acceptably low, but they presented difficulty

to designers in quantifying performance levels, producing consistent reliability between all struc-

tures, and quantifying the likelihood of failure. These weaknesses were especially pronounced for

non-routine design situations for which there was little experience or precedence (Ellingwood and

Galambos, 1982; Ellingwood, 2000).

During the middle part of twentieth century, engineering professionals were spurred by

natural and man-made failures and public scrutiny to find means of overcoming the shortcomings

of the working stress method. The solution was to create new, probabilistic design procedures that

took advantage of the observed stochastic regularities demonstrated by structural materials and
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loads. The ACI 318 code first introduced ultimate strength design in 1963 based on ultimate limit

states of loads and resistances, as opposed to working stress of the material (MacGregor, 1983). In

1969, a consortium of engineers assembled by the American Iron and Steel Institute (AISI) and the

American Institute of Steel Construction (AISC) was charged with further developing this theory

for steel structures. The system the consortium assembled was an amalgamation of structural

analysis and reliability theory that became known as Load and Resistance Factor Design (LRFD)

(Ellingwood and Galambos, 1982; Ellingwood, 2000). The LRFD system first appeared in the

1986 version of the AISC code.

The new advances in design theory enabled U.S. code writers to standardize the load re-

quirements for structures that had previously varied between material standards. In 1979 the Na-

tional Bureau of Standards assembled a team to develop a universal set of load factors for use

in building design (MacGregor, 1983). The common load requirements were adopted into ANSI

Standard A58.1 by ballot in 1982. With the exception of the seismic and wind provisions, these

requirements—which are now published in ASCE 7 (2010)—have changed little since that time

(Ellingwood, 2000).

2.4.2 LRFD Theory

The LRFD theory is based on the requirement that

φRn ≥

j∑
k=1

γkQkm (2.3)

where

Rn = the nominal strength of the structure,

φ = the resistance (or strength reduction) factor less than unity,

Qkm = the mean load effect, and

γk = the corresponding load factor equal to or greater than unity.

The left side of equation 2.3 reflects the uncertainty in the resistance (or capacity) of the structure

while the right side represents uncertainties in the loads acting on it (Ravindra and Galambos,
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1994). Beginning with the publication of ANSI Standard A58.1 (1982), the responsibility for

specifying factors for each side of the equation has been divided between material design standards

and load standards. The left hand side of Equation 2.3 is the purview of respective material design

codes while the right hand side is defined by ASCE 7 (2010) (Ellingwood, 2000).

Resistance factors reflect the variability inherent in the mechanical properties of the mate-

rials, of variations in dimensions (tolerances), and the uncertainties in the theory underlying the

design definition of member strength. In other terms, the sources of variability come from uncer-

tainties in the material strength or stiffness, in member fabrication, and in the underlying assump-

tions used in developing the models. It is assumed that the sources of variation are independent

of each other (Ravindra and Galambos, 1994). The development of appropriated resistance factors

may also consider qualitative measures, such as the risk to occupants if the member fails without

warning, the importance of the member within the structure, and the familiarity of the designer

with the LRFD method (MacGregor, 1983; Ellingwood et al., 1980). The latter two considera-

tions are difficult to quantify objectively and do not appear to be accounted for in the resistance

factors, though the importance of a member within a structural may be incorporated into the load

factor portion (right side) of Equation (2.3) through the consideration of tributary areas and live

load reduction factors. Bažant and Yu (2006) also noted that reduction factors frequently contain a

covert component which accounts for variation resulting from formula error. This modeling-error

variation is not apparent to designers and is difficult to separate from the variation of the materials

themselves.

The probability of failure pf is the probability that the load exceeds the resistance (or

strength) of a member and is represented by

pf = P [(R −Q) ≤ 0] (2.4)

where R − Q is known as the safety margin (MacGregor, 1983). Assuming that R and Q are

randomly distributed, the safety margin Y has an expected value of

E(Y ) ≡ µY = µR − µQ = E(R) − E(Q) (2.5)
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and variance of

var(Y ) ≡ σ2
Y = σ2

R + σ2
Q (2.6)

where σ2
R is the variance of R and σ2

Q is the variance of Q. The reliability of a structural member

is measured by the safety index β (MacGregor, 1983) which is given by

β =
µY

σY
(2.7)

Since the probability distributions for R and Q are unknown, the safety index only represents a

relative measure of reliability (Ravindra and Galambos, 1994).

By setting β as a constant, the structural reliability of all similar structure types becomes

fixed. Ravindra and Galambos (1994) show that by assuming β to be constant, Equation 2.7 can

be rearranged to produce

µR = θµQ (2.8)

where θ is the central safety factor which is given by

θ = exp
*..
,
β

√√√
σ2

R

µ2
R

+
σ2

Q

µ2
Q

+//
-

(2.9)

Using a first order approximation for the square root term, Ravindra and Galambos (1994) are able

to combine Equations 2.8 and 2.9 to produce

exp
(
−αβ

σR

µR

)
µR ≥ exp

(
αβ

σQ

µQ

)
µQ (2.10)

which is another representation of Equation 2.3. The coefficient α is a constant chosen to minimize

the errors in the approximation. Using the above approach, the resistance factor φ is calculated by
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φ = exp
(
−αβ

σR

µR

)
µR

Rn
(2.11)

where Rn is the nominal resistance from the predictive model.

2.4.3 Uncertainty in Masonry Design

The development of LRFD design criteria has been well-documented for ASCE 7, struc-

tural steel, and reinforced concrete but review of the literature has failed to produce the proba-

bilistic rationale for for choosing the current 0.80 shear reduction factor for masonry. Ellingwood

et al. (1980) performed an analysis of strength prediction equations for several materials and de-

termined that the mean ratio of experimental to predicted strength is typically between 0.98 and

1.05 amongst various materials but provided no information on the variation of reinforced masonry

shear walls because most of the masonry information was not available at the time. Research into

the field of reliability analysis suggests that a common practice is to use a lower-bounded 90 or 95

percent confidence interval (Ellingwood et al., 1980). The MSJC (2013) specifies the use of the

fifth-percentile (i.e., 95 percent upper confidence interval) of the measured strength distribution for

steel anchor bolts but is mute for masonry shear or any other situation.

A practice presented in the literature is to use confidence intervals to account for the vari-

ation in material strengths. The use of a confidence internal in this case is statistically incorrect

because a confidence interval applies only to an estimated parameter (e.g., mean or variance) from

the sample (i.e, dataset). A confidence interval cannot be used as the basis for predicting strength

values for future structural elements. The proper tool to use in calculating reduction factors for

structural materials is to use a tolerance interval (Vardeman, 1992).

Masonry material strength frequently shows relatively high variability compared to other

building materials. Blume and Proulx (1968) suggested that a variation of about 10 percent be-

tween test and predicted strength could be attributed to the inherent variability of masonry con-

struction. The temptation may be to artificially deflate the shear strength factor for masonry shear

walls because of the variability in material strength and the severity of failure mode. However, the

shear strength equations were developed assuming static and cyclic loading conditions (Tomaževič
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et al., 1996), which is the worst-case scenario in terms of strength. Due to the nature and methodol-

ogy of masonry shear wall testing, the calculated strength is lower due to the strength degradation

that occurs with repeated loadings near the ultimate strength. In practice, the greatest load experi-

enced by a masonry shear wall will typically be applied either dynamically or monotonically, but

not both, meaning that the nominal masonry predicted strength is slightly conservative because the

worst-case scenario is not a typically load seen by structures.

In the case of seismic loading, seismic events produce shear loads that are cyclic and dy-

namic. Abrams (1988), Paulson and Abrams (1990), Tomaževič and Velechovsky (1992), Tomaže-

vič (2000), Tomaževič et al. (1996) , and Williams and Scrivener (1974) determined that the ap-

parent shear strength of masonry walls increases under dynamic loading due to strain rate effects.

During a seismic event, the wall undergoes both strength and stiffness degradation as load ap-

proaches the ultimate strength. Stiffness degradation in the wall causes the fundamental period of

the structure to increase and the center of rigidity to move away from the wall toward the other,

more rigid, walls. As the period of the structure lengthens the overall induced lateral forces on the

structure tend to decrease. As the center of rigidity moves away from the wall, the lateral forces

are transferred to other parallel walls, further decreasing the lateral load demand on the damaged

wall. Even in the cases where the ultimate strength is exceeded, the masonry wall will continue to

dissipate energy if the reinforcement is detailed properly. All of these properties create an inherent

conservativeness in the equation for seismic events.

In the case of gravity loads, the loads are typically applied monotonically and quasi-

statically to masonry assemblages. Dillon and Fonseca (2014a; see Appendix B) determined that

masonry shear walls loaded monotonically demonstrate an ultimate strength 19 percent greater

than when tested cyclically. The load reversals of below-peak cyclic loading, which cause grad-

uate strength degradation in cyclic masonry shear wall specimens, are absent in monotonic-type

loadings. Monotonic loading is a greater concern to designers because the failure is frequently

sudden and provides little warning. The surplus shear strength for monotonic loading creates an

additional margin of safety over the nominal structural strength. As a result, the shear strength re-

duction factor need not be unnecessarily high to account for the severity of the brittle shear failure

mode because the nominal strength equation already accounts for it.
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CHAPTER 3. PRIMER: STATISTICAL METHODS

3.1 Introduction

Least squares regression has been used by scientists and statisticians for over two centuries

as a technique to an overdetermined system of equations of the form

X βX βX β = yyy (3.1)

where

XXX ∈ R(m×n) = the matrix of predictor variables, (3.2)

βββ ∈ R(n×1) = the unknown vector of regression coefficients, (3.3)

yyy ∈ R(m×1) = the vector of response variables, and (3.4)

m > n. (3.5)

Since few overdetermined systems are consistent, the above approximation typically has no so-

lution. The equation can be transformed by introducing the error term εεε which represents the

variation in the response variable yyy. This transformation produces the consistent equation

X βX βX β + εεε = yyy (3.6)

for which a unique solution can be determined using the method of least squares as long as the

matrix XXX is full rank.

3.2 History

The discovery and proof of the method of least squares forms an integral part of the de-

velopment of statistical theory. Prior to the twentieth century, the field of statistics had yet to be
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treated as a distinct field of study and was considered to be an extension and tool of the fields of

mathematics and science. The method of least squares first appeared in print in 1805 during a

time when the principal focus of mathematicians and scientists was concentrated on problems of

astronomical motions, geodesy, social sciences, meteorology, and medicine. The discovery and

proof of the method of least squares occurred at the confluence of two previously disjointed paths

of discovery, combination of observations and probabilistic inference. With the discovery and

quick acceptance of the method by a wide-spread audience in the early nineteenth century, the full

justification and understanding of the method would take another century to complete.

3.2.1 Beginning Roots in Mathematical Probability

Prior to the eighteenth century, topics of probability were limited in scope to games of

chance. By the beginning of the eighteenth century mathematicians had developed means to de-

termine a priori the probabilities for different combinations and permutations. Up to this point no

one had taken the understanding of probability and applied it to quantify the uncertainties in other

areas of study. The first work at determining probabilities a posteriori was performed by Jakob and

Nicolaus Bernoulli (Stigler, 1986).

Jakob Bernoulli (1713) wrote what would later be deemed to be the first exposition on the

mathematical theory of probability. His principal contribution to the field, Ars Conjectandi, was

posthumously published by his nephew Nicolaus Bernoulli. In the fourth section, Jakob Bernoulli

introduced his Law of Large Numbers, which postulated that as the number of observations in-

creases the uncertainty decreases, and set forth to prove it. The basis of his work was a binomial

situation in which the numbers of fertile cases r and sterile cases s were both integers. He wished

to prove (shown here in modern notation) that

P
(�����

X
N − p

�����
≤ ε

)
> cP

(�����
X

N − p
− p

�����
> ε

)
(3.7)

where

X = the number of observed fertile cases out of a total of N observations,

p = the unknown proportion of fertile cases (r) to total cases (r + s),
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ε = an arbitrarily small number, and

c = an arbitrarily large number (Stigler, 1986).

In his proof, Bernoulli showed that by increasing the number of observations N to a sufficiently

large number the true proportion p = r/(r + s) can be approximated within a limit of ±1/(r + s)

with a guaranteed chance exceeding c/(c + 1) (Bernoulli, 1713; Stigler, 1986; Hald, 1998).

In qualitative terms, Jakob Bernoulli’s work was considered a success. For the first time

in history Bernoulli proved that uncertainty in measurements can be quantified and that this un-

certainty can be made smaller by increasing the number of observations. In quantitative terms, his

work was deemed impractical for the time. The solution to his example problem of estimating the

correct proportion of fertile to sterile cases would require 25,550 observations. This prohibitively

high requirement was created by the unnecessarily high level of certainty he required for his prob-

lem (1,000 to 1). This failure was soon overcome, in part, by the later contributions of his nephew,

Nicolaus Bernoulli (Stigler, 1986).

In addition to publishing his uncle’s work, Nicolaus Bernoulli—whose work of note is pub-

lished in Montmort (1713)—built upon it by treating the same problem from the complementary

perspective. Where Jakob approached the problem by finding the number of observations needed

to meet an assumed population proportion, Nicolaus assumed that the number of observations was

fixed and set forth to determine a bound for the population proportion. Nicolaus’ reformulation to

determine a posteriori the proportion of fertile cases in the population was more typical of the prob-

lems faced by scientists and mathematicians in his day. He demonstrated his formulation through

an example in which he successfully determined an interval for the proportion of male to female

births in London (Stigler, 1986).

Abraham de Moivre would later pick up where the Bernoullis left off in attempting to

approximate the sum of symmetric binomial terms. His work culminated in 1733, after notably

substantial effort, with determining an accurate curve to approximate the binomial terms. This was

made possible only after discovering an approximation for large factorials,

(
2n
n

) (
1
2

)2n

�
1
√
πn
, (3.8)
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which enabled him to transform his expression into exponential form. His curve became the first

appearance of the normal distribution curve, though de Moivre showed no intimation of under-

standing of the probability distribution function or its relation to his curve. He compared his curve

to the binomial distribution for n = 100 and concluded confidently that his approximation was

“tolerably accurate” for such a relatively small value when compared with Jakob Bernoulli’s inter-

minable value (Moivre, 1733; Stigler, 1986; Hald, 1998).

3.2.2 Three Questions and the Formation of Observational Combinations

Prior to 1750, the sentiment among the erudite class on combining and averaging data

was not very favorable. The first publication touching on the possible favorability of combining

observations appeared in 1722, when part of Roger Cotes’ work was posthumously published in

Opera Miscellanea (Cotes, 1722). In his work, Cotes observed that for observations made under

different conditions the most probably correct estimate is determined by taking the weighted mean

(i.e., the center of gravity) of the data points (Hald, 1998). Cotes’ rule, as it has been called, was

the first appearance of the theory of errors (Stigler, 1986).

In lieu of Cotes’ work, the feeling at the middle of the eighteenth century, particularly

amongst mathematicians, was that errors in observations accumulated when the observations were

combined together. Astronomers and navigators were a little more willing to average observational

data, but the practice was generally limited to instances where the observations were made under

similar conditions and where measurements were considered to have equivalent accuracy (Placket,

1958). When Thomas Simpson (1756) later published a letter applying Cotes’ Rule to a discus-

sion on errors of observations, he provided the following historical delineation of the intellectual

environment of his time:

“It is well known. . . that the method practiced by astronomers, in order to diminish the error

arising from the imperfections of instruments, and of the organs of sense, by taking the Mean of

several observations, has not been so generally received, but that some persons, of considerable

note, have been of opinion, and even publickly [sic] maintained, that one single observation,

taken with care, was as much to be relied on as the Mean of a great number.” (Simpson, 1756)
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During the eighteenth century, the three primary problems that presented particular diffi-

culty to intellectuals were 1) to account for the apparent non-periodic inequality observed in the

motions of Jupiter and Saturn (see Euler 1749), 2) to determine and mathematically model the

motions of the moon (see Mayer 1750), and 3) to determine the shape and figure of the Earth (see

Boscovich and Maire 1755). In each case, the problem was modeled mathematically subject to the

scientific constraints understood at the time. The model was then compared to the observational

data to determine the unknown variables in the equation. In all cases, the number of observations

formed more equations than there were unknowns, leading to an overdetermined system of equa-

tions. At the time there was no known means of solving an overdetermined system of equations,

nor was the intellectual climate of the mid-eighteenth century suitable for the discovery of one.

Leonhard Euler (1749) took up the challenge of accounting for the apparent nonperiodic

motions of Jupiter and Saturn. His data set included 75 observations from multiple sources span-

ning 163 years from 1582 to 1745. His model contained eight unknown parameters, two of which

he was able to derive with relative confidence. Euler tried to find and group sets of data with similar

observational conditions in an attempt to annihilate terms in his equations. Using this method he

was able to reduce his model to 21 equations. Unfortunately for Euler he was unable to find enough

situations where different sets of equations produced the same results. Due to his background and

training in mathematics, he could not bring himself to average observations together to further

reduce the number of equations. Euler arrived at his conclusions by changing the unknown vari-

able values such as to make the errors as small as possible, a rather tedious and laborious process

(Stigler, 1986).

Tobias Mayer (1750) undertook the problem of determining the librations of the moon.

Mayer’s model reduced to three unknown variables which he attempted to find using 27 observa-

tions made between 1748 and 1749. He accomplished this by grouping his observations together

into three groups and by using the mean of each group in the system of equations to solve for the

three unknowns. For the first group, he selected the nine observations that produced the largest

value for first parameter α. He did similarly for the second group with regards to the second pa-

rameter β. The remaining observations were formed into the final group. Mayer’s method—as

it would come to be called—was the first successful use of the mean to solve an overdetermined

system of equations. Part of Mayer’s innovation can be attributed to his willingness to combine
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similar data resulting from his backgrounds as an astronomer and mapmaker and from his use of

his own observational data (Stigler, 1986; Hald, 1998).

Roger Boscovich and Maire (1755) addressed the problem of determining the ellipticity of

the Earth. Boscovich used five measures that he felt were most likely to be accurate. Since the

equation to compute ellipticity contains only two unknowns, Boscovich solved his problem for

each combination of observations, producing ten distinct solutions. When he first tried to average

the ten pairs he judged the resulting mean to be too high. He then tried the same method again

after dropping two of the pairs because of the closeness in latitude of two of the observations. This

slightly decreased the mean computed-ellipticity and, seeing the disparity in solutions between

pairs, Boscovich concluded against the Earth being ellipsoidal (Stigler, 1986; Eisenhart, 1961).

Simpson (1756) followed de Moivre’s work on the binomial density function by looking

at the errors in observations. In his treatment of celestial bodies Simpson chose to ignore the

distribution of the observations and, assuming the mean to represent the actual position of the

body, instead focused on the distribution of the errors of the observations. In his analysis, he

hypothesized—albeit erroneously—that the error distribution was known and proportional to the

symmetric triangle distribution. Using this formulation, he continued on to rebuff the opinion that

a single good observation, “taken with care,” is as reliable as the mean of multiple observations.

The most innovative and important contribution of his 1756 analysis was in determining that the

probability of the mean error of multiple observations does not exceed that of a single observation.

In so doing, he not only proved his point but also produced the rough equivalent to that which we

today refer to as a confidence interval (Stigler, 1986; Hald, 1998).

Unsatisfied by his previous conclusions about the ellipticity of the Earth, Boscovich (1760)

published a subsequent reworking of his initial analysis using a new method of combining mea-

surements. Boscovich proposed that correction factors be added to all of the observations subject

to the conditions that the sum of all the corrections is zero and that the sum of the absolute values

of the corrections is minimum. Using his new method he was able to find an oblateness ratio for

the Earth similar to that initially proposed by Sir Isaac Newton. Given his new findings and his

confidence in his new method, Boscovich abrogated his initial conclusions from five years before.

Although he did very little in furthering the development of his method, he was the first to propose
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a procedure of fitting a line through data by minimizing a function of the residuals (Stigler, 1986;

Hald, 1998).

Johann Heinrich Lambert (1765) proposed a method similar to that of Boscovich for fit-

ting a straight line through a set a data. Lambert divided his data set into two groups with the

lowest values of the predictor variables in the first group and the highest predictor variables in the

second group. He then determined the centers of gravity for both groups and fit a regression line

through both points. He used his method in solving several problems, one of which was a study on

barometric differences between 12 points in the French mountains and sea level. Another problem

he undertook was the same that Boscovich solved, finding the ellipticity of the Earth. Using his

method, Lambert determined an oblateness ratio only slightly higher than that of Boscovich (Hald,

1998).

3.2.3 Laplace on the Two Modes of Thought

Pierre Simon Laplace was the first to encounter and work on both probability theory and

combining observations. His first workings were on probabilistic mathematics first published in

1774 and later he expanded to methods of combining observations. Laplace’s first memoir on

probability 1774 was a treatment on both the principle of inverse probability and on the choice of

mean. In his consideration of causes and events, he was able to independently find the two axioms

(provided here in modern notation)

P (Ai |E )

P
(
A j |E

) =
P (E |Ai )

P
(
E ���A j

) (3.9)

and

P (Ai |E ) =
P (E |Ai )∑
j P

(
E ���A j

) (3.10)

where E represents an event and Ai represents one of n different causes. Laplace’s second axiom

is equivalent to Bayes’ theorem given the assumption that P (Ai) = 1/n, an assumption that was

commonly made in Laplace’s period (Stigler, 1986). Though Laplace did not provide a proof for
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his axioms, Laplace effectively showed that probability theory can be equally used for a posteriori

inference as well as for a priori deduction (Hald, 1998).

In his work to determine the mean that should be used for multiple data, Laplace’s work

was divided into two parts. The first objective was to determine the error curve φ (x). After the

error curve was known, the second objective was to establish how the mean ought to be determined.

His attempt at his first objective began by stated three assumptions which he felt the correct curve

must have:

“1 . . . it is equally probable that any observation varies from the true value to right as to the left

[i.e., the curve is symmetric].

“2 . . . the probability that the observation diverges from the true value by an infinite amount is

evidently zero.

“3 The total area under the curve should be equal to unity, since it is certain that any observation

will fall [under the curve].” (Laplace 1774, translation by the author)

The fact that there are an infinite number of functions that meet these requirements was

likely a daunting task for Laplace. He started by considering φ (x) ∝ e−m |x | and from there settled

on

φ (x) =
m
2

e−m |x | (3.11)

where m/2 is required such that
∫
φ (x) dx = 1 (Stigler, 1986; Hald, 1998). This would later be

known as the Laplace distribution function (or double exponential distribution). When he later

started on his second objective of finding a mean, he chose the criterion to minimize the sum of the

absolute value of the difference between the chosen mean and true value. Laplace soon discovered

that his equation and criterion together generated a case where the arithmetic mean is not the

optimum value for the chosen mean, except in the case where the scale parameter m → ∞ (i.e.,

the uniform distribution). The difficulty of the problem coupled with his unfamiliarity with the

concept of conditional probability led Laplace to make an error in his proof (Stigler, 1986; Hald,

1998).
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Laplace held back his next publication on a new error curve until 1781. For his second

attempt he ignored the assumption of an infinite range and derived the curve

φ (x) =
1

2a
log

(
a
|x |

�����
| x | ≤ a

)
. (3.12)

Compared to the difficulty of his previous curve (Laplace, 1774), the new curve was even more dif-

ficult for him to unravel. Laplace determined that for the second curve, like his first, the arithmetic

mean is not the optimum choice for the chosen mean except for the case where a → ∞ (again the

uniform distribution). For both curves he concluded that the posterior median is the best choice

for the chosen mean. Despite the imperfections in his 1774 and 1781 memoirs, they are notable

for containing the first examples of a two-parameter inverse probability model and being for an

impetus for his future innovations (Stigler, 1986; Hald, 1998).

Laplace would postpone further work on probability to undertake the challenge of deter-

mining the ellipticity of the Earth, initially ignoring Boscovich’s work (Laplace, 1786), but subse-

quently building off of Boscovich’s method (Laplace, 1793, 1799). Like Boscovich, Laplace also

felt that the most likely figure could be determined by applying two conditions, “1 that the sum

of the errors be zero; 2 that the sum of the errors taken with the sign + be a minimum” (Laplace,

1793). Whereas Boscovich presented his method in a verbal and geometric representation, Laplace

(1793) presented the method in analytical and algebraic forms. Laplace followed by showing that

the method solved the given problem and further demonstrated its usefulness by solving the ellip-

ticity problem two ways; one way using nine arc lengths (as Boscovich had done previous) and the

other by using thirteen pendulum lengths from different latitudes.

Laplace revisited the ellipticity problem a third and final time in 1799 after observing that

the structuring of the problem gave undue weight to the observations made at higher latitudes.

Since determination of the length per degree of latitude was made using different arc lengths from

one observation to another, Laplace felt that this would invariably affect the relative accuracy of

each observation. To correct this, Laplace weighted each observation by the length of the measured

arc (in degrees of latitude) and set forth to solve the problem, subject to the two conditions men-

tioned above, using seven arc measurements. He completed his analysis by providing an analytical

proof that this was the correct solution to the stated problem.
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The validation and publicity Laplace provided to Boscovich’s method increased its propi-

tiousness and employment within other fields, such as water flow (Prony, 1804), surveying (Puis-

sant, 1807), and cometary data (Bowditch, 1809, 1815). The development and successful use of

methods for combining data and solving overdetermined systems of equations had prepared the in-

tellectual community for the development and acceptance of the method of least squares (Stigler,

1986).

3.2.4 Confluence of the Two Paths

Adrien Marie Legendre first came into contact with observational data in 1792 after joining

the commission charged with determining the meridian quadrant length through Paris. One of his

first memoirs 1798 gives the intimation that he was familiar with the methods of Mayer, Boscovich,

and Laplace, but he had yet to discover the method of least squares. He discovered the method

while writing his 1805 memoir Nouvelles méthods pour la détermination des orbites des comètes

(“New methods for the determination of comet orbits”) and promptly understood its potential.

Legendre began his 1805 memoir with an appendix entitled Sur la méthod des moindres

quarrés (“On the method of least squares”). In describing his new method, Legendre stated that

“there is nothing more general, more exact, or of easier application than . . . to minimize the sum of

the squares of the errors.” He further explains four points unique to his method:

“If it were possible to satisfy all equations with all errors being zero [i.e., a consistent equation],

one could equally obtain this result by [this method] . . . .

“If after having determined all the unknowns. . . one judges the errors to be too large, then one

needs only to drop the equations [i.e., observations] that produce the errors. . . and to determine

the unknowns with the remaining equations . . . .

“The method by which one finds the mean of different observations is a simple case of this

method . . . .

“These formulae are the same by which one finds the center of gravity of several equal masses.”

(Legendre 1805, translation by the author)

He finished his memoir with an example in which he re-solved the meridian quadrant prob-

lem using the method of least squares, finding a solution very similar to that of Laplace from the

40



commission’s official report (Laplace, 1799). Despite Legendre’s remarkable claims for the poten-

tial and power of his method—albeit that they were true—it was several years before true strength

of the method of least squares was formally proved by others (Stigler, 1986; Hald, 1998).

Like his predecessors, Carl Friedrich Gauss (1809) also wrote on the celestial motions

of planets. In his Theora Motu Corporum Coelestium in Sectionibus Conicis Solum Ambientium

(“The Theory of the Motion of Heavenly Bodies Moving About the Sun in Conic Sections”) Gauss

(1809) presented a section on the combination of observations. Here, he presented a solution to an

overdetermined system from a completely new perspective. He assumed that the errors between

true and measured values to be distributed such that their probabilities could be determined using

a curve φi (εiv). He next chose parameters to maximize Ω = φ1 (ε1) φ2 (ε2) . . . φn (εn) to find the

most probable combination of values for the parameters. He then noted that this could be readily

accomplished by finding the partial derivatives of Ω with respect to each of the parameters, setting

the resulting equations to zero, and solving the new system of equations.

With a means in place of solving an overdetermined system of equations, Gauss used a bold

assumption to fill in the last hole he needed, a distribution curve. Like Laplace 35 years earlier, he

stated three necessary requirements for an error curve—that it be single-peaked, centered at zero,

and that the tails go to zero—then asserted that the only curve that maximizes Ω is given by

φ (x) =
h
√
π

e−h2 x2
(3.13)

where h is a positive constant. Statisticians would recognize this as the probability density function

for the standard normal distribution for the case where h = 1/
√

2. He followed this assertion

by showing how this error distribution could reduce to the method of least squares. Though his

conclusion presented a logical departure from accepted reasoning, Gauss provided the stochastic

argument for the method of least squares that was previously missing (Stigler, 1986).

By 1810, Laplace had again returned to the subject of probability and had published a

new work (Laplace, 1810) on a new generalization of de Moivre’s limit theorem. In it, Laplace

stated that if the number of observation is large enough, then any mean or sum is approximately

normally distributed. Today this is called the Central Limit Theorem. In the paper Laplace used

his theorem to show how to deduce probabilities for cometary data being contained within a few
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specified symmetric limits. Using this technique, Laplace then performed hypothesis testing to

judge whether all comets had the same inclination.

After initially completing his 1810 memoir Laplace read Gauss’ book and, despite the

logical incongruence within it, could quickly see how his limit theorem coincided with linear

estimation. In the same publication he wrote a supplement showing how Gauss’ choice for the

error curve φ (x) was a better approximation and used his limit theorem to prove it. Whereas

Legendre presented the method of least squares and Gauss contributed a stochastic argument in

favor of it, Laplace provided the crowning justification to their work.

Having used the central limit theorem to lend credence to the method of least squares,

Laplace (1812) approached the problem from another angle in his Théorie analytique des proba-

bilités (“Analytical theory of probabilities”). In it he did not make any assumptions about the error

distribution and used the central limit theorem again to show that for an overdetermined system

of equations solved using least squares, the error terms are approximately normally distributed

and the total error is minimum. Laplace used an asymptotic method in his analysis such that his

conclusions are valid for any specific probability density function for an error curve (Stigler, 1986).

Over a decade later, Gauss (1823) would continue where Laplace left off with the proof

of the method of least squares. In his revised and logically correct exposition of the method, he

provided a clear and simple proof of a theorem that states that the method of least squares provides

estimates of the parameters that have minimum variance and that are unbiased. His theorem is

known today as the Gauss-Markov theorem. Additionally, Gauss provided theorems and proofs

for the unbiased estimate and variance of σ2. Gauss showed, similar to Laplace, that these proper-

ties of the method of least squares are independent of the error distribution. With his final theorems

in place, the method of least squares had received full justification as the superior means of com-

bining observations and making probabilistically-based inference. Over the next century more was

learned about the method as its use spread to other disciplines (Hald, 1998).

3.2.5 Evolution

After the introduction of the method of least squares by Legendre and the groundbreaking

work performed by Gauss and Laplace, the world saw a sharp increase in the numbers of papers

being written on statistical topics. The justification of the method was met with a fervid acceptance
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in the intellectual nations of the time. As time progressed, others would critique, validate, and

continue where Gauss and Laplace left off.

The first to follow was Siméon-Denis Poisson first in 1824 and again in 1829. In both

papers Poisson (1824, 1829) continued the work of Laplace by improving on the proof of the

central limit theorem and by rewriting it such that it would have more general applicability to

a multitude of cases. He first showed that the theorem is applicable to identically distributed

variables and then he generalized the results to variables with different distributions. Through his

proofs he implicitly showed that the variance of the mean is related to the number of observations

n (Hald, 1998).

Augustin-Louis Cauchy was the first to determine a method of using residuals for estimat-

ing the number of parameters to be estimated and how to estimate them. His method (1835) can be

described as a generalization of the method of least squares, though the two are not the same. He

began his method by first reparameterizing the model y = β1x1 + β2x2 + · · · + ε to find an estima-

tor ŷ1 as a function of β1 and x1 assuming that all other β values are zero. He then computed the

residuals and if they are sufficiently small he stopped; otherwise, he continues by calculating an

estimator ŷ2 as a function of β2 and x2 following the same process. He repeated these steps until

the residuals met a certain tolerance level or he reached ŷm, where m is the number of observa-

tions. After this point he back calculated the values of the estimates of the parameters βi. Cauchy

(1853a) later described how the least squares estimators could be obtained from this his ŷ values

(Hald, 1998).

Irénée-Jules Bienaymé looked at the confidence intervals of single parameters used by

Gauss and Laplace and felt he could do better. In is paper on error probabilities, Bienaymé (1852)

determined simultaneous confidence regions for the parameters by transforming certain combina-

tions of the errors. His transformation corresponds to the χ2 distribution. Using his transformation

Beinaymé was able to produce confidence ellipses for multivariate situations. After having read

the paper by Cauchy (1853a) the next year, Bienaymé (1853) noted—among other things—that

Cauchy’s method produced larger errors than the method of least squares and that to produce simi-

lar results using the method would require more steps. The ensuing dispute between Bienaymé and

Cauchy about the validity of the method of least squares led Cauchy (1853b,c) to repeat Poisson’s

proof 1824; 1829 of the central limit theorem (Hald, 1998).

43



Robert Leslie Ellis (1844) proved the central limit theorem another way in his paper on

the method of least squares. In his paper, Ellis criticized Laplace and Poisson for beginning their

proofs with discrete variables and for having to take limits to reduce their proofs into equations

applicable to continuous data. Ellis eliminated the need for this by starting his proof using the

Fourier integral theorem and by so doing made the proof substantially simpler. Ellis’ work was

subsequently simplified by James W. L. Glaisher (1872) who replaced Fourier’s double integral

with Dirichlet’s discontinuity factor (Hald, 1998). Deficiencies in the classical proofs of the central

limits were slowly tackled one-by-one over the following decades by Chebyshev (1887), Markov

(1900), Liapounov (1901), Mises (1919), Pólya (1920), and Lévy (1925).

Pafnuty Lvovich Chebyshev (1859, 1864, 1875) improved on Cauchy’s methodology by

presenting the first method whereby the parameters could be estimated with the method of least

squares. Chebyshev accomplished this by first orthogonalizing the data matrix. By beginning this

way he was able to compute the parameter estimates independently of each other, thereby reducing

the number of arithmetic operations that needed to be performed. Using his method one is able

to fit models of successively higher degrees to the data. The drawback of Chebyshev’s method is

that it uses continued fractions and recursion formulae, meaning that the addition of new terms

required the recalculation of the previous parameters (Hald, 1998).

Jørgen Pedersen Gram was inspired by the work of Bienaymé and Chebyshev. Building

off of their works, Gram (1879) presented a method similar to that of Chebyshev (1875) but that

improved upon it by not requiring the recalculation of the previous parameters. Moreover, his proof

of the method was similar but simpler than originally presented by Chebyshev. Gram’s method of

orthogonalization was later represented in simpler form by Ernhard Schmidt (1907). Today the

method is known as Gram-Schmidt orthogonalization in their honor (Hald, 1998).

Francis Galton investigated the distributions of a great deal of social and anthropometric

data and determined that they “normally” follow the “law of frequency error,” and renamed the

term the “Normal distribution.” Due to his weakness in advanced mathematics, he invented ways of

graphically fitting distribution curves to data, methods that are still used today. He did this initially

(1875) by using distribution and frequency curves and later (1899) by replacing them with lines

on normal probability paper, today know as a quantile-quantile plot. Some of his investigations
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into non-normal data 1879 led him to discover the lognormal distribution and the geometric mean

(Stigler, 1986; Hald, 1998).

In his attempt to understand hereditary behavior, Galton invented his quincunx, or bean

counter, as a means of empirically observing the results that many independent disturbances had

on data distribution. Using three versions of his apparatus Galton (1877, 1889b) was able to exper-

imentally show that a mixture of normal distributions is itself normally distributed. Together with

his sweet pea study Galton (1877) used his results to describe the reversion property, which says

that the deviation of the progeny from the population mean is negatively proportional to that of the

parents (Pearson, 1921; Stigler, 1986; Hald, 1998).

Galton (1889b) later developed this idea further with anthropometric data about the heights

of men and women. He graphed his data onto a surface plot with height on the abscissa, midparent

height on the ordinate, and frequency of observation on the applicate. By drawing contours on his

plot he noticed that the contours were nearly elliptical and concentric. When smoothed, he ob-

served that all of the ellipses were centered at the means of the two parameters and that the major

and minor axes of each ellipse had the same slope, respectively. Following this and similar exper-

iments, he began to relate the parameters of the progeny to those of the parents using a new term

“regression.” Galton (1889a) soon after completed a broader investigation into the regression of

correlations for bivariate data. This study led him to discover the concept of correlation coefficients

and he expounds their uses as a means of measuring how well one variable may be correlated with

another (Pearson, 1921; Stigler, 1986; Hald, 1998).

3.2.6 Contemporary Developments

Karl Pearson followed Galton’s investigation into fitting distribution functions to data. Af-

ter two attempts at fitting data to binomial (Pearson, 1893) and normal (Pearson, 1894) distribu-

tions, Pearson (1895) introduced a four-parameter differential equation for representing probability

densities. Pearson (1900) then turned to multivariate distributions and calculated a criterion for es-

timating the probability that a theoretical distribution fits an observed distribution. This criterion is

known today as the χ2 test. Pearson lists three tests that could be performed using the χ2 distribu-

tion: goodness of fit, homogeneity of two samples, and independence within a contingency table.
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Later, Pearson (1917) expanded the use of the χ2 test to multivariate contingency tables (Hald,

1998, 2007).

William Sealy Gosset, more frequency known by his penname “Student,” studied statistics

under Pearson during a brief leave from his work at Guinness Brewery. Whereas most researchers

previously studied the distributions of populations and large samples, Gosset focused his efforts on

small-sample statistics. Aware that the classical probability interval became increasingly subject

to error, Gosset 1908b; 1908a proposed a new confidence interval and correlation coefficient based

upon new distributions for the sample mean and sample deviation. He proposed a new statistic z

and determined the corresponding probability integral (Hald, 1998, 2007).

R. A. Fisher continued Galton’s work on the correlation coefficient by solving the question

of finding the distribution of the correlation coefficient. Fisher (1912) solved the problem using

a yet-to-be-considered geometric approach, showing that the distribution is strongly dependent

on the number of observations and the population correlation. The results of Fisher’s work were

subsequently misinterpreted and criticized by a group of Pearson’s colleagues (Soper et al., 1917)

who argued against—what they thought that Fisher had concluded—a uniform prior probability

distribution for the correlation coefficient (Hald, 2007).

Understanding where Pearson’s team was confused with his work, Fisher (1921) set out to

clarify his earlier results and to shed further light on the problem. Using equivocatory language, he

explained the differences between the maximum likelihood estimate and posterior mode. Using a

transformation of the correlation coefficient he was able to show that it is approximately normally

distributed. After having determined the distribution of the correlation coefficient, Fisher (1915)

expanded his work to include partial and multiple correlation coefficients. Through his work he

derived a new distribution for the multivariate coefficient of determination R2, which is known

today as the non-central χ2 distribution (Hald, 2007).

As an ardent follower of Gosset, Fisher understood the importance of his work and in 1915

first filled in gaps in Gosset’s proofs. He later (1925) generalized Gosset’s ideas to testing regres-

sion coefficients and transformed Gosset’s z statistic into a new t statistic. He similarly transformed

Gosset’s z-distribution to create the t-distribution, which is the form that is used today. Fisher rec-

ognized that the t-test involved two independent distributions, the standard normal distribution and

the χ2 distribution. Fisher (1925) showed that the t-test may be used to test the significance of the
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difference between two means. His next goal was to find a way to perform the test for groups with

disparate variances. Fisher (1928) solved this problem by using the ratio of the two variances and

in doing so discovered the F distribution, as it is now named. Fisher showed the usefulness of the

F distribution in performing analysis of variance (ANOVA) tests, testing multivariate correlation

coefficients, testing correlation ratios, and testing goodness of fit for a regression formula (Hald,

2007).

In addition to his mathematical additions to the statistical sciences, Fisher also contributed

many lexicographical additions to the field. In his On the Mathematical Determinations of The-

oretical Statistics, Fisher (1922) defined and explained the concepts and terms associated with

the frequency-based theory of statistics. He described three types of problems—those of specifi-

cation, estimation, and distribution— and set forth the three criteria of estimation—consistency,

efficiency, and sufficiency. Another notable change set forth by Fisher was the distinction in nota-

tion between sample and population values. Since Fisher published this paper in 1922, statisticians

have described estimates and values using his notation (Hald, 2007).

3.2.7 Normal Ratio Distribution

The first attempt at describing the distribution of the ratio of two normally distributed vari-

ables was performed by Roy C. Geary (1930). Geary determined that if x and y are two normal

variates with correlation r and means µx = µy = 0 and if

z =
a + x
b + y

, (3.14)

then the transformation

t =
bz − a√

σ2
yz2 − 2rσxσyz + σ2

x

(3.15)

has a standard normal distribution provided that P
(
b + y < 0

)
≈ 0. Geary considered the condition

b ≥ 3σy to be sufficient to satisfy the latter constraint. Edgar C. Fieller began researching the

comparison of normally distributed variables while working in Karl Pearson’s group. In 1932,

Fieller wrote a paper discussing the index (or ratio X/Y ) of a bivariate normal distribution (x, y)
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(Irwin and Rest, 1961), improving on the work performed previously by Geary by eliminating the

assumption of zero means. Fieller determined the form of the probability distribution function for

the ratio W = X/Y , given by

ψ(w) =
b(w)d(w)

√
2πσxσya3(w)


Φ *

,

b(w)√
1 − ρ2a(w)

+
-
− Φ *

,
−

b(w)√
1 − ρ2a(w)

+
-



+

√
1 − ρ2

πσxσya2(w)
exp

(
−

c
2
(
1 − ρ2) )

(3.16)

where

a(w) = *
,

w2

σ2
x
−

2ρw
σxσy

+
1
σ2
y

+
-

1
2
,

b(w) =
µxw

σ2
x
−
ρ
(
µx + µyw

)
σxσy

+
µy

σ2
y

,

c =
µ2

x

σ2
x
−

2ρµxµy

σxσy
+
µ2
y

σ2
y

,

d(w) = exp
(

b2(w) − c a2(w)
2
(
1 − ρ2) a2(w)

)
,

φ(u) =
1
√

2π
e−

1
2u2

, and

Φ(v) =

∫ v

−∞

φ(u) du

(notation adapted from Hinkley 1969).

David V. Hinkley (1969) examined the distribution of the ratio of two normal random vari-

ates x/y and compared the theoretical results with the assumption that P
(
b + y < 0

)
≈ 0. This

assumption is valid for cases where 0 < σy � µy because as µy/σy → ∞ (or as P
(
y > 0

)
→ 1)

the cumulative distribution function F (w) of W follows the limit

F (w) → Φ
(
µyw − µx

σxσya(w)

)
(3.17)
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which Hinkley used to approximate F (w). Hinkley compared the approximation F∗(w) to the

exact form F (w) and determined that f (w) > f ∗(w) for all w. He observed that F∗(w) is a good

approximation of F (w) over most of the range, though the bound become slacker in the tails. He

suggested an improved approximation to F (w) given by

F∗∗(w) = F∗(w) − Φ
(
−
µy

σy

)
. (3.18)

He concluded that due to the simplicity of the approximations of F (w), the Ratio distribution can

be easily facilitated in future analyses.

3.2.8 Tolerance intervals

Samuel S. (Wilks, 1941) first addressed the problem of how to calculate a range of toler-

ances for samples from a mass-produced product or part. More specifically, he investigated the

necessary sample size such that a specified portion of the population lie within two limits with

at least some minimum probability. He initially determined an approximate solution for the non-

parametric case where the distribution function is continuous but otherwise unknown to the analyst.

For the non-parametric case, Wilks determined a solution by using truncated sample ranges and he

set forth a means to calculate the minimum number of samples to take in determining the tolerance

limits for a specified probability and proportion of the population. Abraham Wald (1943) later

extended Wilk’s first method to the bivariate and multivariate data for the non-parametric case.

Wilks (1941, 1942) also determined a solution for the parametric case assuming that the

population follows the normal distribution. He determined that the portion of the population within

the interval x ± ks is given by

p =
1
√

2π

∫ x̄+ks

x̄−ks
e−

1
2 (x−µ)2

/σ2
dx (3.19)

where

x̂ = the sample mean,

µ = the unknown population mean, and

σ2 = the unknown population variance.
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For the two-sided tolerance interval, he provides a solution for k such that

k = tp,n−1s
√

(n + 1) /n (3.20)

where tp,n−1 is the critical value for the t-distribution for which the probability is equal to p and n

is the number of samples.

Wald (1943) and Wald and Wolfowitz (1946) examined the parametric case for problems

where the population is normally distributed and where the population mean and variance are

unknown. They presented an approximate solution for the problem such that it could be determined

from tables for the normal and χ2 distributions. They determined the the two-tailed tolerance

interval for the normal distribution can be approximated by

x̄ ± s zp

√
n − 1

χ2
{n−1,1−α}

(3.21)

where

zp = P
(
z ≥ p

)
,

z = the standard normal distribution,

χ2
{n−1,1−α} = P

(
χ2

n−1 ≤ 1 − α
)

, and

χ2
n−1 = the χ2 distribution with n − 1 degrees of freedom.

Krishnamoorthy and Mathew (2009) give the following solution for the one-sided tolerance

interval, which they refer to as the “classical approach.” Given a continuous random variable X

with cumulative distribution function given by

Fx (u) = P
(
x ≤ u

)
(3.22)
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and let xxx = (x1, x2, . . . , xn) be a vector of n random samples from FX (x). A one-sided tolerance

interval of the form (−∞,U (xxx)] is required to satisfy the condition

Pxxx
{
Px

(
x ≤ X (xxx) | xxx

)
≥ p

}
= 1 − α (3.23)

where

p = the proportion of the population included in the interval,

1 − α = the confidence level

U (xxx) = the one-sided upper tolerance limit.

The exact-form solution for the condition shown in equation (3.23) is given by

x̄ + s t{n−1,1−α}

( zp

s

)
(3.24)

where

t{n−1,1−α} = P
(
tn−1 ≤ 1 − α

)
,

tn−1 = the t distribution with n − 1 degrees of freedom,

zp = P
(
z ≥ p

)
, and

z = the standard normal distribution.

Hall and Sampson (1973) presented an approximate solution for deriving tolerance inter-

vals for the ratio of two independent normal distributions. They set up the problem by letting X

and Y be two independent, normally distributed variables for which the variances are unknown.

Their assumption assumed that the coefficient of variations were small, on the order of 0.05 or

less, which was necessary such that P (X ≤ 0) ≈ 0 and P (X ≤ 0) ≈ 0. Assuming that U = ln X

and V = lnY , they determined an approximate solution for the upper limit L such that

L = t1/t2 exp (k su+v) (3.25)
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where su+v is related to the standard deviation of U +V . The coefficients t1 and t2 are the geometric

means of samples from the X and Y populations, respectively, such that

t1 =

n∏
i=1

x1/n
i (3.26)

and

(3.27)

t2 =

m∏
i=1

y1/m
i (3.28)

where n is the sample size from the X population and m is the sample size from the Y population.

The variable k is the solution to the condition

P
(
P

(
U/V ≤ t1/t2 exp (k su+v)

)
> p

)
= 1 − α (3.29)

which is equivalent to

P
(
t{

f ,zp
√

n′
} < k

√
n′

)
= 1 − α (3.30)

where

n′ =
mn

(
σ2

u + σ2
v

)
mσ2

u + nσ2
v

, and

f =

(
σ2

u + σ2
v

)2

σ4
u

n − 1
+

σ4
v

m − 1

.

Zhang, Mathew, and Yang (2009) solved the problem of deriving tolerance intervals for

ratios of two independent or dependent normally distributed variables by examining two cases for

the ratio X/Y . In the first case, they base their solution on an approximation of the cumulative dis-

tribution function of (X,Y )—initially used by Hinkley (1969)—by assuming that µy > 0 and that
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the coefficient of variation σy/µy is small. The solution for the approximate case determined us-

ing the generalized pivotal quantity and Monte Carlo simulation. They also examined the solution

for the exact cumulative distribution function of the Normal Distribution as provided by Hinkley

(1969). For the exact case, the solution is also determined using the generalized pivotal quantity,

which appears in integral form and must be evaluated using numerical integration. Further consid-

eration of the problem of deriving tolerance limits for ratio distributions is outside of the scope of

this dissertation.

3.3 Multivariate Least-Squares Regression Theory

The linear regression equation can be represented in the algebraic form

yyy = β0 jjj + β1xxx1 + · · · + βkxxxk + εεε (3.31)

or in the matrix notation

yyy = X βX βX β + εεε, (3.32)

where

XXX =
[
jjj, xxx1, · · · , xxxk

]
,

βββ =



β0

β1
...

βk



,

y = an n-dimensional column vector of response variables known as the response vector,

jjj = an n-dimensional column vector of ones,

ε = an n-dimensional column vector of the errors known as the error vector,

βββ = a (k + 1)-dimensional vector of regression coefficients know as the coefficient vector, and

n = the number of observations.
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The data matrix XXX is an n × k + 1 matrix whose columns xxx1, · · · , xxxk are n-dimensional column

vectors of predictor variables.

The expected value (or mean), variance, and covariance are denoted by E(y), var(y), and

cov(yi, y j ), respectively. Assuming that y has a probability distribution function f (y), the statistics

are given by

µ = E(y) =

∫ ∞

−∞

y f
(
y
)

dy , (3.33)

σ2 = E
(
y − µ

)2
= E

(
y − E

(
y
))2

=

∫ ∞

−∞

(
y − E

(
y
))2 f

(
y
)

dy ,
(3.34)

and

σi j = cov
(
yi, y j

)
= E

[(
yi − µi

) (
y j − µ j

)]

=

∫ ∞

−∞

∫ ∞

−∞

(
yi − µi

) (
y j − µ j

)
f
(
yi, y j

)
dyi dy j ,

(3.35)

respectively.

Since βββ and εεε are unknown, the method of least squares finds the estimators β̂ββ and ε̂εε which

are called the least-squares estimator vector and the residual vector, respectively. They are defined

as

β̂ββ =
(
XXX ′XXX

)−1 XXX ′yyy (3.36)

and

ε̂εε = yyy − XXX β̂ββ . (3.37)

The Gauss-Markov theorem states that β̂ββ is the best, linear, unbiased estimator of β, with best

meaning that β̂ββ has minimum variance among all possible linear unbiased estimators as long as

cov(y) = σ2III. This condition holds true independent of the distribution of yyy (i.e., normality is not
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necessary to obtain the least-squares estimators). The estimated value of E(yyy) predicted by using

the least-squares estimator is given by

ŷyy = XXX β̂ββ = XXX
(
XXX ′XXX

)−1 XXX ′yyy . (3.38)

Substituting this value into the definition of the residual vector produces the simpler definition

ε̂εε = yyy − ŷyy . (3.39)

The above definitions require that the matrix product XXX ′XXX be nonsingular or, in other words, that

XXX is a full rank matrix and that n > k + 1. The former condition is met when rank(XXX ) = k + 1,

with k + 1 being the number of columns of XXX , meaning that all of the columns of XXX are mutually

independent. The later condition is necessary for the definition of an overdetermined system of

equations to hold.

The variance σ2 of the population is also unknown but can be estimated by using the sample

variance s2. The estimate of the variance is unbiased as long as cov(yyy) = σ2III. The estimate is

given by:

E
(
σ2

)
= s2 =

1
n − k − 1

(
yyy − XXX β̂ββ

)′ (
yyy − XXX β̂ββ

)
. (3.40)

The coefficient of determination R2 ∈ [0, 1] is used to describe how well the regression surface

fits the data points. R2 is the quotient of the regression sum of squares (SSR) and the corrected

total sum of squares (SST). The corrected total sum of squares is the sum of the regression sum of

squares SSR and the sum of squares of the errors (SSE). These relationships are given by

SSE = ε̂εε′ε̂εε =
(
yyy − XXX β̂ββ

)′ (
yyy − XXX β̂ββ

)
= yyy′

[
III − XXX

(
XXX ′XXX

)−1 XXX ′
]
yyy , (3.41)

SSR =
(
XXX c β̂ββ1

)′ (
XXX c β̂ββ1

)
= yyy′XXX β̂ββ − nȳ2 , (3.42)

SST = SSR + SSE =
(
yyy − jjj ȳ

)′ (yyy − jjj ȳ
)
, (3.43)
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and

R2 =
SSR
SST

=
SSR

SSR + SSE
=

yyy′XXX β̂ββ − nȳ2

yyy′yyy − nȳ2 , (3.44)

where

III = the identity matrix,

ȳ =
1
n

jjj′yyy is the mean of the response variables,

β̂ββ1 = (β1, · · · , βk )′ is a partition of the β̂ββ vector excluding the β̂0 row, and

XXX c = the data matrix in centered form.

The centered form of the data matrix is given by:

XXX c =

(
III −

1
n

JJJ
)

XXX1 , (3.45)

where XXX1 = [x1, · · · , xk], and JJJ = jjj jjj′ is an n × n dimensional matrix of ones. Using these

definitions, the partitioned vector of least-squares estimators can be equally expressed as

β̂ββ1 =
(
XXX ′cXXX c

)−1 XXX ′c′y . (3.46)

Since overly-complicated models naturally have a better fit to data than simpler models, the ad-

justed coefficient of determination R2
a is a metric for judging models by goodness of fit together

and ease of-use. It is defined as:

R2
a =

(n − 1) R2 − k
n − k − 1

. (3.47)

A complete linear model built using multivariate linear least-squares is subject to two “clas-

sical” assumptions (Rencher and Schaalje, 2008):

1. E(εεε) = 000 or E(yyy) = X βX βX β

2. cov(εεε) = σ2III or cov(yyy) = σ2III
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The notation of the latter assumption denotes two smaller assumptions: that the errors are ho-

moscedastic (i.e., var(εi) = σ2) and that the errors are uncorrelated (i.e., cov(εi, ε j ) = 0). Under

the normality assumption, the errors εεε are independent in addition to being uncorrelated. When all

assumptions have been met, then the statistics β̂ββ and s2 are jointly sufficient statistics to describe

all of the information about βββ and σ2 that can be extracted from the sample data (Rencher and

Schaalje, 2008). One of the strengths of least-squares regression is that it will always produce the

best estimators of βββ and εεε, regardless of the distributions of XXX or εεε. This strength can also be a

detriment in the hands of an inexperienced analyst because the method will still produce values if

one or more of the necessary assumptions are broken. When the classical assumptions are violated

for a set of data, methods of data transformations and data weighting can be used to correct the

violations within the data (Carroll and Ruppert, 1988).
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CHAPTER 4. META-ANALYSIS INTRODUCTION AND METHODOLOGY

4.1 Introduction

Meta-analysis is a statistical tool used to pool the findings from multiple studies together

to compute the summary effect and precision of a single or group of parameters (Borenstein and

Hedges, 2009). The summary effect is the weighted average of the effect sizes from multiple

studies for a single parameter and is analogous to the weighted mean of the individual effects from

the individual studies. The effect size (not to be confused with size effect) is a term which describes

the measure of the influence that a parameter has on a response variable.

The development of meta-analysis as a statistical tool initially took place in the 1980s and

it was further refined during the 1990s. Its usage has become standard in the fields of medicine,

education, psychology, criminology, business, and ecology. The perception within these areas of

meta-analysis’ usefulness has grown to the point that many government agencies now encourage or

require researchers to conduct a meta-analysis of previous research data before they can begin new

funded studies (Borenstein and Hedges, 2009) The use of meta-analysis (or any other advanced

statistical method) in engineering materials testing and analysis is still in its infancy.

4.2 Benefits of Meta-Analysis

The advantage of determining the summary effects through meta-analysis is that it pro-

duces more precise and statistically powerful estimates of a parameter’s effect because it is able

to evaluate several studies as a whole as opposed to examining each study individually. Statistical

power is the probability that a statistical test rejects a hypothesis that is false or identifies an effect

which actually exists (Cohen, 1988). It can similarly be denoted by

P
(

reject H0�� H0 is false
)

= P
(
β̂i > 0 ��� βi > 0

)
(4.1)
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where

H0 = the null hypothesis,

βi = the true effect size of a parameter, and

β̂i = the measured (or estimated) effect size of a parameter.

Meta-analyses increase statistical power by increasing the total number of specimens in the anal-

ysis, thereby decreasing the sampling variability associated with each condition’s mean (Levin,

1998). This can be explained using the concept of confidence intervals. The width of a confidence

interval becomes narrower as the sample size increases (assuming that the added data doesn’t add

significantly more variation to the dataset), increasing the precision and statical power of the anal-

ysis. The effect sizes determined from individual studies will generally be comparable to one

another in that they measure and study the same phenomenon. The use of meta-analysis and sum-

mary effects gives researchers the added ability to understand the results of any one study in the

context of all the other studies (Borenstein and Hedges, 2009).

Another benefit of meta-analysis is the increased “generalizability” of the conclusions due

to test replication within the analysis. Many masonry shear wall test programs contain little or

no replication within their experimental design, usually due to cost, space, or other constraints

placed upon the researcher. The absence of replicates within tests provides no effective way to

gauge whether some observed effects are due to random chance or whether they represent an

effect which actually exists. One good example from the literature was Specimen 3 from Schultz

(1996a) which displayed a significantly higher experimental strength than what might be expected

by comparing plots of experimental strength versus various design variables. If two specimens

of each type had be tested, it is probable that the replicate specimen would have shown a more

characteristic strength and would have positively identified the specimen in question as an outlier.

Even more important than internal replication (i.e., replicates tested by the same researcher at

the same facility) are replications that are tested by other researchers in other facilities (so-called

external replication). External replication is able to produce “generalizability” to the population if

the conclusions between the two studies are in agreement with each other (Robinson and Levin,

1997).
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4.3 Methodology

Meta-analysis is the foundation in the development of each of the three approaches per-

formed in this study. In the first approach the effect size investigated is the relation between the

actual and predict shear strengths using the current MSJC shear equation. In the second and third

approaches multiple effect sizes are analyzed for several design parameters to investigate their ef-

fect on shear strength. The meta-analyses for the three approaches were carried out in four parts:

1) data compilation, 2) data scrutinization, 3) data synthesization, and 4) meta-regression. The

first three analysis parts were common to the three approaches. Only the methodology in the

meta-regression step varied between the three approaches.

First, it was necessary to systematically and thoroughly review the literature for data that

could be used in developing these approaches. The earliest records of research on grouted masonry

shear walls was found to have come from the late 1960s. The records were found from a variety of

sources, including journal articles, conferences papers, technical reports, theses, and dissertations.

In several cases the data from a series of shear wall tests were reported multiple times through

various sources and in many cases the data was found in a single source. All of the specimen data

were recorded in a spreadsheet.

Second, the data was scrutinized to identify and filter which specimens should be included

within the analysis and which should not. The criteria to be used in scrutinizing the data were

decided from the objectives and scope of the analysis and included factors such as grouting, failure

mode, and completeness of data.

Third, it was necessary to synthesize the data such that the values and results would be

compatible with each other since the data were collected from multiples sources, conducted by

many different researchers using many different methods. The simplest synthesization that needed

to be performed was to convert to a common system of units. Many other areas needing synthe-

sization were identified during the data collections process. Since no previous methodology for

synthesizing masonry shear wall data was available at the outset of this study, a methodology for

standardizing the data needed to be developed for this study. The creation of the standardization

method is detailed in Appendix C and its implementation is detailed in Section 6.4.

Lastly, the process of meta-regression performed withing this study varied between each

of the three approaches analyzed in this paper. In all three approaches the response variable is the
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experimental masonry wall shear strength for each specimen. In the first approach the parameter

being investigated is the predicted shear strength using the MSJC (2013) equation and the summary

effect is the ratio of the experimental shear strength to the predicted shear strength. In the second

approach, the effects of multiple parameters are investigated where each parameter is a function

of wall design variables and there are multiple summary effects, one for the relationship of each

parameter to the experimental strength. In the third approach, the influence of several design

procedures are investigated for their effect on the summary effect, which is the correlation of the

design and experimental strengths.
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Part II

Dataset Assembly

This part provides details into the process of data analysis used in assembling and ana-

lyzing the dataset for this study. Chapter 5 presents a literature review of the processes used by

the original researchers to test the specimens analyzed in this study. Chapter 6 details how the

dataset was assembled from the previous research studies and how the data were synthesized to

overcome incompatibilities between the difference research studies. Chapter 7 finishes Part II with

an overview of the completed dataset and its properties are shown and discussed in detail.

The completed dataset described in the part dataset contained 353 shear wall specimens, of

which 171 were fully-grouted and 182 were partially grouted. This dataset represents the largest

dataset of fully- and partially-grouted shear walls yet assembled for analysis. The specimens in

the dataset were representative of a wide array of population parameter combinations and came

from many studies distributed around the world. This dataset was the most comprehensive and

representative of all masonry parameters typical used in structural design.
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CHAPTER 5. LITERATURE REVIEW: EXPERIMENTAL TESTING

5.1 Early International Tests

5.1.1 Meli, Zeevaert Wolf, and Esteva

Meli, Wolf, and Esteva (1968) performed some of the first in-plane shear tests on partially-

grouted masonry walls at La Universidad Nacional Autónoma de México. They tested 18 walls

using either cantilever or diagonal compression testing procedures. Two of the walls were con-

structed using hollow clay bricks (HCBs) and the remainder were constructed using concrete ma-

sonry units (CMUs). All of the specimens were partially-grouted. This was likely chosen because

partial grouting more closely resembles the construction of confined masonry walls which are ex-

tensively used in Mexico.

The purpose of their study was to develop methods for calculating flexural and shear

strengths and the lateral stiffness of masonry walls. Their tests examined the influence of vari-

ous vertical reinforcement ratios and vertical axial loadings on the behavior of walls subject to

repeated shear loading. They subjected each wall to twelve cycles of alternating loads. The de-

formation amplitude was kept constant for all of the loading cycles of the same wall. They chose

deformation amplitudes greater than those corresponding to the maximum shear strength. As such,

the maximum shear strength was obtained on the first cycle.

Two types of loading were carried out in this research program. In the cantilever-type

loading, equal and opposite lateral loads were applied to two diagonal corners of panel. The base

was fixed against rotation and the top of the panel was permitted to rotate normal to the plane of

the wall. In the diagonal compression-type loading, equal and opposite lateral loads were applied

to two diagonal corners of the panel. Two equal and opposite vertical loads were also applied to

the same corners as the lateral load and were oriented to resist the overturning moment generated

by the lateral load couple. They observed that diagonal cracking is primarily concentrated in the
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unreinforced panels of the walls. The presence of vertical load reduced the amount of cracking in

the walls, but did not change the cracking pattern.

They compared the results to the equations developed by Esteva (1966) for confined ma-

sonry walls. They noted that the grouted cells do not provide as much lateral strength and stiffness

as do the tie columns of a confined masonry wall. However, the effect of imposed vertical loads

appeared to be the same between the two cases. They modified Esteva’s earlier equation and pro-

posed Equation (5.1) for use with partially-grouted walls.

Vn =
(
0.82

√
f ′m + 0.38 fv

)
An (5.1)

where

Vn = the predicted ultimate masonry shear strength (kg/cm2),

f ′m = the compressions strength of masonry,

fv = the vertical bearing stress (kg/cm2), and

An = the net shear area of wall.

The walls tested under the cantilever loading failed in flexure and showed a more ductile behavior

than those failing in shear.

Meli et al. observed that the addition of the first vertical load increased the shear capacity by

a factor greater than what was in the existing shear strength equations for cantilever-type loading.

In walls on which the second vertical loading was applied, no appreciable difference was found

from the first loading scenario.

Meli et al. noted that the cracking strength of the walls appeared to be governed by diagonal

tension in the wall panel, meaning that the cracking strength is independent of both the reinforce-

ment ratio and the vertical axial load. In walls with no axial load the cracking strength was very

close to the ultimate strength of the wall. In walls with axial load the strength continued to increase

with drift after initial cracking.

Meli et al. noted that the amount of vertical reinforcement seemed to have no influence on

the strength or stiffness degradation of the wall. They observed that the specimens with horizontal

reinforcement were able to maintain strength and rigidity at slightly higher drift levels. Meli et
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al. observed that no significant capacity was gained through the use of ties on the vertical rein-

forcement in the compression toe of the wall; however, they noted that it improved the behavior of

the wall under repeated cyclic loads.

Meli et al. concluded that the presence of vertical axial load is decisive in improving be-

havior under repeated cyclic loads. They observed that the deterioration of the walls under the

cantilever-type loading was marginally better than those under the diagonal compression-type load-

ing.

5.1.2 Meli and Salgado

Meli and Salgado (1969) tested 46 reinforced masonry walls under two different loading

conditions at La Universidad Nacional Autónoma de México. They tested 12 walls under lateral

cyclic loading using hollow CMUs. The remaining 34 tests were performed under monotonic

loading conditions using hollow CMUs, hollow clay bricks, or solid clay bricks. All but one of the

walls constructed with hollow masonry units were partially-grouted. The specimens using solid

clay bricks incorporated reinforcement cast into tie columns along the edges of the panel rather

than bars running through the masonry. This would be classified as confined masonry today, for

which much research has been performed outside of the United States.

The objective of their study was to observe the difference in behavior between walls of

different materials, the influence of vertical axial load, and the quantity of interior reinforcement.

The goal of their study was to propose methods to analyze and calculate the strength and stiffness of

masonry walls. All of the walls contained only vertical reinforcement. In the majority of specimens

the vertical reinforcement was limited only to the exterior cells. Five specimens included interior

reinforcement evenly spaced along the length of the wall. The walls were all constructed with one

reinforcing bar per cell. In walls with four bars in the extreme cells, the two extreme-most cells

were grouted in each jamb.

Two loading methods were used for both the monotonic and cyclic load histories. In the

cantilever-type loading, equal and opposite lateral loads were applied to two diagonal corners of the

panel. The base was fixed against rotation and the top of the panel was permitted to rotate normal

to the plane of the wall. In the diagonal compression-type loading, equal and opposite lateral loads

were applied to two diagonal corners of the panel. Two equal and opposite vertical loads were
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applied to the same corners as the lateral loads to resist the overturning moment generated by the

lateral force couple. In the case of the cyclic loading, the vertical loads on the top corners were

applied using rollers to reduce friction in the in-plane direction.

Meli and Salgado observed that increasing the amount of vertical reinforcement changed

the failure mode from a flexural to diagonal tension. Within walls with less vertical reinforcement,

flexural cracking of the bed joints dominated. Walls with higher amounts of interior reinforcement

experienced diagonal cracking through the head and bed joints along the wall diagonal. They

further observed that in these walls the quantity of vertical and horizontal reinforcement had a

negligible effect on the diagonal cracking strength. However, they concluded that axial loading

had a significant effect on the shear capacity of the wall. They observed that at values up to 20

percent of wall axial strength, the axial shear capacity increased by a factor of half the applied

axial load. Lastly, they concluded that the ultimate shear strength of the wall is minimally affected

by mortar quality, but that the cracking load is very sensitive to the mortar quality.

5.1.3 Williams and Scrivener

Williams (1971) and Williams and Scrivener (1974) tested 17 reinforced masonry walls

under in-plane shear loading. The tests were performed primarily on fully-grouted masonry walls,

but he also tested one partially-grouted wall constructed of clay brick. Williams referred to the

partially-grouted walls as being “partially filled,” hinting that the concept of partial grouting was

still relatively new at that time.

The Williams and Scrivener study was divided into two phases. The first phase investigated

the effects of cyclic loading on both hollow clay and hollow concrete masonry walls with varying

levels of axial stress and included one partially-grouted specimen. The second phase investigated

the material failure mechanisms and focused solely on fully-grouted clay specimens and included

the experimental factors of variable axial loads, vertical reinforcement ratios, and aspect ratios. All

of the wall specimens in both phases contained only vertical reinforcement.

The principle objective was to expand the understanding of masonry walls with post-elastic

cyclic loading. Prior to his research, many of the masonry wall studies were performed with

monotonically increasing loads to failure. Their tests were designed to study three responses: the

ductility capacity, the stiffness degradation and load capacity deterioration characteristics, and the
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ultimate load and failure mechanism. Williams and Scrivener observed that the partially-grouted

wall attained 83 percent of the ultimate strength of the fully-grouted wall with comparable di-

mensions and reinforcement. They also observed that the partially-grouted wall exhibited greater

stiffness degradation and load capacity deterioration.

5.2 UC-Berkeley Test Program on Masonry Piers

5.2.1 Mayes, Omote, and Clough

Mayes et al. (1976b,c) performed 17 tests on double-pier specimens consisting of eight

identical pairs and a lone unreinforced specimen. Mayes et al. chose double-pier sections to sim-

ulate, as closely as possible, the end boundary conditions of the walls (piers) in actual structures.

One pair of specimens was partially-grouted and all the remaining specimens were fully-grouted.

Their tests were some of the first in the larger masonry test program on masonry piers undertaken

at UC-Berkeley from 1975 to 1985. The remaining tests (Hidalgo et al., 1978; Chen et al., 1978;

Hidalgo et al., 1979; Sveinsson et al., 1985) were all performed using fixed-end single masonry

piers.

The purpose of their study was to investigate the effect of bearing stress, loading rate,

quantity and distribution of reinforcement, and partial grouting on the strength and deformation

properties of the masonry piers. Two cyclic loading conditions were used on each pair of walls.

The first wall of each pair was tested under a pseudo-static loading and the second was tested

under a dynamic loading. In all of the loading cases, the walls were tested with using gradually-

increasing displacement amplitudes. The pseudo-static cases used a loading frequency of 0.2 Hz

and the dynamic cases used a frequency of 3 Hz.

All of the panels were constructed from CMU blocks consisting of eight courses in running

bond. The units contained reinforcement in the end cells only. The horizontal reinforcement

distribution varied from specimen to specimen and was one of the variables under investigation in

this project. The partially-grouted specimens contained only vertical reinforcement consisting of

two #6 bars in each jamb. The ends of the piers were affixed to fully-grouted, reinforced masonry

spandrels meant to simulate the effect of coupling beams on the piers. Their specimen layout is

shown in Figure 5.1.
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Figure 5.1: Masonry double-pier specimen from Mayes et al. (1976b)

Mayes et al. compared the fully- and partially-grouted wall test results for the same re-

inforcement and bearing load values. They observed that they both showed the same ultimate

strength based on net area under the pseudo-static load. Under the dynamic loading the partially-

grouted specimen showed an 80 percent decrease in net ultimate strength compared to the fully-

grouted specimen. Mayes et al. observed that the partially-grouted piers displayed diagonal tension

and vertical splitting failure modes. These failure modes were also observed in fully-grouted piers

with large axial loadings. They noted that the effect of partial grouting on pier ductility was in-

conclusive. For the pseudo-static tests, the partially-grouted specimen’s behavior was more elasto-

plastic than that of the fully-grouted specimen. Under the dynamic loading, the initial stiffnesses

and load degradations at higher deflections were similar for the two grouting types. However, the

load capacity of the partially-grouted specimen plateaued before eventually falling off whereas that

of the fully-grouted specimen continued to climb, peaked, and then fell.

Mayes et al. noted that the fully-grouted specimens collapsed at a lateral drift of 1.0 inch

whereas the partially-grouted specimens collapsed at a drift of only 0.5 inches. The fully-grouted
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walls with higher bearing load also collapsed at a drift of 0.5 inches. It this case the partially-

grouted specimens exhibited the same failure mechanisms and ultimate drift as the fully-grouted

walls with high bearing stress. Mayes et al. concluded that the partially-grouted specimens showed

a tendency toward elasto-plastic behavior, but that the comparison between them and fully-grouted

piers was inconclusive.

5.2.2 Hidalgo, Mayes, McNiven, and Clough

Hidalgo et al. (1978) tested fourteen full-scale masonry walls with a geometric aspect ratio

of 2.0. Nine of the piers were constructed with hollow clay brick and the remaining five were

constructed as double-wythe, grouted-core walls using solid clay bricks. Three of the hollow clay

brick walls were partially-grouted and the remaining six were fully-grouted. Their tests were a part

of the larger test program on masonry piers undertaken at UC-Berkeley. The three partially-grouted

walls all contained a single #8 vertical bar in each end cell, but contained a different quantity of

horizontal reinforcement, from none to three #5 bars. All of the other variables were constant

between the tests.

Hidalgo et al. tested all of their walls using in-plane cyclic shear loading with increasing

peak displacements. All of the walls were tested in the frame shown in Figure 5.2, in which the

top and bottom of the walls remained parallel during the test. The frame subjected each wall to

double-flexure bending, locating the inflection point at the mid-height of the wall, producing a

shear span ratio of 1.0. All of the walls in each of the two test sets were subjected to the same

applied axial load. He noted, though, that the boundary conditions were slightly flexible and that

fixed-fixed boundary conditions were likely not achieved for small lateral displacements

All three of the partially-grouted specimens failed in shear due to the fixed-fixed loading

condition. Hidalgo et al. observed that the partially-grouted specimens obtained a net ultimate

shear stress 90 percent of that of the fully-grouted walls. They found that the deformational ca-

pacity of the partially-grouted walls was less than that of the fully-grouted walls at ultimate load.

They, correspondingly, displayed less-ductile behavior than their fully-grouted counterparts.

Hidalgo et al. examined and compared the hysteresis plots for the two groups. They ob-

served that stiffness degradation based on net area was similar between the two grouting types.

They surmised that stiffness degradation is independent of the grouting type for the gradually in-

69



Figure 5.2: Masonry single-pier specimen from Hidalgo et al. (1978)

creasing cyclic load case. They used the hysteresis data to form displacement-EDT ratio graphs.

Comparing the graphs, they saw similarities between the two grouting groups and concluded that

energy dissipation is also independent of grouting type.

5.2.3 Chen, Hidalgo, Mayes, Clough, and McNiven

Chen et al. (1978) tested 31 masonry piers with an aspect ratio of 1.0. Eleven of the

piers were constructed with hollow concrete masonry units, thirteen were constructed with hollow

clay brick, and the remaining seven were constructed as double-wythe, grouted-core walls using

solid clay bricks. Four of their concrete masonry piers and four of their hollow clay brick piers

were partially-grouted and the remaining 23 piers were fully-grouted. Their study was the last in

the masonry piers test program at UC-Berkeley to include partially-grouted specimens. The two

subsequent tests in the series (Hidalgo et al., 1979; Sveinsson et al., 1985) tested only fully-grouted

specimens.
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Chen et al. tested all of their walls under in-plane loading using varying design parameters

and a disparate test set-up from that of Hidalgo et al. (1978) explained above. Their test set-up

produced a shear span ratio of 0.5 for their specimens. All of the specimens in each material group

were tested under the same gross bearing stress—55 psi (0.38 MPa) for the concrete masonry

group, 56 psi (0.39 MPa) for hollow clay brick group, and 42 psi (0.29 MPa) for the double-wythe,

grouted-core group. The amount of vertical and horizontal reinforcement varied between the four

partially-grouted specimens within each of the two material groups. The four combinations of

reinforcement area were the same between the two groups. The test frame included a pinned

column at both ends of the wall specimen that connected the top and bottom beams, as shown in

Figure 5.3. The two columns were designed to keep the top and bottom beams parallel during the

tests and impose fixed-end boundary constraints on the piers. Due to use of the pinned columns,

additional compressive loads were developed in the piers by the downward displacement of the top

beam as the top displaced laterally.

 

 

     
    

      
     

  

 

   
   

    

   
  

  

     

    

   

  

  

        Figure 5.3: Masonry shear wall test setup from Chen et al. (1978)
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Chen et al. observed that all of the piers showed a shear mode of failure; in some of the

fully-grouted specimens this was accompanied by some flexural failure as well. Part of the reason

for this was due to the additional compressive load on the piers at higher drift levels. The partially-

grouted piers achieved a lower ultimate lateral load than that of the fully-grouted specimens. Chen

et al. observed no significant difference between walls of each group for the two sizes of vertical

reinforcement used. Since the walls all failed in the shear mode, the extra vertical reinforcement

was redundant and did not affect the shear strength. Part of the reason for this redundancy was that

the additional vertical compression stress counteracted part of the tensile forces that the reinforce-

ment was intended to resist. This reduced the amount of vertical reinforcement required to force

the wall into a shear mode of failure as opposed to a flexural mode.

Chen et al. observed that the net ultimate strength of the partially-grouted concrete ma-

sonry piers was 22 percent higher than that of the comparable fully-grouted piers. In the case of

the hollow clay brick piers, the partially-grouted piers had a net ultimate stress 23 percent less than

the corresponding fully-grouted piers. Chen et al. observed that the partially-grouted concrete

masonry piers had better inelastic behavior based on net area than did the fully-grouted piers. In

the case of the hollow clay brick piers, the fully-grouted piers showed better inelastic behavior.

Within the concrete block and clay brick groups, the partially-grouted piers had a reduced defor-

mation capacity with mean values of 82 percent and 62 percent, respectively, of the corresponding

fully-grouted deformation capacity. Chen et al. did not examine how part of this may have been

attributed to the additional compressive load on the fully-grouted walls at higher drift levels de-

veloped by the pinned columns. In all but two cases, the net bearing stress was greater for the

partially-grouted piers than for the fully-grouted piers at their respective ultimate drifts, possible

causing the partially-grouted walls to behave in a more brittle manner.

Chen et al. compared the hysteresis curves of the piers and observed no difference in

stiffness degradation between the fully- and partially-grouted piers. The results for the energy

dissipation characteristics of fully- and partially-grouted walls were inconclusive. In both cases

the energy dissipation capacity increased with lateral drift due to increasing cracking and crack-

interlock friction. Chen et al. commented on the effects of the axial offset caused by the frame

columns. They noted that the problem would be resolved in future tests in the program. However,
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the effects of partial grouting were not investigated further in any of the subsequent UC-Berkeley

tests.

5.2.4 Hidalgo, Mayes, McNiven, and Clough

Hidalgo et al. (1979) tested eighteen full-scale masonry walls with a geometric aspect ratio

of 0.5. Six of the piers were constructed with hollow clay brick, six were constructed with hollow

concrete block, and the remaining six were constructed as double-wythe, grouted-core walls using

solid clay bricks. All of the tested walls were were fully-grouted. Hidalgo et al. tested all of their

walls using in-plane cyclic shear loading with increasing peak displacements. The frame subjected

each wall to double-flexure bending, locating the inflection point at the mid-height of the wall,

producing a shear span ratio of 0.25. All of the walls were tested using the same setup as Chen

et al. (see Figure 5.3) and were subject to similar downward force induced by the hinged columns

at either end of the specimen at higher lateral drifts. They observed, however, that in the case of

walls with low aspect ratio, the axial force contribution from the hinged columns did not affect the

failure mode of the specimens.

All of the twelve walls constructed with hollow brick or block contained three #7 bars, one

in each end cell and one in the center of the wall. The quantity of horizontal reinforcement varied

in each wall from none to four #6 bars in the concrete block walls and from non to five #7 bars in

the clay brick walls. All of the other variables were kept constant between the tests.

Two of the concrete block specimens displayed a combined shear and sliding failure mech-

anism and the remaining four displayed typical shear failure characterized by diagonal cracking.

Half of the six clay brick specimens displayed a combined flexural and sliding failure and the

other half displayed a shear failure mechanism. Hidalgo et al. observed that there appeared to be

a positive correlation between the amount of horizontal reinforcement and the ultimate strength.

They observed that the shear deformation in the squat piers had a greater importance to the overall

behavior of the specimens than for those with large aspect ratios.
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5.2.5 Sveinsson, McNiven, and Sucuoglu

Sveinsson et al. (1985) conducted the final stage of the masonry shear wall research pro-

gram at UC-Berkeley. They tested thirty piers, including twelve constructed with hollow concrete

block, thirteen constructed with hollow clay brick, five constructed from two wythes of solid clay

brick, with all of the walls being fully-grouted. They investigated the effect of horizontal reinforce-

ment quantity, vertical reinforcement distribution, and the effect of wire truss bed-joint reinforce-

ment. All walls had an aspect ratio of unity and a shear span ratio of 0.5. They used a test setup,

shown in Figure 5.4, similar to that of Chen et al. (1978) with a modification such that the columns

were replaced with actuators that were force-controlled. This modification enabled the specimens

to be tested under double-curvature conditions while maintaining constant axial load for all lateral

drifts.

Figure 5.4: Masonry shear wall test setup from Sveinsson et al. (1985)

Sveinsson et al. observed a direct relationship between the failure mode of each specimen

and its strength and inelastic response characteristics. Ductile shear failures were characterized

by diagonal cracking which gradually spread throughout the wall panel with increasing horizontal

load. This gradual spreading of shear cracks was made possible by the presence of horizontal

reinforcement which enabled the tensile stresses to be transferred across the diagonal cracks. In
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cases where there was not enough horizontal reinforcement to adequately transfer the tensile forces,

the walls experienced a brittle shear failure.

They observed a combination of shear and sliding failure modes in walls with high hori-

zontal reinforcement ratios. This failure mode was characterized by diagonal cracking, crushing

of the compression toes, and sliding of the pier along the crushed bed joints. The presence of toe

crushing in the combined shear/sliding failure model differed from that in the flexure failure mode

in which the contribution of diagonal cracking is absent. Pure sliding failures were observed for

walls with higher horizontal reinforcement ratios but with relatively small quantities of vertical

reinforcement. For walls failing in the sliding mode, the cracking was generally limited to the bed

joints at the tops and bottoms of the walls, leaving the rest of the panel undamaged.

Sveinsson et al. concluded that the horizontal reinforcement cannot be fully effective if

it is not anchored around the vertical reinforcement in the end cells with a 180 degree hook or

anchored with a plate welded to its end. Specimens in which the horizontal reinforcement was

not well-anchored experienced a brittle failure immediately following the ultimate strength. They

observed that the wire truss bed-joint reinforcement was not as effective in increasing the ultimate

strength of the walls, but it improved the ductility of the walls. They observed that the equally

distributed vertical reinforcement had a negligible effect on strength for the concrete masonry and

it demonstrated inconsistent results for the clay brick specimens. They also observed no effect

of the vertical reinforcement distribution on stiffness degradation. They concluded that uniform

distribution of horizontal reinforcement improves wall ductility whereas uniformly spaced vertical

reinforcement has no effect.

5.3 US-Japan Coordinated Program on Masonry Building Research

5.3.1 Matsumura

Matsumura (1985, 1987, 1988) amalgamated masonry shear wall research data from mul-

tiple researchers and studies performed in Japan. He performed a study on 80 reinforced masonry

walls testing under in-plane shear loading to construct a model to compare the performance of

fully- and partially-grouted shear walls. The parameters he investigated included shear reinforce-

ment ratio, shear span ratio, axial stress, material strength, and grouting type. He generated a
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(a) Wall type loading

(b) Beam type loading

Figure 5.5: Test setups from Matsumura (1987)

dataset including 57 concrete masonry and 23 brick masonry walls where the majority of the spec-

imens were full sized and the remaining were reduced scale. About two-thirds of the specimens he

included were partially-grouted and the rest were fully-grouted.

Matsumura listed two loading methods used by the Japanese in performing their shear wall

tests. In the first method, known as the “wall type loading,” the base of the walls was fully fixed

while the top of the wall was fixed to prevent rotation normal to the plane of the wall, as shown

in Figure 5.5a. In the latter method, known as the “beam type loading,” the walls were set in the

test frame on one end (i.e., the bed joints were vertical) and subjected to vertical shearing loadings

similar to those of a deep beam test, as shown in Figure 5.5b.
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The wall type loading scenario used full-sized masonry walls with reinforced concrete

beams above and below the masonry panel. The walls were loaded cyclically at the top of the

wall. In most cases, four to five loading cycles were applied before the walls completely failed.

During some of the wall type tests, a vertical actuator was used to apply a constant axial load to

the top beam. The beam type loading was used mainly as a supplementary test. It used both full-

and reduced-scale specimens, the majority of which were small. The test consisted of a single

monotonic loading and unloading cycle to find the maximum shear resistances of each test.

Matsumura (1987) concluded that the ultimate shear strength is smaller for partially-grouted

masonry walls than that for fully-grouted shear walls with the same geometry. This is expected

because the Japanese only consider gross wall area in their calculations. He also observed that

the lateral shear strength of reinforced masonry increases as the horizontal reinforcement ratio

increases, with the rate of increase in shear strength decreasing with increasing reinforcement ra-

tio. He further observed that shear strength is inversely proportional to the shear span ratio of the

wall. Lastly, Matsumura concluded that the amount of reinforcement does not influence the shear

cracking strength of the wall.

5.3.2 Okamoto, Yamazaki, Kaminosono, Teshigawara, and Hiraishi

Okamoto et al. (1987) performed a series of 35 masonry shear wall tests at the Building

Research Institute of Japan, of which 25 were constructed using concrete blocks, 6 using clay

bricks, and 3 using reinforced concrete. Two joint orientation were used: 23 masonry specimens

were tested with lateral shear forces applied parallel to the bed joint and 9 specimens were oriented

such that the lateral shear force was applied parallel to the head joints. The variables that were

varied during the testing were the axial stress, the size and spacing of the shear reinforcement,

the size of the flexural reinforcement, the shear span ratio, and the presence of spiral confining

reinforcement in the wall toe.

The purpose of there tests was to investigate how the amount of shear reinforcement, axial

stress, splices, compression toe confinement, and shear span ratio affected the shear and flexural

behaviors of masonry walls and beams. All tests specimens were tested under double-curvature

loading conditions using a test frame similar to that of Matsumura (1987) as shown in Figure 5.5a.

The walls were testing using a cyclic loading pattern with incrementally increasing amplitudes.
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Okamoto et al. (1987) observed that the maximum shear stress increased with increasing

axial load, but the relationship is not linear. They also observed that increasing the amount of

shear reinforcement increased the deformation capacity of walls and beams but did not increase

the ultimate shear strength. They observed that the use of spiral reinforcement to confine the

compression toe resulted in improved deformation capacity under large deformation amplitudes.

The concluded that the ultimate shear strength increases with decreasing shear span ratio. They

compared the performance of the beam specimens to the Architecture Institute of Japan (AIJ)

design standard for reinforced concrete beams and concluded the equation to perform well for the

beam specimens.

5.3.3 Shing, Schuller, Hoskere, Noland, Klamerus, and Spaeh

Shing et al. (1989, 1990) tested 22 masonry shear walls under in-plane cyclic loading at the

University of Colorado-Boulder and was conducted as part of the U.S.-Japan Coordinated Program

on Masonry Building Research. Their study included 16 concrete block specimens and 6 hollow

clay brick specimens, all of which were constructed at fully scale and were fully grouted. The

principal variables used in their study were the amounts of vertical and horizontal reinforcement

and the amount of axial load applied to the walls. The walls within each material group were all

constructed with the same dimensions and all walls were tested using reverse-curvature loading.

The walls were tested under drift histories patterned after those devloped by Porter (1987).

Porter developed the TCCMAR phased-sequential displacement procedure in which drift cycles

are organized into undulated sets, as shown in Figure 5.6. In each set, the drift amplitude of

each succeeding cycle gradually increases up to a peak then gradually decreases to null. Each

subsequent undulated set has a higher peak wave amplitude than the previous one. When the first

major event (FME) occurs, the drift amplitude during the event is recorded for that specimen. The

peak amplitude for each subsequent set is then determined as function of the drift at the FME.

Schultz chose masonry cracking as the FME for his tests.

The principal objective of their study was to investigate the effects of the amount of rein-

forcement, the applied axial load, and the material on the limit-state capacities of masonry shear

walls. The aim of the Shing et al. (1989, 1990) studies in the Coordinated Program on Masonry

Building Research was to evaluate the validity of the UBC design formulae in reinforced masonry
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Figure 5.6: Phased-sequential displacement procedure (Porter, 1987)

shear wall strength. They evaluated formulae for both flexure and shear shear strength, determined

that the existing UBC provision were overly simplistic, and proposed a new model for calculating

shear strength.

Shing et al. (1989, 1990) observed four of the concrete masonry specimens and four of

the clay masonry walls to be governed by flexural yeilding whereas the remaining 14 specimens

were governed be diagonal shear cracking. The observed that the full grouting of the walls cause

the diagonal cracks to propagate through the units rather than being confined to the joints. They

observed that failure of the clay masonry walls was always initiated by spalling of the face shells

from the grouted cores. They observed more brittle failures in the walls that failed in diagonal

shear cracking and in those which failed with flexural toe crushing.

Shing et al. (1990) observed no correlation between the amount of reinforcement and the

stress at the onset of diagonal cracking and concluded that they are unrelated. They observed

that the contribution of the horizontal reinforcement given by Vns = Av ρv f y can overestimate the
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contribution and proposed that the factor be reduced. They concluded that the amount of vertical

reinforcement and the axial load have an influence on the shear strength by increasing the residual,

post-cracking strength of the masonry.

5.4 Portland Cement Association

5.4.1 Johal and Anderson

Johal and Anderson (1988) undertook a series of 32 tests on masonry piers under in-plane

cyclic loading. Their study included 16 tests on piers made from hollow concrete masonry units

and 16 tests on piers constructed from hollow clay bricks. In each of the specimens, only the

exterior jambs were reinforced and grouted; the remaining cells were all left ungrouted.

The purpose of their study was to evaluate the behavior of masonry piers using masonry

cement mortar compared with piers using portland cement mortar. The test parameters that Johal

and Anderson used in their experimental design were mortar type, cementitious material, cement

brand, and masonry type. Other test parameters common to partially-grouted shear wall tests (e.g.,

aspect ratio, reinforcement ratio) were held constant from specimen to specimen. Two specimens

were constructed and tested for each combination of test variables, giving 16 combinations and

32 total specimens. At least three masonry prisms were built and tested for each combination of

test variables. The mean masonry compressive strength was provided for each of the 16 groups of

masonry prisms.

Johal and Anderson applied shear loads using diagonal compression. Two compressive

struts were used, one on each side of the wall, to control rotation of the top spandrel and to prevent

in-plane axial load within the pier. Their test apparatus contained a hydraulic actuator and load cells

located within each strut. Each pier was subjected to only shear and flexural loads with fixed-fixed

end conditions. The loading scheme for the walls was load-controlled. A series of incrementally

increasing cyclic loads were applied to opposite corners of the specimen for small deformations.

As large deformations were observed for a given load level, the load was steadily increased until

the ultimate load was reached. The test was stopped after the load capacity decreased.

All of the piers experienced a shear failure mode. In most cases, cracking started at the top

of the piers and proliferated to the opposite corner of the pier. In a few cases, the cracking along
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the entire diagonal occurred suddenly and simultaneously. In most cases, the cracks primarily ran

through bed and head joints and cracking expanded into some masonry units as walls failed.

Johal and Anderson observed similar behaviors, cracking loads, and damage patterns for

walls constructed with either portland cement- or masonry cement-based mortars. Their analysis

showed that shear strength of partially-grouted masonry piers constructed with masonry cement-

based mortars compared favorably with that of piers constructed with portland cement-based mor-

tars. Additionally, they concluded than within the pier groups with similar mortar bases, the shear

strength was only minimally influenced by using Type M or Type S mortar. They concluded that

the restriction on use masonry cement in structural masonry walls in Seismic Zone Numbers 2, 3,

and 4 should be eliminated from the Uniform Building Code.

5.5 National Institute of Standards and Technology

5.5.1 Yancey and Scribner

Yancey and Scribner (1989) performed the first study into the seismic performance of re-

inforced masonry walls at the Building and Fire Research Laboratory (BFRL), a division of the

National Institute of Standards and Technology (NIST). They tested 13 walls at the NIST Tri-

Dimensional Test Facility shown in Figure 5.7. All of the walls were constructed from eight-

inch-nominal concrete masonry units and were 48 inches in length. Three of the walls did not

experience a shear mode of failure due to their large aspect ratio of 2.17 and were subsequently

not included in the report. The remaining ten walls had a aspect ratio of 1.17 (shear span ratio of

0.58 and consisted of seven courses, producing a height of 56 inches.

The purpose of their study was to determine how varying amounts and distributions of

shear reinforcement affect the in-plane shear strength of partially-grouted masonry walls. All but

one specimen were reinforced in the shear (i.e., horizontal) direction only; the remaining specimen

was unreinforced. In eight of the ten specimens a bond beam was located at the mid-height (i.e.,

fourth course) of the wall. Four of the ten specimens contained joint reinforcement, one of which

also contained a bond beam. Different sizes of reinforcement (#3, #4, or #5) were used in the bond

beams while only 9-ga. ladder-type reinforcement was used for the bed joint reinforcement.
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Figure 5.7: NIST Tri-Dimensional Test Facility (Yancey and Scribner, 1989)
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Yancey and Scribner concluded that horizontal reinforcement was effective in increasing

the ultimate shear strength of the walls. They observed that bed joint reinforcement placed in

either every course and every-other-course is equally as effective as the other in increasing the

in-place shear strength of the wall. They also compared the use of bed joint reinforcement with

reinforced bond beams and observed that both were comparable in increasing the ultimate strength

and deflection capacity of the walls. Their single specimen with both a reinforced bond beam and

bed joint reinforcement exhibited a drift capacity twice that of the next best specimen. From the

results from their tests, Yancey and Scribner concluded that ultimate shear strength increases with

increasing horizontal reinforcement ratio. However, they observed that the relationship between

the two factors is not linear.

5.5.2 Schultz

Schultz (1996a,b) tested six partially-grouted shear walls under in-plane shear loading. All

six of his specimens were constructed from hollow concrete masonry units. He chose hollow con-

crete masonry units for his study because they have larger cells than other units of comparable size.

The walls consisted of seven courses with a bond beam constructed within the middle (i.e., fourth)

course. Only the exterior vertical cells were reinforced and grouted. The walls were tested under

drift histories patterned after the TCCMAR phased-sequential displacement procedure devloped

by Porter (1987).

The purpose of the study was to determine the influence of shear span ratio and shear

reinforcement ratio on the behavior and shear strength of partially-grouted masonry walls. The

walls were tested in the NIST Tri-Directional Testing Facility (see Figure 5.7). The walls were

tested under in-plane cyclic loads and constant axial loading. The testing actuators in the facility

were displacement controlled. This resulted in axial loads that varied slightly with the lateral drift

of the wall due to vertical expansion of the wall from Poisson’s effect. These variations were

nowhere near as significant as were those that occurred during the tests of Chen et al. (1978).

Schultz observed that the initial cracks formed along the margins of the unreinforced ma-

sonry panel due to the stress concentrations between the grouted and ungrouted masonry. For

all specimens except Wall No. 3, cracking was predominantly vertical and concentrated near the

leading jamb. Eventually, this cracking proliferated through the joint between the horizontal and
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vertical reinforcement, eroding the bond beam anchorage. The predominant cracking mode of

Wall No. 3 was inclined cracking beginning at the mid-length of the top of the wall, and progress-

ing toward the joint between the horizontal and vertical reinforcement. In this case, the cracking

within the joint itself did not occur until later in the tests and had less of an effect on the bond beam

anchorage than in the other tests.

In all of the tests, Schultz observed that the walls showed stable and gradual strength degra-

dation. He noted that strength degradation occurred more rapidly with increasing shear span ratio.

He observed that the force-displacement curves for the walls were nearly bi-linear and showed an

obvious proportionality limit. He remarked that the reinforcement did not yield, yet the curves

showed a behavior similar to that of a yielding system.

Schultz observed that increasing the shear span ratio has a negative effect on the ability of

the wall to dissipate energy (toughness). The toughness of the wall is not affected by the horizontal

reinforcement ratio. The deformation capacity, the drift at which strength falls to 75 percent of the

ultimate strength, ranged from 0.33 percent to 1.0 percent for the walls. Schultz noted that these

values are likely too low for high seismic-risk regions, but may be suitable for regions of lower

risk.

Schultz used experimental data to compare the validity of four empirical formulas for pre-

dicting wall shear strength. The equation with the least amount of variability was that developed by

Schultz’s associate Fattal (1993) at NIST. Fattal’s equation was a modification of the equation orig-

inally developed by Matsumura (1987) for partially-grouted masonry walls. Schultz determined

that the mean ratio of measured-to-estimated shear strength using Fattal’s formula was about 79

percent for all of his specimens.

Schultz observed that the shear span ratio of the walls had a distinct and inverse influence

on the ultimate shear stress capacity of the walls. Similarly, horizontally reinforcement ratio was

also shown to have small beneficial influence on the ultimate shear stress capacity of the walls.

5.5.3 Schultz, Hutchinson, and Cheok

Schultz et al. (1998) tested six reinforced masonry shear walls in the NIST Tri-Directional

Testing Facility. Each specimen contained reinforcement and grouting only in the exterior vertical

cells. Each wall was constructed of seven courses of hollow concrete masonry units using joint
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reinforcement in each bed joint. They constructed three pairs of walls of different lengths to pro-

duce three distinct shear span ratios. They used the same dimensions as the six walls previously

tested by Schultz (1996a,b). In the preceding study, each of Schultz’s specimens was horizontally

reinforced with a bond beam at mid-height.

The primary purpose of their study was to compare the behaviors of partially-grouted walls

with joint reinforcement and bond beams. The reinforcement ladders placed in the joints were

constructed from two different wire gages, with each wall within a pair receiving a different one.

The first wall in each pair contained ladders with No. 9 Gage (0.148 in. diameter) wire and the

latter contained ladders with No. 5 Gage (0.207 in. diameter) wire. This produced gross horizontal

reinforcement ratios of 0.056 percent and 0.11 percent, respectively. The second parameter studied

by Schultz:was the effect of shear span ratio on the behavior of partially-grouted masonry shear

walls.

Schultz et al. tested their specimens using the TCCMAR phased-sequential displacement

procedure explained previously. They selected the first instance of visible crack formation as

the FME from which they determined the peak amplitudes for each subsequent wave of cycles.

This was verified by identifying the first departure from a nearly linear force-displacement plot.

They observed that the test data denoting the FME from each pair of wall tests were in relatively

good agreement with each other. They observed that the lateral load at the FME was negatively

correlated with the wall shear span ratio but was independent of shear reinforcement ratio.

Examination of the force-displacement envelops revealed that none of the walls failed sud-

denly. In all cases, the walls were able to demonstrate some level of plasticity before the load

resistance steadily decreased with increasing displacement. They observed that the shear rein-

forcement ratio had an influential effect on walls being able to maintain peak load resistance with

increasingly higher displacements. They concluded that wall shear span ratio appears to be nega-

tively correlated with the ability of the wall to dissipate energy, but that horizontal reinforcement

appeared to have no effect.

Schultz et al. concluded that partially-grouted masonry with bed joint reinforcement is a

viable lateral load-resisting system for seismic design. They noted that horizontal reinforcement

ratio had greater positive effect on ultimate shear strength in the slender walls (i.e. with higher

shear span ratio). Overall, they concluded that wall performance using bed joint reinforcement
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was improved over walls with a single bond beam at mid-height tested earlier (Schultz, 1996a,b).

The walls showed stable hysteresis loops with increasing lateral drift and ample energy dissipation

capacity.

5.6 Drexel University

5.6.1 Hamid, Chaderakeerthy, and Elnawawy

Hamid et al. (1992) built and tested 15 partially-grouted masonry prisms at Drexel Uni-

versity under eccentric, out-of-plane loading. The prisms were constructed of 1/3-scale hollow

concrete masonry units. The bond wrench test method described in ASTM:C1072 (2014) was

used to measure the flexural tensile strength of the units.

The purpose of Hamid’s study was to determine the effect of grout spacing on flexural

strength for bending normal to the bed joints. Five model walls of three courses were constructed

using running bond. Each wall was grouted according to one of the five grouting conditions con-

sidered in this test. After curing, the walls were sawn into three symmetrical specimens for use in

the bond wrench test.

His ungrouted specimens failed suddenly by debonding along the bed joint. His partially-

grouted specimens failed by both mortar debonding along the bed joints and tension failure within

the grouted cells. Since the faces of the cells were tapered for each block, the failures occurred

where the grout area was minimum.

Hamid et al. calculated the tensile strength using ASTM:C1072 (2014). For the partially-

grouted specimens, Hamid calculated in moment of inertia using the face shell bedding area,

grouted area, and area of the webs adjacent to the grouted cells. He observed that the flexural

tensile strength increases non-linearly with decreasing grout spacing. His tests also indicated that

grouting is not effective for spacing greater than 32 inches on center.

Hamid et al. compared his values to those obtained in the ACI-ASCE (1988), which allows

for linear interpolation between values for fully-grouted and ungrouted masonry. The factor of

safety between the code values and the experimental value is not consistent since the experimental

relationship is not linear. Hamid et al. proposed as an empirical method to predict the average
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flexural tensile strength of partially-grouted walls given by

f t(pg) = 4.4 f t(g)s−0.75
gh (5.2)

where

f t(pg) = the flexural strength of partially-grouted masonry,

f t(g) = the flexural strength of grouted masonry, and

sgh = the spacing of grouted cells.

Equation (5.2) is limited to spacings of 8 inches (i.e., fully-grouted) to 32 inches and cannot

be used for ungrouted masonry or for grout spacings larger than 32 inches. In an attempt to find

more universally applicable formulae, Hamid developed three more equations to be theoretically-

based and he used his experimental data to validate his results. He proposed the following equa-

tions:

f t(pg) = f t(ug)
S − 8

S + 3.37
+ f t(g)

11.37
sgh + 3.37

(5.3)

f t(pg) = f t(ug)
S − 8

S + 3.85
+ f t(g)

11.85
sgh + 3.85

(5.4)

and

f t(pg) = f t(ug)
S − 8

S + 5.84
+ f t(g)

13.84
sgh + 5.84

(5.5)

where f t(ug) is the flexural strength of ungrouted masonry. Equation (5.3) is to be used for 6-inch

block, equation (5.4) for 8-inch block, and equation (5.5) for 12-inch block.

Hamid et al. designed Equations (5.3), (5.4), and (5.5) to cover the typical range of values

of flexural tensile strength. Since the equations were validated solely on the data from this single

experiment, it is uncertain whether they can be universally applied. Further experimentation would

be necessary for verification and modification of the parameters. Similarly, the structure of the

equations should be combined into a single equation and simplified for codification and use by

designers.
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5.6.2 Ghanem, Hamid, Essawy, Salama, and Elmagd

Ghanem et al. (1992) and Ghanem et al. (1993) tested 14 partially-grouted walls at Drexel

University. All of the walls were constructed from 1/3-scale hollow concrete masonry units and

tested under either monotonic or cyclic lateral loads. The walls were constructed with differing

amounts of horizontal and vertical reinforcement and blocks of differing strengths and were tested

under differing levels of vertical precompression load. The purpose of their study was to study

the effects of three design parameters, horizontal and vertical reinforcement distribution and ver-

tical axial load. In their study they used reduced-scale replicas of standard masonry constituent

materials that were fabricated in-house.

Ghanem et al. observed that his walls with bars distributed throughout the wall performed

better than the walls with bars concentrated in fewer areas. In all cases, the walls contained the

same amount of reinforcement. They observed that due to the inclined cracking within the wall

panel, the horizontal reinforcement bars at the top and bottom of the wall did not have adequate

development length to fully activate their strength in resisting the shear forces. This lead Ghanem

et al. to conclude only interior horizontal reinforcement is truly effective in resisting shear and in

increasing wall ductility. They recommended that shear reinforcement be distributed throughout

the interior of the wall panel and not concentrated at the top and bottom. They further noted

that distributed vertical reinforcement is better at resisting shear and increasing ductility but that

concentrating vertical reinforcement at the ends of the wall is most effective in resisting the flexural

forces.

Ghanem et al. observed that the cracking load was the same for all walls with the same

axial load, regardless of the amount of reinforcement in each wall. He concluded that the diagonal

cracking load is independent of the amount of horizontal and vertical reinforcement. He explained

that this is because the diagonal cracking load is dependent on the tensile strength of the masonry

and of the orientation of stresses within the wall by the superposition of vertical axial stress. In-

creased axial force also increases the aggregate interlock force, increasing the shear strength of the

masonry.

Ghanem et al. observed that ultimate shear capacity increased as axial load increased.

They concluded that ultimate load is highly sensitive to the quantity of axial load applied to the

wall. They further observed that increasing axial load increased the lateral stiffness of the wall
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panels. Increasing the axial load also exhibited more brittle failure behavior with the post-peak

load capacity falling more quickly. The walls with the lowest levels of axial load failed by toe

crushing and yielding of the vertical reinforcement. The walls with the highest axial loads tended

to fail in shear. They concluded that the ductility and failure behavior of the wall are both also

sensitive to the axial load on the wall. They recommended that the axial load be less than 5 percent

of the compressive strength of the wall to avoid brittle failure.

5.6.3 Minaie

Minaie (2009) tested eight full-scale masonry shear walls at Drexel University. The walls

were tested under quasi-static, cyclic loading under displacement-controlled conditions. Four of

the walls were fully-grouted and four were partially-grouted. Two of the fully-grouted walls were

constructed of clay masonry and the other walls were constructed of concrete masonry. All of the

walls had the same aspect ratio, reinforcement pattern, and displacement loading history. Minaie

investigated and compared the effects of full and partial grouting, concrete and clay masonry,

cantilever and fixed-fixed constraints, mortar type, and axial stress on masonry walls.

Minaie tested his wall specimens using the test setup shown in Figure 5.8. Within the

partially-grouted group, he used either portland cement/lime-based mortar or masonry cement-

based mortar and applied either a vertical axial load of 100 psi or zero based on net area. For walls

with no axial loading, Minaie applied a moment load to the top of each wall to create a fixed-fixed

boundary condition and move the inflection point to the middle of the wall. Within the fully-

grouted subgroup, he used either concrete masonry units or clay masonry units bonded together

with either portland cement-lime mortar or masonry cement mortar. All of the wall specimens had

the same reinforcement design.

Minaie used 3D finite element models to model the in-plane and out-of-plane response

of this specimens. He used shell elements to model the face shell, webs, and mortal joints of

the masonry units, solid elements to model the grouted units, and beam elements to model the

reinforcement. He used the Concrete Damaged Plasticity Model from Abaqus (see also Lubliner

et al. 1989; Lee and Fenves 1998) to simulate the nonlinear response of the units, mortar, and grout.

A key parameter in the finite element analysis of concrete members that governs the hysteretic

plastic response is the dilation angle. Minaie varied the angle from 20 to 40 degrees and determined
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Figure 5.8: Test setup from Minaie (2009)

that the dilation angle has a significant effect on the shape of the hysteretic loops. He compared

the simulated and experimental hysteretic responses and chose an angle of 38 degrees for use

in his models. Minaie validated the results from his finite element models with those from his

experimental tests.

The principle objective of Minaie was to establish the crucial behavioral mechanisms and

seismic vulnerabilities of reinforced masonry shear walls. Most notably, Minaie sought to bridge

the knowledge gap between partially-grouted and fully-grouted walls. He did this using both

experimental and numerical methods. Using the test parameters from each wall, he used the MSJC

shear equation to calculate the predicted shear strength for each of his test specimens and compared

them to the experimental results. He then constructed finite element models for his specimens and

compared the analytical strength, hysteretic plots, and behavior to those of the experiment.

Minaie determined that the MSJC strength design shear strength equations significantly

over-predicts the capacity of partially-grouted walls (i.e., is un-conservative). He concluded that

part of this is because the behavior of partially-grouted walls is more analogous to that of infilled

frames. The equation becomes more unconservative for partially-grouted walls as the shear wall

area increases, as the aspect ratio decreases below 1.0, and as the spacing of both the vertical and
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horizontal reinforcement increases. Conversely, the equation becomes more conservative as the

wall area decreases, as the aspect ratio increases, as the axial stress increases, and as the horizontal

reinforcement ratio increases. Minaie concluded that the equation is sufficiently accurate for fully-

grouted walls.

Minaie obtained conflicting results for the effect of mortar formulation on partially-grouted

wall shear strength. His data showed that for partial grouting, the MSJC equation over-predicts the

shear strength of walls with masonry cement-based mortar more than that of walls with portland

cement/lime-based mortar. However, examination of this test determined that an f ′m value of 2,500

psi was used for the MSJC equation for both the PCL and MC walls. It is unlikely that the walls

would have the same shear strength since the MC mortar had a lower compressive strength. This

could have been verified through un-grouted prism tests, but no prisms test data (grouted or un-

grouted) could be found in his report. He concluded that mortar formulation has a negligible effect

on the strength of fully-grouted walls because the strength contribution from the grout is more

significant than that from the mortar.

Minaie (2009) concluded that the finite element model combined with the concrete damage

plasticity model is an appropriate analytical model to use in modeling the bi-directional perfor-

mance, cracking pattern, and failure modes of both fully- and partially-grouted walls. He deter-

mined that the best results were obtained by using a dilation angle of 38 degrees and that the

maximum value should be used for the damage variables at each strain level. Judging by the nar-

row scope of his research, further modeling would need to be performed on other test results to

determine whether these parameters are widely applicable to masonry walls as a whole or whether

they vary as functions of other variables.

5.7 Washington State University

5.7.1 Nolph

Nolph (2010) and Nolph and ElGawady (2012) tested six full-scale concrete masonry shear

walls at Washington State University. The walls were all tested under displacement controlled,

in-plane loading conditions using the test frame pictured in Figure 5.9. One of the walls was fully-

grouted and the other five were partially-grouted. All of the walls had the same aspect ratio and
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axial loading and had comparable vertical reinforcement ratios. Nolph investigated the effects of

horizontal shear reinforcement ratio, grout horizontal spacing, and partial grouting on the perfor-

mance of masonry shear walls.

Figure 5.9: Test frame from Nolph (2010)

Nolph varied the horizontal reinforcement ratio, grout horizontal spacing, and grouting dur-

ing his tests. The horizontal reinforcement ratios investigated were 0.085 percent, 0.120 percent,

and 0.169 percent. The vertical reinforcement spacings he used were 24, 32, or 48 inches (610,

813, or 1220 mm). One fully-grouted wall was constructed using identical reinforcement parame-

ters as the partially-grouted control specimen. All walls contained a bond beam at mid-height.

Nolph constructed strut-and-tie models to investigate the validity of the method’s results

with his experimental results. In each model, the grouted reinforcement cells act as tension ties

and the ungrouted masonry act as compressions struts. ACI 318-08 states that for each strut, the

strut angle αs—the angle between the strut and the horizontal ties—must be between 25 and 65

degrees. In some of the specimens, the constraints allowed two or three alternative strut-and-tie

models capable of modeling the walls. In such cases, Nolph analyzed all models and reported the

detailed results of the most conservative model.

The principle objective of Nolph was to investigate whether the MSJC strength design

equation for the shear strength of masonry walls is accurate for partially-grouted masonry walls.

Using the test parameters from each wall, he used the MSJC equation to calculate the predicted
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shear strength for each of his test specimens. He also investigated the applicability of shear strength

equations from Fattal (1993) and the New Zealand Standard (Standard Association of New Zealand

(NZS), 2004). A second objective was to analyze the effectiveness of strut-and-tie modeling in pre-

dicting the shear strength of partially-grouted masonry shear walls. After the tests were performed,

he compared the results with the predicted values from the MSJC strength design equation, the

other shear equations, and his strut-and-tie models.

Nolph determined that the MSJC equation over-predicted the shear strength of the partially-

grouted wall with 48 in. (1220 mm) grout horizontal spacing and was adequate for grout hori-

zontal spacings of 32 in. (813 mm) or less with horizontal reinforcement ratio of 0.085 percent.

He observed that the Fattal (1993) equation was fairly accurate for only one specimen, was un-

conservative for four of the specimens, and was overly-conservative for the remaining specimen.

He judged that the Fattal equation was better than the MSJC equation, but not sufficiently enough

to replace it. The NZS equation produced results that were similar to those of the MSJC. He con-

cluded that the strut-and-tie model was a good predictor of the partially-grouted walls, predicting

values within -14 percent to +8 percent of measured peak shear strength.

Nolph observed that for grout horizontal spacing of 48 inches, (1220 mm) there is a thresh-

old between 0.085 percent and 0.1 percent horizontal reinforcement ratios after which the effect

on ultimate shear strength is negligible. He observed that walls with ratios greater than this thresh-

old experienced failure of the masonry before yielding of the reinforcement. This is not ideal for

design because failure initiates quickly as brittle shear cracking and crushing of the masonry units.

Nolph observed end shell splitting in two of his specimens and similar cracking patterns in

the remaining specimens. This cracking pattern matches those characteristic of anchorage prob-

lems where the horizontal shear reinforcement are hooked around the vertical reinforcement. He

notes that a 180-degree hook in a #5 reinforcing bar barely meets the clearance criteria inside of an

8-inch (200 mm) concrete masonry block. Nolph suggests that in this case the cover requirements

may not be sufficient and that a limit on horizontal shear bar size should be considered.

Lastly, Nolph briefly comments on some evidence that during the tests, partially-grouted

specimen plane sections did not necessarily remain plane, though not enough data were gathered

to validate that claim. This claim is likely true because tests of deep beams exhibit this type of

behavior. He notes that this behavior is more characteristic of masonry infill panels.
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5.7.2 Elmapruk

Elmapruk (2010) tested six full-scale partially-grouted concrete masonry shear walls at

Washington State University (WSU). All of the wall specimens had the same aspect ratio, vertical

reinforcement ratio, and axial loading. Elmapruk investigated the effect of horizontal shear rein-

forcement ratio and the horizontal spacing of grouted flues on the performance of partially-grouted

masonry shear walls using the test setup shown in Figure 5.10.

Figure 5.10: Test frame from Elmapruk (2010)

Elmapruk varied the horizontal reinforcement ratio and grout horizontal spacing during his

tests. The horizontal reinforcement ratios investigated were 0.127, 0.180, and 0.254 percent. The

vertical reinforcement spacing he used was 24, 32, or 48 inches (610, 813, or 1220 mm) and all

walls contained a bond beam at mid-height. Elmapruk used two control specimens to validate the

replicability of the tests. Elmapruk’s tests were similar to those of his associate Nolph (2010) at

WSU, except that his study used slightly shorter specimens.

Elmapruk constructed strut-and-tie models to investigate the validity of the method with

his experimental results. Within each model, the grouted reinforcement cells act as tension ties

and the ungrouted masonry act as compressions struts. ACI 318-08 states that for each strut, the

strut angle φ—the angle between the strut and the horizontal ties—must be equal to or between

25 and 65 degrees. In for some of his specimens, this constraint permitted two alternative strut-
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and-tie models capable of modeling the walls. In such cases, Elmapruk constructed and analyzed

both models and compared their results to those from his tests to determine which model most

accurately represented the real-life conditions.

The principle objective of Elmapruk was to investigate whether the MSJC (2013) strength

design equation for the shear strength of masonry walls is accurate for partially-grouted masonry

walls. Using the test parameters from each wall, he used the MSJC equation to calculate the

predicted shear strength for each of his test specimens. Additionally, he calculated predicted shear

strengths using the equation proposed by Nolph (2010). His second objective was to analyze the

effectiveness of strut-and-tie modeling in predicting the shear strength of partially-grouted masonry

shear walls. After the tests were performed, he compared the results with the predicted values from

the MSJC strength design equation, the Nolph (2010) equation, and his strut-and-tie models.

Elmapruk observed that the MSJC equation significantly over-estimates the shear strength

of partially-grouted masonry shear walls. He observed that Nolph’s equation more accurately

predicted the shear strength for his specimens within −7 to +12 percent of the measured peak

shear strength. He also observed that strut-and-tie modeling was more effective, predicting values

within ±20 percent. He provided no discussion as to why his analytical strut-and-tie models were

more variable than Nolph’s empirical equation. It is likely that Nolph’s equation may have applied

well to Elmapruk’s experimental data because the test materials, construction, and test setup were

similar.

Elmapruk proposed that there is a threshold for the horizontal reinforcement ratio at which

any increase in reinforcement ratio yields no increase in shear strength. For higher reinforcement

ratios, failure initiates in one of the compression struts rather than by yielding the reinforcement, as

one would expect. It appears that he based this conclusion on his strut-and-tie model analysis since

his experimental data only shows a linearly increasing regression for ρh versus Vn. It is possible

he validated his conclusion through visual inspection of his specimen failure modes and through

his research into the experiment work of Nolph (2010), though he did not explicitly state how his

conclusions were founded. Nolph’s tests did show decreasing shear strength for higher horizontal

reinforcement ratios.

Elmapruk observed an inverse relationship between grout horizontal spacing and lateral

shear strength. The specimens having grout spacing of 24 or 32 inches had the same peak net area
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shear stress. This means that the increase in shear strength was caused by the increase in specimen

net shear area, and that the geometry had negligible effect on the shear strength. The specimen

having a grout spacing of 48 inches had a lower peak net area shear stress because failure initiated

in the yielding of the reinforcement. Decreasing the grout horizontal spacing causes the initial

failure mode to transition from yielding of the reinforcement to crushing of the masonry, increasing

strength but decreasing ductility.

5.8 International Testing Programs

5.8.1 Tomaževič, Lutman, and Petković

Tomaževič et al. (1996) tested 16 pairs of half-scale partially-grouted hollow concrete ma-

sonry walls. The walls were constructed from seven courses with reinforcement in the exterior

cells only and horizontal reinforcement placed in every bed joint. The geometry of the walls was

designed for shear behavior, but the vertical reinforcement was designed for ductile flexure be-

havior. The purpose of the study performed by Tomaževič et al. was to compare the influence of

the four different loading histories, of static versus dynamic loading, and of two different verti-

cal stress levels on the behavior of partially-grouted walls. The study was designed with sixteen

unique combinations of the tests parameters and each of the sixteen test conditions was replicated

on two wall specimens, for a total of 32 specimens tested.

The walls were tested using four different loading types, one monotonic and three distinct

displacement time histories, all of which were displacement-controlled. Tomaževič et al. used

three cyclic time loading histories. The first cycle loading history (procedure B) consisted of cyclic

lateral displacements grouped into three repeated amplitude cycles. The displacement amplitude

increased with each subsequent group. In the second loading history (procedure C), the loading

time history was based on that developed for TCCMAR by Porter (1987) described previously. The

last loading history (procedure D) used the simulated seismic response of a three-story masonry

building subjected to an earthquake time history during a previous experiment (Tomaževič and

Velechovsky, 1992).

The static and dynamic monotonic tests were performed using loading rates of 0.033 and

80 mm/s, respectively. The static cyclic tests (types B, C, and D) were programmed based on a
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frequency of 0.004 Hz, or a period of 250 sec. The dynamic cyclic tests were programmed based

on a frequency of 1 Hz, or a period of 1 sec. This value was chosen because it corresponds to

the natural period of vibration for a five- to six-story masonry structure in the nonlinear range of

vibration.

They observed that the stepwise-increasing cyclic loading (procedure B) produced the best

agreement with the calculated strength values for the walls. The TCCMAR and simulated seismic

loadings (procedures C and D) produced good agreement with the calculated values whereas the

monotonic loading (procedure A) produced a much larger disparity between measured and calcu-

lated results. They noted that this can be explained by the fact that the derivation of the strength

equations was made using stepwise-increasing cyclic loading tests.

Tomaževič et al. concluded that the use of different lateral load histories and procedures can

create significant differences in test results in partially-grouted masonry walls. They concluded that

cyclic loading should be used to obtain the most reliable data about the degradation of strength and

stiffness and about the energy dissipation capacity of masonry walls. They concluded that cyclic

test procedures B and C were nearly equivalent. However, strain rate and precompression load

must be taken into account to modify the test results.

5.8.2 Haider

Haider (2007) tested fifteen full-scale masonry shear walls at the Central University of

Queensland in Australia. The testing program consisted of two sets of specimens. The first set of

specimens included five pairs of partially-grouted masonry walls with each pair having a distinct

distribution of vertical reinforcement and one unreinforced specimen. The second set of specimens

included two more pairs of partially-grouted masonry walls with differing shear span ratios. All

walls were constructed from hollow clay brick with portland cement/lime-based mortar. Each

reinforced wall contained four N12 (12 mm diameter) steel bars which were grouted within their

respective cores.

The purpose of the research was to increase the understanding of the structural behavior

of wide-spaced reinforced masonry walls and to verify the prescriptive provided in the AS 3700

(2011). Haider defines wide-spaced reinforced masonry walls as partially-grouted walls in which
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the reinforcement is in the vertical direction only. Haider refers to wide-spaced reinforced masonry

walls with reinforcement only in the end cells as end-core reinforced masonry walls.

In his experimental design, Haider decided to test a single design parameter in his first

set of specimens—reinforcement distribution. He then constructed a finite element model using

micro-modeling techniques and used the experimental data to calibrate his model. The second set

of specimens was constructed and tested to validate his model for specimens of different aspect

ratios and precompression stresses. The model was then used to perform a sensitivity analysis of

the other design parameters on the behavior of wide-spaced reinforced masonry walls.

Walls were tested using either reversed-monotonic or stepwise-increasing cyclic loading.

The first wall in each of the first four pairs was tested using monotonic lateral loading. The data

from the first wall was then used to determine the cyclic loading history for the other wall in the

pair. Walls in the remaining groups were all tested using monotonic loading. All walls in the first

test group were subjected to a constant vertical axial load of 0.50 MPa. The walls in the second

test group were subjected to a vertical axial load of either 0.25 MPa or 0.04 MPa. The walls were

fixed at their bases and their tops were permitted to rotate normal to the plane of the wall.

Haider observed that aspect ratio has a large effect on shear capacity of partially-grouted

walls, but that precompression stress only has a marginal effect on shear capacity. Overall, he ob-

served that geometric properties have a greater effect on the structural behavior than the variability

in material properties. He that AS 3700 (2011) over-predicts shear capacity by 30 percent whereas

the finite element model over-predicts strength by only 3.1 percent.

His analysis showed that shear stresses were concentrated in the diagonal region of the

wall irrespective of the distribution of vertical reinforced cores in the wall for the wall with aspect

ratio of 0.84. He further showed that partial grouting introduces discontinuities to the shear flow

within the wall, but does not affect the diagonal failure planes. He found that for walls with smaller

aspect ratios, cracks tend to propagate diagonally from the corners and included horizontal cracks

between two of the intermediate reinforced cores.

Haider (2007) concluded that partially-grouted masonry walls are about 30 percent stronger

and more ductile than unreinforced walls. He observed that reinforced cores at the ends of the

wall prevent the wall from exhibiting a rocking-type failure mode. He further concluded that the

FE algorithm using macro masonry material model, the damaged plasticity concrete model, and
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the compression-disabled reinforcement bar model can be an effective numerical technique for

modeling partially-grouted masonry walls.

5.8.3 Voon

Voon and Ingham (2006) and Voon (2007) tested ten reinforced masonry walls at the Uni-

versity of Auckland, New Zealand. Two of the walls were partially-grouted and the remaining

walls were fully-grouted. Neither partially-grouted specimen contained shear reinforcement, but

both contained different amounts of vertical reinforcement. Voon and Ingham used three axially

loading conditions on the fully-grouted specimens (0, 0.25, and 0.50 MPa) but the partially-grouted

specimens were not loaded axially. The purpose of the Voon and Ingham study was to investigate

concrete masonry shear strength to assess the validity on the new shear equation in the Standard

Association of New Zealand (NZS) (2004) code. All walls were tested using stepwise-increasing

cyclic loading using the test setup shown in Figure 5.11.
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Figure 5.11: Test frame from Voon and Ingham (2006)

Voon and Ingham compared his experimental wall shear strengths to those predicted by

Standard Association of New Zealand (NZS) (2004) and NEHRP (1997). He observed that the

NEHRP (1997) equation did a better job predicting the experimental shear strengths than the 1990
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Standard Association of New Zealand (NZS) equation. In one case, the NEHRP expression over-

predicted the shear strength because it did not account for shear strength reduction in plastic hinge

regions. In the two partially-grouted walls, both equations significantly under-estimated the shear

strength. Part of the reason may stem from the New Zealander practice of only including the face

shell areas in the shear area and neglecting the areas from the grouted cores.

5.8.4 Maleki

Maleki (2008) tested fourteen half-scale masonry shear specimens at McMaster University

in Canada. Nine of the specimens were square wallettes tested using diagonal compression and five

were tested under cantilever shear conditions. The nine wallettes were divided into three groups

of three specimens each. The first group was fully-grouted, the second was partially-grouted,

and the third was ungrouted. The two reinforced groups were contained reinforcement along their

perimeters. The five cantilever walls were designed and constructed with differing aspect ratios and

reinforcement patterns. For each wall the horizontal reinforcement ratio was maintained between

0.04 and 0.05 percent.

The objective of Maleki’s study was to test the performance of partially-grouted masonry

shear walls with reinforcement spacing greater than the limits imposed by the CSA S304.1 (2004).

This was done with the intent to try to relieve some of the limitations imposed on partially-grouted

masonry. He divided his research into three sections—the development of a finite element model

for partially-grouted masonry, a study for validation of the model, and modification and use of the

model for simulation.

Maleki observed that the partially-grouted square wallettes were able to maintain their in-

tegrity after diagonal cracking. Additionally, the partially-grouted wallettes also showed some

post-cracking strength increase with peak strength slightly greater than the cracking strength. Fail-

ure initiated by crushing grouted masonry at the loaded corners. The fully-grouted and ungrouted

wallettes also experienced diagonal cracking; however, the ungrouted specimens showed a shear-

sliding failure mode whereas the grouted specimens all showed a stepped-pattern failure mode.

Unlike the partially-grouted wallettes, the fully-grouted and ungrouted wallettes showed no post-

cracking strength increase.
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The first four walls experienced a shear mode of failure exhibited by an absence of yielding

in the vertical reinforcement. The fifth wall experienced a combined shear-flexure mode of failure

in which diagonal cracking and yielding of the vertical reinforcement were observed. Maleki

compared the measured experimental strengths to those calculated using the Canadian masonry

standard CSA S304.1 (2004) for each wall. He concluded that the CSA provisions agreed closely

with the results of his tests. For the walls that failed in the shear mode, he determined that the

calculated shear strength was less than the calculated flexural strength, confirming that shear was

the appropriate mode of failure.

Maleki (2008) observed that the shear capacity is not significantly influenced by the spacing

of the reinforcement. However, he observed that the shear capacity is very sensitive to the aspect

ratio of the wall and that they are negatively correlated. He remarked that walls with higher aspect

ratios experience greater moment forces at the base due to their greater height and moment arm.

This causes flexural deformations and stresses to have a higher participation in behavior of the

wall. He observed that the walls with lower aspect ratios exhibited greater initial stiffness.

5.8.5 Kasparik

Kasparik (2009) built and tested six reduced-scale masonry shear walls at McMaster Uni-

versity. Due to reinforcement anchorage problems in two specimens, Kasparik omitted the two

tests from his analysis and discussion. The walls were all tested under simulated earthquake con-

ditions corresponding to the 1940 El Centro earthquake N-S component. All of the walls were con-

structed of scaled concrete masonry units and had the same aspect ratio, axial loading, and loading

procedure. Kasparik chose an shear span ratio of 1.9 to force his specimens to fail in flexure. For

this reason, his specimens contained no horizontal shear reinforcement. Kasparik investigated the

effects of vertical reinforcing pattern and ratio on the performance of partially-grouted shear walls

failing in flexure.

Kasparik grouped his walls into three types according to vertical reinforcement ratio and

distribution. The three reinforcement ratios used were 0.12 percent, 0.17 percent, and 0.20 per-

cent. All three of these ratios are less than that permitted by the Canadian masonry standard CSA

S304.1 (2004). All three groups contained reinforcement in the end cells and the second group also

contained reinforcement in the center core since it had a lower spacing of vertical reinforcement.
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Kasparik observed that, in general, the walls were all dominated by rocking-type behavior.

This initiated with the formation of a continuous horizontal crack and subsequent separation of

masonry along the bottom part of the wall. The horizontal cracks were located in a bed joint

somewhere between the first and fourth course, depending on the wall. This was undoubtedly

caused by the high shear span ratio of 1.9 used by Kasparik for his specimens. The initialization of

this flexural mode of failure increased the energy dissipation capacity of the wall specimens such

that the actuator capacity was not sufficient to induce failure in any of the specimens.

The average measured yield strengths for each of the three groups were 88, 102, and 67

percent of the calculated yield strength, respectively. He observed that stiffness degradation started

at about 0.02 percent drift for all of the wall specimens. The initial stiffness of the walls ranged

from 16 to 32 percent of the calculated stiffness for each wall. He observed that generally, the

period linearly increased as the lateral drift increased. Lastly, the ductility factors for his wall

specimens were based on an idealized bilinear curve. The ductility factors for the walls ranged

from 1.9 to 2.6.

Kasparik (2009) made no conclusions for the general behavior of partially-grouted walls.

Though not explicitly stated, the reason for this could be implicitly deduced from the fact that

none of his specimens were tested to complete failure. He recommended that further research

be conducted in which the walls are tested to failure and in which a greater number of design

parameters are tested.

5.8.6 Haach, Vasconcelos, and Lourenço

Haach et al. (2010a) tested eight half-scale masonry walls at the University of Minho in

Guimarães, Portugal. Seven of their specimens were partially-grouted and the remaining specimen

was unreinforced. Their tests were unique from other partially-grouted masonry tests for two rea-

sons. First, they used truss-type wire reinforcement for both horizontal and vertical reinforcement.

Second, they used a custom portland cement-based mortar mix (with no lime) for both the mortar

joints and grouting the reinforcement. This mortar mix was previously developed by Haach et al.

(2007, 2010b). All tests were performed using lateral stepwise-increasing cyclic loading.

The purpose of their study was to test the use of truss-type wire reinforcement for both

horizontal and vertical reinforcement. The parameters that Haach et al. tested were vertical and
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horizontal reinforcement ratios, vertical axial load, and bond pattern using the test frame shown in

Figure 5.12. The two bond patterns investigated were interrupted running bond—where a contin-

uous vertical joint is located at each core containing vertical reinforcement—and standard running

bond. Haach et al. constructed their specimens using three-core blocks with frogged ends. This

allowed them to place the vertical reinforcement in either the center core of a block or between

two adjacent blocks in the core formed by the two frogged ends. All horizontal reinforcement was

laid in the bed joints of the walls.

Figure 5.12: Test frame from Haach et al. (2010a)

Haach et al. observed that neither the vertical nor the horizontal reinforcement had any in-

fluence on the flexural cracking load. However, they concluded that diagonal cracking was clearly

influenced by the vertical reinforcement. The inclusion of vertical reinforcement delayed the for-

mation of diagonal cracks and lead to a 50 percent higher lateral load capacity than walls without

vertical reinforcement. The vertical reinforcement also helped prevent the opening and propagation

of horizontal flexural cracks throughout the wall panel.
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Their tests further confirmed the findings of other researchers (Shing et al., 1989; Schultz

et al., 1998) in that horizontal reinforcement has no influence on the lateral cracking load. Hori-

zontal reinforcement is not effective with horizontal cracking patterns, meaning it has no influence

in the cases of flexural or sliding-shear failures. They also observed that vertical axial load had the

most significant effect on lateral cracking load.

Haach et al. observed that the walls in this program failed predominantly in the flexural

mode. This was evident by the presence of toe crushing in the specimens and the low contribution

of the horizontal reinforcement to the lateral strength of the walls. Comparison of the experimental

and analytical lateral strengths of the walls also confirmed that the flexural mode governed. How-

ever, it should be noted that diagonal shear cracking was present in the wall panels, suggesting that

a combined flexure-shear mode of failure may have taken place.

Haach et al. (2010a) concluded that in the case of their proposed reinforced masonry sys-

tem, the bond pattern at the reinforced cores has no significant influence on the performance of the

wall. They concluded that higher values of precompression lead to overall higher lateral strength

but decrease the effectiveness of the reinforcement, leading to a more brittle failure. They con-

cluded that the effectiveness of the horizontal reinforcement is linked to the presence of vertical

reinforcement. They devised that vertical reinforcement delays the formation and propagation of

horizontal flexural cracking, enabling the wall to develop diagonal cracking and to fail more in a

shear mode than in a flexural mode.

They further remarked that that horizontal reinforcement ratio does not appear to influence

the lateral strength, but this may have been due to toe crushing in the walls not permitting the walls

to attain their full shear capacity. They concluded that horizontal reinforcement helps prevent

the localization of cracks, enabling a more distributed spreading of cracks and stresses and larger

non-linear lateral deformations.
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CHAPTER 6. DATASET ASSEMBLY

6.1 Introduction

Meta-analysis requires that the constituent data are collected and scrutinized systematically

and that they are synthesized together. Within the literature it appears that all studies reviewed

have been systematic in their design and execution, though the methodologies used in testing

the specimens and reporting the data have varied between studies. To synthesize the data is to

objectively correct for variations in measurement and reporting methodologies and choose the

criterion for weighting the individual specimens.

6.2 Data compilation

The first step in developing the three approaches for shear strength prediction was to com-

pile data from the existing field of data. This step was conducted concurrently with the literature

review. The end goal of this primary step was to collect sufficient quantitative and qualitative

data about the behavior of masonry shear walls for use in developing the three approaches for this

dissertation.

The purposes of the literature review were to understand how masonry properties affect

shear behavior and to identify potential criteria to be used in building prediction models for ma-

sonry shear strength. The literature review was primarily focused on research conducted on the

performance of masonry shear walls and reviewed the history of masonry shear wall research to

understand how researchers have arrived at the current state of knowledge in masonry shear wall

analysis and design and to understand which areas have yet to be examined. The process of re-

viewing the previous masonry shear wall research helped to clarify certain aspects of the code

equation, to understand how it was developed, and to identify its limitations and ways that it can

be improved.
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The literature review covered other ancillary topics not directly related to masonry shear

strength prediction to produce a broad knowledge base for this research program. A wide scope

is necessary to identify potential effects of other properties on masonry shear wall behavior and

performance not currently considered by the MSJC code equation. Broad knowledge of masonry

principles was necessary for the creation of standardized data reporting procedures and correction

factors for data synthesization.

Masonry shear wall research data were compiled from all available sources. As additional

research was identified through the literature review of other sources, the data from the additional

research were added to the growing collection of masonry shear wall data. Further research was

identified from searches in databases of scholarly literature. These included academic journals,

conference proceedings, theses, dissertations, and technical reports.

The data collected from each research study were gathered into a Microsoft Excel table.

Each row of the table represented the single masonry shear wall specimen and the columns of the

table represented the properties of the walls. The first approach developed herein only necessitated

that those properties required for the MSJC shear equation be collected. The open-ended nature

of the second and third approaches meant that the more wall properties that could be recorded, the

deeper and more thorough of an analysis could be performed.

The data properties and experimental strength for each specimen were extracted from the

respective research report. The data properties were primarily taken from tables listing the speci-

men details. Not all details were enumerated within the respective tables and the details missing

from the tables were extracted from diagrams, data plots, and the text itself.

6.3 Data Scrutinization

The second step was to scrutinize the initial compilation of data to select which data were

to be used in the analysis. There is no clearly defined way to determine which studies should

and should not be included in a meta-analysis; the decision relies in part on the judgment of the

researcher. Meta-analysis requires explicit mechanisms for deciding which studies to include and

which ones to exclude. The mechanisms selected for filtering the data set were the attributes of

grouting type, ultimate failure mode, sufficiency of data, and uniqueness. These attributes were
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chosen so that the data set would best represent the population of masonry shear wall failures and

to eliminate specimens that would cause foreseeable problems in the data analysis.

The first attribute examined was grouting type. Initially, this study was going to examine

only those specimens that were partially-grouted. As the history behind the current MSJC equation

was examined, it was apparent from the commentary to the 1997 NEHRP Provisions that there

was little documentation about the rationale used in assembling the current equation from two

previously proposed equations, Blondet et al. (1989) and Okamoto et al. (1987). The need to

compare the equation for both fully- and partially-grouted cases was evident to truly quantify the

difference, if any, between them.

Within this analysis, the fully-grouted walls and solid walls were treated together because

for both types the net shear area is equal to the horizontal gross cross sectional area. Similarly, the

partially-grouted and hollow (i.e., ungrouted) walls were treated together because for the two types

the net shear area is not equal to the gross area nor the net area. For purpose of classification, solid

and hollow wall definitions will follow that listed in the MSJC—that solid walls are made of units

with net area at least 75 percent of the gross area. In the case of the partially-grouted and hollow

walls, the net shear area was calculated using the recommendations in the MSJC, as outlined in

Appendix C. The practice of segregating the fully- and partially-grouted specimens is in keeping

with the conclusions made by Nolph (2010).

Further scrutinization revealed that many shear wall tests exhibited flexural failure modes.

Masonry walls failing in flexure generally exhibit greater ductility than those failing in shear, but

also fail at loads less than the shear capacity. For this reason those walls failing in flexure were

excluded from the analysis because they would artificially decrease the mean experimental-to-

predicted strength ratio, making the MSJC equation appear more unconservative. This practice

is the same as that used in the previous data analyses of Blondet et al. (1989) and Anderson and

Priestley (1992).

Relatively little has been written about the difference between sliding shear and diagonal

shear failures. The principal difference between the two is that the former tends to occur in cases

of low vertical axial load and the latter in cases of higher axial load. Due to the current gap

in knowledge concerning this subject and the present lack of a separate equation for predicting
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sliding shear capacity, this research will group both sliding and diagonal shear failures together as

non-flexural failure types and will include both in the analysis.

Some tests did not provide enough data for complete analysis because the author omitted

information required for predicting the shear strength. One common example is that many authors

either did not test masonry prisms as part of their study or they did not report the masonry prisms

strength. This was more common in older studies that took place before prism testing became

standardized, but some more contemporary tests also neglected this important detail in their re-

port. Among those papers missing masonry prism data, the vast majority included strengths of

the constituent materials. Other examples of omitted information include missing prism height-to-

thickness ratios, missing geometrical data, and missing failure modes.

It was decided that it would be better to estimate missing data (where possible) than to elim-

inate those specimens. The inclusion of a greater number of specimens increases the degrees of

the freedom in the statistical analysis, increases the breadth of the parameters studied, and makes

the sample more representative of the overall population. Since the equation consists of three

components—masonry, axial, and reinforcement—an educated estimate affecting one portion of

the equation would have only a limited effect on the overall accuracy of the whole equation for that

given specimen. Furthermore, given the large variation that is present measuring masonry material

strengths (Blume and Proulx, 1968), it was judged that estimated data determined using a regres-

sion model would likely not contain much more variation than the measured data. Those specimens

with missing parameters that were deemed to be estimable were retained whereas that that were

not were excluded from the analysis. Details of each of the parameter estimation procedures are

outlined in Appendices C and D.

As the data set was expanded, several specimens were suspected of being duplicates of

other specimens already included in the data set. This was more evident in cases where two reports

including the same author(s) listed specimens with identical identifiers. In a few cases, articles or

reports with difference authors reported the results from the same specimens. It was important to

remove the duplicate specimens from the data set so that they would not exact undue influence on

the analysis results and so that the specimens could be more accurately sub-grouped together to

determine their respective weightings.
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To identify duplicate reporting of specimens, tests from articles and reports were compared

using specimen names, dimensions, and experimental shear values to identify and eliminate dupli-

cates from the data set. In a few select cases, the reported results from a specimen were duplicated

in more than one report, but there was a discrepancy between them. If the results were published

in more than two reports, then the value that was most consistent between the papers was assumed

to be the correct value. In the situation were the results were only published in two publications,

then it was assumed that the more recent publication contained the correct values. This latter as-

sumption was based on the thought that any error in earlier publications would have be recognized

and corrected in the subsequent publication.

6.4 Data Synthesization

Meta-regression requires that disparate indices be converted to a common index before pro-

ceeding with the analysis (Borenstein and Hedges, 2009). Within the data set the principal indices

that differed between specimens were the testing, measuring, and reporting methodologies used

by the many researchers to report their findings. These differences between the data of difference

research studies can be reduced by synthesizing the data based on standardized methodologies.

This could be thought of as making the data to appear as though it had come from the same study.

Synthesization is an important step to minimize the variation in data between studies and,

hence, the total variation within this analysis. The variation within individual studies is treated

later in each analysis through the use of weighting. As no standardized methodology was available

for reporting masonry shear wall data, it was necessary to formulate standard reporting procedures

for use in this analysis. The development of these standardized procedures is detailed in Appendix

C of this paper and Dillon and Fonseca (2014b).

With standards in place, the next step was to correct the data that did not conform to the

standards. It was necessary to formulate a methodology for correcting non-conforming data to

each new standard. Methodologies were needed for prism strength estimation, inflection height,

net shear area, prism aspect ratio, shear reinforcement, loading patterns, loading rates, and experi-

mental shear strength reporting.
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6.4.1 Prism Geometry

The MSJC (2013) code equation bases the determination of f ′m on ASTM C1314, which

sets a standardized prism aspect ratio of two. This choice of prism aspect ratio is different from that

of other nations and is different from many American-tested specimens reported in the literature

(Korany and Glanville, 2005). In assembling the data set used in this analysis, the standardized

prism aspect ratio of five is used because research has shown that it better represents the com-

pressive strength of the masonry in the field (Boult, 1979; Hegemier et al., 1978). Apart from the

logical reasons, the use of a standard aspect ratio of five would lessen the quantity of specimens that

would need to be corrected since five was the most commonly used ratio reported in the literature.

The prism aspect ratios were compared from four standards: ASTM C1314 (2014), CSA

S304.1 (2004) Annex D, BS 5628-2 (2000) Appendix D, and AS 3700 (2011) Appendix C. Since

the ASTM standard was the only one to use a standard aspect ratio other than five, the correction

factors in ASTM were converted to the equivalent value assuming a standardized aspect ratio of

five. All four of the standards permit linear interpolation of aspect ratios for non-integer values.

The values for the four standards together with the average value are plotted in Figures 6.1a and

6.1b for ease of comparison.

A function was determined that correlated well with the mean of the four sets of correction

factors. The true mean was only piecewise differentiable and three functions would be required to

model it perfectly. It was decided that to use a continuously differentiable function with a good

fit to model the mean factor would be more than sufficiently accurate. A smooth function is also

likely to be more representative of the actual prism performance than a piecewise function.

First, the data were transformed such that the data point corresponding to an aspect ratio of

5.0 and a correction factor of 1.0 became the new coordinate origin. This was done by subtracting

the aspect ratio from 5.0 and subtracting the respective correction factors from 1.0. The three data

points away from the new origin were then transformed using the logarithmic function. The point

at the origin was omitted because the logarithm of zero is undefined and the transformation would

guarantee that the function would pass through this point. Linear regression was performed on

the three transformed data points to find two regression coefficients. The regression model for the
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Figure 6.1: Comparison of prism correction factors

mean prism strength correction factor k was untransformed to produce

k = 1 − 0.058
(
5 −

h
t

)1.07

(6.1)

where h
t is the aspect ratio of the prism.
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Equation (6.1) deviates from the mean correction factor from the four codes by at most

0.3 percent, is within the precision of this analysis, and produces values closest to those specified

in ASTM C1314 (2014). Other regression equations were examined, but Equation (6.1) had the

highest correlation with the mean of the factors specified in the four codes.

6.4.2 Prism strength estimation

As reported in Appendix C, there were many studies in which the prism strength was not

reported but included the strengths of the constituent materials. Currently, the underlying principles

of masonry prism behavior are fairly well understood at a qualitative level but the high variability of

prism data have made it difficult for researchers to formulate predictive equations for prism strength

based in the strengths of the constituent materials. In order for these studies to be included within

the analysis, equations were formulated to estimate prism strength from the constituent material

strengths provided by the respective researchers.

The estimation of prim strength is likely to introduce measurement error into the analysis

due to the high variability of masonry prism strengths. Including a greater number of specimens

means that a larger domain of testing parameters would be included in the analysis. A larger

domain of specimen parameters would make the results more representative of a larger portion

of the masonry shear wall population. Since the results of this analysis are intended to cover the

entire masonry shear wall population, it was judged more valuable to the analysis to analyze a

greater number of specimens by including those with estimated f ′m values than to reduce possible

measurement error by excluding them.

Masonry prism tests typically demonstrate high variability, with a coefficient of variation

of 10 percent or lower considered to be good (Blume and Proulx, 1968; CSA S304.1, 2004). Much

of this variability can be attributed to defects introduced during the assembly and handling of

the prisms. The unknown measurement error introduced by estimating f ′m values for specimens

is assumed to be less than that of prisms because constituent material tests typically have less

variability. In fact, as better models are developed in the future to quantify the behavior of masonry

assemblages it may become more accurate and economical to estimate f ′m from the constituent

material properties than from testing masonry prisms.
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Any measurement error in the f ′m value has a reduced impact on the error of the whole

shear prediction equation. Part of this reduction comes from the use of the square root of the f ′m

value. The root function has the effect of reducing any error from the term, especially at the higher

values typically used for f ′m. The other part is due to the fact that the f ′m value is only used in

the masonry component of the shear equation. The predicted shear strengths of the axial load and

shear reinforcement components of the shear equation are unaffected by an error in the f ′m value.

Data Estimation

Two linear models were developed to predict the masonry prism strengths for ungrouted

and grouted prisms, respectively. The details of how the models were developed is found in Ap-

pendix C. The selected prism strength prediction model for hollow masonry prisms is given by

f ′m = ν0.636 f 0.688
b f 0.317

j (6.2)

and the model for grouted masonry prisms is given by

f ′m = t−0.221 (1 − ν)0.0818 f −0.425
b

(
f j + fb

)1.01 (
fg + fb

)0.312
(6.3)

where

ν = is the ratio of net to gross area,

fb = the compressive strength of the brick or block,

f j = the compressive strength of the mortar,

t = the thickness of the prism in the smallest dimension, and

fg = the compressive strength of the grout.

The strength values from the data set used in this study were all converted to the equivalent aspect

ratio of 2 as specified in ASTM C1314 (2014).

113



6.4.3 Shear Reinforcement Area

The MSJC (2013) code specifies the contribution of the shear reinforcement to the shear

strength of the wall to be

Vns = 0.5
Av

s
f yv dv (6.4)

for all reinforced masonry shear walls. Equation (6.4) has the same form as that used for reinforced

concrete but with a 0.5 factor added to the front. The NEHRP (1997) commentary noted that the

0.5 factor was an empirical factor added so that the equation would better fit the data. A detailed

discussion of this equation and the 0.5 factor is provided by Anderson and Priestley (1992) and in

Section 14.2 of this dissertation.

The Av/s portion of the equation is exactly proportional to the shear reinforcement ratio in

reinforced concrete walls where the reinforcement is equally spaced. In reinforced masonry, equal

spacing of the shear reinforcement is not always possible because it must be spaced at intervals

that are a multiple of the masonry unit height. Many experimental programs were designed such

that predetermined shear reinforcement ratios were used for different specimens. The number

of courses in the specimens was not always equally divisible by the number of reinforcement

bars needed to achieve the desired reinforcement ratio. As a result, many specimens contained

unequally spaced shear reinforcement.

During analysis of the specimens with unequal shear reinforcement spacing, the issue was

which value to use for the spacing variable s in the shear equation. The spacing is proportional to

the shear reinforcement ratio and is given by

Av

s
≡

∑
Av

h
= ρv t (6.5)

where ρv is the shear reinforcement ratio and t is the specified thickness of the wall. The equalities

shown in Equation (6.5) are of particular benefit for case for when only the shear reinforcement

ratio is reported.
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6.4.4 Shear Length

Different masonry codes specify differing methods for calculating the effective shear length.

Since the first approach presented herein was to compare and, as necessary, correct the existing

MSJC masonry shear strength equation, it was necessary to use the shear length as defined by the

MSJC code for the first approach. The MSJC defines shear length to be the entire length of the

masonry shear area in the direction of shear. Since all researchers reported the lengths of their

specimens in tabular or graphical format, there was no need to calculate or adjust shear length data

for the first approach.

The second and third approaches were less constrained in nature. The shear lengths of the

specimens were calculated using the other definitions and used in the second approach to determine

which definition best fits the experimental data. The results of this simple study are presented in

Appendix C.

6.4.5 Reported Shear Strength

In the literature, three different values have been used as the experimental shear strength of

masonry walls. One value used has been the peak loads in each of the two directions (i.e., pushing

and pulling), another has been the average of the peak load from each direction, and another has

been the ultimate load in either direction. Wall strengths from monotonic testing have been taken

as the ultimate load.

Unfortunately, many researchers reported only one of the three values though some re-

searchers reported at least the last two values. In the latter case the peak load in the weaker direc-

tion can be calculated from the ultimate and average shear loads. In light of the different values

reported, it was decided to use the average of the peak loads from the two directions for the shear

strength (Dillon and Fonseca 2014b; Appendix C).

For specimens which only the ultimate shear strength was reported, the data needed to be

adjusted to compensate for the exclusion of the peak strength in the weaker direction. A correction

factor was calculated using the data from the specimens in which both the ultimate and the average

peak shear strengths were reported. For each of these specimens, the ratio of the average peak

strength to the ultimate strength was calculated. For visualization, the histogram of the ratios

115



of the average peak strength to the ultimate strength of the from the 176 specimens is shown in

Figure 6.2. The correction factor used was 0.9. Specimens that were tested monotonically are

described separately from the bidirectionally tested walls in the next section.
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Figure 6.2: Histogram of average to ultimate strength ratios

6.4.6 Loading Pattern

Researchers have used different loading patterns for testing their masonry shear wall spec-

imens, namely: monotonic, incrementally-increasing cyclic, sequential-phase displacement, and

simulated seismic. Dillon and Fonseca (2014a) explained more in-depth these different loading

patterns (see Appendix C) and showed that there is a non-significant difference in experimental

strengths between walls tested using the different cyclic loading patterns. They determined that the

monotonically tested walls exhibited an artificial increase in strength over walls tested with one of

the periodic loading patterns and further determined this increase to be statistically significant.

The shear strengths from monotonic and reversed-monotonic tests were higher than those

of cyclic tests because they did not experience cycles of strength degradation prior to their ultimate
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strength. During cyclic tests, repeated opening and closing of existing cracks and the formation

of new, more wide-spread cracking patterns occurred with increasing lateral amplitudes. As a

cyclic specimen approaches its ultimate shear strength, the strength has been reduced by the more-

widespread cracking and by repeated trituration of the aggregates along the shear cracks (Hidalgo

et al., 1979; Yancey and Scribner, 1989).

The numerical difference between monotonic and cyclic loading patterns shown in Dillon

and Fonseca (2014a) was determined through analysis on the data provided by Tomaževič et al.

(1996). The Tomaževič et al. study was a well-designed experiment which included two repli-

cates for each combination of variables. Other studies which used both monotonic and periodic

loading patterns were conducted by Meli et al. (1968), Woodward and Rankin (1985), and Mat-

sumura (1987). Unfortunately, these other three studies did not duplicate design variables between

the specimens that were monotonically tested with those that were not and could not be used to

determine a correction factor for monotonically tested specimens.

The data from Tomaževič et al. (1996) showed that monotonically tested specimens failed

at notably higher loads than similar specimens tested cyclically, resulting in a mean ratio of cyclic-

to-monotonic strengths of 0.81. The 95 percent confidence interval for this mean is bounded below

by 0.72 and above by 0.91. This interval excludes unity by a fairly large margin, denoting that the

difference is statistically significant. It should be noted that the specimens subjected to periodic

loading and high confinement stress appeared to fail in a combined flexure/shear mode whereas the

monotonically tested specimens appeared to fail predominantly in the flexural mode. The different

modes of failure suggest that the value calculated herein may not perfectly reflect the relationship

between the two loading patterns. Nevertheless, if the true value for a correction factor were

different, it would most likely be lower because the strength of the monotonically tested specimens

would have been higher if they had failed predominantly in the shear mode. Despite this potential

source of error, the correction factor of 0.81 used in this analysis represents the best estimate for

the relationship between monotonic and cyclic specimens given the limited data available.

6.4.7 Loading Rate

Masonry is subject to strain rate effects (Abrams, 1988; Paulson and Abrams, 1990; Tomaže-

vič and Velechovsky, 1992; Tomaževič et al., 1996; Tomaževič, 2000; Williams and Scrivener,
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1974). At higher rates of strain, the strength of the masonry increases proportional to the logarithm

of the strain rate. Older studies did not specify which loading rate was used and were assumed to

have been quasi-static because they pre-dated the wide-spread usage of electronic measuring and

recording devices. In these tests the loads and displacements were read manually from dial gauges,

eliminating the possibility of using dynamic load rates.

The majority of specimens included in the data set were tested using quasi-static strain rates

while only a relatively small number were tested dynamically. Before the data could be analyzed,

the experimental shear strengths of the dynamically tested specimens needed to be adjusted to the

standardized static-equivalent strength. It was necessary to determine a correction factor for the

specimens which were tested dynamically.

Within the data set there were only twelve pairs of specimens in which the only difference

in variables was the loading rate under which the specimens were tested. These specimens were

those tested by Williams (1971), Mayes et al. (1976b), and Tomaževič et al. (1996). An initial

study of each of the three groups determined that only those from Tomaževič et al. showed a

highly statistically-significant difference between the dynamic and static tests. The lack of statis-

tical significance in the other data was attributed to the high variability of testing and recording

procedures from the older studies.

The twelve pairs of specimens from the three studies were combined to determine a mean

correction factor for the dynamically loaded specimens. The twelve dynamically tested specimens

were tested at shear strain rates within a single order of magnitude, which was deemed to be

sufficiently close for the results to be compatible. The three pairs of specimens from Tomaževič

et al. (1996) were given double the weighting of the specimens because Tomaževič et al. replicated

each test twice and reported the average of the two tests.

The combined, weighted mean analysis of the twelve pairs of specimens resulted in a re-

duction factor of 0.90 for the dynamically tested specimens in this data set. The statistical test

produced a P-value of 0.15 for the case of strain rate effects in masonry shear walls, which is not

quite significant by common statistical standards. However, it was determined that, in this case,

the resulting factor was representative considering the small sample size and the fact that strain

rate effects in masonry have been previously observed to exist.
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6.4.8 Scaling

Many researchers employed small-scale specimens in their experimental studies. Analysis

by Dillon and Fonseca (2014b) of the size effects in masonry concluded that the scales typically

employed by researchers for masonry shear walls were not sufficient enough to produce any no-

ticeable errors in resulting values of their analyses. They further noted that the studies would

compensate for any size effects by testing scaled masonry prisms made from the same scaled ma-

terials.

The scaled masonry shear wall research used in this analysis was scaled to its equivalent

full-scale prototype. The justification for this practice is found in Dillon and Fonseca (2014b) and

in Appendix C. The geometric (i.e., units of length) and load parameters (i.e., units of force) for

each specimen were scaled using the respective scale factor. The stress parameters for the con-

stituent materials (i.e., units of force per area) were left unchanged. In most cases the scale factor

provided by the researcher was only nominal. In each case a specific scale factor was calculated by

examining the quotient of the scaled and prototype specimen geometries. The influence of scaling

was irrelevant for the first approach because the ratio of experimental to predicted strengths was

unit-less.

6.5 Meta-Regression

Meta-regression allows data from various research studies to be analyzed together. The

benefits of meta-regression are that it allows researchers to gain the benefits of a larger pool of data,

to compensate for errors from a single study, and to increase the statistical power of the analysis.

The meta-regressions used in this analysis used weighted least squares regression techniques for

analyzing the data set. The weight for each specimen was assigned according to which subgroup

that specimen belonged and is detailed in Section 7.2.
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CHAPTER 7. DATASET GROUPINGS AND PARAMETER DISTRIBUTIONS

7.1 Summary

The procedures of data collection, scrutinization, and synthesization employed in Chapter

6 produced a dataset consisting of 353 individual specimens. This is, by far, the largest dataset of

grouted masonry shear wall specimens yet assembled for studying the behavior of shear forces in

masonry walls. A summary of the various qualitative wall attributes for the dataset is provided in

Table 7.1. The attribute that is the most evenly divided within the dataset is the type of grouting

used, where partially grouted walls account for a little over half (51%) of the specimens in the

dataset. The attribute that is the most divided within the dataset is the rate at which the walls were

loaded. The vast majority of specimens (94%) were tested under quasi-static loading due to the

extra expense and effort that is required for dynamically-loaded tests.

Most of the specimens (60%) were tested under fixed-fixed boundary conditions such that

the walls were subjected to double-curvature. It may appear that this runs counter to the claim in

Appendix C that cantilever testing is the most predominant mode of testing, but these two facts are

not in disagreement. Cantilevered walls have a higher propensity for failing in flexure compared

to walls of similar geometry tested under double-curvature conditions because the latter loading

produces shear span ratios half of that for a cantilever loading. A disproportionately larger number

of cantilever-tested walls were filtered out of the final dataset because they failed in the flexural

mode.

7.2 Specimen Groupings

The specimens were grouped together with other specimen sharing common attributes so

that the statistics of the group could be used to calculate weightings for the specimens within

each group. Common delimiters used in dividing the groups were research study, material, and
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Table 7.1: Summary of Specimen Attributes

Property Attribute Count

Grouting
Full 172

Partial 181

Material
CMU 252

Clay 101

Scale

Full 325

Half 24

Third 4

Shape
Cantilever 141

Double-Curvature 212

Loading

Monotonic 47

Cyclic 304

Simulated Seismic 2

Rate
Quasi-static 331

Dynamic 22

Failure

Shear 295

Shear/Flexure 37

Sliding 13

Shear/Sliding 9

Sliding/Flexure 1

Shear/Sliding/Flexure 1

grouting. Each specimen was assigned a serial number for use in identifying the specimen. New

identifiers were created for use in this analysis because there was little to no consistency between

the identifiers used in the original studies. A unique identifier was also needed for the few cases

where two researchers from two different studies assigned the same identifier to two different

specimens.

Each identifier was constructed from a combination of ten letters and numbers. The first 4

digits were the year in which the specimen data were first published. The next 2 letters represent

the country in which the test was performed. A summary of the tests and abbreviations for each

country are given in Table 7.2. The next 2 letters represent the first two letters of the principal
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researcher’s surname. The last 2 numbers are a unique number assigned to each specimen from

that particular study. The serial numbers are non-contiguous because they were assigned before

specimens were filtered from the dataset during the scrutinization process.

Table 7.2: Summary of Specimens by Country

Country Abbrev. Count

Australia AU 13
Canada CA 4
Japan JP 80
Mexico MX 22
New Zealand NZ 51
Portugal PO 4
Slovenia SL 16
United States US 163

In forming the data group, the best effort was made to maintain similar attributes within

each group. The data from Matsumura (1987) consisted of such a large number of specimens that

the group was broken up further. Matsumura included data from several of his colleagues with his

own data. Japanese and English versions of his colleagues’ original research reports were found

and used to as a basis to divide the data set. The remaining Matsumura data was divided based on

the groupings already employed by Matsumura.

In a few cases, a lone specimen with a different attribute from the rest of the specimens in

that study was grouped with the rest of the data despite the attribute difference. The smallest group

that could be formed was with two specimens because at least two data values are necessary to

compute the the second central moment (i.e., variance) of the group. The options for dealing with

lone specimens was to either drop the specimen from the dataset or to add the specimen to a group

from the same study. The latter option was judged to be most beneficial to the study. In no case

was a specimen added to a group consisting of specimens from a different study. The specimen

groupings are summarized in Table 7.3.
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7.3 Distributions of Specimen Parameters

In this section, the quantitative attributes of the specimens are plotted as histograms for

each of the two grouting types. The quantitative attributes make up the input parameters used in

the shear prediction equations. Histograms were chosen because they facilitate easy visualization

of the distribution of each of the parameters in a concise format.

7.3.1 Vertical Reinforcement

Vertical reinforcement serves two primary purposed within masonry shear walls subject to

in-plane lateral loads. The first purpose of vertical reinforcement is to preclude flexural failure

of the masonry by resisting the vertical tensile forces and reducing the opening and spreading of

horizontal tensile cracks. Principles of mechanics show that the tensile stresses in the masonry

shear walls are greatest along the ends of the wall, so the exterior vertical reinforcement (in the

end cells of the wall) is most effective in resisting the flexural moment force. The interior vertical

reinforcement is not as effective because it has a smaller moment arm and is not subjected to the

same level of strain as the exterior reinforcement.

The second purpose of vertical reinforcement is to contribute to shear strength through

vertical confinement and dowel action. As shear cracks appear in the masonry panel, the vertical

confinement provided by the axial load and vertical reinforcement can help keep shear cracks

closed, increasing the friction and shear transfer across the crack. Ghanem et al. (1992) concluded

that only interior vertical reinforcement is effective in increasing the shear capacity. This is likely

due to the fact that the exterior vertical reinforcement is principally engaged in resisting the over-

turning moment of the wall.

The exterior and interior vertical reinforcement are called by different names throughout

the literature. Due to the different effects that the two types of vertical reinforcement have on

masonry shear wall behavior, herein the author will refer to the exterior vertical reinforcement as

flexural reinforcement and the interior vertical reinforcement as confinement reinforcement.
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Table 7.3: Summary of Data Groupings

Group Source Specimen Serial No. Material Grouting

1 Meli et al. 1968

Muro 309 1968-MX-ME-09 CMU PG
Muro 310 1968-MX-ME-10 CMU PG
Muro 311 1968-MX-ME-11 CMU PG
Muro 312 1968-MX-ME-12 CMU PG
Muro 313 1968-MX-ME-13 CMU PG
Muro 314 1968-MX-ME-14 CMU PG
Muro 315 1968-MX-ME-15 CMU PG
Muro 316 1968-MX-ME-16 CMU PG
Muro 317 1968-MX-ME-17 CMU PG
Muro 318 1968-MX-ME-18 CMU PG

2 Meli and Salgado 1969

Muro 501 1969-MX-ME-11 CMU PG
Muro 504 1969-MX-ME-14 CMU PG
Muro 505 1969-MX-ME-15 CMU PG
Muro 506 1969-MX-ME-16 CMU PG
Muro 507 1969-MX-ME-17 CMU PG
Muro 508 1969-MX-ME-18 CMU PG
Muro 509 1969-MX-ME-19 CMU PG
Muro 510 1969-MX-ME-20 CMU PG
Muro 511 1969-MX-ME-21 CMU PG
Muro 514 1969-MX-ME-24 CMU PG
Muro 515 1969-MX-ME-25 CMU FG
Muro 519 1969-MX-ME-29 CMU PG

3 Williams 1971
Williams and Scrivener 1974

Wall 1 1971-NZ-WI-01 Clay FG
Wall 2 1971-NZ-WI-02 Clay FG
Wall 3 1971-NZ-WI-03 Clay FG
Wall 4 1971-NZ-WI-04 Clay PG
Wall 5 1971-NZ-WI-05 Clay FG

4 Williams 1971
Williams and Scrivener 1974

CB 1 1971-NZ-WI-06 CMU FG
CB 2 1971-NZ-WI-07 CMU FG
CB 3 1971-NZ-WI-08 CMU FG
CB 4 1971-NZ-WI-09 CMU FG

5

Williams 1971
Williams and Scrivener 1974

A1 1971-NZ-WI-10 Clay FG
A2 1971-NZ-WI-11 Clay FG
B1 1971-NZ-WI-12 Clay FG
B2 1971-NZ-WI-13 Clay FG
B4 1971-NZ-WI-15 Clay FG
D1 1971-NZ-WI-16 Clay FG
D2 1971-NZ-WI-17 Clay FG

Williams 1971
Dyn 1 1971-NZ-WI-19 Clay FG
Dyn 2 1971-NZ-WI-20 Clay FG

Dyn B1 1971-NZ-WI-18 Clay FG

124



Table 7.3: Summary of Data Groupings (Continued)

Group Source Specimen Serial No. Material Grouting

6 Mayes et al. 1976a

HCBL-21-1 1976-US-MA-01 CMU FG
HCBL-21-2 1976-US-MA-02 CMU FG
HCBL-21-3 1976-US-MA-03 CMU FG
HCBL-21-4 1976-US-MA-04 CMU FG
HCBL-21-5 1976-US-MA-05 CMU FG
HCBL-21-6 1976-US-MA-06 CMU FG
HCBL-21-7 1976-US-MA-07 CMU FG
HCBL-21-8 1976-US-MA-08 CMU FG
HCBL-21-9 1976-US-MA-09 CMU FG
HCBL-21-10 1976-US-MA-10 CMU FG
HCBL-21-11 1976-US-MA-11 CMU PG
HCBL-21-12 1976-US-MA-12 CMU PG

7 Priestley 1977

A1 1977-NZ-PR-05 CMU FG
A2 1977-NZ-PR-06 CMU FG
A3 1977-NZ-PR-07 CMU FG
A4 1977-NZ-PR-08 CMU FG
A5 1977-NZ-PR-09 CMU FG
A6 1977-NZ-PR-10 CMU FG

8 Chen et al. 1978

HCBL-11-2 1978-US-CH-02 CMU PG
HCBL-11-3 1978-US-CH-03 CMU FG
HCBL-11-4 1978-US-CH-04 CMU FG
HCBL-11-5 1978-US-CH-05 CMU PG
HCBL-11-6 1978-US-CH-06 CMU FG
HCBL-11-7 1978-US-CH-07 CMU FG
HCBL-11-8 1978-US-CH-08 CMU PG
HCBL-11-9 1978-US-CH-09 CMU FG
HCBL-11-10 1978-US-CH-10 CMU PG
HCBL-11-11 1978-US-CH-11 CMU FG

9 Chen et al. 1978

HCBR-11-3 1978-US-CH-14 Clay FG
HCBR-11-4 1978-US-CH-15 Clay FG
HCBR-11-5 1978-US-CH-16 Clay PG
HCBR-11-6 1978-US-CH-17 Clay FG
HCBR-11-7 1978-US-CH-18 Clay FG
HCBR-11-8 1978-US-CH-19 Clay FG
HCBR-11-9 1978-US-CH-20 Clay PG
HCBR-11-10 1978-US-CH-21 Clay FG
HCBR-11-11 1978-US-CH-22 Clay PG
HCBR-11-12 1978-US-CH-23 Clay FG
HCBR-11-13 1978-US-CH-24 Clay FG
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Table 7.3: Summary of Data Groupings (Continued)

Group Source Specimen Serial No. Material Grouting

10 Hidalgo et al. 1978

HCBR-21-2 1978-US-HI-02 Clay FG
HCBR-21-3 1978-US-HI-03 Clay PG
HCBR-21-4 1978-US-HI-04 Clay FG
HCBR-21-5 1978-US-HI-05 Clay PG
HCBR-21-6 1978-US-HI-06 Clay FG
HCBR-21-7 1978-US-HI-07 Clay PG
HCBR-21-8 1978-US-HI-08 Clay FG
HCBR-21-9 1978-US-HI-09 Clay FG

11 Hidalgo et al. 1979

HCBL-12-1 1979-US-HI-01 CMU FG
HCBL-12-2 1979-US-HI-02 CMU FG
HCBL-12-3 1979-US-HI-03 CMU FG
HCBL-12-4 1979-US-HI-04 CMU FG
HCBL-12-5 1979-US-HI-05 CMU FG
HCBL-12-6 1979-US-HI-06 CMU FG

12 Hidalgo et al. 1979
HCBR-12-2 1979-US-HI-08 Clay FG
HCBR-12-3 1979-US-HI-09 Clay FG
HCBR-12-4 1979-US-HI-10 Clay FG

13 Thurston and Hutchison 1982

Unit 2 1982-NZ-TH-01 CMU PG
Unit 3 1982-NZ-TH-02 CMU FG
Unit 4 1982-NZ-TH-03 CMU PG
Unit 5 1982-NZ-TH-04 CMU PG
Unit 6 1982-NZ-TH-05 CMU FG
Unit 7 1982-NZ-TH-06 CMU FG
Unit 9 1982-NZ-TH-08 CMU FG

14 Matsumura and Igarashi 1983
Matsumura 1987

KW4-1 1983-JP-MA-01 CMU FG
KW3S-1 1983-JP-MA-03 CMU FG
KW2-1 1983-JP-MA-04 CMU FG

15 Igarashi and Matsumura 1984
Matsumura 1987

CW5-2’-A2-1 1984-JP-IG-01 CMU PG
CW5-2’-A2-2 1984-JP-IG-02 CMU PG
CW4-2’-A2 1984-JP-IG-03 CMU PG
CW3-2’-A2 1984-JP-IG-04 CMU PG

CW2-2’-A2-1 1984-JP-IG-05 CMU PG
CW2-2’-A2-2 1984-JP-IG-06 CMU PG

16
Fujisawa 1985
Okamoto et al. 1987
Kaminosono et al. 1988

WS1 1985-JP-FU-01 CMU FG
WS4 1985-JP-FU-03 CMU FG
WS7 1985-JP-FU-05 CMU FG

17
Fujisawa 1985
Okamoto et al. 1987
Kaminosono et al. 1988

WSR1 1985-JP-FU-02 Clay FG
WSR4 1985-JP-FU-04 Clay FG
WSR7 1985-JP-FU-06 Clay FG
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Table 7.3: Summary of Data Groupings (Continued)

Group Source Specimen Serial No. Material Grouting

18 Matsumura 1985
Matsumura 1987

WS2 1985-JP-MA-01 CMU FG
WS4 1985-JP-MA-02 CMU FG
WS5 1985-JP-MA-03 CMU FG
WS9 1985-JP-MA-05 CMU FG
WS10 1985-JP-MA-06 CMU FG

19
Yamazaki et al. 1983
Okamoto et al. 1987
Isoishi et al. 1988

GS2 1985-JP-YA-05 CMU FG
GS3 1985-JP-YA-06 CMU FG
GS4 1985-JP-YA-07 CMU FG

GSR1 1985-JP-YA-08 CMU FG
GSR2 1985-JP-YA-09 CMU FG

20 Sveinsson et al. 1985

HCBL-11-13 1985-US-SV-01 CMU FG
HCBL-11-15 1985-US-SV-02 CMU FG
HCBL-11-17 1985-US-SV-03 CMU FG
HCBL-11-18 1985-US-SV-04 CMU FG
HCBL-11-19 1985-US-SV-05 CMU FG
HCBL-11-20 1985-US-SV-06 CMU FG
HCBL-11-21 1985-US-SV-07 CMU FG
HCBL-11-22 1985-US-SV-08 CMU FG
HCBL-11-23 1985-US-SV-09 CMU FG
HCBL-11-24 1985-US-SV-10 CMU FG
HCBL-11-25 1985-US-SV-11 CMU FG
HCBL-11-26 1985-US-SV-12 CMU FG
HCBR-11-15 1985-US-SV-13 Clay FG

21 Sveinsson et al. 1985

HCBR-11-17s 1985-US-SV-15 Clay FG
HCBR-11-19 1985-US-SV-16 Clay FG
HCBR-11-20 1985-US-SV-17 Clay FG
HCBR-11-21 1985-US-SV-18 Clay FG
HCBR-11-22 1985-US-SV-19 Clay FG
HCBR-11-23 1985-US-SV-20 Clay FG
HCBR-11-24 1985-US-SV-21 Clay FG
HCBR-11-25 1985-US-SV-22 Clay FG
HCBR-11-26 1985-US-SV-23 Clay FG
HCBR-11-27 1985-US-SV-24 Clay FG
HCBR-11-28 1985-US-SV-25 Clay FG
HCBR-11-30 1985-US-SV-26 Clay FG

22

Igarashi et al. 1988
Matsumura 1987

WSR2-1 1986-JP-IG-01 Clay FG
WSR4-1 1986-JP-IG-02 Clay FG
WSR5-1 1986-JP-IG-03 Clay FG
WSR6-1 1986-JP-IG-04 Clay FG

Matsumura 1987
WS4 1986-JP-MA-53 Clay PG

WS4-B 1986-JP-MA-54 Clay PG
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Table 7.3: Summary of Data Groupings (Continued)

Group Source Specimen Serial No. Material Grouting

23 Matsumura 1987

CW2-1-1 1986-JP-MA-15 CMU PG
CW2-1-2 1986-JP-MA-16 CMU PG
CW3-0-1 1986-JP-MA-17 CMU PG
CW3-0-2 1986-JP-MA-18 CMU PG

CW3-0-A2 1986-JP-MA-19 CMU PG
CW3-0’-A3 1986-JP-MA-20 CMU PG
CW3-0-A3 1986-JP-MA-21 CMU PG

CW3-1’ 1986-JP-MA-22 CMU PG
CW3-1-1 1986-JP-MA-23 CMU PG
CW3-1-2 1986-JP-MA-24 CMU PG

CW3-1-A2 1986-JP-MA-25 CMU PG
CW3-1-A3 1986-JP-MA-26 CMU PG
CW3-1-A4 1986-JP-MA-27 CMU PG

CW3-2 1986-JP-MA-28 CMU PG
CW3-2-A2 1986-JP-MA-29 CMU PG
CW3-2-A3 1986-JP-MA-30 CMU PG

CW3-3 1986-JP-MA-31 CMU PG
CW3-3-A2 1986-JP-MA-32 CMU PG
CW3-3-A3 1986-JP-MA-33 CMU PG
CW3-4-A2 1986-JP-MA-34 CMU PG
CW4-1-1 1986-JP-MA-35 CMU PG
CW4-1-2 1986-JP-MA-36 CMU PG
CWB3-1 1986-JP-MA-37 CMU PG

CWB3-1’-A2 1986-JP-MA-38 CMU PG

24

Matsumura 1987
Shigenobu et al. 1987

WS9-2 1986-JP-SH-01 CMU FG
WSB21 1986-JP-SH-02 CMU FG
WSB22 1986-JP-SH-03 CMU FG
WFB2 1986-JP-SH-04 CMU FG
WSB3 1986-JP-SH-05 CMU FG
WSB4 1986-JP-SH-06 CMU FG

Okamoto et al. 1987
Kaminosono et al. 1988

WSN1 1987-JP-OK-01 CMU FG
WSN2 1987-JP-OK-02 CMU FG

25

Okamoto et al. 1987
WSB1 1987-JP-OK-10 CMU FG
WSB10 1987-JP-OK-11 CMU FG

Igarashi et al. 1988

WSR2-2 1988-JP-IG-05 Clay FG
WSR4-2 1988-JP-IG-06 Clay FG
WSR5-2 1988-JP-IG-07 Clay FG
WSR6-2 1988-JP-IG-08 Clay FG
WFR5 1988-JP-IG-09 Clay FG
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Table 7.3: Summary of Data Groupings (Continued)

Group Source Specimen Serial No. Material Grouting

26 Tomaževič and Lutman 1988

CN-0 1988-SL-TO-01 CMU PG
CN-14 1988-SL-TO-02 CMU PG
CN-28 1988-SL-TO-03 CMU PG
CN-50 1988-SL-TO-04 CMU PG
CV-0 1988-SL-TO-05 CMU PG
DN-0 1988-SL-TO-09 CMU PG
DN-14 1988-SL-TO-10 CMU PG
DN-28 1988-SL-TO-11 CMU PG
DN-50 1988-SL-TO-12 CMU PG
DV-0 1988-SL-TO-13 CMU PG

27 Johal and Anderson 1988

CM1 1988-US-JO-01 Clay PG
CM2 1988-US-JO-02 Clay PG
CM3 1988-US-JO-03 Clay PG
CM4 1988-US-JO-04 Clay PG
CM5 1988-US-JO-05 Clay PG
CM6 1988-US-JO-06 Clay PG
CP1 1988-US-JO-07 Clay PG
CP2 1988-US-JO-08 Clay PG
CS1 1988-US-JO-09 Clay PG
CS2 1988-US-JO-10 Clay PG
CS3 1988-US-JO-11 Clay PG
CS4 1988-US-JO-12 Clay PG
CS5 1988-US-JO-13 Clay PG
CS6 1988-US-JO-14 Clay PG
CP3 1988-US-JO-15 Clay PG
CP4 1988-US-JO-16 Clay PG

28 Johal and Anderson 1988

DM1 1988-US-JO-17 CMU PG
DM2 1988-US-JO-18 CMU PG
DM3 1988-US-JO-19 CMU PG
DM4 1988-US-JO-20 CMU PG
DM5 1988-US-JO-21 CMU PG
DM6 1988-US-JO-22 CMU PG
DP1 1988-US-JO-23 CMU PG
DP2 1988-US-JO-24 CMU PG
DS1 1988-US-JO-25 CMU PG
DS2 1988-US-JO-26 CMU PG
DS3 1988-US-JO-27 CMU PG
DS4 1988-US-JO-28 CMU PG
DS5 1988-US-JO-29 CMU PG
DS6 1988-US-JO-30 CMU PG
DP3 1988-US-JO-31 CMU PG
DP4 1988-US-JO-32 CMU PG
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Table 7.3: Summary of Data Groupings (Continued)

Group Source Specimen Serial No. Material Grouting

29
Shing et al. 1988
Shing et al. 1989
Shing et al. 1990

Wall 3 1988-US-SH-03 CMU FG
Wall 4 1988-US-SH-04 CMU FG
Wall 5 1988-US-SH-05 CMU FG
Wall 6 1988-US-SH-06 CMU FG
Wall 7 1988-US-SH-07 CMU FG
Wall 8 1988-US-SH-08 CMU FG
Wall 9 1988-US-SH-09 CMU FG
Wall 10 1988-US-SH-10 CMU FG
Wall 11 1988-US-SH-11 CMU FG
Wall 13 1988-US-SH-13 CMU FG
Wall 14 1988-US-SH-14 CMU FG
Wall 15 1988-US-SH-15 CMU FG
Wall 16 1988-US-SH-16 CMU FG

30 Yancey and Scribner 1989

R2 1989-US-YA-02 CMU PG
R4 1989-US-YA-03 CMU PG
R5 1989-US-YA-04 CMU PG
R6 1989-US-YA-05 CMU PG
R7 1989-US-YA-06 CMU PG
R9 1989-US-YA-08 CMU PG

R10 1989-US-YA-09 CMU PG
R11 1989-US-YA-10 CMU PG

31 Shing et al. 1990 Wall 21 1990-US-SH-21 Clay FG
Wall 22 1990-US-SH-22 Clay FG

32 Matsumura and Igarashi 1991

CW322A2 1991-JP-MA-01 CMU FG
CW325A2 1991-JP-MA-02 CMU FG
CW332A2 1991-JP-MA-03 CMU FG
CW525A2 1991-JP-MA-04 CMU FG
CW532A2 1991-JP-MA-05 CMU FG
CW538A2 1991-JP-MA-06 CMU FG

33
Ghanem et al. 1992

SWA 1992-US-GH-01 CMU PG
SWB 1992-US-GH-02 CMU PG

Ghanem et al. 1993
SWA-2 1993-US-GH-05 CMU PG
SWA-3 1993-US-GH-06 CMU PG

34
Brunner 1996
Brunner and Shing 1996

Wall 1 1994-US-BR-01 Clay FG
Wall 2 1994-US-BR-02 Clay FG
Wall 3 1994-US-BR-03 Clay FG
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Table 7.3: Summary of Data Groupings (Continued)

Group Source Specimen Serial No. Material Grouting

35
Brammer 1995
Ingham et al. 2001

Wall 1 1995-NZ-BR-01 CMU FG
Wall 2 1995-NZ-BR-02 CMU PG
Wall 3 1995-NZ-BR-03 CMU FG
Wall 4 1995-NZ-BR-04 CMU FG
Wall 6 1995-NZ-BR-06 CMU PG
Wall 7 1995-NZ-BR-07 CMU PG
Wall 8 1995-NZ-BR-08 CMU PG
Wall 10 1995-NZ-BR-10 CMU PG
Wall 11 1995-NZ-BR-11 CMU PG
Wall 12 1995-NZ-BR-12 CMU PG

36 Tomaževič et al. 1996

V2-BS 1996-SL-TO-06 CMU PG
V2-BD 1996-SL-TO-08 CMU PG
V2-CS 1996-SL-TO-10 CMU PG
V2-CD 1996-SL-TO-12 CMU PG
V2-DS 1996-SL-TO-14 CMU PG
V2-DD 1996-SL-TO-16 CMU PG

37

Schultz 1996a Wall 3 1996-US-SH-02 CMU PG

Schultz et al. 1998

Wall 2 1998-US-SH-01 CMU PG
Wall 4 1998-US-SH-02 CMU PG
Wall 6 1998-US-SH-03 CMU PG
Wall 8 1998-US-SH-04 CMU PG
Wall 10 1998-US-SH-05 CMU PG
Wall 12 1998-US-SH-06 CMU PG

38 Ohta et al. 2000

CAW10-1 2000-JP-OH-01 CMU FG
CAW10-2 2000-JP-OH-02 CMU FG
CAW03-1 2000-JP-OH-03 CMU FG
CAW03-2 2000-JP-OH-04 CMU FG

39 Haider 2007
Dhanasekar 2011

WSRM 1 2007-AU-HA-01 Clay PG
WSRM 2 2007-AU-HA-02 Clay PG
WSRM 3 2007-AU-HA-03 Clay PG
WSRM 4 2007-AU-HA-04 Clay PG
WSRM 5 2007-AU-HA-05 Clay PG
WSRM 6 2007-AU-HA-06 Clay PG
WSRM 7 2007-AU-HA-07 Clay PG
WSRM 8 2007-AU-HA-08 Clay PG
ECRM 9 2007-AU-HA-09 Clay PG

40 Haider 2007
Dhanasekar 2011

11 2007-AU-HA-11 Clay PG
12 2007-AU-HA-12 Clay PG
13 2007-AU-HA-13 Clay PG
14 2007-AU-HA-14 Clay PG
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Table 7.3: Summary of Data Groupings (Continued)

Group Source Specimen Serial No. Material Grouting

41 Voon and Ingham 2006
Voon 2007

A1 2007-NZ-VO-01 CMU FG
A2 2007-NZ-VO-02 CMU FG
A4 2007-NZ-VO-04 CMU FG
A5 2007-NZ-VO-05 CMU PG
A6 2007-NZ-VO-06 CMU PG
A7 2007-NZ-VO-07 CMU FG
A8 2007-NZ-VO-08 CMU FG
A9 2007-NZ-VO-09 CMU FG
A10 2007-NZ-VO-10 CMU FG

42 Haach et al. 2007
Haach et al. 2010a

N60-B1 2007-PO-HA-02 CMU PG
N60-B2 2007-PO-HA-03 CMU PG
N150-B1 2007-PO-HA-04 CMU PG
N150-B2 2007-PO-HA-05 CMU PG

43 Maleki 2008

Wall 1 2008-CA-MA-01 CMU PG
Wall 2 2008-CA-MA-02 CMU PG
Wall 4 2008-CA-MA-04 CMU PG
Wall 5 2008-CA-MA-05 CMU PG

44 Minaie 2009

PCL 1 2009-US-MI-01 CMU PG
MC 1 2009-US-MI-02 CMU PG
PCL 2 2009-US-MI-03 CMU PG
MC 2 2009-US-MI-04 CMU PG

45 Minaie 2009
FPCL 2 2009-US-MI-07 Clay FG
FMC 2 2009-US-MI-08 Clay FG

46 Elmapruk 2010

PG127-48 2010-US-EL-01 CMU PG
PG127-48i 2010-US-EL-02 CMU PG
PG180-48 2010-US-EL-03 CMU PG
PG254-48 2010-US-EL-04 CMU PG
PG127-32 2010-US-EL-05 CMU PG
PG127-24 2010-US-EL-06 CMU PG

47 Nolph 2010

PG085-48 2010-US-NO-01 CMU PG
PG120-48 2010-US-NO-02 CMU PG
PG169-48 2010-US-NO-03 CMU PG
PG085-32 2010-US-NO-04 CMU PG
PG085-24 2010-US-NO-05 CMU PG
FG085-00 2010-US-NO-06 CMU FG
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Flexural Reinforcement

The distributions of the flexural reinforcement ratios ρ f are shown in Figures 7.1 and 7.2.

All but thirteen specimens between two grouting types contained flexural reinforcement in the

end cells. Those specimens with little or no flexural reinforcement relied on high axial load, low

shear span ratio, or a combination of both to prevent failure in the flexural mode. The distribution

of flexural reinforcement ratios is a little more evenly distributed for the partially grouted walls.

Since flexural reinforcement ratio is based on gross masonry area, the ratio of steel to masonry

for the partially grouted walls is higher than what is shown by the ratio. Overall, the fully- and

partially-grouted walls both have fairly similar distributions of flexural reinforcement ratios.
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Figure 7.1: Distribution of flexural reinforcement in fully-grouted specimens

Confinement Reinforcement

The distribution of the confinement reinforcement ratios ρc are shown in Figures 7.3 and

7.4. The confinement reinforcement ratios are much more evenly distributed for the fully-grouted
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Figure 7.2: Distribution of flexural reinforcement in partially-grouted specimens

specimens than for the partially-grouted specimens. The partially-grouted specimens with no con-

finement reinforcement was considerably higher than those for fully-grouted specimens. This

suggests that more research is needed in the area of partially-grouted walls with higher amounts of

confinement reinforcement.

7.3.2 Shear Reinforcement

Shear reinforcement is placed horizontally in masonry shear walls to transfer shear forces

across shear cracks and to control crack propagation. Horizontal reinforcement can be placed

along the center line of the wall in grouted bond beams or can be placed near the faces of the wall

within the mortared joints. The principal limitation of joint reinforcement is the size of the wires

that can be placed within the masonry joints. There is inconsistency in the literature (Sveinsson

et al., 1985; Yancey and Scribner, 1989; Schultz et al., 1998) concerning the contribution of joint

reinforcement to ultimate shear strength, especially compared with the contribution of the bond
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Figure 7.3: Distribution of confinement reinforcement in fully-grouted specimens
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Figure 7.4: Distribution of confinement reinforcement in partially-grouted specimens
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beam reinforcement. Since this question has yet to be settled, the two horizontal reinforcement

types were investigated individually and combined.

Bond Beam Reinforcement

The distribution of the bond beam reinforcement ratios ρh are shown in Figures 7.5 and

7.6. The fully-grouted specimens showed a more uniform distribution of bond beam reinforce-

ment ratios than did the partially-grouted specimens. The majority (62%) of all partially grouted

specimens contained no bond beam. A likely reason for this is due to the added complexity in

constructing a grouted bond beam in partially-grouted walls which must be cast without allowing

the grout to flow into the empty cells below it. More research is needed to investigate the behavior

of partially-grouted shear walls with bond beams.
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Figure 7.5: Distribution of bond beam reinforcement in fully-grouted specimens
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Figure 7.6: Distribution of bond beam reinforcement in partially-grouted specimens

Joint Reinforcement

The distribution of the joint reinforcement ratios ρ j are shown in Figures 7.7 and 7.8. It

is clear that there is a serious lack of research data available for masonry shear walls reinforced

with joint reinforcement, particularly for fully-grouted walls. In total there were only 38 specimen

(11%) which contained joint reinforcement. It is likely, due to the small number of specimens, that

the analysis will not be able to find a statistically significant factor that explains the contribution of

joint reinforcement. This is an area that requires additional testing.

All Horizontal Reinforcement

Since the number of specimens which included joint reinforcement was small, it may not

be possible to study the effects of the two types of horizontal reinforcement separately and the

combined values of both types of reinforcement may need to be used. The distribution of the

combined horizontal reinforcement ratios ρv are shown in Figures 7.9 and 7.10. The distribution of

horizontal reinforcement ratios are well dispersed for the fully-grouted specimens. The distribution
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Figure 7.7: Distribution of joint reinforcement in fully-grouted specimens
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Figure 7.8: Distribution of joint reinforcement in partially-grouted specimens
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of ratios for the partially-grouted specimens is improved over that shown in Figure 7.6 where the

number of specimens without horizontal reinforcement has dropped from 116 (62%) specimens to

92 (49%) specimens. Since the horizontal reinforcement ratio is based on gross masonry area, the

true ratios of steel to masonry area are proportionally higher than those shown.
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Figure 7.9: Distribution of horizontal reinforcement in fully-grouted specimens

7.3.3 Axial Load

The distributions of applied axial load stresses σ0 are shown in Figures 7.11 and 7.12.

These values for axial stress were computed using the net shear areas of the specimens. There is a

higher proportion of fully-grouted specimens which included axial loading than partially-grouted

specimens.
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Figure 7.10: Distribution of horizontal reinforcement in partially-grouted specimens
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Figure 7.11: Distribution of applied axial loads on fully-grouted specimens
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Figure 7.12: Distribution of applied axial loads on partially-grouted specimens

7.3.4 Masonry Strength

The distributions of masonry characteristic strengths f ′m are shown in Figures 7.13 and

7.14. These values were computed from grouted and ungrouted prism tests, respectively. The

grouted prism strengths are less dispersed than the ungrouted strengths, likely due to stabilizing

effect of grouting on the prism strength.

7.3.5 Geometric Properties

Aspect Ratio

The distributions of specimen aspect ratios are given in Figures 7.15 and 7.16. The overall

distributions for the two types of grouting were fairly similar.
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Figure 7.13: Distribution of masonry strengths for fully-grouted specimens
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Figure 7.14: Distribution of masonry strengths for partially-grouted specimens
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Figure 7.15: Distribution of aspect ratios for fully-grouted specimens
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Figure 7.16: Distribution of aspect ratios for partially-grouted specimens
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Spear Span Ratio

The distributions of specimen shear span ratios are given in Figures 7.17 and 7.18. The

overall distributions for the two types of grouting were fairly similar. The majority of the shear

span ratios are equal to or less than unity because that is typically the range in which shear walls

fail in the shear mode. Figure 7.18 shows that there were three specimens with unusually high

shear span ratios failing in shear. These specimens had sufficient flexural reinforcement and axial

loading to prevent flexural failure.
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Figure 7.17: Distribution of shear span ratios for fully-grouted specimens
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Figure 7.18: Distribution of shear span ratios for partially-grouted specimens

145



Part III

MSJC Shear Factor Modification

This part details the first analysis approach developed in this study. Chapter 8 presents a

literature review of previous studies which analyzed and suggested improvements to existing shear

equations. Chapter 9 outlines the methodology for analyzing the MSJC (2013) equation developed

from the analysis techniques used by previous researchers. Chapter 10 details the results of the

analysis and Chapter 11 provides a discussion of the modified MSJC shear equation.

This analysis was the first to validate the current MJSC grouted wall factor approach to

account for the unconservative nature of the code equation. It was performed using the largest

dataset of fully- and partially-grouted shear walls yet assembled for analysis. The analysis ob-

served that there is a difference in both the mean and coefficients of variation between fully- and

partially-grouted data. It was determined that the current grouted wall factor values in used in the

MSJC code can be retained only if the resistance factor is lowered for partially-grouted data from

0.80 to 0.75.
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CHAPTER 8. LITERATURE REVIEW: MODEL PERFORMANCE EVALUATION

8.1 Introduction

The purpose of this section is to validate or revise the grouted wall factor method currently

in use in the MSJC (2013) code and represented by Figure 8.1. This will be done by determining

and comparing the means and variances for both partially-grouted and fully-grouted walls. Proba-

bilistic analysis will used to find the design factors to use such that the probabilities of failure for

both grouting types are the same. The design factors that will be investigated in this analysis are

the grouted wall factor γg and the shear resistance factor φv.

A probabilistic analysis is the most appropriate approach for determining the unconser-

vative nature of the MSJC (2013) shear equation in the case of partially-grouted walls. For the

analysis to be definitive, the sample must be representative of a large array of the different design

combinations possible in actual construction. The number of walls necessary to effectively rep-

resent the functional range of each design parameter is outside the scope of any single research

study. By amalgamating the existing data together into a single analysis, the scope of the analysis

can be sufficiently large to represent the global population of masonry shear walls. The process of

combining and analyzing data from many research studies is called meta-analysis.

8.2 Background

The most recent MSJC (2013) nominal shear strength equation is given by

γgVn = γg

[ [
4.0 − 1.75

Mu

Vulw

]
Anv

√
f ′m + 0.25Pu + 0.5

Av

s
f yvlw

]
(8.1)

147



where Mu

Vu lw
need not be greater than one. The nominal shear strength Vn is subject to the constraints

γgVn ≤




6γgAnv
√

f ′m
Mu

Vu lw
≤ 0.25 for

4γgAnv
√

f ′m
Mu

Vu lw
≥ 1.0 for

(8.2)

for which the code permits designers to linearly interpolate for intermediate values of Mu

Vu lw
. The

nominal shear strength is reduced by the resistance (or shear strength reduction) factor φv of 0.8.

The current grouting factor method assumes that the variances for fully- and partially-

grouted walls are the same and that only the means differ, as idealized in Figure 8.1. The assump-

tion that the distributions for fully- and partially-grouted wall are similar is denoted by the common

shear resistance factor φv shared between the two types of grouting. The means of the two distri-

butions are offset by the grouted wall factor γg, as shown in Figure 8.1. It is unknown whether the

assumption of similar variances for both types of grouting is valid because a large-scale statistical

analysis of both groups has yet to be performed.

Vexp
Vpred

γg 1.0

φv γg φv

Partially−grouted Fully−grouted

Figure 8.1: Distribution assumptions of current method
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8.3 Previous Model Performance Evaluations

8.3.1 Ellingwood, Galambos, MacGregor, and Cornell

Ellingwood et al. (1980) conducted a statistical review of the loads and load combinations

that are experienced by engineered structures over the course of their lifetime. The objective of

their study was to develop load factors and combinations for to be used for structures of all material

types incorporating the new LRFD methodology. Their recommendations were incorporated into

the 1980 revision of the ANSI Standard A58.1 Standard. Stewardship of the specifications in the

ANSI Standard A58.1 Standards was later shifted to ASCE 7 and they are currently published in

ASCE-7 (ASCE 7, 2010).

As part of their research, they provided a methodology for the selection of resistance factors

consistent with the load criteria developed in their research. This latter objective was performed

by analyzing the ratios of experimental to predicted strengths for a large number of material speci-

fication groups. The ratio of experimental to predicted strength was used because civil engineering

elements typically demonstrate a constant coefficient of variance, meaning that the variance in-

creases with increasing element strength. Material specification groups were designated by both

material type (steel, concrete, masonry, etc.), function (flexure, column, shear wall, etc.), charac-

teristics (slender, inclusion of stirrups, stiffened flanges, presence of bracing, etc.), and limit state.

While the principal scope of their material analyses was broad rather than deep, they included

sufficient quantities of specimens in each material specification group to develop representative

parameters for the development of their load factors.

Appendix D of Ellingwood et al. (1980) details their analysis of the masonry data and in-

cludes separate groupings for clay brick and concrete masonry elements. The distinction between

masonry materials was necessary because the masonry design standards at that time were pub-

lished separately for clay brick and concrete block. The standards for brick used in the analysis

were published by BIA (1969) and those for concrete block were published by NCMA (1977).

The member types analyzed were limited to walls subjected to various combinations of flexural

and axial stresses. Their analysis resulted in the mean and coefficient of variation for the ratio of

experimental to predicted strengths for each material specification group, as shown in Tables 8.1

and 8.2. The mean ratios of experimental to predicted strengths for masonry elements were typi-
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cally in the range of 5.0 to 7.0, significantly higher than the typical range of 0.98 to 1.05 for most

other material types. The coefficients of variation for the groups typically ranged from about 0.10

to about 0.20, which were only slightly larger than those for other structural materials. Though

their analyses did not include masonry shear walls, their results showed the highly conservative

nature of the primitive masonry strength prediction equations then employed.

Table 8.1: Brick Masonry in Compression Plus Bending (Adapted from Ellingwood et al. 1980)

Source Description of Wall n F̄/F∗n COV

BIA (1969)

h/t = 20.5, e2/t = 1/3, e1/e2 = −1 12 4.94 0.073
h/t = 23, e2/t = 0, e1/e2 = 0 12 6.93 0.10
h/t = 23, e2/t = 1/6, e1/e2 = 0 12 46.96 0.12
h/t ≤ 7, e2/t = 1/6, e1/e2 = 1 9 6.21 0.10
h/t ≤ 7, e2/t = 1/3, e1/e2 = 1 9 5.87 0.14
h/t = 22, e2/t = 1/6, e1/e2 = −1/2 6 6.92 0.15
h/t = 10, e2/t = 1/3, e1/e2 = −1 10 4.60 0.11
h/t = 21, e2/t = 1/3, e1/e2 = −1 16 6.27 0.10
h/t = 23, e2/t = 1/3, e1/e2 = −1 15 6.02 0.16
Flexure only, Single wythe, Type S, Inspected 15 3.89 0.26

Monk (1969)

h/t = 20, e/t = 0 15 9.88 0.12
h/t = 20, e/t = 1/6 14 > 9 0.13
Flexure only, Single wythe, Type S, Inspected 29 3.64 0.20
Flexure only, Multi-wythe, Type S, Inspected 21 4.26 0.18
Flexure only, Multi-wythe, Uninspected 6 6.25 0.25

Yokel et al. (1971)

2 ft × 8 ft-4 in brick — Pure compression 2 5.87 —
2 ft × 8 ft-4 in brick — Pure compression 2 7.54 —
2 ft × 8 ft-4 in brick — Pure compression 2 8.00 —
2 ft × 8 ft-4 in brick — Pure compression 2 6.58 —

Fattal and Cattaneo (1976) 23” × 96” × 4”—Fixed ends 2 7.00 —

Simms (1965) Story height, Pure compression 47 7.34 0.15

Astbury and West (1969)

Story height, Axial load, Type M, 9” wall 37 3.18 0.11
Story height, Axial load, Type M 15 6.23 0.17
Story height, Axial load, Type N 15 6.58 0.19
Story height, e/t = 1/8, Type M 15 4.34 0.18
Story height, e/t = 1/8, Type N 15 4.24 0.19

Curtin and Hendry (1969) Story height, axial load, Type N 14 8.17 0.22
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Table 8.2: Concrete Masonry in Compression Plus Bending (Adapted
from Ellingwood et al. 1980)

Source Description of Wall n F̄/F∗n COV

Yokel et al. (1970)
8 in Unreinforced, Story height 12 4.28 0.17
6 in Reinforced, Story height 9 5.62 0.13

Fattal and Cattaneo (1976) 6 in Unreinforced, h/t = 17 10 6.05 0.10

Fattal and Cattaneo (1977)

8 in Hollow block 2 4.50 —
8 in Solid block 1 4.28 —
4 in Block-block cavity 2 3.85 —
8 in Hollow block 2 4.81 —
8 in Hollow block 2 3.48 —

Hedstrom (1961) 8 in Block, 4 ft × 8 ft walls 7 6.4 —

Read and Clements (1972)

200 mm Hollow block, Story height, Type M 9 4.54 0.15
100 mm Solid block, Story height, Type M 6 — 0.20
100 mm Hollow block, Story height, Type M 9 — 0.15
All data — f ′m assumed as 3000 psi 38 4.25 0.17

8.3.2 Davis

Davis (2008) performed a comparative analysis of masonry shear strength equations from

several design standards from around the world. The dataset included 55 specimens collected

from tests conducted by Shing et al. (1990); Matsumura (1987); Sveinsson et al. (1985); Voon and

Ingham (2006). the analysis was limited to fully-grouted, reinforced masonry shear walls failing

in shear. Davis found that the mean ratio of experimental to predicted strengths for the MSJC code

equation was 1.16 with a coefficient of variation of 0.15. The study involved the performance of the

shear equations considering six variables: masonry prisms strength f ′m, horizontal reinforcement

contribution ρh f yh, axial load σ0, vertical reinforcement contribution ρv f y, ductility factor µ, and

shear span ratio he/lw. The conclusion that the MSJC equation was the best predictor for four of

the six variables studied and provided the best results overall.

8.3.3 Minaie

Minaie (2009) tested eight concrete masonry shear walls and compared the experimental

strengths to the strengths predicted using the 2008 edition of the MSJC code. The tests contained

both fully- and partially-grouted specimens. Minaie found that the MSJC shear equation was
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highly unconservative for partially-grouted shear walls but appeared to be reasonable for fully-

grouted walls. He concluded that the unconservative nature of the MSJC equation was due to it

being developed exclusively from fully-grouted shear wall tests.

To further validate his findings, Minaie compared his and previous experimental results

with several code shear strength equations. Minaie studied the results from 60 partially-grouted

shear wall tests in addition to the four he tested in his own research. The specimens included in

the analysis were collected from Ghanem et al. (1992, 1993), Schultz (1996a), Voon and Ingham

(2006), Matsumura (1987, 1988), Chen et al. (1978), and Hidalgo et al. (1978). The partially-

grouted wall data were organized into nine subsets and the mean and coefficient of variation were

determined for the ratios of experimental to predicted strength of the specimens within each subset.

The statistics calculated by Minaie for each partially-grouted subset are shown in Table 8.3. The

analysis showed that the MSJC shear equation was unconservative for partially-grouted masonry

shear walls. Minaie proposed four modifications to the MSJC shear equation: 1) to multiply the

shear area by An/Ag, 2) define the net area as the face shell area, 3) limit lw to the height of the

wall, and 4) use the unreinforced masonry shear equation. Minaie concluded that the first option

appeared to be the best modification to the code shear equation for partially-grouted walls.

Table 8.3: MSJC Equation Performance for Partially-Grouted Walls
(Adapted from Minaie 2009)

Subset n V̄/V ∗n COV

Minaie (2009) 4 0.44 0.10

Ghanem et al. (1992) 2 0.93 0.06

Ghanem et al. (1993) 2 0.89 0.08

Schultz (1996a) 6 0.64 0.05

Voon and Ingham (2006) 2 0.86 0.14

Matsumura (1987) 29 0.89 0.21

Matsumura (1988) 10 1.11 0.31

Chen et al. (1978) 6 1.14 0.10

Hidalgo et al. (1978) 3 0.93 0.13

Total 64 0.90 0.26
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Minaie also studied the results from 43 fully-grouted shear wall specimens collected from

Chen et al. (1978), Hidalgo et al. (1978, 1979), Sveinsson et al. (1985), Matsumura (1987, 1988),

Okamoto et al. (1987), Shing et al. (1990), Brunner and Shing (1996), and Voon and Ingham

(2006). The fully-grouted walls were organized into five subsets based on the institution where

the data were produced. The mean and coefficient of variation were determined for the ratios of

experimental to predicted strength of the specimens within each subset. The statistics calculated

by Minaie for each fully-grouted subset are shown in Table 8.4. Minaie observed that the MSJC

equation is conservative for fully-grouted masonry shear walls but that this conservatism decreased

with increasing specimen size.

Table 8.4: MSJC Equation Performance for Fully-Grouted Walls
(Adapted from Minaie 2009)

Subset n V̄/V ∗n COV

Shing et al. (1990) 9 1.29 0.11

Voon and Ingham (2006) 6 1.00 0.11

Sveinsson et al. (1985)
Chen et al. (1978)
Hidalgo et al. (1978, 1979)

10 1.26 0.23

Matsumura (1987, 1988)
Okamoto et al. (1987)

15 1.34 0.19

Brunner and Shing (1996) 3 1.59 0.16

Total 43 1.31 0.21
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CHAPTER 9. METHODOLOGY: MSJC MODEL ANALYSIS

9.1 Introduction

The purpose of this analysis is to validate or revise the grouted wall factor method currently

in use in the MSJC (2013) code. Before validation could be performed the mean and variance of the

ratio of the experimental strengths to predicted strengths needed to be computed. The mean value is

a measure of the accuracy of the predicted strengths compared to the experimental strength where

a value of unity represents a situation where the predicted values correspond well (on average)

with the experimental strengths. Values greater than unity represent a conservative case where

the experimental values are higher (on average) than the predicted strength and values less than

unity denote that the equation is unconservative. In the case of the MSJC shear equation the mean

strength is represented by the grouted wall factor γg.

The variance is a statistic denoting the precision of the predicted strengths in represent-

ing the experimental strengths. Sources of variation come from the mechanical properties of the

materials, variations in dimensions (tolerances), uncertainties in the theory underlying the design

definition of member strength, construction practices, and formula error. The effect of each source

of variance is unknown and cannot be distilled from the other sources of variation. The variance is

used as the basis of the resistance (or strength reduction) factor that is multiplied by the nominal

strength to obtain the design strength. Larger variances denote that a smaller resistance factor is

needed to account for the increased uncertainty for that particular material and member type.

9.2 Data

The preliminary steps of data scrutinization and data synthesization produced a data set

that was fit to be used in meta-regression. The specimens in the dataset were filtered to include

only those which included the shear failure model. The complete data set was partitioned into

154



one group for the fully-grouted specimens (Group 1) and a second group for the partially-grouted

specimens (Group 2) so that the statistics for each type of grouting could be computed individually

and compared with the other group. More information about the data in the two groups is detailed

in Chapter 7.

This analysis included only two variables, the experimental shear strength and the strength

predicted from the full MSJC (2013) shear equation with the upper limit included. The aim of this

study was to solve the over-determined, bivariate equation

vvvexp = β vvvpred + εεε (9.1)

for the mean correlation β coefficient between the predicted shear strength vvvpred and the exper-

imental shear strength vvvexp. Equation (9.1) presents an issue in that the errors εεε would be het-

eroscedastic because it has been observed that the variance increases with increasing vvvpred . This

issue was overcome by transforming the equation to produce

vvvexp � vvvpred = β + εεε∗ (9.2)

where εεε∗ = εεε � vvvpred and � denotes element-wise division. The experimental shear strength

was chosen for the numerator and the predicted strength for the denominator so that the resulting

fraction would produce the reduction factor needed for the mean predicted strength to equal the

experimental strength. This format is consistent with that used by Ellingwood et al. (1980) in their

analysis of the nominal values of various material strength equations.

The consequence of using the quotient of experimental and predicted strengths is that

the quotient has a normal ratio (or Gaussian quotient) distribution because it is the ratio of two

hypothetically-normally distributed variables. The actual distribution for the predicted values is

unknown because the values are the lesser of two calculated values from two separate equations

(the base equation and upper limit equation), each with a different distribution. The distribution of

the final MSJC predicted values were assumed to be normal because of the Central Limit Theorem

and the large number of values. The complex mathematics involved in describing the normal ratio

distribution are beyond the scope of this dissertation, so the data were fitted to the normal and log-
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normal distributions to determine which distribution more closely matched the actual distribution

of the data.

Hayya et al. (1975) found that for certain combinations of mean and variances, the nor-

mal ratio distribution can be approximated using a normal distribution. Since the variances of the

experimental and predicted shear values was unknown, the validity of the Hayya et al. (1975) sim-

plification could not be determined for these data. Monte Carlo analysis of several combinations of

means and variances was performed to compare how the normal ratio distribution would compare

with the normal and lognormal distributions. The results of the Monte Carlo analysis shown in

Figures 9.1, 9.2, 9.3, and 9.4 revealed that values of Gaussian Ratio probability distribution func-

tion appears to fall somewhere between those of the normal and lognormal distribution functions.

This finding suggests that either the normal or lognormal distribution would provide an appropriate

approximation to the distribution of each data group.

The difference between the actual and approximated distributions should have minimal

effect on the regression for three reasons. First, the range of the data in each of the two groups

is relatively small (less than an order of magnitude). Second, the law of large numbers should

have strong influence because the number of samples is relatively large in each data set. Lastly,

weighted regression were used to give greater influence to those studies with a smaller coefficient

of variation. In both data sets the specimens with greater weights were located near the center of

each group of data, decreasing the influence of the data at the tails of the distributions.

Since two potential distributions were available to represent the two different groups being

analyzed, it was possible that each of the two groups could be best approximated by a different

distribution. In this case the question would arise of which distribution to assume when comparing

the two data groups. This circumstance was complicated further by the introduction of weighting

into the analysis, which could influence how the data fit the two distributions and potentially change

which approximate distribution that the data group favored. These two analysis uncertainties were

overcome by analyzing the two data groups twice. The first analysis assumed an a priori lognormal

distribution for both groups of data and the second analysis assumed an a priori normal distribution

for both groups. The results from the two analyses were compared to select which distribution to

assume based on which distribution produced the overall smallest variances for both data groups.
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Figure 9.1: Monte Carlo simulation for distributions with equal means and variances

9.2.1 Weighting Criteria

Least-squares regression assumes that the variance is the same for all data in the analysis.

All of the data in the dataset came from a multitude of studies and each study demonstrated a

different amount of variance between its specimens from other studies. This analysis overcame the
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Figure 9.2: Monte Carlo simulation for distributions with equal means and small σ2

disparities in variance through the use of weighted least-squares regression. The specimens in the

dataset were grouped together by the research study which originally performed the experimental

tests. For studies which conducted a larger number of tests, the specimens in that group were

further divided into groups with similar characteristics.
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Figure 9.3: Monte Carlo simulation for distributions with equal variance and small µ2

The goal of the analysis is to determine a model which best estimates the true model—

which is unknown. Without knowing the true model, it is not possible to calculate the residuals

and variance of the data, but these statistics can be estimated by assuming that the given model

is the true model. In performing each weighted analysis, it was assumed that the variance of the

specimens was constant within each group because the specimens within each group were tested
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Figure 9.4: Monte Carlo simulation for distributions with equal variance and small µ1

by the same researchers using same test setup and similar materials. By making this assumption,

the variance for the specimens for each group could be estimated directly from the residuals. The

coefficient of variation for each group was calculated by dividing its standard deviation by the

mean ratio of experimental to predicted strengths of its specimens.
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The weighting chosen to use for each specimen in this analysis was the inverse of its group’s

coefficient of variation. This weighting scheme was chosen because it would give higher weights

to those groups with lower coefficients of variation, and provide a robust weighting method that

was guaranteed to converge (Carroll and Ruppert, 1988). It was felt that those groups with lower

coefficients of variation more accurately followed the true model and should be given higher in-

fluence in determining the model’s estimate. The weights for each group were not known initially

and it was not possible to calculate both coefficient estimates and weights explicitly. It was nec-

essary to use an iterative process to first calculate the coefficient value assuming equal weights for

all specimens, from which the residuals and weights could then be determined. The calculated

weights were then substituted back into the analysis and the process repeated until the coefficient

and weight values converged.

9.3 Analysis

The statistics for the two data group were used to verify the current MSJC equation factors

using two methods. The first method compared tolerance intervals for the two groups to determine

the lower bound for the partially-grouted group that corresponded to the same level of confidence

and population proportion as the fully-grouted group. The second method used LRFD theory to

compute a resistance factor for the partially-grouted group based on the parameters from both

groups. For this analysis the properties of the load equations employed in the formulation of the

ASCE 7 (2010) load factors were not available so the analysis was performed using a comparative

approach. Since the current MSJC (2013) equation was developed using fully-grouted data, it was

assumed that the shear resistance factor was correct for fully-grouted walls. Using this assumption

and the statistics calculated for the two data groups, the remaining properties for both groups could

be determined.

9.3.1 Tolerance Interval Method

The tolerance interval is a useful statistic that is similar to the more frequently-used con-

fidence interval. Despite the similarity, the tolerance interval is more appropriate for engineering

predictions than the confidence interval because the confidence interval considers only the sam-
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pling error while the tolerance interval considers both the sampling error and the variance of the

population. In effect, a confidence interval can show how careful the researchers were in testing

their shear wall specimens, but it gives no intimation about variance in the population of shear

walls themselves. The tolerance interval is a more versatile tool than the confidence interval be-

cause its width considers both the sampling error and the variance of the population. Part of the

increased power of the tolerance interval is because it requires one more input parameter than does

the confidence interval. Both intervals require the analyst to specify the confidence level but the

tolerance interval also requires the analyst to specify what proportion of the population should

fall within the interval. The addition of this additional parameter enables the analyst to segregate

the experimental variation from that of the materials and formula, which is a principal interest in

engineering uncertainty analysis.

Tolerance intervals were selected to compute and compare grouted wall factors γg and

resistance factors φv for each grouting type because they are better suited to accurately consider

the variance of the masonry shear wall population. As the number of samples increases to infinity

then the tolerance interval converges to the true population probability interval. Due to the large

number of specimens in both groups, the values calculated by the tolerance intervals would be

close to the actual values for resistance factor for each group.

The most appropriate values to use for the the confidence level and population proportion

were unknown and were back-calculated using the data from the fully-grouted data. This practice

was based on the assumption that the resistance factor for fully-grouted masonry was previously

determined to account for the appropriate level of statistical risk. The calculated confidence level

and population proportion from the fully-grouted data were then used to calculate the resistance

factor for partially-grouted walls that assumes the same level of risk as that for fully-grouted walls.

The difficulty with this method is that there were infinite combinations of confidence levels and

population proportions that produce a tolerance interval of 0.8 for the fully-grouted data. This

difficulty was rectified through the use of contour plots to compare infinite number of combinations

for each group and to select which values to use.
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9.3.2 LRFD Equation Method

The LRFD theory explained in Section 2.4.2 can be used to directly calculate resistance

factors when the distributions and statistics for the load and resistance equations are known. Since

the distributions and statics for the load equations were unknown, a similar approach to that above

was used in which the data and statistics from the fully-grouted group were used to determine the

unknown variables in Equation 2.11. The resistance factor for partially-grouted walls could then

be determined using the variables determined using the fully-grouted data. In the case of shear,

Equation 2.11 becomes

φ = exp
(
−αβ

σv

µv

)
Vexp

γgVn

= exp
(
−αβ

σv

µv

)
µv
γg

where µv and σv are the mean and standard deviation for the ratio of experimental to predicted

strength and the value for αβ is unknown. (Ravindra and Galambos, 1994) cites the use of 0.55

as a good estimate for α, but this still leaves the value for β unknown. Similar to the previous

approach, the value for αβ was determined using the data from the fully-grouted data and then

used to solve for the shear resistance factor φv for partially-grouted walls.

Equation 9.3 can be rearranged as

αβ = ln
(
µv
φγg

)
µv
σv

(9.3)

to solve for the value of αβ for masonry shear walls. Equation (9.3) was used to explicitly solve

for the resistance factor for partially-grouted shear walls.
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CHAPTER 10. ANALYSIS OF MSJC MODEL

10.1 Data Statistics

The unweighted data for solid and fully-grouted walls were plotted as the histogram shown

in Figure 10.1. The data appeared fairly symmetric with an unusually large data bin at about 1.05.

Two probability plots were generated for the normal and lognormal distributions, shown in Figure

10.2. Both the histograms and the probability plots revealed that the unweighted fully-grouted data

were better fit by the normal distribution.

The unweighted data for partially-grouted walls were plotted as the histogram shown in

Figure 10.3. The histogram shows a bimodal distribution with a slightly larger tail on the right

side than on the left. Neither of the two fitted-distributions show a better fit to the unweighted

partially-grouted data for the entire range of data. The two probability plots, shown in Figure 10.4,

show that the distribution of the partially-grouted data falls somewhere between the normal and

lognormal distributions.

There are at least two potential reasons that the fully-grouted data showed a more regu-

lar distribution than the partially-grouted data. First, the Monte Carlo simulations in the previous

chapters showed that the ratio distribution becomes less normal as the mean of the denominator

approaches zero. Since the mean of the partially-grouted data was lower than the mean of the

fully-grouted it would tend to deviate more from the normal distribution than the fully-grouted

data (Hayya et al., 1975). Second, the MSJC (2013) equation consists of two separate parts—

the strength function and the limit function—each with a different distribution. Since both parts

were originally formulated using fully-grouted experimental data, it is possible that the fits of the

partially-grouted data to the two parts are so different that their two means have become distin-

guishable from each other in the histogram.
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Figure 10.1: Histogram of prediction efficacy for fully-grouted data
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Figure 10.2: Probability plots of prediction efficacy for fully-grouted data
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Figure 10.3: Histogram of prediction efficacy for partially-grouted data
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Figure 10.4: Probability plots of prediction efficacy for the partially-grouted data
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10.2 Weighted Data Analysis

10.2.1 Normal Distribution

The distribution parameters were first computed for the weighted data assuming an a priori

normal distribution and are listed in Table 10.1. The value of the mean for the fully-grouted data

was close to unity, suggesting that the MSJC code equation is fairly accurate for predicting the

shear strength for fully-grouted masonry walls. The computed mean for fully-grouted walls was

about 0.97, which is quite a bit lower than the value of 1.16 obtained by Davis (2008). Reasons for

the difference are likely due to a higher number of specimens included in this analysis and the use

of data weighting. The computed mean strength for partially-grouted walls was close to the 0.75

value chosen by the MSJC for the grouted wall factor γg. This value is also lower than the value of

0.90 calculated previously by Minaie (2009) but is between the 0.82 and 0.68 values determined

by Nolph (2010) and Elmapruk (2010). The coefficient of variation for the partially-grouted data

group is 21 percent higher than that of the fully-grouted data group.

Table 10.1: Data Parameter Estimates for the
Normal Distribution

Full Partial

µ̂ 0.9686 0.7322
σ̂2 0.05160 0.04976

mean 0.9686 0.7322
COV 0.2345 0.3047

Tolerance intervals were computed from the mean and variance of the data and their width

was determined by the proportion of the population to be encompassed and the level of confidence

desired. Values to use for the population proportion and confidence level are not specified for

structural material reliability assessments. To overcome this uncertainty, the tolerance intervals

for a broad range of confidence levels and population proportions were calculated and plotted as

contour plots for both data groups, shown in Figure 10.5. The tolerance intervals show that the

partially-grouted walls require an overall greater greater reduction in strength than fully-grouted
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walls to maintain a similar failure probability. Both contour plots show that the lower bound is

more sensitive to changes in the population proportion than to changes in the confidence level.

10.2.2 Lognormal Distribution

The calculated parameters for the two data groups assuming a lognormal distribution are

given in Table 10.2. It should be noted that the parameters µ and σ2 for the lognormal distribution

are not the same as the mean and variance of the distribution, though they are functionally related.

The means calculated for the lognormal case were negligibly higher than those calculated for

the normal case (less that 0.5 percent difference between the two). The coefficients of variation

between the two datasets were notably different by 22 percent, which is smaller than the difference

between the two assuming a normal distribution. The reason for the decrease in the difference

between the two datasets for the lognormal case is principally due to the greater increase in variance

for the fully-grouted data (from 0.2345 to 0.2727, a 16 percent increase) compared to that for the

partially-grouted data (from 0.3047 to 0.3457, a 13 percent increase).

Table 10.2: Data Parameter Estimates for the
Lognormal Distribution

Full Partial

µ̂ -0.06395 -0.3639
σ̂2 0.07175 0.1129

mean 0.9723 0.7353
COV 0.2727 0.3457

Contour plots for tolerance intervals for the lognormal distribution are shown in Figure

10.6. The contours for both distributions show that the lognormal distribution produces lower

population proportions and confidence levels than the normal distribution for similar lower bound

values. This is due to the fact that the coefficients of variation for both data groups are larger for

the lognormal distribution, which causes the lower bounds to be pushed out farther from the mean

to compensate for the additional uncertainty. The notably higher variance of the partially-grouted

group compared to the fully-grouted group shows the lack of fit between the partially-grouted data

and the MSJC equation. The difference in variances would mean that the shear strength reduction
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Figure 10.5: Contour plots of tolerance intervals assuming a normal distribution
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factor for partially-grouted masonry walls should be less than that for fully-grouted walls because

the data spread is larger. To calculate the reduction factor necessary for the partially-grouted data

it will be necessary to use tolerance intervals.

The variances of both groups are noticeably smaller for the normal distribution. While

this was expected for the fully-grouted group, the probability plots for the partially-grouted group

suggested that the lognormal distribution might be a better fit the data. The comparison between

the values in Tables 10.1 and reftab:logn indicates that both distributions results in similar means

for both groups. From such a similarity it is reasonable to say that the current MSJC shear equation

performs satisfactorily well for fully-grouted walls. It is difficult to judge from the histograms and

probability plots how the weightings would affect the weighted distributions. The lower variance

from the normal distribution produced tolerance intervals that were narrower for both groups than

those from the lognormal distribution, as shown in Figure 10.6.

10.2.3 Summary

Analysis of the weighted data from both data groups showed that the normal distribution

produced the better fit for both the fully- and partially-grouted data groups because it produced

smaller coefficients of variation than did the lognormal distribution. Since the weighting factors

were inversely proportional to the coefficient of variation, and not to the variance, it was initially

suspected that the weighted data would favor the lognormal distribution because a characteris-

tic of the distribution is that it has a constant coefficient of variation. Though the unweighted

partially-grouted data showed a slightly better fit for the lognormal distribution, the fit to the nor-

mal distribution notably improved with the introduction of weighting. Both distributions resulted

in nearly the same values for the means of each data group.

The data analysis shows that the MSJC equation is sufficiently accurate for fully-grouted

walls but that it is very unconservative for partially-grouted walls. The precision of the MSJC shear

equation is better for the fully-grouted walls than for the partially-grouted walls by 21 percent,

meaning that the current assumption that the same resistance factor value can be used for both

fully- and partially-grouted walls is not valid. It is necessary to calculate the total reduction that

is necessary for calculated partially-grouted wall strength such that the probability of failure is the

same as that for fully-grouted walls.
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Figure 10.6: Contour plots of tolerance intervals assuming a lognormal distribution
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10.3 Tolerance Interval Method

The data parameters from the normal distribution were used to calculate the resistance

factor for partially-grouted walls since it was shown to be the better fit for both data groups. The

values of the population proportion and confidence level to use for the partially-grouted tolerance

interval could not be explicitly determined from the fully-grouted data because there were one

equation and two unknowns. One possible value could be calculated by assuming a value for

either the population proportion or confidence level, calculating the other parameter using the

fully-grouted data, then using both parameters to determine the lower-bound tolerance interval for

the partially-grouted data. This method would need to be repeated over a range of both parameters

to determine how the interval bound changed. A simpler method of performing this analysis is to

superimpose the contour from the fully-grouted tolerance intervals corresponding to a value of 0.8

over the contour plot of the tolerance intervals for the partially-grouted data, as shown in Figure

10.7.
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Figure 10.7: Fully-grouted bound on partially-grouted tolerance intervals for normal case
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The contour from the fully-grouted tolerance interval lies parallel to the contours for the

partially-grouted tolerance intervals, meaning that the relationship between partially-grouted and

fully-grouted data reliability is constant for all values of population proportion and confidence

levels. Predicted strengths for partially-grouted wall using the MSJC equation must be multiplied

by a net factor of 0.567 to have the same probability of failure as fully-grouted walls. Since it has

been shown that the current grouted wall factor of 0.75 accurately describes the nominal strength

for partially-grouted walls, the resistance factor for partially-grouted walls should be reduced from

0.80 to 0.75. This resistance factor was obtained by dividing the lower tolerance bound of 0.567

by the grouted wall factor value of 0.75.

The simplicity of the solution method meant that the analysis could be repeated with the

lognormal distribution parameters to compare the lower tolerance bound value with that deter-

mined above. The comparison of the contour lines from the lognormal cases shown Figure 10.8

produced a lower tolerance bound of 0.572, only slightly higher than that obtained for the normal

case. This result suggests that the relationship between the failure probability for partially- and

fully-grouted walls is not only independent of the population proportion or confidence interval, but

that it is only slightly sensitive to the distribution fitted to the data.

10.4 LRFD Equation Method

The resistance factor for partially-grouted walls was determined using the LRFD approach

from Galambos and Ravindra (1978) as explained in Sections 2.4.2 and 9.3.2. The value for the

coefficient αβ was determined by substituting the coefficient values for full-grouted walls into

αβ = ln
(
µV

φvγg

)
1
σV

µV

(10.1)

where

µV = 0.9686 (Table 10.1),

φ = 0.80 (MSJC, 2013),

γg = 1.0 (MSJC, 2013), and
σV

µV
= 0.2345 (Table 10.1)
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Figure 10.8: Fully-grouted bound on partially-grouted tolerance intervals for lognormal case

which results in the solution αβ = 0.8155 . The resistance factor for partially-grouted masonry

shear walls was determined using

φv = exp
(
−αβ

σV

µV

)
µV

γg
(10.2)

where

αβ = 0.8155 (see above),

µV = 0.7322 (Table 10.1),

γg = 0.75 (see Section 10.2.1), and
σV

µV
= 0.3047 (Table 10.1)

which results in the resistance factor φv = 0.7614; this value would be simply rounded to 0.75.
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CHAPTER 11. MSJC MODEL DISCUSSION AND RECOMMENDATIONS

11.1 Discussion

Both weighted data groups appear to more-closely follow the normal distribution than the

lognormal. Though the lognormal distribution was a better fit to the partially-grouted data in the

unweighted cases, the introduction of weighting created a better fit for the partially-grouted data

to the normal distribution. Though it could be argued that it would be more conservative to use

the values from the lognormal distribution, it is preferable to use the distribution that best fits

the data. The tolerance interval is already conservative by nature because it accounts for both

the experimental error and the variance of the material. Using the lognormal distribution would

unnecessarily inflate the variance of both data groups such that they do not represent the variance

of the data themselves.

The current analysis shows that the mean performance of current formula is approximately

0.97 for predicting the strengths of fully-grouted walls. This lies close to the typical range of 0.98

to 1.05 percent for most materials observed by Ellingwood et al. (1980) and is close enough to

unity that no change to γg is warranted for fully-grouted walls. The mean for the partially-grouted

data was 0.73, which is close enough to the value of 0.75 currently used for partially-grouted walls

to warrant no change to γg for partially-grouted walls.

Plots of the probabilities of failure for both grouting types assuming the ultimate loading

condition and using the current MSJC (2013) coefficient values are given in Figure 11.1. The

current factors listed in the MSJC code result in a probability of failure that is 21 percent higher

for partially-grouted masonry shear walls than for fully-grouted masonry shear walls. The increase

in failure probability for partially-grouted walls is due to the greater variance for partially-grouted

walls than for fully-grouted walls and needed to be accounted for in the design strength so that the

probabilities of failure for the two grouting type are similar. The value of the resistance factor φv for

partially-grouted masonry shear walls was determined to be 0.73 using tolerance intervals and 0.76
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using LRFD theory. Both methods grave values that were in good agreement with each other and

show that the resistance factor should be taken as 0.75 for partially-grouted shear walls (assuming

that γg = 0.75). The total reduction in strength obtained from these factors is φvγg = 0.80 for

fully-grouted walls and φvγg = 0.567 for partially-grouted walls.
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Figure 11.1: Strengths and probabilities of failure for current MSJC coefficients

There are two possible methods to correct the discrepancy in failure probabilities for the

two grouting types. Both methods involve adjusting one of the coefficients for partially-grouted

masonry shear walls so that the predicted design strength accounts for the same amount of un-

certainty as that for fully-grouted walls. The first method is to continue to use a single factor to

account for the difference in both shear strength and uncertainty between the two shear wall types.

The second method is to use the grouted wall factor to represent the difference in nominal strengths
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and to use separate strength reduction factors to account for the difference in variation between the

two grouting types.

11.1.1 Single Factor Method

In the method currently adopted by the MSJC (2013) code, the nominal shear strength

formulae are multiplied by the grouted wall factor γg. The factor is taken as 1.0 for fully-grouted

walls and 0.75 for partially-grouted walls, as explained in Section 1.2. Additionally, in the current

approach the same shear strength reduction factor φv is used for both fully- and partially-grouted

walls, which erroneously implies that the variance for fully-grouted and partially-grouted walls are

the same and that only the means differ. It has been shown that this assumption is not valid and that

difference strength reduction factors should be used for fully- and partially-grouted shear walls. It

is anticipated that code writers may not be in favor of introducing a different resistance factor for

partially-grouted walls, feeling that the grouted wall factor should be sufficient to account for the

uncertainty as well.

A single factor is able to correctly represent the mean, variance, or a combination of the two

statistics for partially-grouted walls, but not both. The continued use of a single factor in the MSJC

code would require that the combination be given priority in the determination of the grouted wall

factor. In order to maintain the same resistance factor for both types of grouting, the grouted wall

factor would need to be taken as 0.70 for partially-grouted walls, which is obtained by dividing

the total necessary strength reduction 0.567 by the resistance factor 0.80. The grouted wall factor

of 0.70 for partially-grouted walls maintains approximately the same probability of failure as solid

and fully-grouted walls, as shown in Figure 11.2. However, the nominal shear strength no longer

represents the mean shear strength for partially-grouted walls, which is represented in Figure 11.2

by the shift of the γg line to the left. The weakness of this approach is that the factors γg and φv

misrepresent the nominal strength and variance of the MSJC equation with regards to partially-

grouted shear walls and produces a problem for those who attempt to perform reliability analyses.
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Figure 11.2: Strengths and probabilities of failure for current approach

11.1.2 Improved Method

The improved method is similar to the current method in that it specifies a grouted wall

factor be used with the nominal shear strength equation. The difference in the improved approach

comes from the specification of two different shear strength reductions factor values: 0.80 for

fully-grouted walls and 0.75 for partially-grouted walls. In this improved approach, the grouted

wall factor accounts for the difference between the mean shear strengths of the two wall types, as

would be expected. Two different strength reduction factors are specified for fully- and partially-

grouted masonry which signifies to designers that there is also a difference in the variability of the

two wall types.

The single concern for the improved method is that there is an additional resistance factor

to be added to the masonry code and this could be viewed by code writers as making the code
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unnecessarily complex. Such a concern should be dismissed because 1) the added complexity in the

code from additional resistance factor is not only justified but necessitated due to the experimental

evidence and 2) there are examples in other codes of resistance factors that are considerably more

complex. For example, the ACI 318 (2011) resistance factor for flexure is a tri-linear function of

the flexural reinforcement strain which requires linear interpolation to determine the value to use.

The improved approach more accurately reflects the nature of the performance of partially-grouted

shear walls. It is important for engineers to have an accurate representation of the properties of

the materials, particularly for those performing reliability analyses. Reliability analysts typically

assume that the code formulae represent the mean strength and infer the coefficient of variation

from the reduction factor when the value is not provided (Bažant and Yu, 2006). To use the same

strength reduction factor for all shear walls would be to imply that the coefficients of variation for

the two grouting types are the same when, in fact, they are not.

The analysis determined that the grouted wall factor for partially-grouted masonry should

be taken as 0.75 and the appropriate shear resistance factor for partially-grouted should be taken

as 0.75. These two factors result in a probability distribution for the partially-grouted data that is

similar in appearance to that for the fully-grouted walls, as shown in Figure 11.3. The figure shows

the probability of failure for partially-grouted shear walls to be nearly the same as for fully-grouted

walls—with a difference of only 2 percent.

By comparing the current factors in Figure 11.1 and the proposed factors shown in Figure

11.3, it can be seen that the improved approach more correctly represents both the mean and

variance for partially and fully-grouted walls. The current single factor method is able to correctly

represent the mean and variance for fully-grouted walls but not for partially-grouted walls. The

inability of the current single factor method to represent both the mean and variance of partially-

grouted walls is due to the significant difference in variances between fully- and partially-grouted

walls. This limitation is surmounted in the improved approach by the introduction of a specific

shear resistance factor for partially-grouted walls.
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Figure 11.3: Strengths and probabilities of failure for improved approach

11.2 Conclusions

The normal distribution was determined to be the best fit for both weighted data sets be-

cause it resulted in the lowest variance for both groups. This is likely because the MSJC equation

was originally built assuming normal conditions. The calculated means for both groups are only

slightly different for the normal and lognormal distributions.

The MSJC shear strength equation correlates well with the weighted mean of the exper-

imental strengths for fully-grouted masonry shear walls. The grouted wall factor γg for fully-

grouted shear walls should be taken as 1.0. The analysis presented herein confirmed earlier sus-

picions from researchers that the MSJC shear strength equation is unconservative for partially-

grouted walls. The MSJC (2013) shear strength equation predicts strengths that are approximately
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73 percent of the weighted mean of the experimental strengths for partially-grouted walls. The

grouted wall factor for partially-grouted masonry should be taken as 0.75, as is currently is.

The MSJC shear strength equation correlates better with fully-grouted shear walls because

the variance for partially-grouted shear walls is notably greater than that for fully-grouted and solid

walls. The disparity in variances is likely because the MSJC shear strength equation was generated

using fully-grouted and solid shear wall data. The shear resistance factor φv for partially-grouted

masonry walls should be different from that for fully-grouted walls to represent the difference in

variances, and should be taken as 0.75.

11.3 Recommendations

The findings for the improved approach above can be easily incorporated into the MSJC

code and commentary. Recommended wording for revisions to the code and commentary are

presented in Appendix H.
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Part IV

Linear Regression Modeling

This part details the second analysis approach developed in this study to create a new linear

model for the prediction of masonry shear wall strength. Chapter 12 is a literature review of linear

model building techniques typically employed by statisticians and continues with a review of the

development of the current MSJC shear equation, its precursors, as well as other shear equations

from around the world. Chapter 13 introduces the methodology that will be used in analyzing

the previous shear models and in developing a new, improved shear model for masonry. Chapter

14 presents an investigation of the precursor models which led up to the current MSJC equation.

Chapter 15 is the principal focus of Part IV and details the development of a proposed shear model

to replace the current MSJC shear equation. Chapter 16 presents comparison and discussion of all

of the shear prediction models using the extensive dataset constructed for this study.

This analysis was the first to use multivariate least-squares regression to develop a model

for predicting masonry shear strength. The proposed model was the first to be developed using both

fully- and partially-grouted masonry data with the intention of being included in a masonry design

standard. The proposed model was developed using the largest dataset of fully- and partially-

grouted shear walls yet assembled for analysis. The goodness-of-fit statistics and scatter plots

show that the proposed model has the best performance characteristics out of all the models yet

developed for predicting masonry shear strength.
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CHAPTER 12. LITERATURE REVIEW: LINEAR MODEL DEVELOPMENT

12.1 Previously Developed Models

12.1.1 Matsumura

Matsumura (1987) developed a shear strength model with the purpose of determined a nu-

merical representation of the differences between fully- and partially-grouted walls and the effects

of shear span ratio, axial load, and shear reinforcement. Matsumura used the results of 80 shear

wall specimens, of which about two-thirds were partially-grouted and the remaining were fully-

grouted. Matsumura built his shear equation in a piecewise manner by examining the influence of

a single parameter, determining a mathematical representation of the parameter’s influence, nor-

malizing the experimental strength to include the parameter’s influence, then using partial residual

plots to examine the next parameter’s influence. The process was repeated multiple times until all

parameters were fully represented.

In analyzing his dataset, Matsumura observed that shear stress increased with increasing

prism strength. In subsequent plots and analysis he divided the experimental shear stress values by

the square root of the prism strength to eliminate the effects of prism strength on the visualization

of other data with respect to strength. The square root of f ′m was chosen because the shear strength

was not quite linearly correlated to the prism strength. By normalizing the shear strength he also

stabilized the variance of the data, which tended to increase proportionally with wall shear strength

and with prism strength.

Matsumura started his model building by adapting a model that he had previously devel-

oped for autoclaved cellular concrete members. He used the least squares method to determine

the masonry strength coefficients for walls without reinforcement. With the intercept determined

Matsumura then used scatter plots to visualize the relationships of the shear reinforcement on the

increase in normalized shear strength of the walls. Within each plot he connected specimens from

185



the same group together to examine the trends in the shear strength versus the experimental shear

strength. Matsumura noted that the effectiveness of shear reinforcement is larger in fully-grouted

walls than in partially-grouted walls. He proposed that the shear reinforcement contribution to the

shear strength of the wall is represented by

∆τu = 0.18γδ
√
ρh f yh f ′m (12.1)

where

γ = 1.0 for clay masonry

= 0.6 for concrete masonry

δ = 1.0 for fixed-fixed (double bending) type loading

= 0.6 for cantilever (single bending) type loading

ρh = horizontal reinforcement ratio, and

f yh = yield strength of horizontal reinforcement (MPa).

Matsumura next determined the influence of the aspect ratio on the strength of the walls. He

did so by modifying his previous equation for autoclaved cellular concrete members to include the

contribution of the shear reinforcement he had previously developed. Using the new representation

for shear strength, including provisions for the influence of shear reinforcement, Matsumura re-

normalized the shear strength to create a partial regression plot for the aspect ratio. He proposed

that the masonry component of the shear strength is related to the equation

KuKp *
,

0.38
M
V d + 0.35

+ 0.012+
-

(12.2)

where

Ku = 1.0 for fully-grouted masonry,
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= 0.8 for partially-grouted brick masonry,

= 0.64 for partially-grouted concrete masonry,

Kp = 1.16ρ0.3
t , and

ρt = effective flexural reinforcement ratio.

Having determined models for all of his shear strength components, Matsumura’s final

equation is given by

Vu =


KuKp *

,

0.38
M
V d + 0.35

+ 0.012+
-

√
f m + 0.18γδ

√
ρh f yh f ′m + 0.2σ0


103bj

(12.3)

where

h = effective height of wall,

d = effective depth of wall,

j = 0.875 d,

fm = fully-grouted compressive strength of masonry (MPa), and

σ0 = axial load force gross wall area (MPa).

The principal concern with the Matsumura model is that it is considered by many to be too complex

for use in a design standard (Schultz, 1994; Yancey and Scribner, 1989). Matsumura’s process was

slow and methodical and is practical for data from similar test series in which there is little inter-

series variation, as was the case with the Japanese tests which used similar materials, construction

practices, and test designs.

12.1.2 Architectural Institute of Japan

Okamoto, Yamazaki, Kaminosono, Teshigawara, and Hirashi (1987) compared their exper-

imental results to the strengths predicted by the Architectural Institute of Japan (AIJ) Reinforced
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Concrete Design Standards. They list no reference for the source of the equation and a review of

the literature has revealed no information (at least in English) about the development of the AIJ

equation. Okamoto et al. (1987) list the equation as being given by

τsu =



0.053ρ0.23
te

f ′m + 180
M

Vlw
+ 0.12

+ 2.7
√
σwhρwe + 0.1σ0e



Be j
BD

(12.4)

where

M
Vlw

= shear span ratio,

d = effective depth of wall,

j = 0.875 d,

B = wall width,

Be = equivalent wall width,

ρte = flexural reinforcement ratio,

ρwe = shear reinforcement ratio,

σwh = yield strength of shear reinforcement, and

σ0e = vertical axial stress.

12.1.3 Uniform Building Code

The 1988 edition of the Uniform Building Code contained an upper limit on masonry shear

strength. The limit was a tri-linear function of the shear span ratio of the wall and consisted of two

bounds, between which designers were allowed to linearly interpolate for intermediate values of

M/Vlw. The UBC upper limit equation is given by

Vn ≤




0.50
√

f ′m Ae for M
Vlw
≤ 0.25

0.33γg
√

f ′m Ae for M
Vlw
≥ 1.0

(12.5)

where Ae is the effective cross-sectional area of the wall.
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12.1.4 Blondet, Mayes, Kelly, Villablanca, and Klinger

Blondet et al. (1989) analyzed data from U.S. studies to develop procedures for predicting

the ultimate shear strength of fully-grouted masonry walls. Blondet et al. used the data from the

UC-Berkeley tests (Mayes et al., 1976b; Chen et al., 1978; Hidalgo et al., 1978, 1979; Sveinsson

et al., 1985) as the basis for developing their shear strength prediction formula for U.S. masonry.

Blondet et al. assumed the ultimate shear strength of masonry to be dependent on the compressive

strength of the masonry (i.e., prism strength) and the shear span ratio of the wall. They determined

that the horizontal reinforcement ratio ρh also had a significant contribution to the ultimate shear

strength while the axial load did not contribute remarkably to the strength.

Blondet et al. investigated two models for predicting the ultimate shear strength masonry

walls. The first model was developed from the base equation

vu =

[
β0 − β1

M
V d

] √
f ′m (12.6)

where the coefficients β0 and β1 vary depending on whether the wall is lightly reinforced (ρh <

0.2%) or heavily reinforced (ρh ≥ 0.2%) in the horizontal direction. Through analysis, Blondet

et al. developed the following expressions for concrete block

vu =




(
5.0 − 2.5 M

V d

) √
f ′m for ρh < 0.2%(

6.0 − 3.0 M
V d

) √
f ′m for ρh ≥ 0.2%

(12.7)

and for hollow clay block

vu =




(
6.0 − 2.5 M

V d

) √
f ′m for ρh < 0.2%(

7.0 − 3.0 M
V d

) √
f ′m for ρh ≥ 0.2%

. (12.8)

The second model was constructed from the assumption that the ultimate shear strength is

equal to the sum of masonry and horizontal reinforcement components. In this case the masonry

strength contribution is assumed to be equal to the masonry cracking shear strength. The masonry

cracking shear stress vcr is assumed to be functionally related to the principal tensile stress vcr0 as

189



given by

vcr =
[
v2

cr0 + (vcr0σ0/1.5)
] 1

2 (12.9)

where σ0 is the average applied axial compressive stress. The effect of axial load on the shear

strength was determined to be unimportant in predicting shear strength; thus, axial load is not

directly included as a parameter in the model, but it is considered in the calculation of the masonry

cracking strength in Equation (12.9).

In the second model, the contribution of the horizontal shear reinforcement vs is estimated

as

vs = ρh f y (12.10)

where f y is the yield strength of the horizontal reinforcement. Blondet et al. assumed that only the

horizontal reinforcement in the middle half of the wall was effective in resisting the shear force.

Rather than determining a regression coefficient for the horizontal reinforcement component of the

equation, they assumed the coefficient to be 0.5. In their final correlation of the equation with the

experimental data, Blondet et al. used the equation

vu = vcr +
1
2
vs (12.11)

where vcr is given by Equation (12.9) above. For cases where the axial load is null, Blondet et al.

(1989) determined that the tensile cracking stress for grouted concrete block can be predicted by

vcr0 =

(
3.5 − 1.75

M
V d

) √
f ′m (12.12)

and for grouted hollow clay brick by

vcr0 =

(
4.2 − 1.75

M
V d

) √
f ′m . (12.13)

Equation (12.12) or (12.13) is substituted into Equation (12.9) to determine the masonry shear

strength component.

190



Blondet et al. compared the values from the two models and determined that the two models

generally correlated well with each other. The greatest similarity between the two models was for

an axial stress value of about 100 psi. The observed model was found to be more conservative that

the latter model, at least in part due to the discontinuity at ρh = 0.2% but also from the neglecting

of the effects of axial load. They concluded that both models provided adequate correlation with

the experimental measurements.

Blondet et al. did not describe the process they used in determining the coefficients for

their models. Their process of reducing the problem to a set of bivariate data and his repeated use

of the term “correlation” suggest that the coefficient values where either determined graphically or

through the use of simple bivariate analysis. Their dataset contained a sufficient sample size that

they could have used multivariate regression to determine more information from his data. Rather

than assuming the shear reinforcement coefficient to be 0.5, multivariate regression would have

revealed a superior estimate of the value and would have provided a means to test their hypothesis

about what portion of the shear reinforcement contributed to the ultimate shear strength.

12.1.5 Shing, Schuller, and Hoskere

Shing et al. (1990) performed tests on 22 square masonry shear walls to examine the effi-

cacy of different design formulae on predicting the flexural and shear strengths of masonry shear

walls. The flexural strength prediction formula investigated was that contained in the 1988 Uni-

form Building Code. Those provisions were based on simple flexural theory—assuming that plane

sections remain plane and that β + 1 = 0.85—identical to the provisions in the ACI 318-83 code

for reinforced concrete. Shing et al. considered the shear strength prediction formula contained

in the 1988 UBC in light of the masonry understanding at the time and concluded that the UBC

specifications for masonry shear strength were overly simplistic because they did not account for

factors such as axial load, vertical reinforcement, or aggregate interlock.

Shing et al. used the 1988 UBC shear equation for masonry as the basis for developing their

shear equation. They adopted the general assumption, at that time, that the cracking strength of the

masonry is proportional to the square root of the compressive strength, though they cite no refer-

ences for the basis of this assumption. They plotted the normalized cracking shear stress against

the axial stress and showed that there is a linear relationship between the cracking strength and
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the axial load. After performing a similar analysis for vertical and horizontal reinforcement Shing

et al. found that there is no apparent correlation between the cracking strength and the amount of

vertical or horizontal reinforcement. They hypothesized that the horizontal reinforcement at the

tops and bottoms of the walls do not contain sufficient anchorage to develop tensile resistance and

proposed that the horizontal reinforcement component be given by

Vs =

(
l − 2d′

s
− 1

)
Ah f yh (12.14)

where d′ is the distance from the extreme vertical steel to the nearest end edge of the wall.

Shing et al. used a similar approach to that of Blondet et al. (1989) in that they assumed

a relationship for the horizontal shear reinforcement contribution then calculated coefficient esti-

mates for the masonry component of the equation. The two differed in that Shing et al. (1990)

assumed that the axial load and vertical reinforcement also contributed to the masonry strength.

Using a least-squares fit, Shing et al. found the average increase in normalized masonry strength

for axial load to be about 0.0025 and for vertical reinforcement to be between 0.0014 and 0.0016.

They proposed using the average value for both terms and proposed that the masonry component

be calculated by

Vm = 0.083
[
0.0018

(
ρv + σ0

)
+ 2

]
Ag

√
f ′m (12.15)

Using their equation, the predicted strength of masonry shear walls is given by the sum of Equa-

tions (12.14) and (12.15).

Shing et al. compared the predicted values from their new equation to those from the UBC

equation and to their experimental results. In every case their equation produced conservative

values that were substantially more accurate than those from the UBC equation. To further validate

their new equation, Shing et al. considered the test results from Sveinsson et al. (1985). Shing et al.

determined that the correlation of the new data with their new equation was good, but it did not

closely capture the variation in shear strength in the Sveinsson et al. data due to inconsistencies in

the data. They further noted that the UBC equation did not underpredict the shear strength for the

Sveinsson data to the same large degree as it did for their own data. They explained that this was

likely due to differences in testing procedures and in wall aspect ratios.
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The Shing et al. equation was developed by reducing the data to two bivariate cases, one for

normalized shear stress versus axial load and a second for normalized shear stress versus vertical

reinforcement. The weakness of this approach is that it does not provide a mechanism for testing

whether their assumed horizontal reinforcement contribution relationship is accurate. Even without

analyzing the full model for the multivariate case, their assumption for the horizontal reinforcement

contribution could have been examined through partial residual plots.

12.1.6 Fattal and Todd

Fattal and Todd (1991) performed a comparative study of four different equations and their

ability to predict the ultimate shear stress in masonry shear walls. They studied experimental data

for 62 fully-grouted, reinforced wall specimens from four different experimental studies. The four

experimental studies included were Shing et al. (1988, 1990), Matsumura (1987), Okamoto et al.

(1987), and Sveinsson et al. (1985). All experimental studies used cyclic, displacement-controlled

loading histories characterized by increasing amplitudes until failure of the wall specimen was

induced. All of the walls included by Fattal and Todd in their dataset failed in the shear mode.

Fattal and Todd compared previously-developed shear equations from four difference sources.

The first equation was developed and reported by Shing et al. (1988, 1990) based on their tests

conducted at the University of Colorado at Boulder. The second equation was developed and re-

ported by Matsumura (1987) based on his other masonry shear wall tests conducted in Japan. The

third equation was prescribed by the Architectural Institute of Japan (AIJ) and was examined by

Okamoto et al. (1987) to test its validity for predicting masonry shear wall strength. The fourth

equation was from the 1988 edition of the Uniform Building Code then in use to provide a lower

bound for the shear capacity of masonry walls (NEHRP, 1997).

Fattal and Todd standardized the four equations to use the same notation and segmented

each equation into the respective masonry, horizontal reinforcement, and axial load components.

For equations which included the contribution of the vertical reinforcement, this contribution was

grouped together with the masonry strength component. Each equation was used to predict the

shear strength of all 62 of the test specimens to compare them with the experimental results. Ac-

tual, measured dimensions and material strengths were used in each equation. The experimental
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strength considered for each specimen was the average of the peak ultimate strengths for both

loading directions (i.e., push and pull).

Fattal and Todd found that the UBC equation is not adequate in predicting masonry shear

strength. They determined that the performance of the AIJ equation is not as consistent as that

for the Matsumura and Shing et al. equations and concluded that the AIJ equation gave too much

weight to the contribution of the interior vertical reinforcement. They observed that the perfor-

mance of the Shing et al. equation was good for only a limited range of variables because it had

a tendency to over-predict the contribution of the horizontal shear reinforcement. They concluded

that the Matsumura equation generally produced predicted values closest to the actual values, but

it also displayed inconsistency due to the parametric form of the horizontal shear reinforcement.

They proposed that the form of the horizontal reinforcement parameter in the Matsumura equation

be adjusted and all the coefficient values be re-evaluated.

12.1.7 Anderson and Priestley

Anderson and Priestley (1992) assembled data from three primary sources: the University

of California-Berkeley, the University of Colorado-Boulder, and the Building Research Institute of

Japan. The Berkeley data was filtered down to those specimens tested by Sveinsson et al. (1985)

because of uncertainty regarding the magnitude of the axial load at failure and the loading arrange-

ment of the other tests. This uncertainty in the axial load magnitude was created by the tendency of

the axial load to increase with higher levels of displacement induced by the loading arrangement.

Anderson and Priestley felt that those tests from Mayes et al. (1976b) were unsuitable because

double pier sections were tested and the shear strength values from these specimens represented

the average from two piers. Anderson and Priestley included the data of twelve specimens from

the Sveinsson et al. (1985) test.

Anderson and Priestley also included data from 16 of the 22 tests carried out by Shing

et al. (1989) at the University of Colorado-Boulder. The Japanese tests were conducted by several

researchers across Japan, particularly by Matsumura (1987) at Kanagawa University. Out of the

extensive Japanese dataset, Anderson and Priestley selected 37 specimens to include in their anal-

ysis. They chose specimens which failed in the shear mode, including those specimens which also

demonstrated characteristics of flexural or sliding failure.
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Anderson and Priestley assume the shear strength is governed by the equation

Vu = Vm + Vv + Vp + Vs (12.16)

where Vm is the masonry component, Vv is the vertical reinforcement component, Vp is the axial

load component, and Vs is the horizontal reinforcement component. Each of the four components

is given by

V m = k1k2b1
√

f ′mlwt (12.17)

Vv = b2 Av f yv (12.18)

Vp = b3P (12.19)

and

Vs = b4
Ah

s
f yhlw (12.20)

where

k1 = the aspect ratio coefficient,

k2 = the ductility coefficient,

lw = the length of the wall,

t = the thickness of the wall,

Av = the area of vertical steel in the middle third of the wall,

f yv = the yield strength of the vertical reinforcement,

Ah = the area of the horizontal reinforcement,

s = the vertical spacing of the horizontal reinforcement, and

f yh = the yield strength of the horizontal reinforcement.

Anderson and Priestley determined the b parameters by fitting the above equation to the

experimental data. They noted that the data were not sufficient to determine values for the k1

and k2 coefficients with any degree of confidence. They assumed k1 to be unity for aspect ratios

greater than one, which was the case for all of the wall specimens included within their analysis,
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and assumed k2 to also be unity. Their definition of aspect ratio was defined wholly on geometric

dimensions and is not the same as the shear span ratio which is currently in use. Anderson and

Priestley recommended that k2 be equal to unity for a ductility factor up to 2 and that it should

linearly decrease to zero at a ductility factor of 4.

Anderson and Priestley used a manual, iterative process to evaluate the fit of parameters

to their dataset by varying the parameter values and comparing the calculated strength values to

the experimental strength values. They initially chose parameters so as to minimize the sum of

(Vu − Vt )2/ (VuVt ) where Vt is the published shear strength. They determined that these values

typically did not produce the minimum deviation of Vu/Vt from unity.

The optimum fit for the concrete block data, using their criterion, produced the four param-

eters

b1 = 0.26, b2 = 0.22, b3 = 0.0, and b4 = 0.54 .

The values that minimized the deviation of the data about Vu/Vt = 1 are given by

b1 = 0.24, b2 = 0.25, b3 = 0.0, and b4 = 0.50 .

They included these later values into Equation (12.16) to produce the concrete block shear strength

equation given by

Vubl = 0.24
√

f ′mlwt + 0.25P + 0.50
Ah

s
f yhd (12.21)

Inspection of this equation reveals that at some point in their report they transposed the param-

eters b2 and b3 from how they were initially defined. Following the same procedure to find the

parameters for the brick data produced the equation

Vubr = 0.12
√

f ′mlwt + 0.25P + 0.50
Ah

s
f yhd (12.22)

for the strength of brick shear walls.
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The approach employed by Anderson and Priestley had the appearance of least squares

regression because they sought to minimize the sum of the squares of the error—the difference be-

tween Vu and Vt . Their dividing of the square of the error by the product of the two terms appears to

be an attempt to account for the otherwise heteroscedastic nature of the equation and data. The het-

eroscedasticity of the data come from the fact that the variance increases with increasing Vt . With

limited explanation about the methodology used to calculate their coefficient values, it appears that

they used an interative “guess-and-check” methodology to find their parameter coefficient values.

The exact values could have been found explicitly using the multivariate least-squares regression

approach given by Equation (3.36). However, to solve the equation explicitly, they would have

needed to set up their problem in mathematically terms consistent with the assumptions of least-

squares regression.

The goal of their analysis was to find the solution for the parameters in Equation (12.16)

that best fit the data and minimized the error. To do so, one would consider the error ε from the

vector equation

vvvt = vvvu + εεε (12.23)

which is equivalent to

εεε = vvvt − vvvu (12.24)

The explicit solution can be found by minimizing the sum of the errors

εεε′εεε = (vvvt − vvvu)′ (vvvt − vvvu)

=
∑

(vt − vu)2
i

Instead, Anderson and Priestley (1992) assumed the error term was given by

∑ (vt − vu)2
i

(vuvt )i
(12.25)
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and by so doing were actually finding the parameters that solved the equation

vt
√
vuvt

=
vu
√
vuvt

+ ε (12.26)

or, in other terms,

√
vt

vu
=

√
vu

vt
+ ε (12.27)

This transformation cannot be solved explicitly. Their choice of terms to minimize the fit to data

produced the unintended consequence of finding solutions for a different equation from what they

were trying to solve.

Anderson and Priestley noted that their error term did not produce the minimum variance

for the difference between Vu/Vt and unity. To achieve this goal would have necessitated that they

have chosen the error term as

ε =
vu

vt
− 1 (12.28)

which is not equivalent to their initial choice in Equation (12.25) because

(
vu

vt
− 1

)2

=
v2

u

v2
t
− 2

vu

vt
+ 1 ,

vu

vt
+

vt

vu
− 2 =

(vt − vu)2

vuvt
(12.29)

This latter choice in error term is equivalent to determining the parameters for the equation

1 =
vu

vt
+ ε (12.30)

which is a reparameterization of the original model presented in Equation (12.16).

The reparameterized equation has the benefit of removing heteroscedasticity from the model

by eliminating the correlation between the strength and the variance. This equation can also be

solved explicitly using linear least-squares regression. However, the quotient vu
vt

has a normal

ratio distribution and, depending on how the distribution differed from the normal distribution,

could have conflicted with the normality assumption requirement of least squares regression. In
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either case, the regression still would produces estimates of the parameters, but if the departure of

the ratio distribution of the quotient vu
vt

from normality is too great, then the resulting coefficient

estimates could not be guaranteed to have minimum variance. Additionally, the parameters and

variance would not be jointly sufficient to fully describe the model, which would run counter to

the purpose of the analysis. From a statistical standpoint, it would have been better for them to

transform their data by dividing it by the shear area and/or masonry compressive strength, as was

done by Matsumura (1987).

12.1.8 Fattal

Fattal (1993) performed a study of 72 tests on partially-grouted walls from three different

studies. He selected 51 wall tests performed by Matsumura (1987), 11 tests performed by Chen

et al. (1978), and 10 tests performed by Yancey and Scribner (1989). All of the walls Fattal chose

to include in his analysis were tested with fixed-fixed boundary conditions, in which the top and

bottom bed joints were kept parallel throughout the whole test. All of the walls were tested under

displacement-controlled, cyclic-loading conditions where the drift amplitude was gradually in-

creased until shear failure was observed. Fattal included both clay masonry and concrete masonry

samples in his study.

Each test specimen had two shear failure strengths, one for each direction. Fattal used the

average of the two shear strengths to represent the ultimate shear strength for each wall. Fattal

further excluded wall specimens from his study that appeared to have failed in flexure. Each

researcher performed masonry prism tests to determine the compressive strength of the masonry

used in their respective wall specimens.

The purpose of the Fattal study was to examine the validity of the Matsumura equation for

masonry shear wall strength to partially-grouted walls and, if necessary, make improvements to it.

He took the test parameters from each wall specimen and put them into Matsumura’s equation to

find the predicted strength for each wall. Fattal then used linear regression to compare the pre-

dicted and measured strengths for each researcher and for the data as a whole. Additionally, Fattal

investigated the effects of axial load, aspect ratio, horizontal reinforcement ratio, and compressive

strength.
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Fattal concluded that the Matsumura equation correlated well with the data set from his

own study, but that the correlation varied when applied to data sets from other researchers. The

equation showed poor correlation for walls without vertical reinforcement and could not be used at

all for unreinforced walls. In all, the predicted strengths from the Matsumura equation varied from

23 to 180 percent of the measured strength, with less than half falling within ±20 percent. For most

of the samples, the regression line for the scatter plot showed that the equation was unconservative

in predicting shear strength. Fattal made improvements to the Matsumura equation, which is given

by

vn = vm + vs + vp

=

{
kuk0

(
0.5(

h
d

)
+0.8

+ 0.018
)
ρ0.7
v

√
f ′m(g) f yv

+0.011k0γδ f yhρ
0.31
h

+0.012 f ′m + 0.2σ0(g)
}

0.875t dv

(12.31)

where

vn = predicted ultimate masonry shear strength (MPa),

k0 = 1.0 for fully-grouted masonry,

= 0.6 for partially-grouted masonry,

ku = 1.0 for fully-grouted masonry,

= 0.8 for partially-grouted brick masonry,

= 0.64 for partially-grouted concrete masonry,

kp = 1.16ρ0.3
ve ,

h = height of wall,

dv = effect depth of wall,

f ′m(g) = fully-grouted compressive strength of masonry (MPa),

σ0(g) = axial stress for gross wall area (MPa),

γ = 1.0 for fully-grouted masonry,

= 0.6 for partially-grouted masonry,

δ = 1.0 for fixed-fixed (double bending) type loading,

= 0.6 for cantilever (single bending) type loading,
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ρh = horizontal reinforcement ratio,

f yh = yield strength of horizontal reinforcement (MPa), and

ρve = effective vertical reinforcement ratio.

His new equation predicted strengths from 43 to 146 percent of measured strength, with 68 percent

of the specimens falling within the ±20 percent interval. Fattal labeled his equation as a “first step”

and stated that it would need to be compared with future data sets in order to establish its validity.

12.1.9 TCCMaR

The Technical Coordinating Committee on Masonry Research (TCCMaR) considered the

proposed equations from Matsumura (1987), the Architectural Institute of Japan (Okamoto et al.,

1987), Blondet et al. (1989), Shing et al. (1990), and Anderson and Priestley (1992) in developing

a new shear equation for predicting the ultimate shear strength of U.S. masonry. These equations

were scrutinized in light of the research performed as part of the TCCMaR program. The equations

were compared to the results of 62 masonry shear wall specimens from four experimental studies:

Sveinsson et al. (1985), Matsumura (1987), Okamoto et al. (1987), and Shing et al. (1988). These

appear to be the same 62 specimens considered by Fattal and Todd (see Section 12.1.6).

The TCCMaR members decided to use components from the Blondet et al. (1989) and

Anderson and Priestley (1992) equations. The Blondet et al. (1989) form was used for the masonry

strength component because the UC-Berkeley studies (Mayes et al., 1976b,c; Chen et al., 1978;

Hidalgo et al., 1978, 1979; Sveinsson et al., 1985) concluded that the shear span ratio M/V d was

influential to the masonry shear strength and that it should be included in the equation. TCCMaR

determined that there was little numerical difference between the two forms of the axial force

component, so they chose the Anderson and Priestley (1992) form of 0.25P. Both Blondet et al.

(1989) and Anderson and Priestley (1992) used a coefficient of 0.5 for the horizontal reinforcement

contribution. The final form of the TCCMaR equation for shear strength prediction is given for

imperial units by

vn =

(
4 − 1.75

M
V d

) √
f ′m + 0.5ρh f yh + 0.25σ0 (12.32)
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and for SI units by

vn = 0.083
(
4 − 1.75

M
V d

) √
f ′m + 0.5ρh f yh + 0.25σ0 (12.33)

The TCCMaR study investigated whether the vertical reinforcement contributed to the

overall shear strength. Two values were considered for the vertical reinforcement contribution:

0.25ρv f yv and 0.25ρvi f yv. The first value considered the ratio for all vertical reinforcement ρv and

the second value considered the ratio for only the interior vertical reinforcement ρvi (neglecting the

flexural reinforcement in the end cells). They determined that the correlation of the equation with

the experimental data was not as good when either of their forms for the vertical reinforcement

contribution was included in the equation.

The reason the vertical reinforcement was neglected was likely not because it wasn’t in-

fluential, but because the original equation from Blondet et al. (1989) did not consider the contri-

bution from vertical reinforcement. Depending on the method of analysis performed on the data

from Anderson and Priestley (1992), the vertical reinforcement can have a statistically significant

contribution to the shear strength; however, Anderson and Priestley (1992) likely did not find this

contribution to be significant because of their analysis methods. In both cases, the coefficients

they chose where likely not compatible with the inclusion of an additional parameter for vertical

reinforcement, therefore adding in the vertical reinforcement contribution would artificially inflate

the errors and make the correlation appear worse. If the equation parameter coefficients had been

determined through multivariate regression, then the addition of a parameter for the vertical rein-

forcement could not have made the correlation worse. This is because the addition of an additional

parameter to a linear regression can never make the correlation worse, it can only improve the

correlation or have no effect (Rencher and Schaalje, 2008). The proper method to judge whether

a parameter should be included is to build a model with the parameter included and to inspect

whether the parameter’s p-value is statistically significant.

12.2 Discussion

Equation (12.32) developed by the TCCMaR members is the basis for the current shear

equation in the MSJC code. The MSJC equation differs only by specifying upper limits for the
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predicted strength which were taken from the UBC and, recently, by incorporating a factor to ac-

count for the effect of partial grouting. The TCCMaR equation, and hence the MSJC equation,

suffers from the same limitations as the other equations developed by Blondet et al. (1989), Shing

et al. (1990), and Anderson and Priestley (1992). These equations are all promoted as being empir-

ical equations developed from experimental research data. Though the equations were developed

in light of the experimental data, only the masonry contribution portion of each equation can be

classified as being empirical.

An empirical equation is one that is developed solely from observations or experimental

data (OED, 2013). For each of the equations to be classified as being empirical, the coefficient

for each parameter in the equation should have been determined through multivariate regression

analysis based on the experimental observations (or data). In reality, many researchers determined

the coefficients for all parameters but the masonry contribution based on assumptions made using

logic, theory of mechanics, and engineering judgment without the influence of the experimental

data. Unfortunately, no researchers attempted to validate their assumptions with the experimental

data.

Anderson and Priestley (1992) differed from the other researchers in that they attempted to

use optimization to implicitly estimate the coefficients for the entire model. Their approach was

good but was unable to surmount two obstacles to produce the best estimates for their parameter

coefficients (i.e., those with minimum variance). Since the coefficients for all of the parameter

values are jointly distributed, one parameter value could not be changed without influencing the

others. Using their manual, iterative process would have made it difficult to implicitly solve for the

coefficient values because they would have changed with each iteration. Though the solution could

have equally been found by using optimization techniques or multivariate least-squares regression,

it appears that they may not have had familiarity with these tools. Second, the error models they

used would have given disproportionately larger influence to some specimens than to others.

In summary, the current MSJC equation was developed based on the equations of previous

researchers, each using a different approach and dataset. Though the equation showed a relatively

good fit for a relatively small set of data from four studies, until now it has never been fully vetted

against a larger, comprehensive dataset. Linear least squares regression produces unbiased coeffi-

cient estimates with minimum variance, but no researchers have used this approach in developing
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their models. Many of the researchers showed some understanding of the principles of least squares

fit and of bivariate regression, but it is not apparent that any of them understood that the tools that

could determine the correlation between a bivariate pair of data might also be used for a multivari-

ate case. This is unfortunate considering that this method had already been well-understood and

employed for many decades prior to these studies.
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CHAPTER 13. LINEAR MODELING METHODOLOGY

13.1 Introduction

This chapter explains the methodology undertaken in building and fitting models to the

experimental data. The theoretical principles employed in fitting a linear model to data using least-

squares regression are detailed in Chapter 3 and Appendix B. The first steps of this analysis are

to refit the models of Blondet et al. (1989) and Anderson and Priestley (1992) and their respective

datasets to determine what values they would have obtained had they used multivariate regression

in their analysis. This will provide a means of examining the effectiveness of the parameters

they chose and provide a starting point for the development of the parameters for the subsequent

analysis. The results of these two analyses will be used to more accurately gauge the results of the

subsequent analysis without the bias caused by their simplifying assumptions.

The second part of this analysis will be to develop different models and to compare how

each of these models fits to the dataset. There are multiple parameters that can be developed from

the different mechanical theories for masonry. Each of these parameters can be combined in mul-

tiple ways to produce different models. These models will be fitted and compared to determined

which should be selected as the final model.

13.2 Analysis of Old Model

The current predictive model in the MSJC code was developed by TCCMaR members

based on the models proposed by Blondet et al. (1989) and Anderson and Priestley (1992). A

careful review of these models revealed that they were not developed using multivariate linear

regression, but were developed using the methods and assumptions explained in Chapter 12. As

these models have been around now for over two decades, members of the masonry community

may be naturally biased against any proposed model that departs from what they have previously
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developed. It was important to reanalyze their parameters and data to determined what coefficient

values they would have obtained if they had used the same multivariate linear regression methods

as those to be used in this dissertation. The results of this analysis provided an objective means to

scrutinize their final models by comparing them with the new models developed in Chapter 14.

The data used in this analysis were taken directly from their respective reports and were

separate from the dataset created for this study and detailed in Chapter 6. The dataset for the

Blondet et al. model is given in Table 13.1 and was taken directly from Tables H-1 and H-2 in

Blondet et al. (1989). The only difference from the original table is the addition of a column for

the reinforcement yield strength f y, which they stated as being 60, 000 psi. The dataset for the An-

derson and Priestley model is given in Table 13.2 and was take directly from Table 1 in Anderson

and Priestley (1992). Some of the variable notation was changed to avoid confusion with other

variables in use herein and blank or unused columns and rows were omitted for sake of presenta-

tion. Blondet et al. (1989) and Anderson and Priestley (1992) had both previously narrowed their

datasets down to those specimens which failed in one of the shear modes, so no further scrutiny of

their published datasets was necessary. The dataset from Blondet et al. was given in imperial units

and was not converted to SI units so that the masonry contribution coefficients calculated in this

analysis could be directly compared to those that they determined.

Each of the models from Blondet et al. and Anderson and Priestley were first fitted to the

respective datasets using the parameters and data as provided in the original reports. In the case

of Blondet et al. (1989), the model parameters had units of stress because the data was normalized

by the gross area of each specimen. The Anderson and Priestley (1992) model was analyzed

using units of force. However, the two forms of error terms they used in their analysis were

normalized by either the square root of the product of the experimental and calculated forces or

by the experimental force. As noted earlier in Section 12.1.7, the first error term cannot be solved

explicitly using least-squares linear regression and Anderson and Priestley discontinued the use of

this term because models fitted with this scheme did not meet their optimization criterion. The

Anderson and Priestley data was analyzed twice, once for their original model and a second time

using their second error term.

The two models from Blondet et al. and Anderson and Priestley were compared to the

final TCCMaR model (NEHRP, 1997) using the dataset from Fattal and Todd (1991). The Fattal
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Table 13.1: Summary of Experimental Data (Adapted from Blondet et al. 1989)

Specimen M/V d ρc ρh f ′m f y vcr fa vu
(%) (%) (psi) (psi) (psi) (psi) (psi)

HCBL 21-1 1.00 0.92 0.00 2432 60000 144 67 135
HCBL 21-3 1.00 0.42 0.00 2256 60000 152 68 145
HCBL 21-5 1.00 0.92 0.00 2592 60000 114 -145 106
HCBL 21-7 1.00 0.92 0.24 2805 60000 226 -37 212
HCBL 21-9 1.00 0.00 0.00 2519 60000 164 292 154
HCBL 11-1 0.50 0.17 0.00 1330 60000 135 120 123
HCBL 11-3 0.50 0.17 0.00 1833 60000 134 69 127
HCBL 11-4 0.50 0.17 0.07 1833 60000 171 107 165
HCBL 11-5 0.50 0.43 0.29 1833 60000 226 144 199
HCBL 11-7 0.50 0.43 0.00 1905 60000 180 91 146
HCBL 11-9 0.50 0.43 0.15 1905 60000 155 114 146
HCBL 11-11 0.50 0.17 0.41 1330 60000 240 139 231
HCBL 11-13 0.50 0.17 0.29 1357 60000 223 273 283
HCBL 11-15 0.50 0.45 0.29 1357 60000 236 437 345
HCBL 11-17 0.50 0.45 0.39 2829 60000 241 400 357
HCBL 11-18 0.50 0.44 0.39 2829 60000 299 400 357
HCBL 11-19 0.50 0.45 0.39 2381 60000 270 252 330
HCBL 11-20 0.50 0.45 0.20 2381 60000 245 400 342
HCBL 11-21 0.50 0.45 0.20 2381 60000 220 400 324
HCBL 11-22 0.50 0.44 0.20 2381 60000 134 100 227
HCBL 11-23 0.50 0.45 0.10 2381 60000 222 400 278
HCBL 11-24 0.50 0.45 0.30 2381 60000 222 400 353
HCBL 11-25 0.50 0.45 0.20 2381 60000 244 252 385
HCBL 11-26 0.50 0.45 0.20 2381 60000 319 400 349
HCBL 12-1 0.25 0.30 0.00 2988 60000 200 85 310
HCBL 12-2 0.25 0.30 0.10 2988 60000 206 86 330
HCBL 12-3 0.25 0.30 0.20 2988 60000 215 83 398
HCBL 12-4 0.25 0.30 0.30 2988 60000 261 127 344
HCBL 12-5 0.25 0.30 0.40 2988 60000 226 106 361
HCBL 12-6 0.25 0.30 0.58 2988 60000 244 102 413
HCBR 21-1 1.00 0.00 0.00 4502 60000 267 580 244
HCBR 21-2 1.00 0.51 0.00 4502 60000 238 368 206
HCBR 21-4 1.00 0.51 0.11 4502 60000 308 415 273
HCBR 21-6 1.00 0.51 0.16 4502 60000 343 492 317
HCBR 21-8 1.00 0.51 0.21 4502 60000 346 485 321
HCBR 21-9 1.00 0.51 0.26 4502 60000 348 476 307
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Table 13.1: Summary of Experimental Data (Continued)

Specimen M/V d ρc ρh f ′m f y vcr fa vu
(%) (%) (psi) (psi) (psi) (psi) (psi)

HCBR 11-1 0.50 0.00 0.00 2535 60000 278 328 255
HCBR 11-3 0.50 0.18 0.00 2535 60000 279 148 267
HCBR 11-4 0.50 0.18 0.08 2722 60000 353 323 337
HCBR 11-6 0.50 0.18 0.38 2722 60000 346 175 328
HCBR 11-7 0.50 0.18 0.38 2535 60000 280 241 267
HCBR 11-8 0.50 0.45 0.00 2866 60000 242 123 227
HCBR 11-10 0.50 0.45 0.15 2722 60000 296 153 287
HCBR 11-12 0.50 0.45 0.53 2535 60000 275 240 266
HCBR 11-13 0.50 0.45 0.53 2722 60000 329 312 320
HCBR 11-15 0.50 0.17 0.37 3781 60000 284 452 334
HCBR 11-17S 0.50 0.17 0.37 3781 60000 184 282 272
HCBR 11-19 0.50 0.45 0.20 2957 60000 216 400 267
HCBR 11-20 0.50 0.45 0.49 2957 60000 201 400 278
HCBR 11-21 0.50 0.45 0.20 2957 60000 256 400 341
HCBR 11-22 0.50 0.45 0.49 2957 60000 284 400 348
HCBR 11-23 0.50 0.44 0.20 2957 60000 214 400 295
HCBR 11-24 0.50 0.44 0.49 2957 60000 213 400 320
HCBR 11-25 0.50 0.45 0.20 2957 60000 283 400 316
HCBR 11-26 0.50 0.45 0.49 2957 60000 254 400 311
HCBR 11-27 0.50 0.45 0.25 2957 60000 240 400 327
HCBR 11-28 0.50 0.23 0.62 2957 60000 306 400 330
HCBR 11-30 0.50 0.45 0.10 4306 60000 391 400 391
HCBR 12-2 0.25 0.31 0.15 2838 60000 319 125 318
HCBR 12-3 0.25 0.31 0.30 2838 60000 351 150 368
HCBR 12-4 0.25 0.31 0.45 2838 60000 356 143 427
HCBR 12-5 0.25 0.31 0.60 2838 60000 394 154 389
HCBR 12-6 0.25 0.31 1.02 2838 60000 392 153 437

and Todd dataset was used so that there would be a common metric to analyze and compare the

results from the three models. The columns from the Fattal and Todd dataset applicable to the three

models are given in Table 13.3. The analysis was first performed to determine the goodness-of-fit

statistics for each of the three models using the originally proposed coefficient values. The three

models were also analyzed using multivariate linear regression to determine the coefficients with

the smallest variance. The TCCMaR model was also analyzed with the addition of a parameter for

the vertical reinforcement component to validate whether this parameter should have been removed

from the final TCCMaR model.
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Table 13.2: Summary of Experimental Data (Adapted from Anderson and Priestley 1992)

Specimen Vt f ′m lw t Ac d′ f yc Av sv f yv P
(kN) (MPa) (mm) (mm) (mm2) (mm) (MPa) (mm2) (mm) (MPa) (kN)

B-1 462 23.9 1219 194 0 76 765 198 284 407 445
J-24 506 22.3 1190 190 398 95 372 254 200 340 444
J-10 462 13.7 1190 190 398 95 330 254 200 350 288
J-19 441 22.3 1190 190 398 95 384 127 400 351 444
S-13 500 22.8 1829 143 855 102 448 127 400 462 287
S-14 467 22.8 1829 143 855 102 448 71 400 386 287
S-9 427 20.7 1829 143 594 102 441 71 400 386 287

S-11 409 22.1 1829 143 1164 102 496 127 400 462 0
S-2 403 20.0 1829 143 594 102 441 128 400 386 287

S-15 391 22.8 1829 143 855 102 448 127 400 462 180
S-1 367 20.0 1829 143 594 102 441 127 400 462 361

S-12 316 22.1 1829 143 594 102 441 127 400 462 180
S-10 203 22.1 1829 143 594 102 441 71 400 386 180
S-6 220 17.9 1829 143 594 102 441 71 400 386 0
S-8 216 20.7 1829 143 594 102 441 127 400 462 0
B-2 562 23.9 1219 194 0 76 465 198 284 407 713
B-3 430 12.2 1219 143 0 76 391 198 284 438 481
B-4 429 12.2 1219 143 508 76 410 198 284 438 481

B-10 424 13.9 1219 143 0 76 391 198 474 438 481
B-12 420 13.9 1219 143 0 76 391 198 474 438 481
B-6 411 13.9 1219 143 0 76 391 198 474 438 481
B-5 397 13.9 1219 143 0 76 391 198 284 438 303
B-7 390 13.9 1219 143 508 76 410 198 474 438 481

B-11 343 13.9 1219 143 0 76 391 198 474 438 300
B-9 334 13.9 1219 143 0 76 391 110 203 207 481
J-16 637 22.3 1190 190 398 95 372 254 200 340 444
J-29 616 33.3 1300 199 398 95 372 99 300 355 508
J-52 594 27.5 1190 190 398 95 348 127 200 359 444
J-33 592 22.9 1190 190 398 95 382 127 400 355 1331
J-54 587 31.4 1190 190 398 95 348 127 200 359 444
J-28 575 29.6 1300 190 398 95 372 99 300 355 508

J-135 560 24.6 1190 199 398 95 372 127 400 359 444
J-55 548 29.0 1190 190 398 95 348 127 200 359 444
J-32 544 22.9 1190 190 398 95 372 127 400 355 887
J-27 509 22.3 1190 190 398 95 372 127 200 340 444
J-53 507 26.5 1190 190 398 95 348 127 200 359 350
J-23 502 22.3 1190 190 398 95 372 127 200 340 444
J-50 495 26.2 1190 190 398 95 348 127 200 359 444
J-51 485 26.2 1190 190 398 95 348 127 200 359 444
J-21 448 22.3 1190 190 398 95 372 127 400 340 444
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Table 13.2: Summary of Experimental Data (Continued)

Specimen Vt f ′m lw t Ac d′ f yc Av sv f yv P
(kN) (MPa) (mm) (mm) (mm2) (mm) (MPa) (mm2) (mm) (MPa) (kN)

J-20 445 22.9 1190 190 398 95 372 127 400 355 444
J-31 434 22.3 1190 190 398 95 384 127 400 351 444
J-22 430 22.3 1190 190 398 95 384 127 400 351 444
J-26 429 22.3 1190 190 398 95 384 127 400 351 444
J-15 419 17.4 1190 190 398 95 384 127 400 351 444
J-18 384 22.3 1190 190 398 95 384 127 400 34 444
J-9 386 13.7 1190 190 398 95 330 127 200 350 177

J-30 379 22.3 1190 190 398 95 384 0 400 0 444
J-8 361 21.6 1190 190 398 95 323 127 400 355 111
J-5 360 21.6 1190 190 398 95 323 127 400 355 111
J-7 358 21.6 1190 190 398 95 323 127 400 355 111

J-17 328 22.3 1190 190 398 95 372 0 400 0 444
J-25 307 18.0 790 190 199 95 372 127 400 355 294
S-16 536 17.2 1829 143 1164 102 496 127 400 462 487
S-3 456 20.7 1829 143 1164 102 496 71 400 386 487
S-7 431 20.7 1829 143 1164 102 496 71 400 386 180
S-5 385 17.9 1829 143 1164 102 496 71 400 386 180
S-4 354 17.9 1829 143 1164 102 496 71 400 386 0
J-1 357 22.9 1190 190 389 95 323 127 400 355 111
J-4 387 33.3 1300 199 398 95 323 199 150 355 127
J-2 379 21.6 1190 190 398 95 323 254 200 355 111
J-3 378 29.6 1300 199 398 95 323 199 150 355 127
J-6 373 21.6 1190 190 398 95 323 254 200 355 111

J-134 525 24.6 1190 190 398 95 323 127 400 355 111
B-8 273 13.9 1219 143 0 76 391 198 474 438 120

13.3 New Model Development

13.3.1 Formatting of Data

The dataset used in the second part of the analysis was constructed using the methodology

detailed in Chapter 6. The results of this analysis are focused primarily on an audience of American

masonry professionals, the masonry compressive strength as defined by ASTM C1314 was used

for the f ′m values. Since the dataset values for the compressive strength used the standardized

strength of prisms with aspect ratio of 5.0, the values from this field were divided by the correction

factor 0.82 to obtain the equivalent strength for prisms with an aspect ratio of 2.0 as specified in
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Table 13.3: Summary of Experimental Data (Adapted from Fattal and Todd 1991)

Specimen
f ′m f yh f yv ρh ρc σ0

M
V d Vu

(MPa) (MPa) (MPa) (%) (%) (MPa) (MPa)

3-S 20.87 385.84 496.08 0.122 0.687 1.88 1.0 1.74
4-S 17.91 385.84 498.08 0.122 0.887 0. 1.0 1.35
5-S 17.91 385.84 498.08 0.122 0.887 0.89 1.0 1.47
7-S 20.87 385.84 496.08 0.122 0.887 0.89 1.0 1.65
9-S 20.67 385.84 440.98 0.122 0.344 1.88 1.0 1.63

13-S 22.74 461.63 447.85 0.222 0.489 1.88 1.0 1.91
14-S 22.74 385.84 447.85 0.122 0.489 1.88 1.0 1.79
16-S 17.23 481.83 498.08 0.222 0.887 1.86 1.0 2.05
21-S 26.18 385.84 447.85 0.128 0.512 1.93 1.0 1.79
22-S 26.18 385.84 447.85 0.128 0.512 0.69 1.0 1.56

KW4-1-M 21.80 385.00 385.00 0.118 0.134 0.49 0.5 1.60
KW3-1-M 21.80 385.00 385.00 0.118 0.140 0.49 0.5 1.72

KW3S-1-M 21.80 385.00 385.00 0.118 0.140 0.49 0.5 1.87
KW2-1-M 21.80 385.00 385.00 0.118 0.155 0.49 0.5 1.61
WS2-M 22.30 385.00 385.00 0 0.111 1.98 0.5 1.70
WS4-M 22.30 385.00 385.00 0.187 0.111 1.98 0.5 1.89
WSS-M 22.30 385.00 385.00 0.334 0.111 1.98 0.5 2.28
WS9-M 22.30 385.00 385.00 0.334 0.111 1.98 0.5 2.29

WS10-M 22.30 385.00 385.00 0.888 0.111 1.98 0.5 2.93
WS9-2-M 29.00 385.00 385.00 0.334 0.111 1.98 0.5 2.59
WSB21-M 28.10 385.00 385.00 0.334 0.111 1.96 0.5 2.24
WSB22-M 27.40 385.00 385.00 0.400 0.111 1.98 0.5 2.63
WSB3-M 26.40 385.00 385.00 0.353 0.117 1.98 0.5 2.43
WSB4-M 31.40 385.00 385.00 0.334 0.111 1.98 0.5 2.59
WSR2-M 28.60 385.00 385.00 0 0.121 1.98 0.5 2.18
WSR4-M 28.80 385.00 385.00 0.167 0.121 1.96 0.5 1.95
WSRS-M 28.60 385.00 385.00 0.334 0.121 1.96 0.5 1.71
WSR6-M 28.80 385.00 385.00 0.888 0.121 1.98 0.5 2.04
WS1-O 17.91 354.44 371.18 0.167 0.292 0. 0.5 2.68
WS4-O 22.81 354.44 371.18 0.167 0.318 1.98 0.5 1.97
WS7-O 17.91 354.44 371.18 0.187 0.351 0. 0.5 2.04

WSN1-O 22.81 354.44 371.18 0.187 0.318 3.92 0.5 2.40
WSN2-O 22.81 354.44 371.18 0.167 0.318 5.87 0.5 2.61
WSR1-O 28.73 354.44 363.05 0.187 0.292 0. 0.5 3.12
WSR4-O 25.16 354.44 371.18 0.187 0.318 0. 0.5 2.32
WSR7-O 21.35 354.44 371.18 0.167 0.351 0. 0.5 2.04
WSRC-O 28.73 354.44 371.18 0.187 0.316 2.15 0.5 2.18
CB13-B 23.14 408.51 465.08 0.281 0 1.88 0.5 1.95
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Table 13.3: Summary of Experimental Data (Continued)

Specimen
f ′m f yh f yv ρh ρc σ0

M
V d Vu

(MPa) (MPa) (MPa) (%) (%) (MPa) (MPa)

CB15-B 23.14 408.51 465.08 0.281 0 3.01 0.5 2.38
CB17-B 15.83 437.52 390.66 0.394 0 2.76 0.5 2.46
CB18-B 15.83 437.52 409.96 0.394 0.423 2.78 0.5 2.46
CB20-B 15.13 437.52 390.86 0.197 0 2.78 0.5 2.36
CB21-B 15.13 437.52 409.96 0.197 0.423 2.76 0.5 2.23
CB23-B 15.13 437.52 390.86 0.075 0 2.76 0.5 1.92
CB24-B 15.13 437.52 390.86 0.272 0 2.76 0.5 2.43
CB25-B 15.13 437.52 390.86 0.197 0 2.74 0.5 1.96
CB26-B 15.13 437.52 390.86 0.197 0 2.76 0.5 2.40
BR19-B 20.11 437.52 390.86 0.197 0 2.76 0.5 1.84
BR20-B 20.11 437.52 390.86 0.492 0 2.78 0.5 1.92
BR21-B 20.11 437.52 390.86 0.197 0.394 2.76 0.5 2.35
BR22-B 20.11 437.52 437.52 0.492 0.394 2.78 0.5 2.40
BR23-B 20.11 437.52 409.96 0.197 0.423 2.78 0.5 2.03
BR24-B 20.11 437.52 409.96 0.492 0.423 2.76 0.5 2.20
BR25-B 20.11 437.52 390.88 0.197 0 2.78 0.5 2.18
BR26-B 20.11 437.52 390.88 0.492 0 2.78 0.5 2.14
BR27-B 20.11 409.96 390.88 0.254 0 2.76 0.5 2.25
BR28-B 20.11 418.85 409.96 0.835 0 2.76 0.5 2.27
BR30-B 27.62 437.52 390.88 0.100 0 2.78 0.5 2.69

DBR8S-B 17.11 406.51 465.08 0.055 0 1.52 0.5 1.49
DBR9-B 17.11 465.08 465.08 0.277 0 2.29 0.5 1.63

DBR10-B 17.11 406.51 465.08 0.055 0 2.29 0.5 1.83
DBR12-B 17.11 398.24 465.08 0.059 0 2.29 0.5 1.88

ASTM C1314 (2014). The dataset and analysis were used with SI units to facilitate comparison of

the results with other research.

13.3.2 Construction of Parameters Candidates

The first step of building and testing potential models to be analyzed through regression is

to determine which parameters to use in constructing the models. This step is frequently not used

or needed in common statistical analyses because they frequently use the experimental parameters

directly in the model building process. This is not so in engineering empirical modeling because

many of the experimental parameters do not directly influence the final value alone; rather, the pa-
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rameters that influence the final value are often combinations of multiple parameters. Additionally,

it is important in engineering formulae to maintain consistency amongst all of the parameters in

the equation so that they can be related to some mechanical mechanism.

The potential parameters were constructed from combinations of the measured variables

from each specimen using logic and the theory of mechanics. Parameters included in previous

models were considered and new, previously unexamined parameters were also created and con-

sidered. The ease of testing different combinations of parameters coupled with the computing

power available eliminated the constraint on how many parameters could be investigated in this

analysis. A large number of variations for each parameter could be included and compared to de-

termine which variation best described the masonry shear behavior. The large quantity and variety

of specimens used in this analysis enabled the analysis to identify the parameter forms that best

describes the wall behavior.

The various forms of each parameter form varied not only in which variables were included

but also by which variable definition was considered. Several of the variables used to describe

masonry shear walls are defined differently by many masonry standards around the world. Some

variables with different definitions include shear length, shear area, height, aspect ratio, etc. One

of the great powers of this analysis is the ability to build multiple parameters using each definition

and to use the analysis to identify which definition best matches the experimental results.

The principal variations in the masonry strength contribution were given by differences in

shear area definition and whether the masonry compressive strength or its root was used. All of

the candidate variations for the masonry component are listed in Table 13.4. The influence of the

axial load either acts independently of or in conjunction with the masonry compressive strength,

as shown in Table 13.5. The rationale for the second parameter candidate is that the axial load acts

by increasing friction across the cracks and that the crack friction coefficient is a function of the

masonry compressive strength.

Each reinforcement parameter was constructed assuming that its strength contribution is a

functions of its respective yield strength, spacing, and cross-sectional area at each location. Table

13.6 shows the contribution of the vertical reinforcement (neglecting the flexural reinforcement in

the end cells) as a potential function of the full wall length, the flexural bar depth, or the distance

between flexural bars. The contribution of the shear reinforcement was split between horizontal
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bars embedded within bond beams and wire reinforcement embedded within the joints. These

two terms were divided because it was felt that they might contribute differently because of the

difference in placement and shape. Tables 13.7 and 13.8 show that the parameters for bond beam

and joint reinforcement, respectively, are potentially functions of the height, various horizontal

length definitions, or the smallest of the two dimensions.

Table 13.4: Parameter Candidates for the Masonry Component

Area Definition Square root of prism strength Prism strength√
f ′m Ag f ′m Ag

Gross area
√

f ′m Ag
he

lw
f ′m Ag

he

lw√
f ′m Ag min




he

lw
1

f ′m Ag min



he

lw
1√

f ′m An f ′m An

Bedded area
√

f ′m An
he

lw
f ′m An

he

lw√
f ′m An min




he

lw
1

f ′m An min



he

lw
1√

f ′m A f s f ′m A f s

Face Shell area
√

f ′m A f s
he

lw
f ′m A f s

he

lw√
f ′m A f s min




he

lw
1

f ′m A f s min



he

lw
1√

f ′m Anv f ′m Anv

Net Shear area
√

f ′m Anv
he

lw
f ′m Anv

he

lw√
f ′m Anv min




he

lw
1

f ′m Anv min



he

lw
1
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Table 13.5: Parameter Candidates for Axial Component

Function Parameter

Axial Load P

Axial Strength and Load

√
P f ′m Ag√
P f ′m An√
P f ′m A f s√
P f ′m Anv

Table 13.6: Parameter Candidates for the Vertical
Reinforcement Component

Length definition Parameter

Full wall length Ac fvc

sc
lw

Effective depth of flexural bars Ac fvc

sc
d

Distance between flexural bars Ac fvc

sc
(2d − lw)

13.3.3 Treatment of Scedasticity

The MSJC shear strength equation, along with many other models intended for strength

design methods, are presented in units of force because they are used with design loads, which

are also in units of force. If a model with units of force was built and fitting using least-squares

regression, then the model would demonstrate a heteroscedastic nature because the residuals would

increase with increasing wall strength. This behavior is contrary to one of the assumptions of

least squares regression which assumes that the variance is constant. There are many parameters

which effect wall strength—such as geometry, size and distribution reinforcement, and axial load—

and the specimens with the highest strength would have a disproportionately high influence (or

leverage) on the results of the analysis. The heteroscedasticity within the model can be removed

by transforming (i.e., normalizing) the data before performing the analysis.

Several researchers in the past have normalized their data by the shear area of each wall

specimen. This approach was undertaken principally because allowable stress methods were pre-
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Table 13.7: Parameter Candidates for the Horizontal Bar
Reinforcement Component

Length definition Parameter

Full wall length
Av f yv

sv
lw

Effective depth of flexural bars
Av f yv

sv
d

Distance between flexural bars
Av f yv

sv
(2d − lw)

Height of wall
Av f yv

sv
hg

Height of inflectin point
Av f yv

sv
he

Smaller of hg and lw
Av f yv

sv
min




hg

lw

Smaller of hg and d
Av f yv

sv
min




hg

d

Smaller of hg and 2d − lw
Av f yv

sv
min




hg

2d − lw

viously used in design and the design equations were in units of stress rather than force, as they

are today. Dividing all parameters by the shear area of the wall helped to eliminate the influence

of the wall size on the variance of the data. It still left the possibility of the variance being influ-

enced by the strength of the materials, but this influence was minimized since most researchers

used similar-strength materials for all of their specimens.

Several researchers have attempted to normalize their data by the experimentally measured

shear strength—in effect they were trying to minimize the variance of the data around a unity ratio

of experimental to theoretical strength. The ratio of the experimental to the theoretical strength is

the quotient of two normally distributed variables and produces residuals with a right-skewed ratio

distribution. The approach is simple but violates one of the assumptions of least-squares regression

which assumes that the residuals are normally distributed. Using this normalization scheme may

produce unbiased statistics, but they will not be sufficient to fully describe the nature of the data.
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Table 13.8: Parameter Candidates for the Joint Wire
Reinforcement Component

Length definition Parameter

Full wall length
A j fv j

s j
lw

Effective depth of flexural bars
A j fv j

s j
d

Distance between flexural bars
A j fv j

s j
(2d − lw)

Height of wall
A j fv j

s j
hg

Height of inflectin point
A j fv j

s j
he

Smaller of hg and lw
A j fv j

s j
min




hg

lw

Smaller of hg and d
A j fv j

s j
min




hg

d

Smaller of hg and 2d − lw
A j fv j

s j
min




hg

2d − lw

13.3.4 Weighting Criteria

Least-squares regression assumes that the variance is the same for all data in the analysis.

All of the data in the dataset came from a multitude of studies and each study demonstrated a

different amount of variance between its specimens and with those from other studies. This analysis

overcame the disparities in variance through the use of weighted least-squares regression. The

specimens in the dataset were grouped together by the research study which originally performed

the experimental tests. For studies which conducted a larger number of tests, the specimens in that

group were further divided into groups with similar characteristics.

The goal of the analysis is to determine a model which best estimates the true model—

which is unknown. Without knowing the true model, it is not possible to calculate the residuals

and variance of the data, but these statistics can be estimated by assuming that the given model

is the true model. In performing each weighted analysis, it was assumed that the variance of the

217



specimens was constant within each group because the specimens within each group were tested

by the same researchers using same test setup and similar materials. By making this assumption,

the variance for the specimens for each group could be estimated directly from the residuals. The

coefficient of variation for each group was calculated by dividing its standard deviation by the

mean normalized experimental strength of its specimens.

The weighting chosen to use for each specimen in this analysis was the inverse of its group’s

coefficient of variance. This weighting scheme was chosen because it would 1) eliminate size

effects, 2) give higher weights to those groups with lower coefficients of variation, and 3) provide

a robust weighting method that was guaranteed to converge. It was felt that those groups with

lower coefficients of variation more accurately followed the true model and should be given higher

influence in determining the model’s estimate.

The weights for each group were not known initially and it was not possible to calculate

both coefficient estimates and weights explicitly. It was necessary to use an iterative process to first

calculate coefficient estimates assuming equal weights for all specimens, from which the residuals

and weights could then be determined. The calculated weights were then be substituted back into

the analysis and the regression performed again to find improved estimates for the coefficients and

weights. This process was repeated multiple times for each analysis until the coefficient estimates

converged.

13.3.5 Selection of Model

Several criteria were used to determine which parameters to use in the final model. The

first four models analyzed included all the parameter candidates normalized by each of the four

shear area definitions. Each of these models were analyzed using stepwise regression to determine

which parameters were best to include in subsequent model building. The two information criteria

used in the stepwise regression analyses were the Akaike Information Criteria (AIC) and the Bayes

Information Criteria (BIC). The models fitted using BIC identified which parameters were most

influential in describing the data by narrowing the number of parameters down to the smallest num-

ber sufficient to describe the model. AIC was used because it tends to produce a larger number of

parameters in the final model than does BIC (Chatterjee and Hadi, 2006), leaving more parameters

which could be further investigated. This was important because the models were initially fitted
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separately to the fully- and partially-grouted data and analysis using AIC had a higher chance of

choosing parameters that were the same for the two grouting types.

Once the pool of parameter candidates was narrowed down to a smaller group, different

model variations were analyzed using the whole dataset to determine the root mean square error

and the R2 value for each model. Additionally, the mean and variance for the residuals were

calculated for each of the two grouting types. All of these statistics were calculated for each model

using the weighting criteria detailed in Section 13.3.4. The goal of the analysis was to produce a

model with the lowest values for the root mean square error and R2 and to produce residual means

and variances that were as close to equal as possible for the two grouting type subsets. Between the

two sets of goals, the latter set was judged to be slightly more important than how well the model

fit the data and some loss of fit was judged to be worth sacrificing to obtain it. If the means were

equal between the fully- and partially-grouted subsets, then the model could be said to describe the

nominal shear strength equally well for the two grouting types. If the variances were equal then it

would eliminate the need to use separate resistance factors for the two grouting types.

The final criterion for consideration in constructing the final model was that it should be

relatively simple and contain as few terms as possible. Since the final model was intended to be

included in a design standard and to be used frequently by practicing engineers, acceptance of the

model was prerequisite on being simple. The models developed by Matsumura (1987) was judged

to be too complex for design work and were precluded in favor of the simpler models of Blondet

et al. (1989) and Anderson and Priestley (1992). The goal of the proposed equation is to be simple

enough for frequent use yet adequate enough to describe the shear behavior better than the current

equation for both grouting types. It was intended that a more complex and accurate modeling

procedure be developed in Part V of this dissertation.

13.3.6 Limit Criterion

The current MSJC (2013) shear model places an upper constraint on the shear strength

values calculated from the model. This constraint is a function of the prism strength f ′m and the

shear span ratio M/Vlw of the wall and is a holdover from the 1988 edition of the UBC. The

analysis was used to evaluate if the current constraint should be included with the new model or

whether a new constraint should be proposed.
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13.3.7 Comparison to Current Model

The analysis tools detailed in this section were used with the dataset to calculate the statis-

tics for the current MSJC (2013) shear model. The model was analyzed once using the current

coefficient values and again to determine was the best estimates of the coefficient would be if

the model were kept in its current form. The purpose of this analysis was to provide a means to

determine how much improvement the new model provides over the model currently in place.
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CHAPTER 14. ANALYSIS OF OLD MODELS

14.1 Analysis of Blondet et al. Model

The model developed by Blondet et al. (1989) assumed that the shear strength contribution

of the shear reinforcement was correlated to half of the reinforcement area. They then solved the

resulting equation assuming that the axial stress was zero. It is uncertain how they determined the

coefficient estimates that they provided since the data set did not contain any specimens with zero

axial stress. Herein, two approaches were used to attempt to replicate their results by eliminating

the contribution from the axial load from their experimental data: first, to ignore the contribution

of the axial stress and second, to compensate for the contribution of the axial stress.

The first approach was accomplished by analyzing the dataset while ignoring the contribu-

tion of axial stress. This simplification reduced the analysis to a bivariate model given by

vt − 0.5ρh f y =

(
β0 + β1

M
V d

) √
f ′m (14.1)

or similarly by

vt − 0.5ρh f y√
f ′m

= β0 + β1
M

V d
(14.2)

where β0 is the ordinate intercept and β1 is the slope of the influence of the shear span ratio.

Both forms of the equation were regressed using the original dataset to further understand the

values they obtained. Equations (14.1) and (14.2) were first analyzed using the block and brick

data separately to compare the results with those listed in their report. The two equations were

subsequently analyzed for both material types. The calculated coefficient estimates from the six

analyses, shown in Tables 14.1 and 14.2, were all notably different from those values provided by

Blondet et al. (1989). The closest values were produced by solving Equation (14.1) and it appears
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Table 14.1: Regression Models for Equation (14.1)

(a) Coefficient Estimates for Block Data

Parameter Estimate SE tStat pValue√
f ′m 6.0726 0.4691 12.945 2.4397e-13

M
V d

√
f ′m -3.28 0.80793 -4.0597 0.00035795

Number of observations: 30, Error degrees of freedom: 28
Root Mean Squared Error: 52.5, R2: 0.9465

(b) Coefficient Estimates for Brick Data

Parameter Estimate SE tStat pValue√
f ′m 4.492 0.43917 10.228 1.8634e-11

M
V d

√
f ′m -0.94922 0.68157 -1.3927 0.17362

Number of observations: 33, Error degrees of freedom: 31
Root Mean Squared Error: 55.8, R2: 0.9447

(c) Coefficient Estimates for Block and Brick Data

Parameter Estimate SE tStat pValue√
f ′m 5.1855 0.32927 15.748 3.6458e-23

M
V d

√
f ′m -1.9249 0.53118 -3.6238 0.00059291

Number of observations: 63, Error degrees of freedom: 61
Root Mean Squared Error: 56, R2: 0.94

that Blondet et al. did not normalize the equation by the root of the prisms strength as shown in

Equation (14.2) but performed their analysis using the form given by Equation (14.1).

The second approach was to compensate for the axial stress in the equation by subtracting

it from the experimental strength. The masonry contribution is given by

vcr = vu −
1
2
vs (14.3)

which is related to the cracking strength vcr0 and axial stress σ0 by

v2
cr = v2

cr0 +
vcr0 σ0

1.5
(14.4)
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Table 14.2: Regression Models for Equation (14.2)

(a) Coefficient Estimates for Block Data

Parameter Estimate SE tStat pValue

Intercept 5.7829 0.52553 11.004 1.1178e-11
M
V d -0.058777 0.018748 -3.1351 0.0040109

Number of observations: 30, Error degrees of freedom: 28
Root Mean Squared Error: 1.21, R2: 0.932

(b) Coefficient Estimates for Brick Data

Parameter Estimate SE tStat pValue

Intercept 4.3614 0.38136 11.436 1.1838e-12
M
V d -0.012403 0.010417 -1.1907 0.24282

Number of observations: 33, Error degrees of freedom: 31
Root Mean Squared Error: 1.03, R2: 0.9407

(c) Coefficient Estimates for Block and Brick Data

Parameter Estimate SE tStat pValue

Intercept 4.9146 0.31137 15.784 3.2658e-23
M
V d -0.027469 0.0094913 -2.8941 0.0052673

Number of observations: 63, Error degrees of freedom: 61
Root Mean Squared Error: 1.15, R2: 0.9305

The cracking strength is also provided by the empirical equation

vcr0 =

(
β0 + β1

M
V d

) √
f ′m (14.5)

The coefficients for Equation (14.3) can be determined by regression analysis using the cracking

strength calculated from the experimental values using

vcr0 =
1
3

√
9
(
vu −

1
2
vs

)2

+ f 2
a −

σ0

3
(14.6)
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Table 14.3: Regression Models for Equation (14.5)

(a) Coefficient Estimates for Block Data

Parameter Estimate SE tStat pValue√
f ′m 4.1447 0.51258 8.086 8.3628e-09

M
V d

√
f ′m -2.6783 0.88281 -3.0339 0.005165

Number of observations: 30, Error degrees of freedom: 28
Root Mean Squared Error: 57.4, R2: 0.8573

(b) Coefficient Estimates for Brick Data

Parameter Estimate SE tStat pValue√
f ′m 3.0595 0.70334 4.3499 0.00013694

M
V d

√
f ′m -2.9759 1.0916 -2.7263 0.010441

Number of observations: 33, Error degrees of freedom: 31
Root Mean Squared Error: 89.4, R2: 0.4895

(c) Coefficient Estimates for Block and Brick Data

Parameter Estimate SE tStat pValue√
f ′m 3.6676 0.47886 7.659 1.6998e-10

M
V d

√
f ′m -3.1807 0.7725 -4.1174 0.00011704

Number of observations: 63, Error degrees of freedom: 61
Root Mean Squared Error: 81.5, R2: 0.642

which was used to by solve Equations (14.3) and (14.3) in terms of vcr0. The results of this

analysis, shown in Table 14.3, again display a distinct difference from the values they provided. In

light of the information given in their report and the analyses performed using their data, it is not

understood how the values of their coefficient estimates were obtained because their results cannot

be replicated.

Another factor to analyze in the Blondet et al. analysis is whether their assumption that

half the horizontal reinforcement contributed to the strength was a valid assumption. It is also im-

portant to understand how their assumption about the horizontal reinforcement affected the results

of their analysis. This was done using multivariate regression on their dataset assuming the coeffi-

cient for the horizontal reinforcement was unknown. The multivariate regression also allowed the
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opportunity to examine how the axial stress contributed to the shear strength. The analysis was

performed twice for each material grouping, once including the contribution of the axial stress and

once neglecting the axial stress contribution.

The results in Table 14.4, considering the axial load, show estimated coefficients that are

notably different from those determined by Blondet et al. (1989). The estimate and pValue of the

σ0 parameter showed no appreciable or statistically significant contribution by the axial stress for

the clay data and the value is effectively zero. The axial stress did have an impact on the strength

of the block data and was also non-zero for the whole dataset. The contribution of the horizontal

reinforcement was also notably smaller than Blondet et al. originally assumed, which gives the

intimation that the horizontal reinforcement is not nearly as effective in increasing the total shear

strength than what they had originally supposed.

The results in Table 14.5, neglecting the axial load, are similar to those in Table 14.4 and

both are different from those determined by Blondet et al. (1989). Between the two tables, the

analysis results were most similar for the clay data (Tables 14.4b and 14.5b) because the axial

stress had little effect on the total strength. The coefficient estimates were higher for the block

data without the axial stress because this latter model assumes that the masonry and reinforcement

contribute more to the strength and that the axial stress does not contribute at all. This is the only

case where the contribution of the horizontal reinforcement approaches the 0.5 value originally

assumed by Blondet et al. (see Table 14.5a). All other analyses determined coefficients for the

horizontal reinforcement that were significantly lower than what was hypothesized in the original

analysis.

The latter analysis did not provide any additional insight into how Blondet et al. (1989)

determined the coefficients for their model. The two most-common goodness-of-fit statistics, root

mean square error (RMSE) and coefficient of determination R2, were determined for the coef-

ficients using the original dataset from Blondet et al. and included in Table 14.6. Blondet et al.

(1989) determined coefficients for concrete block masonry and clay brick masonry shear walls sep-

arately, as shown in Tables 14.6a and 14.6b. The TCCMaR members selected coefficients for use

with both concrete block and clay brick based on the conclusions of Blondet et al. (1989), which

are given in Table 14.6c. Since the Gauss-Markov theorem states that multivariate least-squares

regression produces unbiased estimators with the smallest variance (Markov, 1900), comparing the
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Table 14.4: Regression Models for Blondet et al. Including Axial Stress

(a) Coefficient Estimates for Block Data

Parameter Estimate SE tStat pValue√
f ′m 5.5272 0.5578 9.9088 2.5649e-10

M
V d

√
f ′m -3.2278 0.72115 -4.4759 0.00013407

σ0 0.2146 0.053241 4.0306 0.00043161
ρh f y 0.37111 0.096343 3.852 0.00068695

Number of observations: 30, Error degrees of freedom: 26
Root Mean Squared Error: 42.7, R2: 0.9802

(b) Coefficient Estimates for Brick Data

Parameter Estimate SE tStat pValue√
f ′m 6.5866 0.48111 13.69 3.4593e-14

M
V d

√
f ′m -2.7835 0.61914 -4.4958 0.00010273

σ0 0.0058008 0.070312 0.082501 0.93482
ρh f y 0.15726 0.053491 2.9399 0.0063845

Number of observations: 33, Error degrees of freedom: 29
Root Mean Squared Error: 37.0, R2: 0.9880

(c) Coefficient Estimates for Block and Brick Data

Parameter Estimate SE tStat pValue√
f ′m 6.1282 0.37988 16.132 2.6677e-23

M
V d

√
f ′m -3.54 0.48325 -7.3254 7.6028e-10

σ0 0.1611 0.04015 4.0125 0.00017169
ρh f y 0.19942 0.051567 3.8671 0.00027718

Number of observations: 63, Error degrees of freedom: 59
Root Mean Squared Error: 43.5, R2: 0.9804

goodness-of-fit statistics in Table 14.6 to those in Tables 14.4 and 14.5 shows that there are better

coefficients to use in estimating masonry shear wall strength than those determined by Blondet

et al.. This is further evidenced by the smaller RMSE values and larger R2 values for the current

analysis than those originally determined by Blondet et al. (compare Table 14.6). This conclusion

follows for the TCCMaR equation as well since its coefficients were based on those determined by

Blondet et al. (1989).
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Table 14.5: Regression Models for Blondet et al. Excluding Axial Stress

(a) Coefficient Estimates for Block Data

Parameter Estimate SE tStat pValue√
f ′m 6.108 0.67405 9.0617 1.1252e-09

M
V d

√
f ′m -3.3074 0.90172 -3.6679 0.001058

ρh f y 0.49147 0.11458 4.2895 0.000205
Number of observations: 30, Error degrees of freedom: 27
Root Mean Squared Error: 53.5, R2: 0.9679

(b) Coefficient Estimates for Brick Data

Parameter Estimate SE tStat pValue√
f ′m 6.603 0.43038 15.342 9.6122e-16

M
V d

√
f ′m -2.7573 0.5224 -5.2781 1.0623e-05

ρh f y 0.15785 0.052124 3.0284 0.0050178
Number of observations: 33, Error degrees of freedom: 30
Root Mean Squared Error: 36.4, R2: 0.9880

(c) Coefficient Estimates for Block and Brick Data

Parameter Estimate SE tStat pValue√
f ′m 6.523 0.4105 15.89 3.5869e-23

M
V d

√
f ′m -3.017 0.52061 -5.7951 2.6947e-07

ρh f y 0.24379 0.05635 4.3264 5.8238e-05
Number of observations: 63, Error degrees of freedom: 60
Root Mean Squared Error: 48.7, R2: 0.9750

14.2 Analysis of Anderson and Priestley Equation

Anderson and Priestley (1992) used an optimization approach to determined the coefficient

for a model which included four parameters: masonry, axial load, vertical reinforcement, and hor-

izontal reinforcement. Their approach was to find the coefficients which minimized one of two

error terms. After finding that the first error term did not produce results which matched their

optimization criterion, they used a second error term. As noted in Section 12.1.7, this error term

would produce estimates, but they likely were not the best estimates with the least variance. Their

model and dataset were analyzed using multivariate regression to determine the optimum coeffi-
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Table 14.6: Coefficients and Goodness-of-Fit Statistics
for Original Models

(a) Block (Blondet et al., 1989)

Parameter Coefficient√
f ′m 3.5

M
V d

√
f ′m -1.75

ρh f y 0.5
RMSE: 106.4, R2: 0.8729

(b) Brick (Blondet et al., 1989)

Parameter Coefficient√
f ′m 4.2

M
V d

√
f ′m -1.75

ρh f y 0.5
RMSE: 73.85, R2: 0.9504

(c) Block and Brick (NEHRP, 1997)

Parameter Coefficient√
f ′m 4.0

M
V d

√
f ′m -1.75

ρh f y 0.5
RMSE: 80.33, R2: 0.9298

cients they might have obtained. Since their optimization method was not fully detailed, it would

not be possible to reproduce their analysis. However, the root mean square error (RMSE) and co-

efficient of determination R2 were determined for their coefficients using their original dataset are

and included in Table 14.7.

The Anderson and Priestley (1992) model and dataset were analyzed using multivariate

regression to determine the optimum coefficient estimates and to compare how their chosen coeffi-

cients compared with them. The dataset presented in Anderson and Priestley (1992) included only

specimens constructed from concrete block masonry, so only the coefficients for concrete block can

be effectively compared. However, since their coefficients for concrete block and clay brick were

similar, the analysis for their concrete block data and model should produce similar conclusions
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Table 14.7: Coefficients and Goodness-of-Fit Statistics
for Anderson and Priestley Model

(a) Units of Force (N)

Parameter Coefficient√
f ′m An 0.24

P 0.25

Ah f y
lw
s

0.50

RMSE: 8.927e+04, R2: 0.9608

(b) Units of Stress (MPa)

Parameter Coefficient√
f ′m 0.24

σ0 0.25

ρh f y h
s

0.50

RMSE: 0.3613, R2: 0.9678

for their clay brick data as well. The dataset was analyzed twice, once including the contribution

of the vertical reinforcement and once again neglecting the vertical reinforcement. Each analysis

was conducted using both untransformed (units of force) and transformed (units of stress) data.

The results in Table 14.8 give the intimation that Anderson and Priestley may have been

justified in neglecting the contribution of the vertical reinforcement to wall strength. The coefficient

estimates for the vertical reinforcement are non-trivial, but both pValues are relatively large and

suggest that the vertical reinforcement parameter does not affect the overall response and may be

eliminated. The second analysis results in Table 14.9 show a negligible change in the goodness-of-

fit statistics with the vertical reinforcement excluded from the analysis. In the case of the Anderson

and Priestley (1992) dataset it can be reasonably concluded that the vertical reinforcement did not

contribute to the overall wall shear strength.

The value of the coefficient estimate for the masonry parameter was determined to be ap-

proximately 0.24 for units of MPa (or 2.9 for units of psi). This value is identical to the value

determined by Anderson and Priestley (1992). The analysis showed that Anderson and Priestley

underestimated the contribution of the axial load and overestimated the contribution of the horizon-
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Table 14.8: Regression Models for Anderson and Priestley Including Vertical Bars

(a) Units of Force (N)

Parameter Estimate SE tStat pValue√
f ′m An 0.23215 0.026721 8.688 2.9078e-12
P 0.35207 0.038074 9.2469 3.263e-13

Ac f y 0.035946 0.065817 0.54615 0.58696
Ah f y

lw
s 0.22188 0.060769 3.6511 0.00054362

Number of observations: 65, Error degrees of freedom: 61
Root Mean Squared Error: 6.69e+04, R2: 0.9773

(b) Units of Stress (MPa)

Parameter Estimate SE tStat pValue√
f ′m 0.23734 0.025259 9.3961 1.8275e-13
σ0 0.34505 0.03571 9.6626 6.5165e-14
ρc f y 0.011702 0.067038 0.17456 0.862
ρh f y h

s 0.25101 0.056399 4.4506 3.7059e-05

Number of observations: 65, Error degrees of freedom: 61
Root Mean Squared Error: 0.282, R2: 0.9798

Table 14.9: Regression Models for Anderson and Priestley Excluding Vertical Bars

(a) Units of Force (N)

Parameter Estimate SE tStat pValue√
f ′m An 0.24259 0.018578 13.058 1.8774e-19
P 0.34564 0.036005 9.5999 7.0528e-14

Ah f y
lw
s 0.21285 0.058148 3.6605 0.000522

Number of observations: 65, Error degrees of freedom: 62
Root Mean Squared Error: 6.706e+04, R2: 0.9772

(b) Units of Stress (MPa)

Parameter Estimate SE tStat pValue√
f ′m 0.24042 0.017908 13.425 5.2297e-20
σ0 0.34325 0.033918 10.12 9.3981e-15

ρh f y h
s 0.24862 0.054281 4.5802 2.2943e-05

Number of observations: 65, Error degrees of freedom: 62
Root Mean Squared Error: 0.2821, R2: 0.9798
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tal reinforcement, as did Blondet et al. (1989). The coefficient estimate values for the horizontal

reinforcement were close to those obtained above for the Blondet et al. dataset but the estimates

for the axial load contribution differed considerably. The reason for the difference is likely due to

the consideration of the shear span ratio in the Blondet et al. model and not in the Anderson and

Priestley model. It appears that the coefficient for the axial load is sensitive to the inclusion of the

spear span ratio in the model, more so than the horizontal reinforcement coefficient.

Comparing the goodness-of-fit statistics between the two models showed that the coeffi-

cients determined by Anderson and Priestley produced a model with approximately 30 percent

higher error than the optimum values determined by multivariate least-squares regression. The

Anderson and Priestley model produced a very high coefficient of determination, close to that of

optimum model. The large disparity between the coefficient values for axial load and horizontal

reinforcement between the original and new models in consideration of the relatively small differ-

ence in goodness-of-fit statistics suggests that the shear strength is not as sensitive to the axial load

and horizontal reinforcement contributions.

The coefficient of determination R2 values in Table 14.9 show that the fit of the model

improves by normalizing the data by the shear area of the wall. As noted earlier in Section 13.3.3,

a model with units of force would likely face issues with heteroscedasticity and would be better if

transformed. The higher R2 value for the force model compared to the stress model suggests that

the force model experiences some increase in variance over the normalized model, likely due to

some heteroscedasticity in the residuals.

14.3 Analysis of TCCMaR Equation

The TCCMaR equation was assembled from pieces of the Blondet et al. (1989) and Ander-

son and Priestley (1992) equations. Since the Blondet et al. and Anderson and Priestley models

have been shown to produce less-than-optimum results, it follows that the TCCMaR model will

similarly produce less-than-optimum results. The models from Blondet et al., Anderson and Priest-

ley, and TCCMaR were compared using the dataset from Fattal and Todd (1991), which was the

same dataset used by the TCCMaR members in comparing and choosing their model (NEHRP,

1997). The goodness-of-fit statistics in Table 14.10 were first calculated using the Fattal and Todd

dataset to compare the performance of each equation. The model and coefficients of Anderson and
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Priestley actually produced the best results of the three models. This is likely because they used

an optimization methodology to determine their coefficients. The TCCMaR model was not the

best model because the model was constructed by added parameters from the two previous models

without attempting to redetermine the coefficients for their new, expanded model.

Table 14.10: Coefficients and Goodness-of-Fit Statistics
for Original Models

(a) Blondet et al.

Parameter Coefficient√
f ′m 0.33

M
V d

√
f ′m -0.15

ρh f yh 0.50

RMSE: 0.6255, R2: 0.9182

(b) Anderson and Priestley

Parameter Coefficient√
f ′m 0.24

σ0 0.25

ρh f yh 0.50

RMSE: 0.4859, R2: 0.9506

(c) TCCMaR (NEHRP)

Parameter Coefficient√
f ′m 0.33

M
V d

√
f ′m -0.15

σ0 0.25

ρh f yh 0.50

RMSE: 0.5033, R2: 0.9479

It was shown in the two previous sections that the coefficients originally chosen by Blondet

et al. and Anderson and Priestley for their respective models were not the optimum values. The

optimum coefficients for these two models with the TCCMaR model were determined using mul-

tivariate least-squares regression on the Fattal and Todd (1991) dataset so that the results could be

232



compared with the original values and with each other. Additionally, the TCCMaR dataset was re-

analyzed including the contribution of the vertical reinforcement to verify their original conclusion

that it did not contribute to the strength. The results for these four models are reported in Table

14.11.

All three original models underestimated the contribution of the masonry and overesti-

mated the contribution of the axial load and reinforcement to the overall strength of the wall. Only

approximately 10 percent of the axial load contributes to the strength of the wall while the con-

tribution of the horizontal reinforcement ranges from about 12 to 15 percent, depending on what

other parameters are included in the model. Both values are significantly lower than the values de-

veloped based on the theoretical behavior and highlights the importance of validating engineering

assumptions.

The results of the last model showed that the TCCMaR members were not completely

justified in eliminating the contribution of the vertical reinforcement from the model. The pValue

for the vertical reinforcement contribution is not quite statistically significant at the α = 0.05

level but it is clearly significant at the α = 0.10 level and its pValue is not much higher than that

of the horizontal reinforcement. This suggests that variations in detailing or other reinforcement

properties may be inflating the pValue and that the parameter should have remained in the model.

Part of the disparity in results between the current analysis and TCCMaR members is due

to their methodology in evaluating their models. The TCCMaR members based their methodology

on evaluating the ratios of experimental to to theoretical strengths. As noted earlier, the results

of methodology will be affected by the lack of normality in these distributions. One of the other

benefits to using multivariate regression modeling in this case is that the average of the predicted

strength is equal to the average of the experimental strength. This cannot be said about the original

models, which each have a predicted strength average less than the experimental strength.
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Table 14.11: Comparison of Regression Results Using Fattal and Todd Dataset

(a) Blondet at el. Model

Parameter Estimate SE tStat pValue√
f ′m 0.51449 0.036754 13.998 2.0874e-20

M
V d

√
f ′m -0.16791 0.05236 -3.2068 0.0021688

ρh f yh 0.1553 0.059297 2.6191 0.011189

Number of observations: 62, Error degrees of freedom: 59
Root Mean Squared Error: 0.3408, R2: 0.9757

(b) Anderson and Priestley Model

Parameter Estimate SE tStat pValue√
f ′m 0.36789 0.020958 17.554 4.2566e-25
σ0 0.11916 0.041662 2.8602 0.0058462

ρh f yh 0.15109 0.060983 2.4776 0.016111

Number of observations: 62, Error degrees of freedom: 59
Root Mean Squared Error: 0.3461, R2: 0.9750

(c) TCCMaR Model

Parameter Estimate SE tStat pValue√
f ′m 0.46759 0.03988 11.725 6.1609e-17

M
V d

√
f ′m -0.1465 0.050888 -2.8789 0.0055805

σ0 0.099883 0.039871 2.5051 0.015071
ρh f yh 0.11986 0.058547 2.0472 0.045173

Number of observations: 62, Error degrees of freedom: 58
Root Mean Squared Error: 0.3265, R2: 0.9781

(d) TCCMaR Model with Vertical Reinforcment

Parameter Estimate SE tStat pValue√
f ′m 0.50707 0.044469 11.403 2.4629e-16

M
V d

√
f ′m -0.25707 0.077637 -3.3112 0.0016158

σ0 0.10906 0.039366 2.7704 0.0075457
ρc f yc 0.10275 0.055313 1.8576 0.068387
ρh f yh 0.11689 0.05737 2.0375 0.046248

Number of observations: 62, Error degrees of freedom: 57
Root Mean Squared Error: 0.3198, R2: 0.9793
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CHAPTER 15. DEVELOPMENT OF AN IMPROVED LINEAR MODEL

15.1 Introduction

There are uncertainties in the model building process concerning which parameters and

coefficients best represent the behavior of masonry shear walls. The models outlined in Chapter

12 each differed from each other in parameter choice and in overall form, providing no consensus

between researchers as to what form the model should take nor as to which parameters should be

included. The analysis in Chapter 14 of the models previously developed by Blondet et al. (1989),

Anderson and Priestley (1992), and the TCCMaR (NEHRP, 1997) showed that those models did

not contain the optimum values for the parameter coefficients. These models were developed with

some parameters and coefficients chosen based on theoretical behavior and it was shown in Chapter

14 that the coefficients based on theory were far from representative of the actual effect on shear

strength.

It was also shown in Chapter 14 that the models were underfitted because they all excluded

the contribution of the vertical reinforcement to the wall shear strength, which was observed to

contribute to the strength. Models that omit parameters that should be in the model (i.e., are

underfitted) have parameters that are biased, meaning they do not represent the true values of

the coefficients in the true model. In Part III of this dissertation, it was demonstrated that these

models are insufficient for describing the behavior of partially-grouted walls. The reason for such

insufficiency is that the previous three equations were all developed solely using fully-grouted

shear wall data.

The non-consensus between researchers, the poor performance of parameters developed

from theory, and the inability of researchers to adequately quantify the performance of partially-

grouted shear walls have diminished the usefulness of previous methodologies or models in con-

structing a new model. This chapter details the development of a new linear model to describe

the shear behavior equally well for both fully- and partially-grouted walls using multivariate lin-
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ear regression, a method that has yet to be employed for this task. The new model was built and

analyzed using the new, expanded dataset developed in Part II of this dissertation.

15.2 Parameter Selection

15.2.1 Automated Stepwise Regression

In light of the uncertainties and disagreements remaining from the previous research, it was

judged best to start the model building process afresh by considering all potential combinations of

parameters—including those previously dismissed by researchers—in constructing the new model.

The Akaike Information Criteria (AIC) and the Bayes Information Criteria (BIC) were used in

conjunction with stepwise linear regression to narrow the large pool of parameters to those that

best described the experimental data. The use of stepwise regression was not intended to develop

the final model, but rather to help in identifying the best parameter candidates for consideration in

building the final model.

The results of the first series of stepwise regression are shown in Tables 15.1 and 15.2.

From first inspection it is clear that the resulting models contained unnecessary duplications of

terms and were overly-complex for consideration as the final model. By comparing the models for

the fully- and partially-grouted dataset, there were some parameters which were common between

the two models and some others that were unique. In the case of both the AIC and BIC analyses,

the goodness of fit parameters were consistently better for the fully-grouted model than for the

partially-grouted model. The larger number of
√

f ′m terms than f ′m terms suggested that the previ-

ous conclusion that shear strength is related to the root of the compressive strength (Matsumura,

1987) may be valid and that the other term should be eliminated from future consideration. This

will also maintain some harmony between masonry and reinforced concrete shear strength theory.

The elimination of the f ′m term from consideration in the second series of the stepwise

regression analyses produced more similarity in terms between the fully- and partially-grouted

models, as shown in Tables 15.3 and 15.4. However, there was still no consistency between models

for the two grouting types nor between models analyzed using AIC versus BIC. The new models

also contained multiple terms for each type of reinforcement, producing a model that is overly

complex and likely not representative of the actual behavior. There appeared to be no identifiable
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Table 15.1: First Stepwise Regression Using AIC

(a) Fully-Grouted Data

Parameter Estimate SE tStat pValue√
f ′m M

V lw
0.08782 0.054206 1.6201 0.10716√

f ′m min
(
1.0 , M

V lw

)
-0.0863 0.029381 -2.9373 0.0037935

f ′m 0.055362 0.012692 4.3619 2.2866e-05
f ′m min

(
1.0 , M

V lw

)
-0.029528 0.0091294 -3.2344 0.0014778

σ0 0.23824 0.025094 9.4942 2.8381e-17
ρc fyc

sc
lw 2.3119 0.50756 4.5551 1.0252e-05

ρc fyc
sc

lr -2.3824 0.5797 -4.1097 6.2789e-05
ρh fyh

sh
hg 0.12711 0.021918 5.7991 3.3993e-08

ρ j fy j
s j

hg 0.77413 0.28738 2.6938 0.0078085

Number of observations: 171, Error degrees of freedom: 162
Root Mean Squared Error: 0.3010, R2: 0.9682
Mean: -0.0003469, Standard Deviation: 0.3092

trend in whether there was a difference in the contribution of the horizontal and joint reinforcement.

In the next iteration it was chosen to combine the horizontal and joint reinforcement into one term

to help eliminate some of the duplication of parameters in the models.

The results from the third series of stepwise regression analyses shown in Tables 15.5 and

15.6. This latest series began to show some consolidation in the masonry and axial component

terms and a notable decrease in the number of terms for each of the reinforcement components.

The reinforcement terms still showed no intimation of agreement in the length term that should be

included with the reinforcement strength term in the parameter. The use of the stepwise regres-

sion procedure in building models using term addition has provided the most benefit in narrowing

the scope of parameters for inclusion in the masonry and axial parameters but some uncertainty

remains in regards to which reinforcement terms should be used in the equation.

A new series of stepwise regression analyses were conducted in which the model was

constructed using the interactions of input terms. Two types of terms were used in the analysis—

strength terms and geometric terms—to investigate what parameters would be determined if the

input terms were not limited to specific constructs. All four analysis results in Tables 15.7 and
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Table 15.1: First Stepwise Regression Using AIC (Continued)

(b) Partially-Grouted Data

Parameter Estimate SE tStat pValue√
f ′m 0.47193 0.064838 7.2785 1.258e-11√

f ′m M
V lw

-0.18431 0.11201 -1.6454 0.10177√
f ′m min

(
1.0 , M

V lw

)
-0.060819 0.042782 -1.4216 0.157√

f ′m sgv -0.00068802 0.00042961 -1.6015 0.11115
f ′m -0.045165 0.013802 -3.2724 0.001296

f ′m
M

V lw
0.027814 0.019223 1.4469 0.14979

σ0 0.22207 0.021897 10.142 3.9153e-19
√
σ0

√
f ′m -0.080721 0.020891 -3.8639 0.00016255

ρh fyh
sh

M
V 0.15642 0.097209 1.6092 0.10958

ρh fyh
sh

M
V 0.83046 0.18217 4.5586 1.0259e-05

ρh fyh
sh

min
(
hg , lr

)
-0.7528 0.19335 -3.8935 0.00014547

ρ j fy j
s j

M
V -5.0931 1.4175 -3.5931 0.00043609

ρ j fy j
s j

min
(
hg , lr

)
3.0123 0.86818 3.4696 0.00067191

ρh fyh
sh

M
V 0.81351 0.2368 3.4355 0.00074635

ρh fyh
sh

min
(
hg , lw

)
67.506 46.683 1.446 0.15004

ρh fyh
sh

min
(
hg , d

)
-134.26 93.525 -1.4355 0.15301

ρh fyh
sh

min
(
hg , lr

)
66.104 46.92 1.4089 0.16073

ρ j fy j lw -1.172 0.48206 -2.4312 0.016107
ρ j fy j M

V -3.1999 0.93985 -3.4047 0.00082941
ρ j fy j
min

(
hg , lr

)
3.6531 1.1505 3.1753 0.001783

Number of observations: 181, Error degrees of freedom: 167
Root Mean Square Error: 0.2025, R2: 0.9584
Mean: 0.002038, Standard Deviation: 0.2108

15.8 identified the parameters
√

f ′m and σ0 as being highly statistically significant for both grout-

ing types. This result is in agreement with the results of the previous analyses. The term
√

f ′m M
V lw

has been included in the fully-grouted models but is absent from the partially-grouted models, sug-

gesting that there may be some yet-unidentified term that is better suited for describing partially-

grouted shear wall behavior. This may be partly to blame for the poor fit of the existing MSJC

(2013) shear equation with partially-grouted walls.
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Table 15.2: First Stepwise Regression Using BIC

(a) Fully-Grouted Data

Parameter Estimate SE tStat pValue√
f ′m M

V lw
-0.064334 0.026195 -2.456 0.015099

f ′m 0.074242 0.0050531 14.692 1.1533e-31
f ′m min

(
1.0 , M

V lw

)
-0.036652 0.0080403 -4.5586 1.0062e-05

σ0 0.23843 0.025218 9.4546 3.4712e-17
ρc fyc

sc
lw 2.2116 0.50626 4.3684 2.2193e-05

ρc fyc
sc

lr -2.2593 0.57755 -3.9118 0.00013424
ρh fyh

sh
hg 0.1378 0.021005 6.5605 6.7918e-10

ρ j fy j
s j

hg 0.81554 0.28766 2.8351 0.0051619

Number of observations: 171, Error degrees of freedom: 163
Root Mean Squared Error: 0.3034, R2: 0.9676
Mean: 0.006828, Standard Deviation: 0.3108

(b) Partially-Grouted Data

Parameter Estimate SE tStat pValue√
f ′m 0.0.26639 0.011889 22.407 2.6863e-53

f ′m min
(
1.0 , M

V lw

)
-0.030277 0.0029981 -10.099 3.4932e-19

σ0 0.20393 0.017951 11.36 9.3238e-23
ρh fyh

sh
M
V 1.1048 0.21322 5.1814 6.0177e-07

ρh fyh
sh

min
(
hg , lw

)
0.66602 0.28349 2.3494 0.01992

ρh fyh
sh

min
(
hg , lr

)
-1.5817 0.45385 -3.4852 0.00062164

Number of observations: 181, Error degrees of freedom: 175
Root Mean Square Error: 0.2219, R2: 0.9501
Mean: 0.003093, Standard Deviation: 0.2257

The interaction analyses also identified several partial terms in the models which have in-

consistent units and are incomplete because they are missing either the strength or length compo-

nent. Most of these terms are sporadic and appear in some but not all of the models. One exception

is the term ρh fyh
sh

which occurs in all four models, though it is only statistically significant in the
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Table 15.3: Second Stepwise Regression Using AIC

(a) Fully-Grouted Data

Parameter Estimate SE tStat pValue√
f ′m 0.29974 0.028552 10.498 5.4089e-20√

f ′m M
V lw

-0.091233 0.033506 -2.7229 0.0071807√
f ′m min

(
1.0 , M

V lw

)
-0.10106 0.049855 -2.027 0.044299

σ0 0.11808 0.075045 1.5735 0.11756√
σ0 f ′m 0.12636 0.062535 2.0207 0.04496

ρc fyc
sc

lw 4.7198 1.0741 4.3944 2.0016e-05
ρc fyc

sc
d -4.7765 1.1462 -4.1672 5.0064e-05

ρh fyh
sh

hg 0.11635 0.021564 5.3956 2.386e-07
ρ j fy j

s j
hg 0.69926 0.27799 2.5154 0.012864

Number of observations: 171, Error degrees of freedom: 162
Root Mean Squared Error: 0.06660, R2: 0.9642
Mean: 1.867e-16, Standard Deviation: 0.06950

(b) Partially-Grouted Data

Parameter Estimate SE tStat pValue√
f ′m 0.29998 0.017461 17.181 3.0321e-39√

f ′m M
V lw

-0.038234 0.024653 -1.5509 0.12276√
f ′m min

(
1.0 , M

V lw

)
-0.13458 0.040094 -3.3566 0.00096997

σ0 0.19018 0.01954 9.7327 3.9736e-18
ρh fyh

sh
hg -0.33495 0.17382 -1.927 0.055619

ρh fyh
sh

M
V 1.36 0.27539 4.9386 1.8436e-06

ρ j fy j
s j

min
(
hg , lw

)
1.2995 0.48281 2.6915 0.0078105

ρ j fy j
s j

min
(
hg , lr

)
-2.1134 0.58629 -3.6047 0.00040851

Number of observations: 181, Error degrees of freedom: 173
Root Mean Square Error: 0.05408, R2: 0.9440
Mean: 1.058e-16, Standard Deviation: 0.05631
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Table 15.4: Second Stepwise Regression Using BIC

(a) Fully-Grouted Data

Parameter Estimate SE tStat pValue√
f ′m 0.25026 0.023074 10.846 5.2906e-21√

f ′m M
V lw

-0.13545 0.01963 -6.9002 1.0764e-10√
σ0 f ′m 0.23089 0.021486 10.746 9.9702e-21

ρc fyc
sc

lw 4.5542 1.1004 4.1387 5.5707e-05
ρc fyc

sc
d -4.6338 1.1722 -3.953 0.00011452

ρh fyh
sh

lw 0.12899 0.02455 5.2544 4.5643e-07
ρ j fy j

s j
hg 0.76219 0.28093 2.7131 0.0073777

Number of observations: 171, Error degrees of freedom: 164
Root Mean Square Error: 0.06843, R2: 0.9622
Mean: 4.602e-17, Standard Deviation: 0.07141

(b) Partially-Grouted Data

Parameter Estimate SE tStat pValue√
f ′m 0.30109 0.016789 17.933 1.419e-41√

f ′m min
(
1.0 , M

V lw

)
-0.18106 0.023044 -7.857 3.7501e-13

σ0 0.19181 0.019809 9.6833 4.8071e-18
ρh fyh

sh
M
V 0.96402 0.22575 4.2704 3.187e-05

ρh fyh
sh

min
(
hg , lr

)
-0.70473 0.20588 -3.423 0.00077041

Number of observations: 181, Error degrees of freedom: 176
Root Mean Squared Error: 0.05554, R2: 0.9409
Mean: 1.472e-16, Standard Deviation: 0.05782

BIC models. The sporadic nature and large number of inconsistent terms is likely due to variation

in the individual datasets and not due to the actual behavior of the walls.

15.3 Manual Stepwise Regression

The results from the stepwise regression analyses showed that the parameters
√

f ′m and

σ0 were common to both grouting types and that
√

f ′m M
V lw

was consistently present in the fully-

grouted models. Parameters for the different types of reinforcement contributions were also present
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Table 15.5: Third Stepwise Regression Using AIC

(a) Fully-Grouted Data

Parameter Estimate SE tStat pValue√
f ′m 0.23407 0.03072 7.6194 1.9718e-12√

f ′m M
V lw

-0.11002 0.028901 -3.8067 0.000199

σ0 0.1157 0.074556 1.5519 0.12263√
σ0 f ′m 0.24988 0.087701 2.8493 0.0049479√

σ0 f ′m min
(
1.0 , M

V lw

)
-0.14255 0.077414 -1.8414 0.067375

ρc fyc
sc

lw 2.4481 0.50207 4.876 2.5534e-06
ρc fyc

sc
lr -2.5371 0.5727 -4.4301 1.7211e-05(

ρh fyh
sh

+
ρ j fy j

s j

)
hg 0.11569 0.021932 5.2748 4.1768e-07

Number of observations: 171, Error degrees of freedom: 163
Root Mean Squared Error: 0.06768, R2: 0.9630
Mean: 2.234e-16, Standard Deviation: 0.06932

(b) Partially-Grouted Data

Parameter Estimate SE tStat pValue√
f ′m 0.29968 0.020671 14.498 1.089e-31√

f ′m M
V lw

-0.039561 0.025279 -1.565 0.11942√
f ′m min

(
1.0 , M

V lw

)
-0.13252 0.044299 -2.9915 0.0031814

σ0 0.20017 0.024608 8.1344 7.7275e-14(
ρh fyh

sh
+

ρ j fy j
s j

)
lw 1.4327 0.51518 2.781 0.0060201(

ρh fyh
sh

+
ρ j fy j

s j

)
lr -1.7331 0.56375 -3.0743 0.0024527(

ρh fyh
sh

+
ρ j fy j

s j

)
hg -0.50398 0.12654 -3.9828 0.00010016(

ρh fyh
sh

+
ρ j fy j

s j

)
M
V 0.98556 0.2282 4.3189 2.6368e-05

Number of observations: 181, Error degrees of freedom: 173
Root Mean Square Error: 0.05481, R2: 0.9425
Mean: 3.328e-17, Standard Deviation: 0.05607
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Table 15.6: Third Stepwise Regression Using BIC

(a) Fully-Grouted Data

Parameter Estimate SE tStat pValue√
f ′m 0.25232 0.023335 10.813 6.1351e-21√

f ′m M
V lw

-0.13741 0.019878 -6.9125 9.9079e-11√
σ0 f ′m 0.23595 0.021644 10.902 3.4776e-21

ρc fyc
sc

lw 2.2138 0.51919 4.2639 3.372e-05
ρc fyc

sc
lr -2.3001 0.59128 -3.89 0.00014515(

ρh fyh
sh

+
ρ j fy j

s j

)
d 0.14342 0.026964 5.3189 3.356e-07

Number of observations: 171, Error degrees of freedom: 165
Root Mean Square Error: 0.06954, R2: 0.9610
Mean: 2.724e-16, Standard Deviation: 0.07079

(b) Partially-Grouted Data

Parameter Estimate SE tStat pValue√
f ′m 0.28489 0.016699 17.06 3.8058e-39√

f ′m M
V lw

-0.15602 0.023081 -6.7594 1.9589e-10

σ0 0.17899 0.024465 7.3162 8.6851e-12(
ρh fyh

sh
+

ρ j fy j
s j

)
hg -0.21738 0.078282 -2.7769 0.0060834(

ρh fyh
sh

+
ρ j fy j

s j

)
M
V 0.4868 0.12029 4.0469 7.7629e-05

Number of observations: 181, Error degrees of freedom: 176
Root Mean Squared Error: 0.0568, R2: 0.9382
Mean: 1.385e-16, Standard Deviation: 0.05760

in all of the models, but they appeared in different and varying forms. One weakness of the au-

tomated stepwise regression procedure is that it was unable to eliminate certain terms from con-

sideration once a term within a class had been selected. For example, once the algorithm selected

the parameter ρ j fy j
s j

hg, there was nothing to prevent the algorithm from selecting ρ j fy j
s j

M
V as well.

This limitation was corrected by performing a manual stepwise regression analysis.

The data for the fully- and partially-grouted datasets were analyzed separately, as in the

automated analyses, to identify the coefficients that best described the masonry shear behavior.

Similar to the automated analyses, the
√

f ′m and σ0 parameters were both found to significantly
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Table 15.7: Interaction Stepwise Regression Using AIC

(a) Fully-Grouted Data

Parameter Estimate SE tStat pValue√
f ′m -0.06249 0.13258 -0.47136 0.63809√

f ′m M
V lw

0.35894 0.13258 2.7072 0.0075998√
f ′m min

(
1.0 , M

V lw

)
-0.23799 0.082323 -2.8909 0.0044325

σ0 -0.96667 0.27026 -3.5768 0.00047316
√
σ0 41976 17342 2.4204 0.016739

ρc fyc
sc

695.9 289.15 2.4067 0.017356
ρh fyh

sh
303.32 57.354 5.2887 4.4494e-07

ρ j fy j
s j

-1607.4 1686.9 -0.95287 0.34224

d 0.00039815 0.00026948 1.4775 0.14171
hg -0.0013189 0.0004989 -2.6436 0.0091051
M
V 0.00010839 0.00062154 0.17439 0.8618

min
(
hg , lr

)
0.0011464 0.00027767 4.1288 6.1286e-05√

f ′m hg 0.00048306 9.0234e-05 5.3534 3.3037e-07√
f ′m M

V 0.00070431 0.00020854 3.3773 0.00093991
f ′m

M
V lw

min
(
1.0 , M

V lw

)
-0.045445 0.020282 -2.2407 0.026567√

f ′m
ρ j fy j

s j
M

V lw
884.7 614.25 1.4403 0.15194√

f ′m d M
V lw

-0.0010647 0.00020189 -5.2736 4.7668e-07√
f ′m

ρc fyc
sc

min
(
1.0 , M

V lw

)
131.93 45.075 2.9269 0.0039759

σ0
√
σ0 12967 6151 2.1081 0.036743

σ0
ρc fyc

sc
-222.03 55.856 -3.9751 0.00011057

σ0
ρh fyh

sh
-59.431 32.691 -1.818 0.071135

σ0 d 0.00067381 8.9379e-05 7.5388 4.7374e-12
σ0 hg 0.00019165 9.2693e-05 2.0675 0.040462

ρc fyc
sc

min
(
1.0 , M

V lw

)
-0.4457 0.15491 -2.8771 0.00462

d hg -7.5202e-07 2.2934e-07 -3.2791 0.0013037
d M

V 4.5056e-07 1.9358e-07 2.3275 0.021321

Number of observations: 171, Error degrees of freedom: 145
Root Mean Square Error: 0.2268, R2: 0.9819
Mean: -0.0003716, Standard Deviation: 0.06065

244



Table 15.7: Interaction Stepwise Regression Using AIC (Continued)

(b) Partially-grouted Data

Parameter Estimate SE tStat pValue√
f ′m 0.48831 0.04753 10.274 4.7267e-19√

f ′m M
V lw

0.060872 0.26312 0.23135 0.81736√
f ′m min

(
1.0 , M

V lw

)
-0.52031 0.27697 -1.8785 0.06226√

f ′m sgv -0.00356 0.0026021 -1.3681 0.17334
σ0 -0.64677 0.2022 -3.1987 0.0016867
√
σ0 2.2335e+05 43553 5.1282 8.9625e-07

ρc fyc
sc

407.93 83.157 4.9056 2.4131e-06
ρh fyh

sh
482.81 275.82 1.7505 0.082093

ρ j fy j
s j

3551.7 1481.8 2.3969 0.017772

hg -0.00080878 0.00021571 -3.7495 0.00025304
min

(
1.0 , M

V lw

)
0.00024506 0.00057663 0.42499 0.67146

min
(
1.0 , M

V lr

)
0.0012101 0.0005877 2.0591 0.041228

f ′m
M

V lw
-0.17402 0.055446 -3.1385 0.0020474

f ′m min
(
1.0 , M

V lw

)
0.17394 0.055391 3.1402 0.0020365

f ′m sgv -0.00075926 0.00053229 -1.4264 0.15584√
f ′m

ρh fyh
sh

-142.79 76.845 -1.8582 0.065116√
f ′m

ρ j fy j
s j

-852.41 375.12 -2.2723 0.024497√
f ′m min

(
1.0 , M

V lr

)
-0.0001922 4.253e-05 -4.5193 1.2556e-05

affect the overall shear strength for both walls. The
√

f ′m M
V lw

parameter was also found to be

highly correlated with the fully-grouted wall strength, but the correlation of the parameter with

the partially-grouted data was marginal. The analysis showed that the partially-grouted was best

modeled using the
√

f ′m
V sgh

M parameter, as shown in Table 15.9b.

The best-fit parameters for the confinement and horizontal reinforcement were the same

for both grouting-type models but differed slighting for the joint reinforcement parameter. In the

fully-grouted model the best choice for the length term was the gross height of the wall hg but

in the partially-grouted model the best choice was to use the reinforced length lr of the wall. The

source of this disparity is uncertain, but it is likely due to distribution of joint-reinforced specimens
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Table 15.7: Interaction Stepwise Regression Using AIC (Continued)

(c) Partially-grouted Data (Continued)

Parameter Estimate SE tStat pValue

f ′m sgv M
V lw

0.0012154 0.00049612 2.4497 0.015456√
f ′m σ0

M
V lw

0.15198 0.028266 5.3767 2.8717e-07√
f ′m M

V lw
ρh fyh

sh
174.13 67.394 2.5837 0.010736√

f ′m M
V lw

hg 0.00015362 4.3093e-05 3.5649 0.00048953√
f ′m M

V lw
min

(
1.0 , M

V lw

)
0.00027195 0.00016566 1.6416 0.10279√

f ′m M
V lw

min
(
1.0 , M

V lr

)
-0.00034163 0.00015787 -2.164 0.032054√

f ′m σ0 sgv 0.0066949 0.0016579 4.0383 8.5895e-05√
f ′m σ0 sgv -932.68 331.6 -2.8127 0.0055754√

f ′m sgv
ρh fyh

sh
-8.4003 2.7209 -3.0873 0.0024092√

σ3
0 -16435 5571.3 -2.9499 0.0036928

√
σ0

ρc fyc
sc

-9.148e+07 1.7005e+07 -5.3796 2.8336e-07
√
σ0 hg -104.01 20.427 -5.0917 1.0565e-06

√
σ0 min

(
1.0 , M

V lr

)
29.754 13.998 2.1256 0.035186

ρh fyh
sh

ρ j fy j
s j

9.0776e+05 2.9446e+05 3.0828 0.0024439

Number of observations: 181, Error degrees of freedom: 149
Root Mean Square Error: 0.1481, R2: 0.9777
Mean: 0.5.767e-05, Standard Deviation: 0.1633

between the two groups. In practice, it would be desirable for the length term on both the horizontal

and joint reinforcement to be the same since they are both oriented in the same direction.

15.4 Model Fitting

The findings from the previous analysis were used to further develop and fit a model to

the data. It was apparent from the inconsistency between the parameter coefficients that there was

some adjustment to the parameters that needed to be made before developing the final model. The

adjustments were made one at a time to determine how they affected the goodness of fit for the

model. The vast difference between the masonry contribution parameters for fully- and partially-

grouted models showed that there was no feasible way to have a model that represented both

grouting types equally well while maintaining the same coefficients for the masonry components.
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Table 15.8: Interaction Stepwise Regression Using BIC

(a) Fully-Grouted Data

Parameter Estimate SE tStat pValue√
f ′m 0.42093 0.03222 13.064 4.695e-27√

f ′m min
(
1.0 , M

V lw

)
-0.29328 0.036778 -7.9743 2.6788e-13

σ0 0.26322 0.035432 7.4289 6.0593e-12
ρc fyc

sc
-92 193.24 -0.4761 0.63465

ρh fyh
sh

-263.73 210.18 -1.2548 0.21138
ρ j fy j

s j
1054.3 427.26 2.4676 0.014648

M
V -0.00016841 6.0517e-05 -2.7829 0.0060325√

f ′m
ρh fyh

sh
141.56 43.96 3.2201 0.0015505√

f ′m
ρc fyc

sc
min

(
1.0 , M

V lw

)
133.54 46.742 2.857 0.0048423

σ0
ρh fyh

sh
-104.97 35.335 -2.9708 0.0034255

Number of observations: 171, Error degrees of freedom: 161
Root Mean Square Error: 0.2997, R2: 0.9684
Mean: -0.0002444, Standard Deviation: 0.3089

(b) Partially-grouted Data

Parameter Estimate SE tStat pValue√
f ′m 0.24961 0.015547 16.055 3.5734e-36√

f ′m M
V lw

0.11816 0.035835 3.2973 0.0011834√
f ′m sgv -0.0011391 0.00043145 -2.6403 0.009037
σ0 0.050756 0.046943 1.0812 0.2811
ρh fyh

sh
140.82 48.538 2.9013 0.0041961

f ′m
M

V lw
-0.042311 0.0057456 -7.3642 6.8338e-12√

f ′m σ0
M

V lw
0.041599 0.012476 3.3342 0.0010453

Number of observations: 181, Error degrees of freedom: 174
Root Mean Squared Error: 0.2287, R2: 0.9469
Mean: 0.006092, Standard Deviation: 0.2333
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Table 15.9: Best-Fit Parameters from Manual Stepwise Regression

(a) Fully-Grouted Data

Parameter Estimate SE tStat pValue√
f ′m 0.070577 0.017641 4.0007 9.5165e-05√

f ′m
V lw

M 0.068849 0.0080365 8.567 7.2148e-15
σ0 0.24724 0.028205 8.7659 2.1735e-15

ρc fyc
sc

lw 0.21597 0.033959 6.3598 1.906e-09
ρh fyh

sh
hg 0.17281 0.023179 7.4554 4.8106e-12

ρ j fy j
s j

hg 0.82205 0.32639 2.5186 0.012734

Number of observations: 171, Error degrees of freedom: 165
Root Mean Squared Error: 0.3473, R2: 0.9576
Mean: -0.007988, Standard Deviation: 0.3535

(b) Partially-Grouted Data

Parameter Estimate SE tStat pValue√
f ′m 0.090355 0.009172 9.8512 1.7132e-18√

f ′m
V sgh

M 0.074162 0.0075839 9.7789 2.7212e-18
σ0 0.17357 0.021497 8.0742 1.0554e-13

ρc fyc
sc

lw 0.14647 0.027386 5.3484 2.7474e-07
ρh fyh

sh
hg 0.084074 0.027878 3.0158 0.002945

ρ j fy j
s j

hg -0.014439 0.042003 -0.34376 0.73144

Number of observations: 168, Error degrees of freedom: 162
Root Mean Squared Error: 0.3018, R2: 0.9215
Mean: 0.01274, Standard Deviation: 0.3018

It was decided that since the masonry component contributed the most to the wall shear strength

out of all the parameters, it would be best to use different coefficients for the masonry contribution

parameters for fully- and partially-grouted walls while leaving the remaining parameters constant

for both grouting types.

248



The two best model fitted to the dataset were produced using two different weighting

schemes. The first model is given by

Vn = Vm + Vp + Vc + Vs

=




(
1.8141 + 0.71402

V lw
M

)
Anv

√
f ′m for fully-grouted(

1.0337 + 1.0491
V sgh

M

)
Anv

√
f ′m for partially-grouted

+ 0.14604P

+ 0.12617
Ac f yc

sc
lw

+ 0.11366
(

Ah f yh

sh
+

A j f y j

s j

)
hg

(15.1)

and was derived using the data weighting scheme described in Section 13.3.4. The second model

is given by

Vn = Vm + Vp + Vc + Vs

=




(
2.2451 + 0.70467

V lw
M

)
Anv

√
f ′m for fully-grouted(

0.99828 + 1.1490
V sgh

M

)
Anv

√
f ′m for partially-grouted

+ 0.098459P

+ 0.10751
Ac f yc

sc
lw

+ 0.11649
(

Ah f yh

sh
+

A j f y j

s j

)
hg

(15.2)

and was derived using no weighting in the regression. In the latter model, it was observed from the

coefficients of determination that the models consistently better fit the fully-grouted data than the

partially-grouted data. The introduction of weighting in the analysis improved the fit of the model

with the partially-grouted data and slightly diminished the fit with the fully-grouted data. This

trade-off was justified because the end model would have closer coefficients of variation for the two

grouting types (possibly eliminating the need to use two different resistance factors) and because

the model produces a better fit than the current MSJC (2013) model. The standard deviation of the

partially-grouted residuals was typically lower than that of the fully-grouted residuals, but since the
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mean failure strength of the partially-grouted was also lower than the mean fully-grouted strength,

the coefficient of variation was higher for the partially-grouted data.

The coefficients in the two models are too precise to use in a design because they would

suggest that the numerical approximations made with the model are more accurate than they truly

are. This was evident from the differences in coefficient values between the two models despite the

fact that they were derived from the same dataset. The values in the models could not be simply

rounded because the total model performance was more sensitive to some coefficient values than

to other values and changing the values would affect the performance of the model for the two

grouting types. Each adjustment to the model coefficients was compared against the recalculated

goodness-of-fit parameters and the mean, standard deviation, and coefficient of variation of the

residuals. The values in the weighted model were favored over the unweighted model because

inspection of the residual plots showed it to be more homoscedastic that the unweighted model.

After comparing numerous iterative adjustments to the model, the final model selected is given by

Vn = Vm + Vp + Vs

=




(
1.8 + 0.7

V lw
M

)
Anv

√
f ′m for fully-grouted(

1.1 + 0.9
V sgh

M

)
Anv

√
f ′m for partially-grouted

+ 0.15P

+ 0.12
[

Ac f yc

sc
lw +

(
Ah f yh

sh
+

A j f y j

s j

)
hg

]

. (15.3)

One assumption used in the building of the final model in Equation (15.3) what that the

coefficients for all three reinforcement components should be the same. The assumption that the

horizontal bar and wire joint reinforcement coefficients are equal was made previously. The as-

sumption that the horizontal and vertical reinforcement contributions should have the same value

was made because the coefficient estimates have been consistently close during many of the anal-

yses. The theoretical belief that the horizontal reinforcement was directly involved in resisting the

lateral shear force was previously invalidated by the analysis in Chapter 14. The new hypothesis is

that the horizontal reinforcement works by keeping the diagonal cracks in the masonry closed and

enabling the masonry to transfer stresses via strut action and crack friction, similar to the role of

the vertical reinforcement. Since diagonal cracking typically forms at a 45 °angle, the horizontal
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and vertical reinforcement are equally effective in restricting the diagonal cracks from opening and

should have the same coefficient.

The coefficients in Equation (15.3) differed slightly from the optimal estimates shown in

Equations (15.1) and (15.2), so the mean of the residuals was not equal to zero. Since the former

two models were developed using both fully- and partially-grouted data, the residual means in

these two models differed from zero, with the partially-grouted residual mean greater than zero

(conservative) and the fully-grouted residual mean less than zero (unconservative). In the final

equation, the coefficients for the fully- and partially-grouted components were able to be adjusted

such that the model was slightly conservative for both grouting types.

In the final model, the coefficient of variation for the partially-grouted data was still ap-

proximately 20 percent higher than that for the fully-grouted data. In the former model employed

by prior editions of the MSJC code prior to the introduction of the grouted wall factor, the differ-

ence in the coefficient of variation for the two grouting types was nearly twice that of the current

model. The introduction of the grouted wall factor brought the coefficients of variance closer, but

the model means differed greatly between the two grouting types. It appears that the variance for

partially-grouted data is higher than that for fully-grouted data and that no model will produce

comparable variances unless the coefficients are manipulated to artificially increase the variance of

the model with respect to fully-grouted data.

15.5 Limit Function

The current MSJC (2013) shear strength limit was compared with the proposed model to

determine if it would provide a good upper constraint for the model. The results of the comparison,

displayed in Figure 15.1, show that the MSJC limit equation does not provide a useful upper bound

for the model predictions. The data that is most affected by the limit equation are the specimens

at the upper tier of the plot, which the model tends to under-predicts already and for which no

constraint is necessary. The MSJC limit works fairly well for the current MSJC model because it

tends to over-predict the strength for stronger walls, as shown in Figure 15.2.

A new limit was developed to use with the proposed shear model in equation (15.3) to

better match the performance of the model and to better represent the behavior of the components

of the shear wall. The limit function was developed using stress fields and the upper-bound theorem
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Proposed Model
Model with MSJC Limit

Figure 15.1: New model predictions with MSJC limit

from the theory of plasticity (Nielsen and Hoang, 2011) and is jointly based on the concepts of wall

overturning from flexural theory and non-planar sections from the theory of plasticity. The limit

assumes that the shear and axial forces become concentrated in the leading toe of wall, resulting in

a compression block with length

a =

A f f y + P +
Ac f yc

sc
lw

0.8 f ′m ts
(15.4)

where ts is the shear thickness of the wall and is taken as the gross thickness for fully-grouted walls

and the total face shell thickness for partially-grouted walls. The total vertical force transferred

through the block is equal to the sum of the axial load, flexural reinforcement yield strength, and

yield strength of all the confinement reinforcement. The stress from the vertical force is assumed to
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TCCMaR Model
Model with MSJC Limit

Figure 15.2: TCCMaR model predictions with MSJC limit

be uniformly distributed across the wall section at the height of the inflection point of the wall. In

walls with cantilever loading conditions, the inflection point is at the top of the wall and the stress

fields follow the path shown in figure 15.3a. Walls loaded in double-curvature have an inflection

point located at the mid-height of the wall, producing the stress fields shown in figure 15.3b. The

double-curvature case can be degenerated to two cantilevered sections, one on top of the other, by

taking a slice through the mid-height of the wall, as shown in figure 15.4.
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(a) Under cantilever loading (b) Under double-curvature loading

Figure 15.3: Stress fields in masonry shear walls

Figure 15.4: Degenerated case of stress fields in walls subject to double-curvature

The lateral offset between the resultant forces at the toe and inflection point of the wall

generate a moment force which represents the upper bound of the ultimate shear strength of the
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wall. The maximum shear force corresponding to this upper bound is given by

Vn(max) =

0.8 f ′m a tn
lw − a

2
+ A f f y

(
d −

a
2

)
Mu

Vu

(15.5)

which cannot be exceeded without causing the wall panel to begin to overturn. Equation (15.5)

can be combined with equation (15.4) to produce a second potential form of the equation, which

is given by

Vn(max) =

(
P +

Ac f yc

sc
lw

)
lw − a

2
+ A f f y

(
d − a +

lw
2

)
Mu

Vu

. (15.6)

When the limit is exceeded the wall will begin to experience large, appreciable horizontal cracking

due to the overturning of the wall panel. Should the wall reach this level of shear force without

crushing the masonry, the vertical reinforcement will begin to strain harden and prevent the wall

from overturning. The limit function assumes all of the confinement reinforcement to contribute

in resisting the overturning force. This assumption is based on the redistribution of forces which

occurs within the wall panel when cracks form in the wall panel. Once cracking has occurred

within the wall panel, plane sections are interrupted and the paths of stresses are redistributed to

minimize the strain energy within the panel. Further discussion of the topics of plasticity and stress

fields is performed in-depth in part V of this dissertation.

The new limit function was compared with the predictions from the linear model to deter-

mine how the predicted values changed. Figure 15.5 shows that the proposed model with the new

limit performs better overall, particularly for many of the lower- and higher-strength specimens.

This behavior suggests that many of the specimens which appeared to fail in shear may have failed

prematurely before reaching their ultimate shear capacity.
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Figure 15.5: New model predictions with flexure limit
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CHAPTER 16. DISCUSSION OF MODEL PERFORMANCE

16.1 Performance of Shear Strength Models

The performance of each of the existing models and the new, proposed model were eval-

uated using the new dataset developed in Part II of this dissertation. Each model is presented in

a common format to ease comparison of the individual models. Each model was formatted such

that the notation was updated to that used herein and each equation was transformed into units of

stress assuming the input and output variables to be in SI units. Each model was also segregated

into its component parts to further facilitate comparison and identification of which components

are included in each model.

The performance of each model was investigated by calculating the goodness-of-fit statis-

tics for the full dataset and for the fully- and partially-grouted subsets. The root mean square error

shows the quadratic mean deviation of the predicted values from the experimental values and the

coefficient of determination R2 shows how well each model accounts for the variation in the ex-

perimental values (Chatterjee and Hadi, 2006). The mean of the residuals are given to show how

conservative (for positive means) or unconservative (for negative means) the models are for each

grouting subset compared to each other and for the whole dataset. The standard deviation of the

residuals is a gauge of the variance of the model for each of the subsets and for the data as a whole.

The predicted values for each model were also plotted against the experimental values to

visualize how each model fit the dataset. A line of unity slope was included on each plot to denote

the perfect fit between predicted and experimental values. As the predicted strength was plotted

on the ordinate, any plotted strength appearing above the unity slope line is over-predicted (i.e.,

unconservative) and any strength below the line is under-predicted (i.e., conservative). Since the

experimental strength was constant for all models, it was plotted on the abscissa so that the domain

would be consistent between all plots.
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The fit for the models for each group is more variable than for the dataset as a whole. While

it is inevitable that some models would fit certain data groups better than others, the principal aim of

this investigation is to explore which model performs consistently well across all feasible designs.

For further inspection and comparison of the performance for each model, plots of the predicted

values and experimental values for each group are included in Appendix F.

16.1.1 Matsumura

The Matsumura (1987) equation is given by

vn = vm + vp + vs

= 0.875kukp

(
0.76

M
Vd +0.7

+ 0.012
) √

f ′m + 0.175σ0

+ 0.1575γδ
√
ρh f yh f ′m

(16.1)

The goodness-of-fit statistics in Table 16.1 show a large disparity in the mean error between the

fully- and partially-grouted walls. Since the partially-grouted wall typically experienced a lower

failure stress than the fully-grouted walls, this disparity suggests that the model may display some

heteroscedasticity. This suspicion is confirmed by the distinct cone shape of the data values plotted

in Figure 16.1. One potential cause of the heteroscedasticity is that the equation is based on gross

wall area, as opposed to net wall area. The shear strengths are divided by the gross area rather

than by the net area, the respective shear stresses for the partially-grouted walls are smaller than

they would be otherwise—since the gross area is always larger than the net area. The R2 values

reveal that the Matsumura model is better at predicting the strengths of partially-grouted walls than

those of fully-grouted walls. Part of this may be because the Matsumura model was developed

predominantly using partially-grouted specimens.

Table 16.1: Goodness-of-Fit Statistics for Matsumura Model

Grouting RMSE
R2 Residuals (MPa)

(MPa) Mean Std Dev
Both 0.6021 0.8081 0.4350 0.6056
Full 0.7769 0.7928 0.6343 0.4377

Partial 0.3893 0.8497 0.2467 0.2988
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Figure 16.1: Matsumura model predictions

The Matsumura model is notably conservative in that it only over-predicted the strength for

about 10 percent of the specimens. This proportion is more typical of the results that would be ex-

pected after applying the strength reduction factor to the equation. For this reason, the Matsumura

model appears to be very conservative.

16.1.2 Architectural Institute of Japan

The Architectural Institute of Japan code model (Okamoto et al., 1987) is given by

vn = vm + vp + vs

= 0.0464ρ0.23
t

f ′m + 17.7
M

Vlw
+ 0.12

+ 0.0875σ0 + 0.740
√
ρh f yh

(16.2)
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The goodness-of-fit statistics in Table 16.2 show that the AIJ model is a far better fit for the fully-

grouted data than for the partially-grouted data. The data plotted in Figure 16.2 show a definite

sign of heteroscedasticity due to its wide, cone-shaped pattern. The wide shape is reflected in the

relatively large values for the standard deviation. Unlike the Matsumura equation, the AIJ model

is fairly representative of the mean strength for the lower two-thirds of the experimental strength

range, which is the reason for the small residual mean value for the full dataset. The model is

conservative for the upper third of the range of experimental strengths.

Table 16.2: Goodness-of-Fit Statistics for AIJ Model

Grouting RMSE
R2 Residuals (MPa)

(MPa) Mean Std Dev
Both 0.5994 0.8098 0.004786 0.6028
Full 0.5395 0.9001 0.3195 0.4318

Partial 0.6632 0.5637 -0.2926 0.5936

It is particularly notable that three of the four statistics for the AIJ model are nearly the same

as those for the Matsumura model when considering the full dataset. The difference in statistics

between the two model is that the AIJ model has a mean strength of 0.005 MPa (0.7 psi) and the

Matsumura model has a mean of approximately 0.44 MPa (63 psi). However, when comparing

the statistics between the two models for each of the subsets, the results are very different. One

approach to improve the fit for the Japanese model would be to use the Matsumura model for

partially-grouted walls and to use the AIJ model for fully-grouted walls.

16.1.3 Blondet et al.

The model developed by Blondet et al. (1989) is given by

vn = vm + vs

=
(
βg − 1.75 M

V d

) √
f ′m + 1

2vs

(16.3)

The goodness-of-fit statistics in Table 16.3 reveal that the Blondet model had a fairly consistent fit

between the fully- and partially-grouted subsets. The model is moderately conservative by about
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Figure 16.2: AIJ model predictions

0.16 MPa (23 psi) for the fully-grouted data and by about 0.16 MPa (23 psi) for the partially-

grouted data. In computing the predicted strengths for the Blondet model, it was necessary to

impose a constraint on the shear span ratio such that M
V d ≤ 1, otherwise the model would predict

some specimens as having negative strength. The imposition of this constraint served to form a

lower limit on the predicted strength at about 0.5 MPa, giving the predictions in Figure 16.3 the

appearance of being heteroscedastic; otherwise, the data would have followed a more homoscedas-

tic pattern. This constraint also served to inflate the predicted strengths for many of the partially

grouted specimens, causing the mean strength for the partially-grouted data to be over-predicted.
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Table 16.3: Goodness-of-Fit Statistics for Blondet Model

Grouting RMSE
R2 Residuals (MPa)

(MPa) Mean Std Dev
Both 0.4468 0.8943 -0.005911 0.4487
Full 0.5003 0.9136 0.1593 0.4738

Partial 0.3980 0.8419 -0.1620 0.3630
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Figure 16.3: Blondet model predictions

16.1.4 Shing et al.

The model developed by Shing et al. (1990) is given by

vn = vm + vp + vs

=
(
0.166 + 0.0217ρc f yc

) √
f ′m + 0.0217σ0

√
f ′m

+
(

lw−2d ′
sh
− 1

)
ρh f y

(16.4)
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The goodness-of-fit statistics in Table 16.4 reveal that this model had a better fit for the partially-

grouted data than for the fully-grouted data. The model was also more accurate at predicting the

nominal strength of the partially-grouted specimens as opposed to the fully-grouted specimens.

The mean predicted strength of the partially-grouted walls was accurate but was very conservative

for the fully-grouted specimens by 0.40 MPa (58 psi). This behavior was unexpected because the

masonry shear wall research program at the University of Colorado-Boulder, for which this model

was developed, included only fully-grouted specimens.

The data plot in Figure 16.4 shows that the reason for the superior fit for the partially-

grouted data is that the data appear to follow a different trendline. Due to this, the predicted values

become increasingly conservative with increasing failure stress. Possible reasons for this behavior

are that the model is missing parameters and/or the model uses the incorrect coefficient values.

The model shows some degree of heteroscedasticity, but nowhere as large as that of the AIJ and

Matsumura models.

Table 16.4: Goodness-of-Fit Statistics for Shing Model

Grouting RMSE
R2 Residuals (MPa)

(MPa) Mean Std Dev
Both 0.4815 0.8772 0.1929 0.4843
Full 0.6266 0.8652 0.4008 0.4776

Partial 0.3012 0.9100 -0.003438 0.3012

16.1.5 Anderson and Priestley

The Anderson and Priestley (1992) model is given by

vn = vm + vp + vs

= b1
√

f ′m + 0.25σ0 + 0.5ρh f y
(16.5)

The goodness-of-fit statistics in Table 16.5 show that the model as a whole is fairly accurate, with

a mean predicted strength less than 0.07 MPa (10 psi). However, the accuracy of the model varies

between the two grouting type, from being conservative by 0.15 MPa (22 psi) for fully-grouted

263



0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Experimental Strength (MPa)

Pr
ed

ic
te

d 
St

re
ng

th
 (M

Pa
)

Figure 16.4: Shing model predictions

wall to being unconservative by 0.28 MPa (40 psi) for partially-grouted walls. Inspection of the

RMSE and standard deviation values and the data plot in Figure 16.5 reveal that the Anderson and

Priestley model has a very low level of precision. The parallelogrammatic shape of the strength

plot makes it difficult to ascertain whether the residuals are heteroscedastic—with both increasing

and decreasing variance—or homoscedastic with a rotated mean line. In either case, the results

suggest that the Anderson and Priestley model is mis-parameterized.

Table 16.5: Goodness-of-Fit Statistics for Anderson and Priestley Model

Grouting RMSE
R2 Residuals (MPa)

(MPa) Mean Std Dev
Both 0.5440 0.8434 -0.07048 0.5463
Full 0.5581 0.8924 0.1489 0.5375

Partial 0.5396 0.7096 -0.2778 0.4612
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Figure 16.5: Anderson and Priestley model predictions

16.1.6 Fattal

The Fattal (1993) model is given by

vn = vm + vp + vs

= k0ku

(
0.5

M
Vd +0.8

+ 0.18
) √

f ′m f ycρ
0.7
c + 0.012 f ′m + 0.20σ0

+ 0.011γδρ0.31
h f yh

(16.6)

The goodness-of-fit statistics in Table 16.6 show a fairly consistent fit of the model between the two

grouting types. The model produces conservative results, with the model being about 50 percent

more conservative for the fully-grouted data than for the partially-grouted data. Inspection of the

strength plot in Figure 16.6 reveal the residuals to be slightly cone-shaped. The slightly improved
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fit and lower standard deviation value for the partially-grouted data are likely because the model

was built based on partially-grouted specimen data from three studies: Matsumura (1987), Chen

et al. (1978), and Yancey and Scribner (1989).

Table 16.6: Goodness-of-Fit Statistics for Fattal Model

Grouting RMSE
R2 Residuals (MPa)

(MPa) Mean Std Dev
Both 0.4641 0.8860 0.2952 0.4682
Full 0.5471 0.8985 0.3521 0.4133

Partial 0.3887 0.8518 0.2415 0.3013
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Figure 16.6: Fattal model predictions
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16.1.7 TCCMaR

The TCCMaR (NEHRP, 1997) model is given by

vn = vm + vp + vs

= 0.083
(
4 − 1.75 M

Vlw

) √
f ′m + 0.25σ0 + 0.5ρh f yh

(16.7)

The goodness-of-fit statistics in Table 16.7 show that the model is consistently unconservative

for all wall types and has a better fit for the fully-grouted data. The strength plot in Figure 16.7

shows that the TCCMaR model offers an improved fit to the data as compared with the Blondet

et al. (1989) and Anderson and Priestley (1992) models from which is was built. The TCCMaR

model shows a degree of heteroscedasticity in the lower strength range and appears to be fairly

homoscedastic for experimental shear failure stresses above 1.5 MPa (220 psi). The predicted

strengths appear to follow a slope of unity, but the values are consistently too higher and suggest

that some or all of the parameter coefficients used in the model are higher than they should be.

Table 16.7: Goodness-of-Fit Statistics for TCCMaR Model

Grouting RMSE
R2 Residuals (MPa)

(MPa) Mean Std Dev
Both 0.7005 0.7402 -0.3095 0.7035
Full 0.8740 0.7362 -0.2651 0.8321

Partial 0.4995 0.7511 -0.3514 0.3521

16.1.8 UBC

The UBC (1997) model is given by

vn = vm + vs

= 0.083Cd
√

f ′m + ρh f yh
lw
sh

(16.8)
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Figure 16.7: TCCMaR model predictions

where

Cd =




2.4 for M
Vlw
≤ 0.25

2.8 − 1.6 M
Vlw

for 0.25 < M
Vlw

< 1.0

1.2
√

f ′m for M
Vlw
≥ 1.0

The UBC model was not intended for predicting shear strength, but served as a bound on the shear

capacity of masonry walls (NEHRP, 1997). The model was included in this analysis because the

model form was later adapted for use as an upper bound for the shear strength in the MSJC (2013)
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code. The goodness-of-fit statistics in Table 16.8 show a poor fit between the model and the exper-

imental data. The reason for the poor fit is revealed in Figure 16.8 which shows a large variance

in the predicted values, with several values being over-predicted by as much as a factor of 2.5.

The results of the UBC model show that the predicted strength cannot be effectively accomplished

solely using the shear span ratio and the characteristic strength of the masonry.

Table 16.8: Goodness-of-Fit Statistics for UBC Model

Grouting RMSE
R2 Residuals (MPa)

(MPa) Mean Std Dev
Both 0.9177 0.5541 -0.2058 0.9217
Full 1.093 0.5872 -0.2745 1.058

Partial 0.7329 0.4641 -0.1409 0.7190

16.1.9 New Zealand Standard

The Standard Association of New Zealand (NZS) (2004) model for shear walls is given by

vn = vm + vp + vs

= 0.083034 (C1 + C2)
√

f ′m + 0.9σ0
V (lw − a)

2M
+ C3ρh f yh

d
sh

≤ 0.45
√

f ′m

(16.9)

where

C1 = 33ρ f
f y

300

C2 =




1.5 for M
Vlw

< 0.25

0.42
(
4 − 1.75 M

Vlw

)
for 0.25 ≤ M

Vlw
≤ 1.0

1.0 for M
Vlw

> 1.0

C3 = 0.8

The goodness-of-fit statistics in Table 16.9 show the Standard Association of New Zealand (NZS)

model to be conservative by 0.11 MPa (16 psi) for partially-grouted walls and slightly conservative

by 0.05 MPa (7 psi) for fully-grouted walls. Inspection of the results plotted in Figure 16.9 show
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Figure 16.8: UBC model predictions

that the predictions appear to be homoscedastic, at least for experimental values below 2 MPa (300

psi). Above 2 MPa the model under-predicts the data due to the imposition of the vn ≤ 0.45
√

f ′m

constraint, which appears to effectively limit the effective strength to values below 2 MPa.

Table 16.9: Goodness-of-Fit Statistics for NZS Model

Grouting RMSE
R2 Residuals (MPa)

(MPa) Mean Std Dev
Both 0.3869 0.9208 0.07881 0.3896
Full 0.4294 0.9371 0.04842 0.4266

Partial 0.3542 0.8763 0.1075 0.3370
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Figure 16.9: NZS model predictions

16.1.10 Voon

The Voon (2007) model is given by

vn = vm + vp + vs

= k
[
0.022ρc f yc + 0.083

(
4 − 1.75 M

Vlw

)] √
f ′m + 0.9N∗ tan α

+ ρh f yh
de f f

sh

≤ 0.33
√

f ′m

(16.10)

The k factor is used to account for the strength degradation that occurs with increasing ductility

displacement of the wall. Since the displacement ductility was not available for all of the speci-

mens, the Voon model was investigated for k = 0.8 and k = 0. These values were selected to be
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the same as those used by Voon in his analysis. The goodness-of-fit statistics for k = 0.8 in Table

16.10 show that the Voon model has a particularly large disparity in model fit between the two

grouting types. The poor fit is shown in Figure 16.11 which exposes the influence of the constraint

vn ≤ 0.33
√

f ′m more than the performance of the model itself. For further clarification, the model

plot was reproduced with the upper bound removed in Figure 16.12, which shows the model to

significantly over-predict the shear strength values. The Voon model is analogous to the TCCMaR

model with a reformatted axial contribution parameter and double the contribution of the horizon-

tal reinforcement. It was previously shown than the TCCMaR model over-predicts strength values

and that the 0.5 coefficient for the horizontal reinforcement parameter was too high. It only follows

that adding the influence of the confinement reinforcement to the TCCMaR model and doubling the

influence of the horizontal reinforcement—which was already too high—without decreasing the

masonry strength contribution would create a model that over-predicts shear strength significantly

more than the TCCMaR model.

0 1.25 2 3 4
0

0.2

0.4

0.6

0.8

1

Displacement Ductility, µ

k

Figure 16.10: Shear resisting mechanism versus masonry ductility (adapted from Voon 2007)

The Voon model was also investigated for the other case where k = 0. The goodness-of-fit

statistics for k = 0 in Table 16.11 show that the Voon model has a smaller disparity in fit between

the fully- and partially-grouted data. The difference in model values was evident in the data plots in

Figure 16.13, which displays notably lower predicted strengths than those shown in Figure 16.11.

The values for this latter case are, for most specimens, too conservative—particularly for the walls
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Table 16.10: Goodness-of-Fit Statistics for Voon Model with k = 0.8

Grouting RMSE
R2 Residuals (MPa)

(MPa) Mean Std Dev
Both 0.6312 0.7891 -0.2861 0.6358
Full 0.5818 0.8845 -0.01183 0.5817

Partial 0.6911 0.5289 -0.5453 0.4145
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Figure 16.11: Voon model predictions with k = 0.8

without horizontal reinforcement or axial load which show a predicted strength of zero. It appears

that the optimum fit of the Voon model is for intermediary values of k, which would vary from

specimen to specimen.
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Figure 16.12: Voon model predictions with k = 0.8, without upper bound

Table 16.11: Goodness-of-Fit Statistics for Voon Model with k = 0

Grouting RMSE
R2 Residuals (MPa)

(MPa) Mean Std Dev
Both 0.6228 0.7946 0.3764 0.6273
Full 0.7148 0.8257 0.5669 0.4241

Partial 0.5422 0.7100 0.1964 0.5043

274



0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Experimental Strength (MPa)

Pr
ed

ic
te

d 
St

re
ng

th
 (M

Pa
)

Figure 16.13: Voon model predictions with k = 0

16.1.11 Australian Standard

The AS 3700 (2011) model for in-plane shear strength is given by

vn = vm + vs

= fvr + 0.8ρh f yh

(16.11)

where

fvr =
(
1.5 − 0.5 h

lw

)
(MPa)

The goodness-of-fit statistics in Table 16.12 shows that the model is fairly consistent in both fit and
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(un)conservativeness between both fully- and partially-grouted walls. The main body of points in

Figure 16.14 appear to have only a slight degree of heteroscedasticity but there are about a dozen

points which lie above the main trunk of data which could possibly be considered outliers but for

the quantity and pattern they show. The reason for the outlying values is revealed in Figure 16.15

where the negative residual values (predicted minus experimental strength) are plotted against the

horizontal reinforcement parameter value. The plot reveals that the AS model becomes increas-

ingly unconservative for higher reinforcement strengths because the model over-emphasized the

strength of the horizontal reinforcement. The model would be more precise if it used a lower

reinforcement coefficient.

The AS model differed from the other models in that it wasn’t dependent on the masonry

characteristic strength f ′m. The omission of the f ′m variable of the model affected the precision of

the model predictions but did not have a large influence on the accuracy of the predictions, with

the exception of the outlying predictions. The model’s use of the aspect ratio in lieu of the shear

span ratio likely also contributed to the increased variance of the model.

Table 16.12: Goodness-of-Fit Statistics for AS Model

Grouting RMSE
R2 Residuals (MPa)

(MPa) Mean Std Dev
Both 0.7005 0.7402 -0.3095 0.7035
Full 0.8740 0.7362 -0.2651 0.8321

Partial 0.4995 0.7511 -0.3514 0.3521

16.1.12 Canadian Standards Association

The CSA S304.1 (2004) model is given by

vn = vm + vp + vs

= 0.16γg
(
2.0 − M

Vlw

) √
f ′m + 0.25 γgσ0 + 0.6ρh f yh

≤




0.4γg
√

f ′m for h
Vlw

> 1

0.4γg
(
2.0 − h

Vlw

) √
f ′m for h

Vlw
≤ 1

(16.12)
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Figure 16.14: AS model predictions

The goodness-of-fit statistics in Table 16.13 show that the CSA S304.1 model is as accurate for

the partially-grouted data as for the fully-grouted data, with a mean residual strengths of 0.06 MPa

(9 psi) and 0.08 MPa (11 psi), respectively. The accuracy of the CSA model can be seen in Fig-

ure 16.16 in which the trend line of the data appears to be collinear with the line of unity slope.

The model predictions appear to be heteroscedastic in the lower data range—the part populated

principally with partially-grouted specimens—and appears fairly homoscedastic in the upper ech-
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Figure 16.15: AS model residuals

elons of the range. This change in variance is part of the cause of the lower R2 value for the

partially-grouted data than for the fully-grouted data.

Table 16.13: Goodness-of-Fit Statistics for CSA Model

Grouting RMSE
R2 Residuals (MPa)

(MPa) Mean Std Dev
Both 0.3649 0.9295 -0.06777 0.3670
Full 0.4137 0.9412 -0.07524 0.4067

Partial 0.3213 0.8976 -0.06071 0.3154
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Figure 16.16: CSA model predictions

16.1.13 Masonry Standards Joint Committee

The MSJC (2013) model is given by

vn = vm + vp + vs

= 0.083γg
(
4 − 1.75 M

Vlw

) √
f ′m + 0.25γgσ0 + 0.5γg ρh f yh

≤




0.50γg
√

f ′m for M
Vlw
≤ 0.25(

0.56 − 0.22 M
Vlw

) √
f ′m for 0.25 < M

Vlw
< 1.0

0.33γg
√

f ′m for M
Vlw
≥ 1.0

(16.13)

The most recent version of the MSJC (2013) introduced the grouted wall factor γg to account for

the strength disparity for partially grouted walls. This analysis incorporated values for the γg factor

specified by the MSJC code, which are 1.0 for fully-grouted walls and 0.75 for partially grouted
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walls. The goodness-of-fit statistics in Table 16.14 show that the MSJC (2013) model has the best

fit for the dataset among the existing shear equations. It has the best fit for the fully-grouted data

and is superseded only marginally in fit for the partially-grouted data. The plot of the predicted

strengths in Figure 16.17 show the model to be fairly homoscedastic except for some experimental

strengths below 1 MPa (150 psi). This bump stems from the differences in model performance of

the model for the fully- and partially-grouted data subsets.

The plot of the predictions for fully-grouted data in Figure 16.18 show that the predictions

for the fully-grouted data are not collinear with the line of unity slope. In the case of fully-grouted

walls, the MSJC model over-predicts the strength for lower failure stresses and under-predicts

the strength for higher failure stresses. However, the model appears to be homoscedastic for the

fully-grouted data. The behavior for the partially-grouted data, shown in Figure 16.19, is quite the

opposite. The mean strength predictions for the partially-grouted data appear to be collinear with

the line of unity slope, but the strengths show some degree of heteroscedasticity.

Table 16.14: Goodness-of-Fit Statistics for MSJC Model

Grouting RMSE
R2 Residuals (MPa)

(MPa) Mean Std Dev
Both 0.3729 0.9311 0.04658 0.375
Full 0.4147 0.941 0.08575 0.4055

Partial 0.3321 0.9037 0.004389 0.3321

The plot of the predictions for fully-grouted data in Figure 16.18 show that the predictions

for the fully-grouted data are not collinear with the line of unity slope. In the case of fully-grouted

walls, the MSJC model over-predicts the strength for lower failure stresses and under-predicts

the strength for higher failure stresses. However, the model appears to be homoscedastic for the

fully-grouted data. The behavior for the partially-grouted data, shown in Figure 16.19, is quite the

opposite. The mean strength predictions for the partially-grouted data appear to be collinear with

the line of unity slope and show a fair degree of homoscedasticity.

The MSJC (2013) and CSA S304.1 (2004) models have the same form but have different

coefficients. The similarity between the two models can be seen by comparing the values from

Figures 16.16 and 16.17, particularly for experimental values below 1 MPa (150 psi). Above this
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Figure 16.17: MSJC model predictions

value the similarity isn’t as apparent because the upper bound on the MSJC (2013) model affects

the distribution of the predicted values.

16.1.14 Proposed Model

The new model developed in this study is given by

Vn = Vm + Vp + Vs

=




(
1.8 + 0.7

V lw
M

) √
f ′m for fully-grouted(

1.1 + 0.9
V sgh

M

) √
f ′m for partially-grouted

+0.15σ0 + 0.12
[
ρc f yc + ρh f yh

]

(16.14)
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Figure 16.18: MSJC model predictions for fully-grouted data

The goodness-of-fit statistics in Table 16.15 show that the proposed model has a better overall fit

to the whole dataset and to each subset. As explained in Chapter 15, the model is not the best

possible fit to the experimental data because the coefficients were adjusted so that they would be

round numbers and so that the model would have some certain properties. One of the properties

of the proposed model is that it is accurate for both fully- and partially-grouted walls. The model

also shows a fair degree of consistency between the RMSE and standard deviation values for the

whole dataset and each subset. The strength plot in Figure 16.20 shows the model predictions to

be homoscedastic with a few outliers. The performance of the model without the effect from the

upper strength bound is shown in Table 16.16 and Figure 16.21.

The performance of the model for the fully- and partially-grouted subsets is shown in Fig-

ures 16.22b and 16.23b, respectively. The model appears to demonstrate consistent accuracy and

precision between both types of grouting. In both grouting cases, the model appears to predict
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Figure 16.19: MSJC model predictions for partially-grouted data

Table 16.15: Goodness-of-Fit Statistics for Proposed Model

Grouting RMSE
R2 Residuals (MPa)

(MPa) Mean Std Dev
Both 0.2906 0.9553 0.0249 0.2936
Full 0.3486 0.9590 0.04132 0.3440

Partial 0.2373 0.9451 0.009391 0.2358

increasingly conservative values in the upper range of experimental values. For the vast majority

of the range for each subset, the trend line of the model appears to follow closely the line of unity

slope.
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Table 16.16: Goodness-of-Fit Statistics for Proposed Model
without Upper Bound

Grouting RMSE
R2 Residuals (MPa)

(MPa) Mean Std Dev
Both 0.3133 0.9480 -0.000176 0.3165
Full 0.3883 0.9492 -0.009945 0.3858

Partial 0.2377 0.9449 0.009053 0.2361
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Figure 16.20: Proposed model predictions

16.2 Model Variation

The analysis of the fourteen models showed that the proposed model had the best fit for

the dataset. The principal reason is due to the fact that the proposed model was developed using

the same dataset which included all compatible data rather than a small subset. It can generally be

concluded that each model will provide the best fit to the data that were used in its development.
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Figure 16.21: Proposed model predictions without upper bound

However, as was shown in Chapter 14, a model may not be the best fit for its constituent dataset

if the model does not include the proper parameters, is not built using the optimum methodology,

or is based on incorrect assumptions. Any model with a good fit to a smaller dataset does not

necessarily translate to being a robust model for other datasets or for all of the data combined.

This shows the importance of validating models with a wide assortment of data from multiple and

varying sources to examine how robust a model is to different combinations of design variables.

To better understand how each model performed for each data group, the goodness-of-

fit parameters and model predictions were calculated for each individual group and included in

Appendix F. Despite the difference in the qualifying data from the data originally used to build

each model, the overall accuracy of many of the models did not change dramatically when used

with the new, expanded dataset. The consistency of model performance between the old and new

datasets shows the validity of the new dataset as a tool for building and comparing linear models.
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Analysis of the performance of each of the models in the previous section revealed that

the MSJC (2013) model out-performed all but the proposed model. In this section, the model

comparison is limited to the MSJC (2013) and proposed models because they were the models that

best fit the experimental data. The purpose of this section is to investigate how the performance

of each model differs from each other and to identify which of the two models is better to use for

predicting masonry shear strength.

Comparison of the fully-grouted data plots in Figure 16.22 show the improved fit for the

proposed model over the MSJC model. The trend of the predictions for the proposed model is

closer to collinear with the line of unity slope than that of the MSJC predictions. The proposed

model contains predicted data points that are nearer to the perfect-fit-line than does the MSJC

model.

Comparison of the partially-grouted data plots in Figure 16.22 show the improved fit for the

proposed model over the MSJC model using the grouted wall factor. The proposed model shows an

improvement in the variance of the predictions, with nearly every prediction laying closer the the

perfect-fit-line than the MSJC predictions. It is possible that further investigation and refinement

of the upper bound model in Part V will further improve the model fit for these predictions.

Regarding the form of the equations, the benefit of the proposed models is that it contains

coefficients that were specifically developed for use with partially-grouted shear walls. The grouted

wall factor γg was originally intended as a temporary fix for the MSJC model and was not intended

to be used on a permanent basis. The parameters and coefficients in the proposed model better

represent how each aspect of the walls affects their overall behavior because they were developed

from the experimental data. This property makes the proposed model better for helping researchers

and designers understand how masonry shear walls behave.
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(a) MSJC model
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(b) Proposed model

Figure 16.22: Predicted strengths for fully-grouted data
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(a) MSJC model
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Figure 16.23: Predicted strengths for partially-grouted data
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Part V

Strut-and-Tie Modeling

This part details the third and last approach which was the development of the strut-and-tie

modeling procedures for masonry shear walls. Chapter 17 introduces and explains strut-and-tie

modeling theory and provides a review of uses of the method for masonry from the literature.

Chapter 18 continues with an outline of the methodology used in developing the strut-and-tie

modeling procedures for masonry shear walls. Chapter 19 details the creation of strut-and-tie

models for masonry and development of the modeling procedures for masonry. Chapter 20 presents

a comparison of the performance of the practice with the existing and proposed shear equations

and a discussion of the method’s use in design practice.

This analysis was the first to applied the complete strut-and-tie methodology used for rein-

forced concrete to masonry. It was determined that the strut and nodal efficiency factors specified

in the ACI 318 code can be directly applied to masonry modeling. An inclination factor was

developed and proposed to account for the decrease in effective compressive strength in partially-

grouted walls when not load normal to the bed joints. Predicted values from strut-and-tie models

were compared with those from the shear equations and equivalent truss modeling procedure. It

was observed that strut-and-tie models produce predicted values that are more precise than all other

methods currently in use.
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CHAPTER 17. LITERATURE REVIEW: MASONRY MODELING

17.1 Introduction

Masonry shear wall behavior can be modeled using numerous methodologies and tech-

niques which can be classified as being empirical, mechanical, numerical, or combinations thereof.

The current MSJC (2013) code design equation can be viewed as a combination of mechanical and

empirical models since the overall format and some of the coefficients were based of mechanical

theory and the remaining coefficients were derived empirically. There is a large and varied col-

lection of masonry models due to the highly complex and heterogeneous nature of masonry as a

structural material. While the individual masonry components can be considered isotropic at the

material level, masonry assemblages—with their regularly repeating pattern of joints and voids—is

anisotropic at the structural level. These properties of masonry make it difficult to develop mod-

els which accurately and easy describe the material behavior for all design scenarios (Ganz and

Thürlimann, 1983).

17.1.1 Numerical Methods

There are generally three approaches used in numerical modeling of masonry: micro, meso,

and macro models. Micro modeling is typically implemented using the finite element method in

which the masonry units, mortar joints, grout, and reinforcement are each modeled using contin-

uum elements and the interfaces between the element types are modeled using interface elements.

Meso modeling is generally implemented using the finite element method, but while the masonry

units are modeled using continuum elements, the mortar joints and unit-joint interfaces are mod-

eled together as discontinuous elements. In the literature, meso models are limited to unreinforced

and ungrouted masonry assemblages. Macro models represent masonry panels as a continuum

in which the material parameters for the assemblage are “smeared” across the entire continuum.
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Macro models can be implemented using the finite element method or can be implemented using

other analysis tools (Mojsilović, 2011).

Numerical methods in masonry analysis is difficult to implement, let alone to obtain ac-

curate values. Numerical modeling of masonry requires the use of anisotropic constitutive laws

which are further complicated by differing behaviors in tension and compression. These constitu-

tive models are governed by several parameters, the number of which increases as the modeling

approach moves from macro to meso and from meso to micro (Addessi et al., 2014). The nec-

essary material parameters are not always available for the materials to be analyzed and they are

frequently difficult to determine. These drawback make the use of numerical modeling for masonry

structural analysis prohibitive for general design situations (Mojsilović, 2011).

17.1.2 Theorem of Limit Analysis

Mechanical models can provide a good combination of efficiency, reliability, and practi-

cality for the majority of masonry design scenarios. One mechanical analysis tool that has been

shown to be efficient and reliable is the use of stress fields. Stress fields are based on the lower-

bound theorem of the theory of plasticity and provide a safe estimate of the ultimate strength of

the material (Mojsilović et al., 2013). The lower-bound theorem states that as long as the stress

fields satisfy the boundary conditions, are in equilibrium, and do not violate the yield criterion of

the material, then the predicted strength is a lower bound for the ultimate strength of the material

(Bower, 2011). The lower-bound theorem was originally intended to apply to elasto-plastic materi-

als, but the theorem is applicable to concrete and masonry because they demonstrate elasto-plastic

compression behavior (Foraboschi and Vanin, 2013). These stress fields have been combined with

the truss analogy to produce what is known as the strut-and-tie modeling procedure (Marti, 1985;

Mueller, 1978; Collins and Mi, 1988; Schlaich et al., 1987).

17.2 Strut-and-Tie Modeling

Strut-and-tie modeling is more predominantly used in analyzing and designing reinforced

concrete sections where beam theory does not apply. One of the greatest strengths of strut-and-tie

modeling is that it allows designers to consider axial, moment, shear, and torsion forces all within
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the same model. The method makes it easy to visualize otherwise complicated stress path through

the member and enables designers of reinforced quasi-brittle materials to know where to best place

reinforcement and how much reinforcement to use (ASCE-ACI, 1998).

Strut-and-tie modeling is an analysis and design technique that reduces complicated struc-

tural members to an equivalent truss assemblage, such as that shown in Figure 17.1. In the model,

members are represented as compression struts, tension ties, and nodes. Struts (shown as shaded

strips in Figure 17.1) comprise sections of concrete or masonry within the member and carry com-

pressive forces. Ties (shown as dashed lines in Figure 17.1) represent the steel reinforcement in

the member and are placed within the member such that the mechanical stability of the member

is maintained. Nodes are regions within the member where struts and ties meet so that forces can

be transferred between them. The remaining regions within the member are assumed not to act in

resisting any load within the member (ACI 318, 2011; ASCE-ACI, 1998).

Figure 17.1: Strut-and-tie representation of loads

Each strut must be sized such that its cross section is sufficient to resist the compressive

loads to be transmitted. The flow of compressive forces can be idealized as three difference shapes:

prismatic, fan-shaped, or prismatic, as shown in Figure 17.2. Ties must be sized and placed within

the member to resist the internal tensile forces imposed by the compressive struts. Nodal regions

must be sized to 1) resist the combination of compressive forces from applied loads and the junction

of struts and 2) provide sufficient anchorage for the reinforcing steel making up the tension tie (ACI

318, 2011; ASCE-ACI, 1998).
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(a) Prismatic strut (b) Fan-shaped strut (c) Bottle-shaped strut

Figure 17.2: Strut shapes

Structural elements representing shear, moments, and axial loads can be divided into two

types of regions. Bernoulli, Beam, or (simply) “B” regions, are subsections of an element where

the flow of compressive forces is uniform. Within B regions the assumption that plane sections

remain plane remains valid (Schlaich et al., 1987). The use of strut-and-tie modeling within B

regions is not necessary because the other provisions of the code are more easily applied to these

cases (ACI 318, 2011).

Discontinuity, disturbance, detail, or (simply) “D” regions, are subsections where the in-

ternal flow of stresses within the member are complex. Within these region, the member may be

designed using linear elastic methods (i.e., Hook’s Law) as long as the section remains uncracked.

Once the material within the D region has cracked, it is inappropriate to assume that the shear

stress is uniformly distributed or that plane sections remain plane. D regions are typically found

adjacent to concentrated point loads, within deep beam segments, or at geometric discontinuities

within the member (Schlaich et al., 1987; ASCE-ACI, 1998). According to Saint-Venant’s princi-

ple, D regions extend from the location of concentrated load or discontinuity to a distance equal

to the width or height of the member at that point. The region beyond the D region, the volume is

considered to be a B region and may be designed using traditional design methods. The greatest

benefit of strut-and-tie modeling is found in designing or analyzing D regions (ACI 318, 2011).

The results of the strut-and-tie method depend greatly on how the designers choose to

model the design region. For any member there are several possible strut-and-tie models that could
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model the stress paths within the member. The most appropriate strut-and-tie model is generally

considered to be that which requires the least amount of reinforcement. This is due to the fact that

the internal forces within the member will seek at path that minimizes the strain energy U within

the member such that

U =
1
2

∑
Fsi lsi ε̄ si +

1
2

∑
Ft j lt j ε̄ t j = Minimum (17.1)

where

Fsi = force in strut i,

lsi = length of strut i,

ε̄ si = mean strain in strut i,

Fti = force in tie j,

lti = length of tie j, and

ε̄ ti = mean strain in tie j .

Since the reinforcement is much more deformable than the concrete or masonry, the
∑

Fsi lsi ε̄ si

portion of Equation (17.1) can be assumed to be zero. This indicates that the strut-and-tie model

which minimizes the area and length (i.e., total volume) of the reinforcement is the best model

(Kupfer, 1964; Schlaich et al., 1987). Since the optimal design is not always immediately apparent,

implementation of the strut-and-tie method is commonly an iterative process (AASHTO, 2012;

ASCE-ACI, 1998; Liang et al., 2002).

17.3 Strut-and-Tie Research

The formulation of the strut-and-tie modeling method grew out of research into the truss

analogy for representing reinforced concrete elements. The thought was first introduced at the

turn of the twentieth century by German researchers Wilhelm Ritter (1899) and Emil Mörsch

(1908). Marti (1985) and Mueller (1978) used the lower-bound theorem within the theory of

plasticity to show that strut-and-tie models represent a lower bound for ultimate member strength.

Significant work was conducted with the truss analogy by Collins and Mi (1988) who were able

to apply the truss analogy in developing strut-and-tie methods for shear and torsion in reinforced

294



concrete members. Several researchers have showed that strut-and-tie models could be effectively

used for designing deep beams and corbels (Schlaich et al., 1987) while others have applied the

methodology to masonry elements.

17.3.1 Schlaich and Schäfer

Jörg Schlaich and Kurt Schäfer were the first to formulate a unified design methodology

for using strut-and-tie models in designing an entire reinforced concrete structure applicable to

all design scenarios (Schlaich et al., 1987; Schlaich and Schäfer, 1991). They describe the strut-

and-tie model as a generalized truss model in which all tension, compression, and nodal members

are designed with regard to safety and serviceability using uniform design criteria and that truss

models are actually a subset of strut-and-tie models. One of the strengths of their methodology

is the ability to use the same model for both the serviceability and ultimate limits states. Another

strength is that the method is able to consistently model both B and D regions with similar levels

of accuracy.

Schlaich et al. (1987) provide a detailed description of the procedures for applying the strut-

and-tie modeling method to designing D regions of reinforced concrete members. One difference

between their methodology and other strut-and-tie modeling methodologies is that theirs cannot

be solely idealized as a truss with lines and nodes. Their method requires that struts and nodes

have sufficient cross-sectional area to resist the applied loads and that the geometry of the struts

and nodes are limited by the overall size of the member.

17.3.2 Ganz and Thürlimann

Ganz and Thürlimann (1983, 1984) tested 12 biaxially-loaded masonry panels and seven

masonry shear wall specimens to develop a load carrying model for masonry shear walls. All

masonry panels and walls were constructed from perforated clay bricks. Ganz and Thürlimann

used the lower- and upper-bound theorems of the theory of plasticity to develop the four load

carrying models for masonry shear walls shown in Figure 17.3. The first two models, based on

the lower-bound theorem, introduced the concept of stress fields within the masonry panel. They
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determined that the shear capacity of an unreinforced masonry shear wall is given by

Vn =
1
2

f ′m Ag tan
(
γ

2

)
(17.2)

subject to the condition that the axial load has to be at least

P ≥ f ′m Ag cos2
(
γ

2

)
(17.3)

where

γ = 2 αs = arctan
(

lw
h

)
.

Ganz and Thürlimann observed a fair agreement between the theoretically predicted strengths and

the experimental results.

 
 

 
 

 
 

 
   

 
 

 
 

   
  

 

Figure 17.3: Load carrying models from Ganz and Thürlimann (1983)
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17.3.3 Roca

Roca (2004, 2006); Roca et al. (2010, 2011) used strut-and-tie theory to predict the ultimate

shear capacity of unreinforced masonry walls. Roca et al. (2011) describes that there are limita-

tions to using strut-and-tie modeling theory with unreinforced masonry walls because the theory

of plasticity does not apply to walls which do not contain tension-carrying components showing

plastic behavior (i.e., reinforcing bars). Roca et al. (2011) overcame this limitation by developing a

system of “equilibrium” models which are best described as strut-and-tie models without ties. The

models are kept in equilibrium by the exterior forces applied to the masonry panels. The forces

paths travel through the masonry as struts with a shape (prismatic, fan, or bottle) determined by

where the forces are applied to the panel.

Equilibrium models may contain tensile forces in the case where the transverse strut forces

attempt to form diagonal cracks along the center line of a bottle-shaped struts. Roca et al. (2011)

explains that due to the brittle behavior associated with diagonal cracking of unreinforced masonry

panels, the use of equilibrium models in predicting the ultimate shear capacity is limited to cases

where the tensile capacity of the masonry is not the limiting factor. These cases are those where

the failure is fully due to plastic behavior, such as frictional sliding, rocking, and toe crushing.

Equilibrium models can also be used to calculate the residual shear capacity after diagonal cracking

has occurred.

In equilibrium models, the slope of the struts are limited by the frictional response of the

bed joint. The Mohr-Coulomb criterion is assumed to describe the minimum angle at which the

struts can traverse the bed joints. The maximum strut inclination angle αs (measured normal to the

bed joint) is given by

tan αs = tan ϕ +
c
σ0

(17.4)

where ϕ is the friction angle of the unit-mortar interface, c is the cohesion at the unit-mortar

interface, and σ0 is the applied vertical axial stress. Equilibrium models also require that the

compression strut be sized such that there is sufficient cross-sectional area to support the axial

force applied to the strut. Roca et al. determined that the equilibrium modeling approach are
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theoretically supported by the lower-bound theorem within the theory of plasticity, similar to the

strut-and-tie modeling approach.

Roca et al. (2011) tested the application of the equilibrium modeling theory to several ex-

perimental and numerical cases. The experimental test data was gathered from tests performed by

Oliveira (2003), Ganz and Thürlimann (1983, 1984), Martinez (2003), Raijmakers and Vermelt-

foort (1992), and Charry (2010). The numerical test data used was produced by Lobato (2009).

Since only some of the experimental researchers measured the cohesion along the unit-mortar in-

terface, Roca et al. assumed that the cohesion in the ultimate state was given by

c =
V

t f ′m
. (17.5)

Roca et al. (2011) observed that the predictions from equilibrium models showed satisfactory

agreement with the experiment or numerical results for a wide range of loading conditions except

in the case of highly perforated brick. They concluded that the equilibrium modeling approach

should be limited to solid brick masonry walls until further research could be undertaken for per-

forated bricks.

17.3.4 Lourenço et al.

Lourenço et al. (2006) developed a simplified design models for use in predicting the ca-

pacity of masonry in-fill panels based on strut-and-tie models. They observed that the principal

failure modes for the in-fill masonry panels was diagonal cracking and corner crushing. They de-

termined that the traditional single, prismatic strut models did not adequately describe the failure

modes and proposed that a more complex strut-and-tie model be used. Since the masonry panels

analyzed were unreinforced, the ties consisted of unilateral tension fields within the masonry it-

self. Their method of analysis is similar to the equilibrium modeling approach proposed by Roca

(2004) except that equilibrium is imposed by the surrounding frame and not by axial load. The

limitations of the equilibrium method for tensile cracking do not hold for masonry in-fill panels

because equilibrium is not lost after the panel cracks.

Lourenço et al. (2006) hypothesized that diagonal cracking in the panel occurs when the

transverse splitting stress in the bottle-shaped struts exceeds the tensile strength of the masonry.
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They proposed that a single, bottle-shaped strut be represented by four bent struts and a connecting

tie. They assumed that the angle between the struts and the center line of the wall diagonal αd was

given by

αd = arctan *
,
lc

√
2

2
·

cos θ
lw

+
-

(17.6)

where lc is the assumed contact length between the panel and the frame and θ is the angle between

the panel diagonal and the bed joints. Using this analogy, they were able to predict the panel shear

capacity for the cracking limit state using

Vcrack =
f t Ag

2 tan θ
(17.7)

where f t is the tensile strength of the unit-mortar interface.

Lourenço et al. (2006) assumed that only the corners of the masonry panel need be consid-

ered in checking for masonry crushing of the strut. They noted that the effective strength of the

masonry in the corners is affected by the imposition of a biaxial state of stress and a non-uniform

stress distribution. They computed the panel shear capacity for the crushing limit state to be

Vcrush =
1
2

f ′m(eff) lc t min



1

cot θ
(17.8)

where t is the panel thickness.

Lourenço et al. validated their strut-and-tie model constructed using numerical finite ele-

ment analysis. The numerical models were previously validated using data from four experimental

tests on masonry in-fill frames. They determined that the average error between their proposed

strut-and-tie model and the numerical results to be 14 percent for the diagonal cracking strengths

and 12 percent for the corner crushing strengths. They further validated their simplified model us-

ing experimental data from twelve tests performed by Braguim (1989) where they again obyained

good agreement between the experimental and predicted results. They concluded that their simpli-

fied design model is a good tool for predicting the shear capacity of masonry in-fill panels.
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17.3.5 Voon and Ingham

Voon and Ingham (2008) conducted experimental tests on ten continuous wall panels and

ten walls panels with openings. The purpose of the former group was to understand masonry shear

wall behavior and that of the latter group was to validate the strut-and-tie modeling procedures

for partially-grouted walls with openings. Voon and Ingham (2008) constructed two sets of strut-

and-tie models; the first set of models assumed that the lateral shear force was applied at a single

point on the trailing edge and the second set of models placed the load at the top edge and assumed

components of it to travel laterally to the tops of the struts. The second set of strut-and-tie models

from their study are shown in Figure 17.4.

Since the walls were reinforced, the modeling procedures used were similar to those set

forth by Schlaich et al. (1987) in that the ties consisted of reinforcement bars. It appears that Voon

and Ingham did not follow fully the methodology developed by Schlaich et al. for at least two

points. First, their strut-and-tie models idealized all struts and ties as lines and show the start and

end points of the strut center lines to coincide with the center lines of the reinforcement. They did

not appear to consider the thickness of the struts or reinforcement development requirements in

determining the path and angle of the struts. Second, they made no mention of considering how

the shapes of the struts would affect the effective strut strengths. Overall, their methodology might,

more-appropriately, be called an idealized truss model. Voon and Ingham (2008) confirmed that

the strut-and-tie models provided a lower limit for the ultimate strengths of the tested walls. The

latter group of strut-and-tie models performed better than the former group and, overall, performed

better at predicting the shear capacity than the Standard Association of New Zealand (NZS) (2004)

code equation. They observed that the strut-and-tie models become increasingly conservative when

the number of openings in the walls increased from one to two.

17.3.6 Nolph and Elmapruk

Nolph (2010) and Elmapruk (2010) each tested six reinforced masonry shear walls to in-

vestigate the validity of the MSJC design Equation and of the strut-and-tie modeling procedures

outlined in Appendix A of the ACI 318 (2011) code. Similar to the arrangement used by Voon

(2007), Nolph (2010) and Elmapruk (2010) arranged all of the struts such that their center lines
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Figure 17.4: Strut-and-tie models from Voon (2007)
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began and ended at the intersections of the reinforcement bars, which is more analogous to an

idealized truss model. Nolph considered multiple arrangements of strut-and-tie models for two of

his six specimens while Elmapruk constructed other model arrangements for all of his specimens.

In both cases these researchers reported the results from the most conservative model for each

specimen, which does not follow the principle of minimum strain energy.

The principle of minimum strain energy states that—for design scenarios—the model with

the minimum strain energy for a given strength demand is the most correct model. This has been

shown earlier to mean the model with the minimum volume of reinforcement for a given strength

demand. The analysis scenario differs from the design scenario because the amount of reinforce-

ment in each specimen was specified and fixed previously and that the shear strength is the un-

known variable. Generalizing the rationale from the design scenario for both, the objective of the

strut-and-tie modeling procedure is to minimize the ratio of reinforcement to strength. Since in the

amount of reinforcement in the Nolph models was fixed, the models which predicted the highest

predicted shear strength (i.e., least-conservative) would have minimized the ratio of reinforcement

to strength and would have been the most correct models.

Nolph performed his modeling calculations using the program Visual Analysis. He calcu-

lated shear strengths within 14 percent of the experimental strength for the partially-grouted walls

but observed that the model for the fully-grouted wall severely over-predicted the strength (by 78

percent), which is far outside the margin of error for the experiment. Since the lower-bound the-

orem states that the models will always produce safe (i.e., conservative) estimates, the severity of

the error can either be attributable to errors in application of the ACI 318 procedures or to dis-

crepancies between the procedures and masonry. Elmapruk calculated shear strengths within 21

percent of the experimental strength for all of this specimen, which does not account for the fact

that he used the lowest predicted values. Both studies showed that an idealized truss model can be

used to model masonry shear walls but the accuracy and precision are uncertain due to questions

about the application and validity of the ACI provisions with masonry.

17.3.7 Varshney

Varshney (2010) conducted numerical simulations using meso models to determine the

slope at which the struts diverge from the friction slope in the equilibrium modeling procedure de-
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veloped by Roca et al. (2010). The models were constructed with continuum elements representing

the bricks and interface elements representing the bed and head joints. The bricks were modeled

with four-node quadrilateral isoparametric plane stress elements using a smeared cracking mate-

rial model—which used a combination of tension cut-off, tension softening, and shear retention.

Both joint types were modeled using an interface element between two lines in a two-dimensional

configuration. The bed joints elements used a combination cracking/shearing/crushing model—a

plasticity-based multi-surface interface model—and the head joint elements used a Coulomb fric-

tion model. The modeling parameters investigated in his analysis were the length of the loaded

area and the applied axial stress.

Varshney (2010) found that for a loading length less than or equal to 20 percent of the wall

height, the angular departure of the struts is approximately one-third of the friction slope. For

longer loading lengths, the strut deviations tend to deviate and the assumed value of one-third of

the friction slope is only valid for a certain values of friction angle. He also observed that masonry

panels with lower friction angles are better able to develop regions of parallel struts compared to

walls with higher friction angles.

17.3.8 Foraboschi and Vanin

Foraboschi and Vanin (2013) presented an evolutive strut-and-tie modeling process which

was intended to reproduce the in-plane masonry shear behavior and modes of failure in the un-

cracked, cracked, and softening states. The evolutive procedure accomplishes this through mod-

ifying its conformation throughout the various stages of the loading process. Their procedure is

similar to that of Roca et al. (2011) in that it relies solely on the masonry to resist the diagonal ten-

sile stresses, but differs in several other aspects from other strut-and-tie modeling methodologies.

First, the masonry tensile strength is also used to resist the over-turning tensile forces and does not

rely exclusively on exteral forces to maintain equilibrium. Second, the masonry tensile strength in

both cases is represented by discrete ties rather than by tension fields as used by Lourenço et al.

(2006). Lastly, unlike the methodology of Schlaich et al. (1987) and others which ignores the ma-

terial displacements and solely considers the forces, the evolutive strut-and-tie modeling process

use the principle of virtual work to calculate the lateral forces in the struts and ties.
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Foraboschi and Vanin use an idealized truss to represent the arrangements of the struts and

ties, ignoring the strength and stiffness contributions of the nodes. The total lateral force resistance

of the panels is given by

Vn =

∑n
i=1 ε

2
i Em Ai li

δ
(17.9)

where

n = total number of uncracked truss members,

ε i = elastic strain due to δ in the i th truss member,

Em = elastic modulus of the masonry,

Ai = cross-sectional area of the i th truss member at δ = 0, and

li = length of the i th truss member.

In the initial uncracked condition (δ = 0), the summation includes contributions from all of the

truss members. As cracks begin to form, denoted by truss members reaching their ultimate tension

strain, cracked members are eliminated. Some potential applications of the evolutive strut-and-tie

procedure are to predict whether an unreinforced wall will fail first in tension or in shear and to

determine both the ultimate strength and backbone curve for an unreinforced masonry specimen.

The evolutive strut-and-tie modeling procedure is more analogous to a numerical macro model than

to a mechanical model due to its iterative and computational demands. While it appears to be less

computationally intense than applications of the finite element method, the evolutive strut-and-tie

modeling procedure is far too rigorous for general design work.

17.3.9 Hamedzadeh

Hamedzadeh (2013) tested 21 masonry shear walls of various dimensions to investigate the

behavior of wide-spaced reinforced partially-grouted shear walls. Part of his investigation exam-

ined the practicality of strut-and-tie modeling with these wall types. The strut-and-tie models were

constructed and analyzed using the finite element software package ABAQUS. It is uncertain why

he constructed and analyzed his strut-and-tie models using ABAQUS since one of the justifica-
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tions for the use of strut-and-tie modeling is that they are simple to analyze and, in simple cases

such as shear walls, can be analyzed by hand. Hamedzadeh concluded that strut-and-tie models

can predict the shear capacity of wide-spaced partially-grouted shear walls within an acceptable

range. His findings were somewhat limited in scope because he did not investigate the possibility

of reinforcement failure.

17.3.10 Morrison

Morrison (2013) collected data from 200 shear wall tests conducted over the past three

decades to investigate the validity of the strut-and-tie methodology for the design of masonry

shear walls. The modeling procedures used were influenced by those listed in Appendix A of the

ACI 318 and AASHTO codes. He created 58 strut-and-tie models to represent 35 fully- and 23

partially-grouted walls taken from his larger dataset.

He analyzed his models using the program Visual Analysis, similar to Nolph. He loaded

each model until it became statically unstable, one of the masonry struts crushed, or the deflection

exceeded 5 percent of the largest structural dimension. The reinforcement was modeled assuming

a bilinear force-deformation curve with a constant force after the yield point. Similar to previous

research by Voon (2007), Nolph (2010), and Elmapruk (2010), Morrison placed the center of each

node at the intersection of reinforcement bars, essentially generating an equivalent truss model.

This assumption is necessary for the model to be analyzed using a structural analysis program.

Equivalent truss models may be considered as a subset of strut-and-tie models, but there ex-

ists several differences between equivalent truss models and models constructed using the method-

ology of Schlaich et al. (1987) and the ACI 318 (2011) code. Equivalent truss models have the

limitation in that they do not consider

1. Reinforcement development length requirements in determining the center points of nodes

or the paths of struts.

2. That struts can cross ties without forming a node

3. That struts terminating into a rigid member (i.e., reinforced concrete foundation) can be

anchored by the body itself and do not need to enter at the intersection of a vertical rein-

forcement bar
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4. The width of the struts or nodes to ensure that they do not extend outside of the masonry

panel (especially in partially-grouted walls)

He surmounted some of the limitations of equivalent truss procedure by requiring that the vertical

reinforcement be fully developed at the top point of intersection with the horizontal bars and by

assuming that the maximum strut width to be

ws =
wt

cos αs
(17.10)

where

ws = maximum width of diagonal strut,

wt = minimum of reinforcement diameter plus twice the clear cover and the wall thickness, and

αs = inclination of a strut (measured from the vertical).

Morrison determined the ratio of predicted to experimental strengths to be 0.67 for partially-

grouted walls and 0.61 for fully-grouted walls. He observed that all but seven of the 23 partially-

grouted models and all but 15 of the 35 fully-grouted wall failed by strut crushing. He also observed

that struts tended to form at 45 degree angles regardless of the aspect ratio of the wall. Morrison

concluded that strut-and-tie modeling is a sound and all-encompassing method for calculating the

in-plane shear strength for both fully- and partially-grouted masonry shear walls.

17.3.11 Summary

Several researchers have studied the use of various strut-and-tie methodologies in predict-

ing the shear capacity of masonry shear walls. In every research study reviewed, the strut-and-tie

modeling procedures have introduced some simplifying assumptions which altered the method

from that originally prescribed by Schlaich et al. (1987). To date, no research has been performed

with masonry shear walls using the exact methodology prescribed by Schlaich et al., which intro-

duces the possibility that the models presented may not be the optimum models for use in design.
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17.4 Code Provisions for Reinforced Concrete

17.4.1 ACI Design Provisions

Strut-and-tie modeling is currently used for reinforced concrete structures and is governed

by the provisions in Appendix A of ACI 318 (2011). The ACI strut-and-tie provisions specify

guiding principles for designers to follow while using the strut-and-tie modeling procedure. The

code provisions for strut-and-tie design follows the same strength design approach used in the main

body of the code. The code requires that struts, ties, and nodal zones be designed such that

φFn ≥ Fu (17.11)

or that factored forces acting on the member be less than the design strength of the same (ACI 318,

2011).

The nominal strength of struts is based on the effective compressive strength of the concrete

multiplied by the smallest cross-section of the strut. The code provides factors for reducing the

effective compressive strength of struts for several reasons. No reduction is required for struts that

are prismatic, but the code uses a strut efficiency factor βs to reduce the strength of fan-shaped or

bottle-shaped struts. Factors are also given to reduce the effective strength of struts that are located

in tensile regions of members (e.g., tension flanges) or in areas where they are likely to be traversed

diagonally by cracks (e.g., beam webs). In all cases the code permits less-stringent reductions to

be used for areas meeting minimum reinforcement requirements.

The nominal strength of nodal zones is similar to that of compression struts. Nodal zones

typically have three faces, one for each member that meets in the node. If more than three struts

or ties intersect in a nodal zone, then the resultant forces and faces are determined by combining

some of the forces together. Each face of the nodal zone is measured normal to the axis of the

strut or tie, and the critical area used in design is the smallest of the three faces. The effective

compressive strength of the nodal zone is reduced by the factor βn for nodal zones that contain

ties. The code also restricts the feasible inclined angle θ, the angle at which struts and ties intersect

at nodal zones, to be between 25 and 65 degrees (ACI 318, 2011).
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The nominal strength of tension ties is the sum product of the tensile strength and cross

section of the reinforcement bars in the tie. The tension ties include parallel reinforcement bars

that are close enough together to act as a unit and the concrete between and immediately around the

bars. The concrete between and around the reinforcement does not contribute any tensile strength

to the tie, but it is included because it is necessary for transferring the forces between the tie and

the adjacent concrete. The tension force for each tie is assumed to act through the centroid of the

cross section of the reinforcement. The code requires adequate development length for tension ties

beginning at the point where the axis of the tie first crosses into the intersecting strut to the end of

the nodal zone (ACI 318, 2011).

17.4.2 AASHTO Design Provisions

Strut-and-tie modeling is also used in the design of reinforced concrete bridges and is

governed by several provisions of chapter 5 of the AASHTO (2012) LRDF Bridge Design Specifi-

cations. The focus of the AASHTO strut-and-tie procedures is particularly on deep beams and, for

this reason, are narrower in scope and not as developed as the procedures in the ACI 318 (2011)

procedures. The AASHTO provisions follow the same theory and guidelines as the ACI 318 pro-

visions but contain some differences in the specifications for the strut inclination and strut effective

strength.

The AASHTO procedures do not specify a limit for the angle at which struts and ties

intersect but decrease the effective strut strength for increasing strains in the reinforcement. In the

AASHTO provisions the effective strut strength fcu, in units of kips, is given by

fcu =
f ′c

0.8 + 170ε1
≤ 0.85 f ′c (17.12)

where

ε1 = ε s + (ε s + 0.002) cot2 αs ,

αs = the smallest angle between the compressive strut and adjoining tension ties,

ε s = the tensile strain in the concrete in the direction of the tension tie, and

f ′c = specified concrete compressive strength (kips).
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Equation (17.12) can be seen as a penalty factor for the strut strength to account for the increased

strain in the concrete induced by the elongation and yielding of tension ties joining struts at shal-

low angles. Unlike the ACI provisions, the AASHTO provisions do not reduce the effective strut

strength to account for bottle-shaped struts depending on the amount of crack control reinforce-

ment. The AASHTO provisions require that all members meet the minimum specified amount of

crack control reinforcement so a strength reduction for bottle-shaped struts is not necessary.

17.5 Adapting the Provisions for Masonry

Several researchers (Roca et al., 2011; Varshney, 2010; Voon and Ingham, 2006, 2008;

Mojsilović, 2011; Nolph, 2010) have concluded that strut-and-tie modeling is a practical tool for

designing masonry shear walls. There are, however, no recommended practices or guiding princi-

ples for implementing the strut-and-tie method in masonry design. This section will outline some

of the possible issues that will need to be surmounted to develop strut-and-tie modeling guidelines

for reinforced masonry structures. Similar to how other aspects of the MSJC (2013) code where

developed, the ACI 318 (2011) provisions for strut-and-tie modeling may be used as a beginning

point for developing provisions for use with masonry. This section will also present and comment

on the current ACI 318 provisions in light of the current masonry knowledge to identify areas of

analysis and research such that the provisions can be adapted for use with masonry design.

The ACI principles cannot be applied directly to masonry design because of the great num-

ber of differences between the two materials. Concrete is typically considered to be an isotropic

material because it consists of a random assortment and arrangement of aggregates within a cement

matrix. Concrete members are typically cast monolithically and usually do not contain construc-

tions joints within the disturbed regions. The assumptions of isotropy, monolithic construction, and

continuity for concrete allow designers to use the same compressive strength for any orientation of

the struts or nodes within the member.

Masonry is an anisotropic and non-monolithic material due to the presence of regularly

occurring joints and the use of different constituent materials within the material. The joints within

masonry assemblages create planes of weakness with different compressive strength depending

of the orientation of the axial stress. Research has shown (Bennett et al., 1997; Liu et al., 2006)

that masonry in compression follows the Mohr-Coulomb failure criteria because of the friction
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that occurs along the joints. The greatest compressive strength in masonry is obtained when it is

axially loaded normal to the bed joints, which is typically determined from prism compression

tests. The lowest compressive strength occurs when the load is between 45 and 90 degrees of the

vector normal to the bed joint, depending on the friction angle of the unit-mortar interface ϕ (Guo,

1991; Liu et al., 2006). Unlike concrete, it will be necessary to decrease the compressive strength

of the struts depending on the orientation of the strut relative to the bed joint plane.

Masonry typically contains significant voids within the assemblage. The most notable

sources of large voids is from the presence of hollow (i.e., ungrouted) masonry cells within the

assemblage. Even when cells are fully-grouted, the shrinkage that occurs in the grout during

curing is exacerbated by the wicking of moisture from the grout into the surrounding masonry

units. The grout shrinkage can create areas of non-contact between the grout and the masonry

such that compressive forces do not transfer well between the masonry units and the grouted cores

and flues. This intransmissibility of stress is more-commonly evident in the direction parallel to

the bed joints. Even though the MSJC specification requires that the grouted cores be vibrated a

second time after the grout has had an opportunity to shrink, this non-total contact may be an issue.

Head joints are another potential area of large voids within the masonry assemblage, par-

ticularly for walls using wide and hollow masonry units. During construction, it is common for

the head joints to be buttered only along the exterior edges, leaving the interior hollow. Even if the

wall is to be fully-grouted, the grout will most likely not fill the voids in the head joints, leaving

voids in the cross section of the wall. Research has shown (Bennett et al., 1997) that head joints

typically demonstrate lower compressive strength than bed joints because of the lack of vertical

confinement during curing which decreases the bonded area between joint and masonry unit. Due

to these reasons, the equivalent cross sectional thickness of the masonry available for resisting

compressive stresses parallel to the bed joint is less than that for loading normal to the bed joint.

The exception to this issue may be the case of thin, solid masonry walls, such as traditional brick

walls, where the head joints are fully buttered and solid between the two faces.

In masonry walls constructed with hollow masonry units, the assumption of plane stress

conditions does not hold because at some locations within the wall there exists regions were the

stress flow component normal to the plane of the wall is not zero. This is the case regardless of

the grouting pattern, though the location and frequency will vary depending on the frequency of
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grouting used. Force components normal to the plane of the wall induce tensile splitting forces

within the masonry units. If this force component exceeds the tensile strength of the masonry

webs, then the masonry will fail by vertical tensile splitting of the unit before the strut can develop

its full capacity.

In the case of partially-grouted shear walls, the compressive stresses will travel principally

through the shells near the exterior faces of the wall and the tensile forces will travel through the

reinforcement bars located along the center of the wall, as shown in Figure 17.5. As compressive

and tensile forces are transferred between the compressive struts and the tension ties at nodes, the

forces must travel from the exterior shells to the center of the wall, resulting in a force vector

component normal to the plane of the wall. If this lateral force component exceeds the lateral

tension capacity of the surrounding webs, then the forces will cause the tensile splitting of the

masonry units surrounding the node before the strut can reach its ultimate capacity.

Figure 17.5: Path of stress from shells to reinforcement

In the case of fully-grouted walls, the compressive stresses must traverse a bottleneck as

they travel through the head joint between one fully-grouted masonry unit and another, as shown in

Figure 17.6. The influence of this behavior changes with the orientation of the stress path relative to
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the bed joint plane, varying from non-effectual when loaded normal to the bed joint plane to fully

effectual when loaded parallel to the bed joint plane. This concentration of compressive stress

is somewhat assuaged for masonry laid in running bond where some of the compressive stress

may travel around the head joint through the fully-grouted units immediately above or below the

bottleneck.

VOID VOID

Figure 17.6: Path of stress around head joint voids

Liu et al. (2006) observed that the ratio between biaxial compressive strength and uniaxial

compressive strength is greater for masonry than for concrete. They concluded that the existence of

area of weakness near the interfaces of different material types decreases the uniaxial compressive

strength of masonry. Since the uniaxial compressive strength is used as the reference strength for

the material, this suggests that the biaxial compressive strength for masonry might be higher than

assumed by following the same strength proportions used for concrete. This means that in nodal

regions, points of intersection between struts and ties where the masonry is multidirectionally

stressed, the actual strength may be notably stronger than the f ′m value determined from prism

tests or from the unit strength method.

17.5.1 Parameters Needing Investigation

The development of strut-and-tie modeling procedures will best be accomplished by build-

ing off the work previously performed in developing the strut-and-tie guidelines for reinforced

concrete available in Appendix A of ACI 318 (2011) and the AASHTO (2012) LRFD Bridge De-

sign Specification. Due to the differences between reinforced concrete and reinforced masonry,
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many of the guidelines, limits, and factors will need to be revised for the reinforced masonry case.

Furthermore, some new guidelines may need to be added to the procedures to meet the unique

needs of masonry construction. This section provides an outline of revisions and additions that

may need to be made to adapt the existing provisions for use with masonry construction.

Strut Efficiency Factor

The strut efficiency factor βs is an empirical factor used to account for reductions in ef-

fective strut compressive strength from the effects of internal strut geometry, reinforcement ratio,

and member type (ACI 318, 2011). In masonry, the grouting type and reinforcement placement

will also affect the effective strength of the strut because they introduce tensile splitting forces into

the masonry units. Since the tensile strength is functionally related to the compressive strength of

the masonry, using a factor is preferred to using a formula due to its simplicity. Further analytical

and/or experimental research will need to be performed to determine the empirical factors to be

used to account for these reductions in strength capacity.

Special Reinforcement Requirements

Section A.3.3 of the ACI 318 (2011) code lists requirements for reinforcement that resists

the tensile forces from lateral spreading in bottle-shaped struts. These special reinforcement re-

quirements for concrete will need to revised for masonry because multiple, perpendicular layers

of closely-spaced reinforcement are not feasible within masonry walls. In partially-grouted walls,

the transverse strut reinforcement would consist of joint reinforcement placed in every joint or

mesh reinforcement bonded to the outside faces of the wall, which likely would not be received by

the construction community. For fully-grouted walls, smaller reinforcement bars could be placed

within the cells not occupied by the main vertical reinforcement in addition to the methods listed

for partially-grouted walls.

Strut Inclination Factor

The nominal compressive strength of struts must be decreased for loading that is not normal

to the bed joint plane (Liu et al., 2006). This can be accomplished by introducing a strut inclination
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factor βα for masonry which is represented by a two-part linear function of the inclination angle

αs. The inclination angle of the strut center line is measured normal of the bed joint plane. The

minimum compressive strength typically varies between 45 and 90 degrees, depending on the

friction angle of the unit-mortar interface. Since the friction angle varies between different types of

masonry, mortar, and construction, the strut inclination factor would likely be the most appropriate

approach.

The inclination factor would vary linearly from unity at 0 degrees to a predetermined value

at a specified inclination angle. Above this specified angle, the strut inclination factor would remain

constant, as shown in Figure 17.7. The value of the inclination angle for the plateau needs to be

determined from analysis of angled uniaxial prism tests.
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Figure 17.7: Hypothesized strut inclination factor values

Feasible Inclined Angle

ACI 318 (2011) places limits on the feasible angle at which struts and ties can meet at any

node to prevent cracking and strain incompatibilities. At excessively low values, the shortening
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of the strut and elongation of the tie will cause the member to fail before reaching its ultimate

strength, which is analogous to the snap-through-buckling scenario. It will be necessary to de-

termine whether the feasible inclined angle limits in ACI 318 (2011) are applicable to masonry

structures or whether new limits should be imposed.

Nodal Efficiency Factor

The nodal efficiency factor βn is an empirical factor used to account for the effect of the

anchorage of ties on the effective compressive strength of a nodal zone (ACI 318, 2011). The forces

applied to a nodal zone are assumed to create a biaxial stress condition for the material within the

nodal zone. In nodes where three struts meet, the two principal stresses are equal and the nodal

material is said to be in a near-hydrostatic state where there are no in-plane shear stresses. When

one or two ties are anchored within a nodal zone, in-plane shear stresses are introduced within the

nodal region and effective compressive strength is reduced.

Research has shown (Liu et al., 2006) that the difference between uniaxial and biaxial

compressive strength is more exaggerated for masonry than for concrete. It is possible that the

strength reduction for masonry may not need to be as great because the biaxial strength for masonry

is so much higher than its uniaxial strength. However, the tensile splitting forces in masonry nodes

(see Figure 17.5) may negate any or all of the increased biaxial compressive strength. Analysis

is needed to quantify the effect of tie anchorage and tensile splitting forces on the compressive

strength of nodal zones.

17.6 Conclusions

Strut-and-tie modeling has been shown to be a valid tool for use in masonry structural de-

sign. Guidelines need to be developed such that the use of strut-and-tie modeling for masonry

design can be standardized. The existing guidelines in Appendix A of ACI 318 and in AASHTO

Bridge Design Provisions appear to be a good starting point for developing strut-and-tie mod-

eling guidelines for masonry. There are numerous differences between reinforced concrete and

reinforced masonry such that the existing provisions should not be used for masonry without mod-

ification. The development of strut-and-tie modeling standards for reinforced masonry will require
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changes and additions to the existing guidelines to make them suitable for use. Further analysis in

specific areas of masonry research relating to strut-and-tie modeling is requisite for the formulation

of the new guidelines to proceed.
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CHAPTER 18. STRUT-AND-TIE MODELING METHODOLOGY

18.1 Introduction

This chapter explains the methodology undertaken in developing and using the strut-and-

tie modeling methodology to model the shear strength capacity of masonry shear walls. The end

goal of this work is to create and validate a set of preliminary modeling guidelines for constructing

strut-and-tie models for masonry shear walls. Existing guidelines are already developed for use

with reinforced concrete and are publishing in Appendix A of ACI 318 (2011) and in the AASHTO

(2012) LRFD Bridge Design Specifications. This work will be conducted by constructing multiple

models for each specimen to investigate which guidelines can be adopted. The development of

modeling guidelines will necessitate the consideration of the differences between masonry and

concrete, as described in Section 17.5 of this dissertation. These considerations will be investigated

using data from the full-size assemblies in the dataset from this investigation. This analysis will

outline further investigations that will need to be performed on individual components in which

the effect of a single guideline can be investigated independent of the others.

18.2 Objective Criterion

The analysis of existing masonry shear walls is different from the general use of strut-

and-tie models. Strut-and-tie models are typically used to determine the required reinforcement

amount and placement within a member to resist the ultimate load demands placed on the member.

This means that in a typical scenario, the loads are known and reinforcement is unknown. In an

analysis case, the reinforcement size and spacing are known and the object of the analysis is to

determine the member capacity. This difference in modeling approach requires a generalization of

the objective criterion for evaluating strut-and-tie models that works for both scenarios.
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For design scenarios, the principle of minimum strain energy states that the model with

the minimum strain energy for a given strength demand is the most correct model. This has been

shown using equation (17.1) to mean the model with the minimum volume of reinforcement for

a given strength demand. Generalizing the rationale from the design scenario for both design and

analysis scenarios, the objective of the strut-and-tie modeling procedure is to minimize the ratio

of reinforcement to strength capacity. For the case of analyzing existing shear walls, the objective

can be stated as the strut-and-tie model which produces the highest predicted capacity and meets

all of the modeling guidelines is the most correct model.

18.3 Specimens

Selected specimens were selected from the dataset to model using strut-and-tie modeling

to compare the modeling results with the experimental results. Modeling all masonry shear wall

specimens from the dataset was outside of the scope of this study, so specimens were selected to

correlate with the equivalent-truss models constructed previously by Voon (2007), Nolph (2010),

Elmapruk (2010), and Morrison (2013). The former three studies constructed strut-and-tie mod-

els solely for specimens that those researchers tested themselves while Morrison selected a few

specimens from several studies from the literature for analysis. The current study constructed

strut-and-tie models for all of the specimens that were modeled previously as well as the remain-

ing specimens in the studies from which Morrison selected only a few. Models were constructed

for 69 fully-grouted walls and 47 partially-grouted walls (10 of which contained openings).

18.4 Procedure

Each specimen was initially modeled using the strut-and-tie methodology prescribed in

Appendix A of the ACI 318 (2011) code. The base compression strength f ′m of the masonry struts

and nodal regions was assumed to be the strength obtained by the researchers through prism tests.

This base strength was multiplied by the respective factors to obtain the effective strengths of the

members. The reinforcement yield strength was taken directly from the studies from which the

specimen data came. The distributed applied axial load was resolved into equivalent point loads
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acting at the nodes across the top of each wall. The experimental strength used in the comparison

was the average of the peak strengths from each of the two loading directions.

The performance of the models was examined using the mean and coefficient of variation

of the ratios of experimental to predicted strength, similar to the approach used in Chapter 10.

The two statistics were calculated separately for the fully- and partially-grouted groups as well

as for the group of walls with openings. Performing a group-wise comparison of experimental

and predicted results was judged to be a superior approach than comparing the strengths wall-by-

wall since the experimental results and measured data parameters both contained several potential

sources of variation. While the mean was useful in judging the overall accuracy of the modeling

procedures, the coefficient of variation was deemed to be the best for comparing the performance

of the modeling procedures because they showed how precise the method is in accounting for the

variations in wall strength.

As the number of models for each wall type were developed, the errors between the results

and the experimental strengths were inspected to identify patterns which could identify the source

of each error. As potential sources of error were identified, variations from the ACI 318 modeling

procedures were made to observe how they affected the modeling results in comparison with the

experimental results. The modeling variations were taken from the AASHTO (2012) bridge spec-

ifications and/or developed based on masonry knowledge gleaned from the literature. They were

applied in a systematic way for all masonry walls to assure that they did not worsen the errors in

the models for other masonry specimens. The adaptations which proved to consistently ameliorate

the modeling results were adopted in the final modeling methodology.

18.5 Analysis

The models were analyzed using a custom computer program coded and ran using MatLab

(2014). The program consisted of functions which computed the parameters for each type of strut,

a program which computed the strength for the entire model assembly, and a unique input file

created for each specimen. Both the functions and the main program used an iterative process to

reach each solution because there is no direct approach for solving all but the most rudimentary

strut-and-tie models. The program was meant to be a means of performing the highly repetitive
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and iterative sequence of calculations involved in analyzing strut-and-tie models caused by the

highly-interconnected nature of all the member parameters.

During the preliminary planning stages of this analysis several types of strut geometries

were identified to be common in masonry strut-and-tie models. These strut types were labeled

according to the location of the known constraint locations at the top and bottom connections of

the struts. Struts were classified as being in one of the following categories:

• Center to edge

• Center to stirrup

• Edge to edge

• Stirrup to edge

Illustrations of the four common strut types are shown in Figure 18.1. The first two strut types

were sub-classified by whether or not their top anchorage extended into the header beam. This

extension was depended based on the rigidity of the header beam in comparison with the masonry

panel. A function was created for each strut type which calculated the size and resultant forces

based on the given geometry, constraints, and applied force.

The main program used parameters from the input file to determine the geometry, con-

straints, and applied forces for each strut and passed those values to the appropriate strut-type

function. The input parameters included the locations of the reinforcement, the grid points to

which each strut was connected, the type of each strut, values for the various strut and node fac-

tors, and material properties. The program kept track of the stresses in the reinforcement bars and

struts and adjusted the forces applied to the struts to ensure that the capacity of every member was

not exceeded and that the model was in equilibrium. The main program summed the lateral con-

tribution of all struts terminating in the base of the wall and output that value as the shear strength

of the wall.

The layout and optimization of the models was performed manually by making changes to

the input file for each specimen. This manual approach helped the analyst to observe how different

perturbations to the models affected the resulting strengths. The program was updated throughout

the study to accommodate the various adaptations that were developed specifically for the modeling
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Figure 18.1: Four types of common struts

of masonry shear walls. Further development and refinement of the computer program for general

use was outside of the scope of this study.

321



CHAPTER 19. STRUT-AND-TIE MODELING ANALYSIS

19.1 Compression Struts

The effective compressive strength used in constructing the masonry struts was assumed to

be

f ′s = 0.8βs βα f ′m (19.1)

where

βs = the strut efficiency factor,

βα = the strut inclination factor, and

f ′m = the masonry characteristic strength.

Equation (19.1) is similar to that specified in ACI 318 (2011) except that the 0.85 factor for con-

crete was changed to 0.8 to maintain compatibility with other masonry strength equations and

the strut inclination factor is introduced to account for the anisotropic behavior of masonry. The

determination of values for each of the factors is detailed in the following sections.

19.1.1 Strut Efficiency Factor

The strut efficiency factor βs values from the ACI 318 code were initially chosen as a

baseline for the development of strut-and-tie models for the masonry specimens analyzed in this

study. Struts which traveled in a near vertical direction near the edge of the wall were assumed

to have a βs value of 1.0 because the propinquity of the strut to the edge would prevent the stress

fields from bulging. The remaining struts which traversed the wall panels diagonally were assigned

a βs value of 0.75 for those which crossed at least one horizontal or vertical reinforcement bar or

assigned a value of 0.60 if they did not cross a reinforcement bar. During the course of the analysis
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the values of βs from ACI 318 appeared to also work for the masonry models and at no time was

there sufficient cause found to change the factor values from those initially chosen. A more detailed

investigation of strut efficiency factors was prevented by a lack of suitable data in the dataset for the

purpose. Further investigation and validation of the βs values from ACI 318 for use with masonry

will require a text matrix of specimen groups each with similar strut layouts but varying levels

of reinforcement and material strengths. Until further validation of strut efficiency factors can be

performed with isolated specimens, the current values from the ACI 318 (2011) code have been

observed to be the best choice for use with masonry.

19.1.2 Special Reinforcement Requirements

The ACI 318 provisions specify that reinforcement that traverses the struts may be consid-

ered to resist the transverse tensile splitting forces within the strut if they exceed a specified rein-

forcement ratio. Many masonry specimens included one or more diagonal struts which included

the necessary transverse reinforcement ratio but were crossed by a single horizontal or vertical

reinforcing bar. The provisions specify no maximum spacing requirement for the transverse rein-

forcement so long as the provided reinforcement ratio exceeds that required in the provisions. It

was assumed that a single reinforcing bar (providing the necessary transverse reinforcement area)

was sufficient to justify the use of a βs value of 0.75 rather than that of 0.60. During the analysis

there was not sufficient cause found to reject this assumption.

19.1.3 Strut Inclination Factor

The strut inclination factor βα values used in this analysis were initially chosen based on

the theoretical strength curve

(
−37.78 sin4(αs) + 42.99 sin2(αs) + 17.86

)
f ′2m

−
(
1.57 sin2(αs) + 16.86

)
f ′m = 1

(19.2)

which was developed by Liu et al. (2006) for uniaxial masonry strength. The values for βα were

assumed to follow a bilinear approximation of the theoretical curve in Equation (19.2) which grad-

ually decreased from a value of 1.0 at a strut inclination of 0 degrees to a value of 2/3 at an angle
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of 37.5 degrees, after which the value was fixed at 2/3. A graphical comparison of the theoretical

and approximated values is shown in Figure 19.1.
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Figure 19.1: Strut inclination factor values used in this study (adapted from Liu et al. 2006)

The applicability of the strut inclination factor was studied separately for fully- and partially-

grouted walls. It was observed that the strut-and-tie models for the fully-grouted specimens pro-

duced predicted strengths that where closer to the experimental strengths and had lower variation

when the strut inclination factor was omitted from the model. A comparison between the mod-

els with and without the strut inclination factor is presented in Table 19.1. Conversely, it was

observed that the strut-and-time models for the partially-grouted specimens produced better pre-

dicted strengths when the strut inclination factor was included in the model, as shown in Table 19.2.

The reason for this disparity is likely explained by Drysdale and Hamid (1980) who observed that

the grouted cores decreased the level of anisotropy introduced by the bed joints by facilitating the

transfer of shear stresses between the different courses of masonry.
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Table 19.1: Evaluation of Strut Inclination Factor for Fully-Grouted Walls

Ultimate Shear Strut-and-Tie Models

Load (kN) Including βα Excluding βα

Study Specimen Min Max Avg Vn (kN) Vexp

Vn
Vn (kN) Vexp

Vn

Hidalgo et al. (1978)

HCBR-21-2 238 328 283 245 1.16 279 1.01
HCBR-21-4 328 424 376 354 1.06 415 0.91
HCBR-21-6 401 473 437 365 1.20 439 1.00
HCBR-21-8 407 477 442 364 1.21 437 1.01
HCBR-21-9 366 480 423 363 1.17 434 0.97

Chen et al. (1978)

HCBL-11-3 194 218 174 164 1.06 205 0.85
HCBL-11-4 257 279 227 227 1.00 264 0.86
HCBL-11-6 489 545 274 319 0.86 362 0.76
HCBL-11-7 792 293 202 180 1.12 270 0.75
HCBL-11-9 223 253 202 340 0.59 405 0.50
HCBL-11-11 362 390 318 231 1.38 353 0.90
HCBR-11-3 400 440 420 214 1.96 256 1.64
HCBR-11-4 507 555 531 347 1.53 430 1.23
HCBR-11-6 489 545 517 314 1.65 358 1.44
HCBR-11-7 401 441 421 415 1.01 557 0.76
HCBR-11-8 335 381 358 262 1.37 354 1.01
HCBR-11-10 438 466 452 407 1.11 460 0.98
HCBR-11-12 408 432 420 417 1.01 559 0.75
HCBR-11-13 491 517 504 434 1.16 589 0.86

Sveinsson et al. (1985)

HCBL-11-13 – – 461 335 1.38 392 1.18
HCBL-11-15 – – 561 362 1.55 466 1.20
HCBL-11-17 – – 309 241 1.28 333 0.93
HCBL-11-18 – – 308 196 1.57 280 1.10
HCBL-11-19 – – 396 271 1.46 349 1.13
HCBL-11-20 – – 410 267 1.54 369 1.11
HCBL-11-21 – – 389 196 1.98 280 1.39
HCBL-11-22 – – 273 261 1.05 306 0.89
HCBL-11-23 – – 334 190 1.76 284 1.18
HCBL-11-24 – – 424 267 1.59 369 1.15
HCBL-11-25 – – 342 271 1.26 350 0.98
HCBL-11-26 – – 420 267 1.57 369 1.14
HCBR-11-15 – – 525 388 1.35 486 1.08
HCBR-11-17 – – 429 349 1.23 403 1.06
HCBR-11-19 – – 321 276 1.16 331 0.97
HCBR-11-20 – – 334 345 0.97 440 0.76
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Table 19.1: Evaluation of Strut Inclination Factor for Fully-Grouted Walls (Continued)

Ultimate Shear Strut-and-Tie Models

Load (kN) Including βα Excluding βα

Study Specimen Min Max Avg Vn (kN) Vexp

Vn
Vn (kN) Vexp

Vn

Sveinsson et al. (1985)

HCBR-11-21 – – 410 291 1.41 378 1.08
HCBR-11-22 – – 418 312 1.34 414 1.01
HCBR-11-23 – – 354 292 1.21 388 0.91
HCBR-11-24 – – 384 293 1.31 388 0.99
HCBR-11-25 – – 380 276 1.38 331 1.15
HCBR-11-26 – – 374 345 1.08 440 0.85
HCBR-11-27 – – 393 276 1.42 331 1.19
HCBR-11-28 – – 397 348 1.14 447 0.89
HCBR-11-30 – – 469 380 1.23 486 0.97

Shing et al. (1990)

3 445 467 456 331 1.38 426 1.07
4 320 387 354 291 1.22 343 1.03
5 396 418 407 300 1.36 376 1.08
6 209 231 220 175 1.26 187 1.18
7 432 432 432 331 1.30 398 1.08
8 209 222 216 180 1.20 191 1.13
9 427 427 427 286 1.49 337 1.27
10 298 307 302 235 1.29 256 1.18
11 396 423 409 321 1.27 365 1.12
13 485 516 500 357 1.40 407 1.23
14 436 498 467 333 1.40 398 1.17
15 365 418 391 287 1.36 321 1.22
16 534 538 536 338 1.59 435 1.23
21 480 485 483 358 1.35 415 1.16
22 383 432 407 299 1.36 328 1.24

Voon (2007)

A1 205 215 210 183 1.15 194 1.08
A2 177 195 186 187 0.99 205 0.91
A4 201 233 217 203 1.07 215 1.01
A7 261 263 262 229 1.14 245 1.07
A8 244 250 247 212 1.17 225 1.10
A9 204 207 206 156 1.32 172 1.19
A10 572 598 585 578 1.01 622 0.94

Minaie (2009)
FMC 2 – – 329 426 0.77 447 0.74
FPLC 2 – – 360 426 0.85 447 0.81

Nolph (2010) FG085-48 311 355 333 365 0.91 381 0.87

Mean 1.27 Mean 1.04
COV 0.25 COV 0.18
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19.1.4 Toe Extension Length

It was observed that the partially-grouted models were consistently under-predicting the

shear strength of the walls more than the fully-grouted models. The strut inclination factor was

eliminated as the cause because its exclusion cause the models to severely over-predict the spec-

imen strength. It was hypothesized that since the end cells were always grouted and the effective

thickness of the wall for the final half-block length was much greater than that of the ungrouted

wall panels, it was possible that the stress fields in the grouted jamb were able to take a steeper de-

scent to the wall toe. This would have the effect of lengthening the wall, increasing the strut angle

for any struts constrained by the wall length, and increasing the struts’ lateral force components

and the overall strength capacity of the model. This was analyzed by assuming the effective toe of

the wall to extend past the edge of the wall a distance given by

lx = γx
lb

2
t − ts

ts
(19.3)

where

γx = toe extension factor,

lb = length of a whole masonry block or brick unit,

t = outside thickness of the wall, and

ts = total (face) shell thickness of the wall.

The toe extension factor γx was investigated for three values {0, 1
2, 1} to determine which value

produced the best-fitting models.

Analysis of the toe extension hypothesis revealed that γx = 1
2 produced model predictions

that were were the best fit to the experimental data, as shown in Table 20.2. This factor value

corresponds to a toe extension length that is proportional to the grouted shear area for a quarter

length of a masonry unit or to the masonry shear area between the flexural reinforcement and the

nearest wall edge, as shown in Figure I.2. The toe extension length can be represented by

lx =
lb

4
t − ts

ts
≡ d′

t − ts

ts
(19.4)
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Figure 19.2: Toe extension in partially-grouted walls

where d′ is the distance between the centroid of the flexural reinforcement and the nearest wall

edge. This phenomenon can be visualized by a diagonal strut whose top edge angled down toward

the wall toe when it crosses the flexural reinforcement bar at the end of the wall, as shown in Figure

I.2.

19.1.5 Feasible Inclined Angle

The limits on the feasible inclination angle between compression struts and tension ties

from the ACI 318 code were investigated to determine if they could be used with masonry strut-

and-tie models. The inclusion of inclination angle limits had varying effect on the different strut-

and-tie models analyzed in this study. In most models the angle of the struts did not approach

the inclination limits and the inclusion or exclusion of the limits had no effect on the model shear

capacity. In the remaining models which contained at least one strut exceeding the ACI 318 limits,

the inclusion of the limits required the omission of one or more struts from the model and resulted

in models which under-predicted the shear strength, generally by a large margin. In a few models,

there was only one strut and its omission resulted in a predicted capacity of zero. It appears that

the ACI 318 limits placed on reinforced concrete strut-and-tie models are not compatible with
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modeling masonry shear walls. Additional research should be performed to either validate this

observation or to propose new limits.

19.2 Nodal Zones

The effective strength of nodal regions was assumed to be given by

f ′n = 0.8 βn f ′m (19.5)

where βn is the node efficiency factor. The node efficiency factor was initially assumed to follow

the provisions in ACI 318 (2011) which prescribe a value of 0.80 for nodal zones anchoring one tie

and a value of 0.60 for nodal zones anchoring two ties. During the course of the analysis, no reason

was found to justify any adjustment to the values initially chosen from the ACI 318 provisions.

19.2.1 Rigid Boundary Members

The shear wall specimens were all affixed to a reinforced concrete beam at their bases and to

some sort of header beam at their tops. The header beams were either separate members affixed to

the top with mortar and reinforcement—consisting of either reinforced concrete or a steel shape—

or was a section of heavily-reinforced, fully-grouted masonry integrated into the construction of

the masonry wall. During the construction of the strut-and-tie models, it was assumed that the

base and header beam were rigid bodies into which the struts could extend and in which the struts

were anchored sufficiently. It was also assumed that the compressive and shear strengths along

the wall-base and wall-header interfaces were at least as strong as the strengths of the bed joints

within the wall panel. These two assumptions enabled the struts to transfer forces into the base

or header at diagonal angles (in addition to vertically), negating the need for nodal zones within

the masonry panel at the ends of some of the struts to redirect the forces in a vertical direction, as

shown in Figure 19.3. The omission of nodal zones at the corners of the wall panel, along with

their anchorage requirements, permitted the path of the strut from the wall panel directly into the

header or base to extend clear to the edge of the wall panel, increasing the horizontal length and
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(a) Deformable base assumption

(b) Rigid base assumption

Figure 19.3: Comparison of different boundary member assumptions

force contribution of the strut. It was observed, during the analysis, that these two assumptions

appeared to be valid in the case of masonry shear walls.
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19.2.2 Reinforcement Anchorage

The reinforcement anchorage requirements used in constructing the masonry strut-and-tie

models were assumed to follow those in ACI 318 (2011) except that the equation for development

length was taken instead from the MSJC (2013) code. There were three types of anchorage identi-

fied amongst the many types of shear wall geometries. The first type of anchorage was located at

the tops of the walls and involved a vertical reinforcement bar and the top of a diagonal strut. The

second type of anchorage was located where the bottom of a diagonal strut intersected with one of

the horizontal bars (or stirrups). The third type of anchorage was located at the intersection of a

stirrup with the active flexural bar.

The first anchorage type was located within the header beam and the vertical bar could gen-

erally be assumed to be fully developed. Two exceptions to this assumption were the two studied

performed at Washington State University by Nolph (2010) and Elmapruk (2010) which included

bundled pairs of large reinforcing bars in some of the walls. While performing the analysis, it

was observed that several of the walls from these two studies were failing at considerably lower

strengths that what was being predicted by the strut-and-tie models. In the course of investigating

the cause, it was discovered that the height of the grouted header beam at the tops of these walls

was not sufficiently high to permit the full development of the vertical bars.

The MSJC code does not specify procedures for calculating the development length of

bundled bars because it does not permit the use of bundled bars in masonry walls. It appears that

Nolph (2010) and Elmapruk (2010) assumed that the development length for the bundled pair was

the same as that for a single bar which—if true—would have meant that sufficient development

length was provided. The ACI 318 code requires that the development length of bundled bars be

calculated assuming the diameter of a single theoretical bar having the same area as the bundled

bars together. This principle was used to adjust the effective tensile strengths of the bars to account

for the inadequate anchorage. When the effective tensile strength was used in the strut-and-tie

models the predicted strengths approximated those of the experimental values.

In the second anchorage type, the lateral location of the nodal zone was governed by the

width of the compressive struts and the development length of the stirrup, as shown in Figure

19.4a. Since the stirrup was always either bent at a 90 degree angle or hooked around the flexural

reinforcement bar with a 180 degree hook, the MSJC specifies that the development length is equal
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Figure 19.4: Stirrup anchorage types

to 13 (stirrup) bar diameters. The majority of the lateral force component from the diagonal strut

was transferred to the stirrup while all of the vertical force component was transferred downward

to the second, vertical strut. The strength of the stirrup was sometimes the limiting factor for the

size of the diagonal strut.

The last anchorage type differed from the second because it consisted to two ties and a

single strut, as shown in Figure 19.4b. The AASHTO (2012) provisions permit struts to extend up

to six flexural bar diameters to either side of the stirrup when the stirrup is anchored to the flexural

bar. In this scenario the AASHTO code permits the flexural bar to provide full anchorage to the

stirrup and strut and development lengths do not need to be calculated. The strut width permitted by

this provision was generally sufficiently large to transfer the full capacity of the stirrup if needed.

The few cases where the strut area was not sufficient to carry the full capacity were limited to

partially-grouted walls with large horizontal reinforcement ratios.
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CHAPTER 20. STRUT-AND-TIE MODELING DISCUSSION

20.1 Comparison with Shear Equations

20.1.1 Fully-Grouted Walls

The results of the strut-and-tie models for the analyzed fully-grouted specimens were com-

pared with the predicted strengths using the MSJC (2013) and proposed shear equations and the

results are summarized in Table 20.1. The fit of the strut-and-tie model predictions showed a lower

coefficient of variation than both of the shear equations, suggesting that strut-and-tie models are

better at accounting for the variation in the wall behavior. The MSJC equation results showed

a lower coefficient of variation for this group of specimens than the proposed equation and also

showed to be considerably unconservative. These results disagree with the results from the full

dataset in Chapter 16 which showed that the proposed equation has a lower coefficient of variation

overall than the MSJC equation and that the mean MSJC strength agreed fairly well with the exper-

imental results. This disparity in results is due to the analysis being performed on a smaller sample

from the whole dataset. The predicted strengths from the strut-and-tie models was marginally more

conservative than the proposed shear equation for fully-grouted walls.

20.1.2 Partially-Grouted Walls

The results of the strut-and-tie models for the analyzed fully-grouted specimens were com-

pared with the predicted strengths using the MSJC (2013) and proposed shear equations and the

results are summarized in Table 20.2. The performance of the strut-and-tie models for the ana-

lyzed partially-grouted walls was more-noticeably improved over the two shear equations than for

the fully-grouted walls. The results from the MSJC equation were again more unconservative than

the results for the whole dataset given in Chapter 16 the the reasons previously mentioned.
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20.1.3 Summary

The predictions for the strut-and-tie models analyzed in this study outperformed those of

both the MSJC and proposed shear equations. In some cases, the strut-and-tie model predicted a

value that was far from the experimental results for a specimen. Comparison of the experimental-

to-predicted strength ratios for these specimens revealed that the lack of accuracy was consistent

across all three predictions and that the specimens could possibly be labeled as outliers because

they did not perform as would be expected. The disparities between the experimental and pre-

dicted values in these cases could be a result of premature failure of the specimen or errors in the

measured material or other wall parameters reported in the literature. It appears that the ability

of the strut-and-tie models to consider the subtle differences in reinforcement placement and wall

geometry is more precise at describing and predicting the shear behavior of masonry walls that the

shear equations. The improved precision of the strut-and-tie modeling method comes at a cost of

requiring more effort and understanding on the part of the designer.

20.2 Comparison with Other “Strut-and-Tie” Models

The previous section showed that the strut-and-tie modeling procedures developed in this

research study produced more-precise predictions of masonry shear wall strength than the two best

masonry shear prediction equations. The strut-and-tie modeling procedures were also compared

with other recent studies by Voon (2007), Nolph (2010), Elmapruk (2010), and Morrison (2013)

which employed “strut-and-tie” modeling procedure to develop similar mechanical models. As

was mentioned in Chapter 17, the modeling process undertaken in these other studies did not follow

the full theoretical rationale presented by Schlaich et al. (1987) and might more appropriately be

labeled as “equivalent truss” models. Semantics aside, it was important to compare the proposed

strut-and-tie modeling methodology against other mechanical modeling techniques to determine

the quantitative differences between the two.

20.2.1 Washington State University

Nolph (2010) and Elmapruk (2010) each tested six masonry shear walls and created and

analyzed models for each wall. All but one of the total of twelve walls were partially-grouted and
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the other wall was fully-grouted. Their model analyses were conducted by idealizing all struts

and ties as 1-dimensional truss elements and by using a structural analysis program to perform a

linear push-over analysis for each wall. The ultimate predicted strength from each of their models

is compared with the predicted strengths from the current analysis in Table 20.3. Both modeling

techniques showed a slight tendency to under-predict the strengths for the Nolph specimens and

over-predict the strengths for the Elmapruk specimens—which had a lower aspect ratio. The com-

parison shows that the proposed methodology produced more accurate and more precise estimates

than the equivalent truss modeling methodology for the specimens from both tests.

20.2.2 Morrison

Morrison (2013) created and analyzed models for selected specimens from a number of

past masonry research studies collected from the literature. His analyses were conducted using the

same methodology and tools as those used by Nolph (2010) and Elmapruk (2010)—namely, using

idealized-truss models and performing the analysis using a structural analysis computer program.

The ultimate predicted strength from each of his models is compared with the predicted strengths

from the current analysis to compare the results from the two techniques. The comparison of

the fully-grouted specimen results are presented in Table 20.4 and those of the partially-grouted

specimens are shown in Table 20.5. The results for both grouting types showed that, overall, the

proposed methodology is more conservative than the “equivalent truss” methodology. The reason

for this conservativeness is likely due to the inclusion of anchorage and transverse reinforcement

requirements in the current study which were both absent from the idealized-truss approach. The

models from the current studies were more precise than those created by Morrison, particularly

for the partially-grouted specimens, suggesting that the proposed methodology is slightly better at

representing the masonry shear behavior.

20.2.3 Partially-Grouted Walls with Openings

Voon (2007) built, tested, and created idealized truss models for ten partially-grouted shear

walls with openings. Three of the ten walls were constructed with asymmetric geometry and/or

reinforcement placement, resulting in different strengths for the push and pull directions. The
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Table 20.4: Fully-Grouted Strut-and-Tie Model Comparison with Morrison (2013)

Ultimate Shear Strut-and-Tie Models

Load (kN) Current Study Morrison (2013)

Study Specimen Min Max Avg Vn (kN) Vexp

Vn
Vn (kN) Vexp

Vn

Hidalgo et al. (1978)
HCBR-21-2 238 328 283 279 1.01 293 0.97
HCBR-21-6 401 473 437 439 1.00 352 1.24

Chen et al. (1978)

HCBL-11-3 194 218 174 205 0.85 179 0.97
HCBL-11-4 257 279 227 264 0.86 214 1.06
HCBL-11-9 223 253 202 405 0.50 390 0.52
HCBR-11-3 400 440 420 256 1.64 255 1.65
HCBR-11-6 489 545 517 358 1.44 558 0.93

Sveinsson et al. (1985)

HCBL-11-13 – – 461 392 1.18 365 1.26
HCBL-11-18 – – 308 280 1.10 334 0.92
HCBL-11-21 – – 389 280 1.39 298 1.31
HCBR-11-21 – – 410 378 1.08 391 1.05
HCBR-11-23 – – 354 388 0.91 359 0.99

Shing et al. (1990)

4 320 387 354 343 1.03 393 0.90
9 427 427 427 337 1.27 324 1.32
13 485 516 500 407 1.23 565 0.89
16 534 538 536 435 1.23 558 0.96

Voon (2007)
A4 201 233 217 215 1.01 248 0.88
A9 204 207 206 172 1.19 149 1.38
A10 572 598 585 622 0.94 672 0.87

Mean 1.10 Mean 1.06
COV 0.23 COV 0.24

strength values predicted by Voon using idealized truss models were compared to the strut-and-tie

model predictions from the current study and are shown in Table 20.6. The accuracy of the current

methodology was better for several specimens in the current models than for those of Voon because

they accounted for the transfer of vertical shear force through the coupling beam across an opening

to the strut on the other side. The transfer of shear stresses across the openings increased the load

on the strut, increased the lateral strength of the wall, and resulted in more accurate predictions of

the wall strength. The precision of the proposed methodology was significantly greater than the

idealized truss models (by over 500 percent), showing that the proposed methodology is superior

in accuracy and precision than the idealized-truss approach and that the proposed methodology is

equally applicable to simple and complex shear wall configurations.
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Table 20.5: Partially-Grouted Strut-and-Tie Model Comparison with Morrison (2013)

Ultimate Shear Strut-and-Tie Models

Load (kN) Current Study Morrison (2013)

Study Specimen Min Max Avg Vn (kN) Vexp

Vn
Vn (kN) Vexp

Vn

Hidalgo et al. (1978)
HCBR-21-3 104 138 121 137 0.88 167 0.72
HCBR-21-5 194 230 212 268 0.79 200 1.06

Chen et al. (1978)

HCBL-11-5 195 221 208 152 1.37 145 1.43
HCBL-11-8 159 169 164 111 1.48 145 1.13
HCBL-11-10 201 223 212 174 1.22 143 1.48
HCBR-11-5 171 223 197 217 0.91 217 0.91
HCBR-11-9 164 218 191 135 1.41 217 0.88

Yancey and Scribner (1989)
R2 129 159 144 187 0.77 138 1.04
R5 113 189 151 188 0.80 134 1.13

Schultz et al. (1998)
2 – – 261 312 0.84 448 0.58
4 – – 254 232 1.09 303 0.84

Voon (2007)
A5 134 143 139 151 0.92 128 1.08
A6 93 93 93 121 0.77 128 0.73

Minaie (2009) PCL 1 – – 318 327 0.97 469 0.68

Nolph (2010)
PG085-24 290 302 296 241 1.23 303 0.98
PG085-48 211 234 223 202 1.10 300 0.74
PG120-48 227 230 229 202 1.13 300 0.76

Mean 1.04 Mean 0.95
COV 0.23 COV 0.27

Table 20.6: Strut-and-Tie Model Comparison for Walls with Openings

Ultimate Shear Strut-and-Tie Models

Load (kN) Current Study Voon (2007)

Specimen Push (kN) Pull (kN) Push (kN) Pull (kN) Vexp

Vn
Push (kN) Pull (kN) Vexp

Vn

B1 50.2 49.0 49.4 49.4 1.00 44.7 44.7 1.11
B2 41.2 38.7 38.7 38.7 1.03 35.9 35.9 1.38
B3 33.3 34.4 35.0 35.0 0.97 28.0 28.0 1.77
B4 47.4 48.8 50.9 50.9 0.94 41.0 41.0 1.21
B5 52.4 50.4 45.7 43.6 1.15 41.0 35.9 1.29
B6 94.3 94.6 89.2 89.2 1.06 58.0 58.0 0.86
B7 82.8 82.5 78.0 71.7 1.11 50.0 50.0 0.99
B8 82.7 93.2 78.0 86.5 1.07 50.0 55.0 0.95
B9 125 115 113 113 1.06 80.2 80.2 0.62

B10 89.0 84.6 85.0 85.0 1.02 80.2 80.2 0.62

Mean 1.04 Mean 1.08
COV 0.06 COV 0.33
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20.3 Foundational Principles

The construction of strut-and-tie models for simple masonry shears walls showed that the

process is straightforward and can be mastered quickly with some practice due to the regularly

appearing geometry of masonry shear walls. The principles can be applied to more complex shear

walls with openings by envisioning the walls as a series of individual wall panels connected to-

gether, as shown in Figure 20.1. The methodology is the same for walls loaded as cantilevers or in

reverse-bending, though there are some differences in implementation which are presented below.

The most important principles of creating strut-and-tie models are that all forces and reactions

are in equilibrium, the design strength of all members meet or exceed the ultimate factored load

applied to them, and that the geometry of all members is considered in determining their layout,

loading, and strength. Apart from these foundational principles, the other provisions are adaptable

to the specific material being modeled.

All loads and reactions applied to the masonry shear wall must be in equilibrium so as to

prevent rigid-body translation or rotation of the model. Loads and reactions have to be applied to

the model at nodes, including distributed loads which must be resolved into equivalent point loads

based on the principles of tributary area and static equilibrium. Without these last two principles

there would be nothing to prevent the designer from assuming that the entire distributed load acts

at the point which would produce the greatest lateral force component. Models must have a path

for the entire axial load to traverse the wall from the top to bottom; so it is generally best to first

model the struts to indicate the path of the axial load to the ground. Once the model has been laid

out for the axial load component, the strut widths can be increased to account for the additional

vertical forces contributed by the vertical reinforcement.

The design strength of all members must meet or exceed the ultimate factored load applied

to them in order to preclude failure of the member. Plasticity theory assumes that stresses have

already been redistributed to other members within the wall due to yielding and cracking, meaning

that strut-and-tie models already account for much of the redundancy from the indeterminate ge-

ometry of the wall. Due to the relatively small number of members in a strut-and-tie model and the

weakest link theory, failure of any single member in a strut-and-tie model would typically result in

a reduction in peak strength capacity for the entire wall. The corollary to this requirement is that
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(a) Example of a complex shear wall

(b) Components

Figure 20.1: Segmentation of a complex shear wall into simple components

the members—particularly the reinforcement and nodes—do not have to be fully stressed to their

capacity in the final model.

It was observed during the analysis that in most cases, attempting to use the full strength

of the reinforcement bars resulted in a model with a less-than-optimum strength capacity or an

infeasible model. This is due to the fact that the struts traversing the wall diagonally contributed

the most to the lateral capacity of the wall. The inclination of the diagonal struts was determined

to be heavily influenced by the less-inclined strut which terminated in the toe between the diagonal
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strut and the edge. As the width of the less-inclined strut increased it pushed the terminus of the

diagonal strut farther from the leading edge, reducing the diagonal strut’s inclination and its lateral

force component. The increase in the lateral strength component of the less-inclined strut was

frequently less than the loss in strength by the diagonal strut, resulting in an overall decrease in the

wall shear capacity. This explains the observation that the leading flexural bar never contributes to

the shear capacity of the shear wall, except for anchoring the horizontal reinforcement bars or if

the shear load is reversed.

The geometry of the struts, ties, and nodes must be considered in determining they lay-

out of the model, the loading applied to each member, and the strength capacity of each member.

This principle is the foremost difference between the full strut-and-tie modeling procedure and the

equivalent-truss modeling procedure used by previous researchers for reinforced masonry shear

walls. The greatest impact to the layout of the struts is caused by the requirement for sufficient

reinforcement anchorage and the ordering of struts in the compression toe of the wall. The effect

of the anchorage requirements is typically encountered at the leading end of a horizontal reinforce-

ment bar where the center line of the intersecting struts must be moved away from the intersection

of the horizontal and vertical bars, as shown in Figure 20.2. Since the back face of the node cannot

extend past the end of the horizontal bar, the center line of the struts will always be pushed farther

back into the wall, reducing the lateral strength component of the top strut and increasing the ver-

tical component and width of the bottom strut. As discussed previously, the increase in strength of

the bottom strut typically results in a greater decrease in the lateral capacity of the diagonal strut

further back in the wall.

Equivalent-truss models idealize the intersection of struts in the compression toe of the wall

to all coincide with the intersection of the flexural reinforcement bar with the base, as shown in

Figure 20.3a. Since the full strut-and-tie modeling methodology requires that struts cannot overlap,

the struts terminating in the compression toe each enter the base adjacent but separately from one

another, as shown in Figure 20.3b. The leading-most struts enter the base nearest the edge of the

wall and the subsequent struts each enter the base behind the previous strut. This arrangement

generally leads to lower shear strength since the resultant of the combined struts in the wall toe

is predominantly farther back than the interface of the flexural bar with the base, leading to lower

strut inclination angles and lateral force components.
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(a) Idealized-truss model

≥13 d
bh

(b) Strut-and-tie model

Figure 20.2: Tie and strut anchorage types for the two modeling approaches

(a) Idealized-truss model (b) Strut-and-tie model

Figure 20.3: Strut layouts in the compression toe for the two modeling methodologies
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20.4 Model Optimization

The process of strut-and-tie modeling is implemented using an iterative approach in which

multiple models are created and analyzed to determine which model produces the highest predicted

strengths. Though the process of creating strut-and-tie models has some element of engineering

judgment associated with it, several modeling principles were observed that influence whether a

model iteration produced a higher strength capacity than other models. The principle which had the

largest determination on the strength of a model was the portion of the vertical reinforcement ca-

pacity that was permitted to be transferred to each strut. Another principle which had an influence

on model strength was whether horizontal reinforcement bars were permitted to directly participate

in the model. The understanding of how these principles affect the model strength should eliminate

much of the subjectivity that is associated with strut-and-tie modeling.

20.4.1 Vertical Reinforcement

The principle of equilibrium requires that strut-and-tie models provide paths for the fully

axial load to travel from the top of the wall to the base because they are externally applied to the

wall. The vertical forces induced by the vertical reinforcement into the wall are member forces

and, therefore, are variable within the range 0 ≤ Fs ≤ Fy where Fy is the yield strength of the

bar and Fs is the force induced by the bar. Diagonal struts connected to the vertical bars closest

to the trailing edge of the wall have the greatest shear strength contribution to the wall because

they have a greater angle of inclination. The struts closer to the leading edge provide some lateral

force contribution, but since they are nearer to the leading edge their widths push the toes of the

diagonal struts farther into the wall, decreasing their inclination angles and force contributions. As

the width of the leading struts continues to increase, the increase in their lateral force component

becomes smaller than the decrease in the lateral force component in the diagonal strut, resulting in

a net decrease in wall shear strength. This phenomenon was observed to be more pronounced in

partially-grouted walls because of the decreased wall thickness due to the wider struts and the use

of the inclination factor βα.

For many wall layouts it was observed that the optimal layout did not include the con-

tribution by the leading flexural bar, a full contribution by the trailing flexural bar, and varying
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contributions by the confinement bars, depending on the wall parameters. The construction of

strut-and-tie models is best accomplished by first laying out the struts to handle the applied axial

load forces by spanning from the points of intersection of the vertical reinforcement with the top

of the wall to the compression toe of the wall. The layout of struts for a partially grouted wall

and the corresponding lateral force components for each strut are shown in Figure 20.4a. After

the struts have been laid out, determining the optimal contributions for all of the vertical bars is

most easily accomplished by incrementally increasing the contribution of each bar from null to Fy,

one bar at a time, starting with the trailing-most bar and working forward until the calculated wall

strength reaches a maximum value, as shown in Figure 20.4b. Figure 20.4c shows that the model

with full contribution of all vertical reinforcement bars produces a strength that is 5 percent lower

than the optimum model where the contribution of only the two trailing vertical reinforcement bars

is considered.

20.4.2 Horizontal Reinforcement

It was observed that the principal benefit of the horizontal reinforcement was to resist the

transverse tensile forces induced within the struts by the tendency to assume a bottle shape. This

resistance permitted the use of a higher strut efficiency factor than would otherwise have been per-

mitted if the horizontal reinforcement was not present. In some walls the optimum model included

horizontal reinforcement bars which directly participated in the lateral load resisting system while

in other models the horizontal bars did not directly participate. The participation of the horizontal

bars was generally limited to cases where the inclination of a hypothetical strut from the top of the

leading vertical confinement bar would change notably by terminating in the horizontal bar rather

than the wall toe. The true determination of whether the horizontal reinforcement bar directly in-

creased the shear capacity is an optimization problem with several input variables and constraints.

The horizontal reinforcement participation is illustrated in Figure 20.5. The horizontal

reinforcement bars participate directly in the lateral load resisting layout by transferring most of

the lateral force component from a leading strut 1© to the trailing side of the wall where the width

of the strut descending from its trailing end 4© will not influence the path of the principal diagonal

struts. This behavior is possible because the tension tie is permitted to cross the diagonal strut 2©

without transferring any forces between the two members. The amount of lateral force imparted
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416 kN

138 kN 170 kN 104 kN 3.9 kN

(a) No reinforcement contribution

213 kN 239 kN 104 kN 3.9 kN

560 kN

(b) Optimum reinforcement contribution

193 kN 199 kN 137 kN 3.0 kN

532 kN

(c) Full reinforcement contribution

Figure 20.4: Models with different reinforcement contributions
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from the upper leading strut 1© to the horizontal reinforcement bar is dependent on the difference

in inclination angles between the upper leading strut and the lower leading strut 3© which transfers

the residual forces from the node at the leading edge of the bar to the wall toe. This force in the

horizontal bar is transferred to the trailing strut 4© generating a vertical force component which

must be resisted by the flexural reinforcement bar. This decreases the bar capacity that is available

to the diagonal strut 2©, decreasing the size and lateral force component of the diagonal strut.

In many cases the decrease in the lateral force component of the diagonal strut 2© from the null

case is greater than the increase in lateral strut in the other struts introduced by the horizontal

reinforcement bar such that

F2x(a) + F3x + F4x < F1x(b) + F2x(b) ,

resulting in a net decrease in wall capacity.

In practice, the amount of force that can be transferred to a horizontal bar is limited by the

strength and anchorage of the bar, the strength of the adjoining struts, and the location of the node.

All of these parameters are affected by the development length of the horizontal bar. In some cases,

particularly among partially-grouted walls, the anchorage of the horizontal bar was the governing

factor in wall strength because the 12dbf limit placed on the width of the trailing descending strut

4© produced a strength that was smaller than the yield strength of the horizontal bar. This 12dbf

strut width limit leads to the following two modeling constraints. First, the diameter of a vertical

reinforcing bar around which a horizontal bar is anchored must not be smaller than one-twelfth the

shear thickness of the wall (12dbf ≥ ts), otherwise the thickness of the trailing descending strut 4©

cannot be assumed to be ts. Second, the diameter of the horizontal bars should be limited by

dbh ≤ 3.5

√
f ′m
f yh

ts dbf (20.1)

to ensure that the performance of horizontal bars is governed by steel yielding and not strut crush-

ing.

It was observed that the horizontal bars in roughly the upper and lower quarters of the wall

height did not participate in increasing the shear capacity of the models. Due to their proximity
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Figure 20.5: Wall strengths with and without horizontal bar participation

to the top corners of the wall their anchorage locations tended to overlap with one of the diagonal

struts, preventing them from being effective. Since the transverse splitting stresses were greater in

the middle of the struts, the horizontal reinforcement near the strut ends was ineffectual in resisting
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these splitting stresses. This observation partially confirms the hypothesis from Blondet et al.

(1989) that only the reinforcement in the middle half of the wall was effectual in resisting shear

loads. However, the prevailing theory in how the horizontal reinforcement contributes to shear

strength is very different from that observed in this analysis.

20.4.3 Coupling Beams

It was observed that several of the initial models for the Voon (2007) walls with openings

under-predicted the strength by a noticeably large margin. It was observed that the margin of

error increased as the bottom of the opening got lower, producing a taller opening and a steeper

strut behind the opening. The phenomenon can be explained by considering the stiffnesses of the

coupling beam versus that of the wall panel. In the specimens with a shorter opening (such as

that shown in Figure 20.6a), the shear stiffness of the wall panels to either side of the opening are

significantly stiffer than that of the coupling beam which spans the opening. As the height of the

opening increases (as shown in Figure 20.6b), the aspect ratios of the panels to either side increase,

which decreases their shear stiffnesses in comparison to that of the coupling beam. The decrease

in panel stiffness result in larger angular deformations at their tops, since they can be considered

to be loaded as cantilevers, applying a double-curvature load the coupling beam. The loading on

the coupling beam produces a shear reaction in the coupling beam which pulls up on the left panel

and pushes down on the right panel.

Strut-and-tie models do not consider member stiffness because the members are considered

to have yielded, so a different theory is needed to explain how to determine when the shear strength

of the coupling beam is being engaged. The hypothesis proposed is that as the toe of the strut

retreated back closer to the jamb bar, the jamb bar started to pull down on the trailing end of the

coupling beam over the opening, as shown in Figure 20.6b. Due to the presence of vertical shear

stirrups in the coupling beam, this downward vertical force was transferred across the opening to

the top of the leading strut on the other side, as shown in Figure 20.7. The increase in force applied

to the leading strut increased its lateral force component and, hence, the total shear capacity of the

wall. The trailing strut in the former wall passes below the short opening and ends near the toe of

the leading strut, as shown in Figure 20.6a. The forces in the trailing strut cannot transfer into the

jamb steel at the lower-left corner of the opening because the decrease the vertical component of
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(a) Wall with short opening

(b) Wall with tall opening

Figure 20.6: Walls with openings of different height
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Figure 20.7: Transfer of vertical shear stresses across opening

Figure 20.8: Incorrect model of wall with opening

the strut under the opening, causing it to bend upward and run into the toe of the leading strut, as

shown in Figure 20.8.

Another consideration in whether to include the coupling beam in the model is whether the

increase in shear capacity of the wall by including the coupling beam is greater than the increase in

total strain energy in the wall. By including the coupling beam in the model, the reinforcement bar

357



to the left of the opening and the shear stirrups in the coupling beam become engaged, increasing

the total volume of strained reinforcement in the wall and the total strain energy. If the increase in

shear capacity cannot be proportionally greater than the increase in strain energy, then the princi-

ple of minimum strain energy states that the model will not be correct and the contribution of the

coupling beam should be neglected. These latter two methods can be used to objectively deter-

mine whether the contribution of a coupling beam should be included in a strut-and-tie model. In

computing the shear strength of the coupling beam, the geometry and size of the stirrups should be

considered so that the capacity of the beam is not exceeded.

20.5 Procedure

The analysis of masonry shear walls using strut-and-tie models varied slightly between

walls loaded as cantilevers and those loaded in reverse-curvature. During the process of creating

and analyzing strut-and-tie models for both walls types, it was observed that the modeling of walls

in reverse-curvature could be simplified if the geometry and reinforcement layout was doubly

symmetrical about the center of the wall. If this condition was satisfied, then only the bottom

half of wall needed to be analyzed and the process would be the same as that used in modeling a

cantilever wall. The procedures for constructing strut-and-tie models for masonry shear walls is

given in this section for both loading types.

20.5.1 Cantilever Walls

1. Resolve the distributed axial load into point loads acting along the center lines of the nodes

located at the tops of the vertical reinforcement bars. If needed, the load may also be applied

to additional nodes created between vertical reinforcement bars. Divide the distributed load

according to the tributary area of each node assuming that the shear thickness is constant for

the entire length of the wall.

2. Determine the necessary anchorage length for the horizontal reinforcement bars. Choose the

horizontal bar layout to be considered in the model analysis.
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Figure 20.9: Toe extension of second strut in a partially-grouted wall

3. Layout struts from the nodes to the compression toe of the wall, incorporating the usage of

horizontal reinforcement bars as necessary. Each strut should enter the toe sequentially and

be placed such that no two struts cross or overlap. The thickness of each strut should be

calculated beginning with the leading-most strut and working backwards toward the trailing

strut. Once the thickness of a strut has been determined, the toes of the struts behind it are

moved such that they touch but do not intersect.

4. In the case of partially-grouted walls, the thickness of the first strut should be calculated

assuming the grouted thickness t and the thicknesses of the remaining struts should be cal-

culated assuming the shear thickness ts. For partially-grouted walls, the thickness and place-

ment of the second strut should be determined assuming the toe of the wall extends a distance

lx past the edge of the wall and accounting for the thickness of the first strut, as shown in

Figure 20.9. The leading edge of the second strut is then assumed to bend down from the

point where it crosses the vertical bar to the point where the inside edge of the first strut exits

the wall.

359



5. After the model is in equilibrium for the exterior applied forces, add in the contribution of

the vertical reinforcement beginning with the trailing-most vertical bar and working toward

the leading-most bar. As the contribution increases the applied force to the corresponding

strut, the strut width must be increased so that the strut strength is equal to the force applied

to it. As the strut widths change, the strut paths must be adjusted accordingly so that they do

not encroach into one another.

6. When the trailing end of a horizontal reinforcement bar is anchored to a vertical bar, then the

vertical component of the descending strut must be subtracted from the peak contribution of

the bar at its top.

7. The model is complete when the forces are in equilibrium, the strength of all materials are

less than the applied forces, the anchorage requirements are met, no two struts cross or

overlap, and the model strength is maximum. It this point, other variations of the model may

be investigated (e.g., by changing the amount and placement of vertical and/or horizontal

reinforcement) to find the optimal model for the design scenario.

20.5.2 Reverse-Curvature Walls

The procedure for cantilever walls may be used for shear wall panels with fixed-fixed

boundary conditions if the wall geometry and reinforcement placement is doubly symmetric about

the wall center. In this case the bottom half of the wall is analyzed as a cantilever wall and the

forces and members are assumed to be the same as those in the top half of the wall. Note that the

dividing line between the top and bottom halves does not need to be straight or horizontal; it is

only required to pass through the center point of the wall panel, as shown in Figure 20.10. The

purpose of this requirement is so that the contribution of reinforcement bars about the mid-height

of the wall can be more easily considered in the design.

The process of constructing strut-and-tie models of walls in reverse-curvature is the same

as that for cantilever walls except for the following points. First, all of the applied axial load is

assumed to act at the center point of the wall, or at the top middle of the lower wall half being

modeled. Second, the forces in the horizontal reinforcement bars must be symmetric about the
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Figure 20.10: Division of walls in reverse-curvature models

mid-height of the wall, or that the force in one bar must be the same as its counterpart in the other

half of the wall. Both points are illustrated in Figure 20.11.

20.6 Summary

While the proposed methodology is preliminary and still imperfect, the results of this anal-

ysis have shown that strut-and-tie model guidelines based on the methodology originally proposed

by Schlaich et al. (1987) for reinforced concrete are valid for masonry design with minor adapta-

tions. The shear strength predictions from the proposed strut-and-tie modeling methodology were

shown to consistently out-perform those of the two best masonry shear strength equations and

models built using the idealized truss analogy. It has been observed that the vertical reinforcement

nearest the trailing edge of the wall and the horizontal reinforcement in the middle half of the

wall are most effective in contributing to the shear capacity of masonry shear walls. The proposed

methodology from this study should be further refined and validated in preparation for inclusion

in future editions of the MSJC and other masonry design standards.
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Figure 20.11: Symmetry of geometry and loads in a reverse-curvature model
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Part VI

General Discussion and Conclusions

This part provides general discussion and conclusions for the entire research study. Chapter

22 discusses the performance of masonry shear walls as an assemblage and details the behavior

leading to the two principal failure modes. Chapter 21 discusses how each design parameter influ-

ences the masonry shear capacity, performance, and failure mode. Chapter 23 presents the overall

conclusions and recommendations from this study.
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CHAPTER 21. INFLUENCE OF MASONRY ATTRIBUTES

21.1 Introduction

This chapter will discuss the discoveries made during the course of this study into the

influence of the masonry wall parameters on the wall shear strength. The discussion of parameter

influences will be made both qualitatively and quantitatively. Analysis on an example shear wall

is conducted as a means of developing plots to explain the qualitative relationships in this and the

next chapter. The example wall used in this explanation is shown in Figure 21.1 and the panel

properties are shown in Table 21.1. The panel is loaded as a cantilever because the condition can

be easily applied to the reverse-curvature loading condition.

Table 21.1: Model Parameters Used
in Example

Parameter Value

lw 2600 mm
he 2000 mm
t 194 mm
f ′m 15.0 MPa
At 200 mm2

f yt 400 MPa
Ac 200 mm2

f yc 400 MPa
σ0 varies

21.2 Stress Analysis

Each wall parameter influences the magnitudes and distributions of the shear and normal

stress within the wall panel. The shear stresses in an uncracked masonry panel can be expressed
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Figure 21.1: Diagram of model used in example

using the shear stress equation

τ =
VQ
Igt

(21.1)

where

V = the shear force,

Q = the first moment of area,

Ig = moment of inertia of the gross, uncracked section, and

t = width of the member.

Equation (21.1) is not applicable to sections with non-linear stress distributions, concentrated

forces, or axial load. A second method for determining the shear stress at any point in a shear wall

is conducted by dividing a shear wall into small vertical strips, as illustrated in Figure 21.2. The
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relationship in Mohr’s Circle states that shear stresses are the same between two orientations that

are 90 degrees apart, so the shear stress in the vertical direction is equal to the shear stress in the

horizontal direction. As the width of the strips is decreased toward zero, the limit produces the

distribution of the shear strength along the length of the wall. Applying the method in Figure 21.2

is analogous to using plots of loads on a beam to determine the shear and moment diagrams.

The masonry constitutive model in Section 22.2.1 was used in lieu of the Whitney stress

block approach in determining the stress distributions for the example wall because it provides

a more correct representation. The principal tensile stress σ1 distribution in the wall panel is a

function of the shear stress τ and the vertical axial stress σ0 given by

σ1 =
σ0

2
+

√
τ2 +

(
σ0

2

)2
(21.2)

which is a functional representation of Mohr’s Circle. The magnitude and location of the shear and

principal tensile stresses determine the cracking pattern, performance characteristics, and failure

model of the wall.

21.3 Compressive Strength

The results of the analysis confirmed the earlier observation by several researchers (Mat-

sumura, 1987; Meli et al., 1968; Shing et al., 1990) that the shear strength of masonry walls is

better related to the square root of the masonry compressive strength. No reasoning behind this

relationship has been given and the relationship has typically been assumed to be empirical. The

strut-and-tie modeling theory provides a good theoretical background behind the behavior of this

observed relationship.

The phenomenon can be explained by considering a reinforced masonry wall panel with a

vertical reinforcement bar in each jamb, with an applied axial load, and without horizontal rein-

forcement. The horizontal reinforcement is omitted to compare the theory to the masonry com-

ponent of the shear equation without the influence of the horizontal reinforcement. The masonry

panel is assumed to be loaded in reverse-curvature so that a single masonry strut is present in the

panel between the two corners. The width of the compression strut is governed by the strength
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(a) Loaded masonry shear wall

(b) Shear wall divided into vertical sections

Figure 21.2: Method for computing shear stress distribution
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Figure 21.3: Variation in strut width and inclination

of the masonry and the inclination of the strut is governed by the width of the strut, as shown in

Figure 21.3.

As the masonry strength increases, the width of the compression strut decreases. As the

compression strut decreases in width, the inclination of the strut increases asymptotically to the

constant value corresponding to a strut of infinitesimal strength and zero width spanning from

one corner to the other. The relationship of the panel shear strength to the masonry compressive

strength compared to those determined using the MSJC (2013) and proposed shear equations are

shown in Figure 21.4. As the figure shows, the relationship between the shear capacity and the

compressive strength is not linear but the square root term used in the shear equations is not exactly

the best match for the relationship.

The overall fit of the shear equations to the strut-and-tie model results will vary depending

on the other model parameters such as axial load and spear span ratio. Overall, the term used

in the shear equations will have a tendency to over-predict the masonry strength component for

extremely high or extremely low values of f ′m. However, since these extreme strength values are

uncharacteristic for masonry, the square root relationship used in the shear equations is likely to be

sufficiently accurate for model design scenarios.

368



0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

√

f ′m (MPa)

τ
u
(M

P
a
)

 

 

MSJC Model
Proposed Model
Strut Model

Figure 21.4: Relation between compressive strength and shear capacity

21.4 Axial Load

The results of the analysis confirmed the earlier observation by several researchers (Mat-

sumura, 1987; Shing et al., 1990; Schultz, 1996a; Voon, 2007; Haach et al., 2010a) that the axial

load influences the ultimate shear strength of a reinforced masonry wall. The MSJC and proposed

shear equations assume that the relationship between the axial load and the ultimate shear strength

is linear. The relationship between the axial load and the shear capacity for the two shear equa-

tions is compared to that predicted using the strut-and-tie modeling theory in Figure 21.5 for three

difference values of f ′m. The strut-and-tie model theory shows that the relationship is nonlinear

and that the nonlinearity accentuates as the strength of the masonry decreases. Further comparison

was made of the ratio of applied axial load to the compressive strength of the concrete in Figure

21.6, showing that both shear equations perform satisfactory for low ratios but become increasingly

conservative as the ratio increases.

The axial load also influences shear wall performance by determining whether it will be

dominated by flexural or shear behavior. In cases where little to no axial load is applied to the

wall, the wall will have a greater propensity to fail in the flexural mode. As the applied axial
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(c) For f ′m = 20 MPa

Figure 21.5: Relationship between axial load and shear strength
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Figure 21.6: Relationship between axial load ratio and shear strength
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load increases the tensile stress in the center of the wall panel will become greater than that at

the extreme tensile fiber of the wall (as shown in Figure 21.7) and the wall will crack diagonally

before it cracks horizontally. The shear force values in Figure 21.7 also show that the axial load

also increases the shear strength capacity of a wall

In walls dominated by flexural cracking, increasing the axial load causes an increase in the

peak shear stress in the panel (as shown in Figure 21.8) increasing the likelihood that the wall will

transition to shear-dominated behavior before failing in flexure. In walls governed by shear behav-

ior, increasing the axial load increases the load in each compression strut, decreasing the amount

of strain and stress in the reinforcement bars for any given lateral load. The peak lateral load will

occur at smaller lateral drifts and with less yielding of the vertical reinforcement, resulting in a

behavior which dissipates less energy and is less ductile. Ghanem et al. (1993) concluded that the

axial load should not exceed 5 percent of the compressive strength of the masonry to prevent the

wall from experiencing a brittle shear failure. This limit appears to produce a satisfactory agree-

ment between the shear equations and the strut-and-tie models. A higher limit on the ratio of axial

load to masonry compressive strength could be feasible if the size of the vertical reinforcement

was decreased to permit it to yield before reaching the ultimate shear capacity, but more research

is necessary to determine what an appropriate limit should be.

21.5 Shear Span Ratio

Researchers (Schneider, 1969; Matsumura, 1987; Voon, 2007) have observed that the ulti-

mate shear strength of masonry shear walls is inversely proportional to the shear span ratio. The

relationships obtained by Schneider and Matsumura are shown in Figures 21.9 and 21.10, respec-

tively. For reasons that were not explained in the literature, the shear equations developed later on

by Blondet et al. (1989) and the TCCMaR committee (NEHRP, 1997) used a linear relationship

for the influence of the shear span ratio. It was observed during the development of the proposed

shear equation in Chapter 15 that the linear model provided a better fit to the experimental data

when the inverse of the shear span ratio was used. The proposed approach has the added benefit

of eliminating the requirement that the shear span ratio not be taken greater than one, providing a

small simplification over the MSJC equation.
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Figure 21.7: Influence of axial load on flexural or diagonal cracking
373



100 400 700 1000 1300 1600 1900 2200 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

x (mm)

τ
(M

P
a
)

M = 805 kN·m
V = 402 kN
σ0 = 0.00 MPa

(a) Excluding axial load

100 400 700 1000 1300 1600 1900 2200 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

x (mm)

τ
(M

P
a
)

M = 805 kN·m
V = 402 kN
σ0 = 0.50 MPa

(b) Including axial load

Figure 21.8: Relationship between axial load and shear strength

The relationship between shear span ratio and the shear capacity for the two shear equations

is compared to that predicted using the strut-and-tie modeling theory in Figure 21.11 for three

different values of f ′m. The three plots show the proposed shear model to better fit the strut-and-

tie model than the MSJC equation. Both shear equations over-predict the strength for shear span

ratios greater than about 1.0 whereas the MSJC equation under-predicts the strength for shear span

ratios less than about 0.5. These bounds would change for different combinations of f ′m, σ0, and

ρ f values.

The shear span ratio also influences shear wall performance by determining whether it

will be dominated by flexural or shear behavior. For a given induced moment force, walls with
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Figure 21.9: Influence of shear span (from Matsumura 1987)

higher shear span ratios have a greater height and vertical shear area to resist the masonry shear

forces, resulting in a lower peak shear stress. Increasing the shear span ratio increases the induced

moment force for a given lateral shear load, partially canceling the effect of the height on peak

shear stress and resulting in a net decrease in peak shear stress, as shown in Figure 21.12. The

plateaus on the contour plot represent the shear load at which the wall begins experience large

rotational deflections due to overturning.

The principal tensile stress at the neutral axial decreases with increasing spear span ratio

because it is functionally related to the peak shear stress. The principal tensile stress at the extreme

tension fiber increases with increasing shear span ratio due to the greater moment arm of the lateral

shear load. As the shear span ratio increases the stress in the extreme tension fiber governs, leading

to tensile cracking and flexural behavior of the panel. As the shear span decreases the stress at the

neutral axis governs, leading to diagonal cracking and shear behavior of the panel.
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  Figure 21.10: Influence of shear span (from Schneider 1969)

21.6 Vertical Reinforcement

The vertical reinforcement has a similar effect on wall strength and behavior as the axial

loading, but with some distinct differences. The vertical contribution of each bar is variable from

zero to the yield strength whereas the axial load is constant. It was shown in Section 20.4.1 that

in some cases the optimum shear capacity is obtained when not all of the vertical reinforcement

bars are fully contributing. As the wall approaches and exceeds this optimum strength, overturning

of the wall segments will be accompanied by further stressing and yielding of the reinforcement.

Energy is dissipated by the plastic yielding and strain hardening of the reinforcement bars, resulting

in a ductile failure. Since the axial load is constant the overturning of the wall panels with little to

no vertical reinforcement results in a loss of equilibrium and a brittle failure.

The force in each reinforcement bar increases the peak shear stress in the wall panel. The

shear stress in the wall panel is greater at a given lateral shear load for reinforcement concentrated

at the ends than when the reinforcement is distributed throughout the wall, as shown in Figure
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Figure 21.11: Relationship between shear span ratio and shear strength

377



0.6 0.6 0.6

1.41.4
1.4

2.22.2
2.2

3
3

3.8
3.8

4.6

4.6

5.4

6.2

7

M
V lw

V
(k
N
)

 

 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

5

10

15

20

τmax (MPa)

Figure 21.12: Peak shear stress for given shear loads and shear span ratios

21.13. This increase in peak shear stress reduces the lateral load at which shear cracks will form,

causing the wall to be more brittle. The concentration of the reinforcement at the end also increases

the required development length and the width of the diagonal strut. Since the masonry area

available for strut anchorage between the flexural bar and edge of the panel is small, concentration

of the reinforcement increases the possibility of anchorage failure and decreases the overall shear

capacity.

Distributing the vertical reinforcement throughout the wall panel results in varying mo-

ment arm lengths for each bar. As the wall is loaded such that the reinforcement begins to yield,

the pushover curve for distributed reinforcement is more plastic and ductile than walls with con-

centrated reinforcement, as shown in Figure 21.14 These observations agree with the observation

of Ghanem et al. (1992) that even distribution of reinforcement produces increased shear strength

and those of Nolph (2010) and Elmapruk (2010) who both observed that the shear strength is in-

versely proportional to the horizontal grout spacing. In Chapter 15 of this study it was presented

that the wall strength of partially-grouted wall was inversely proportional to the ratio of horizontal

grout spacing and wall length.
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Figure 21.13: Effect of vertical reinforcement distribution on wall ductility

21.7 Horizontal Reinforcement

The meta-regression performed in Chapter 15 revealed that the contribution of the horizon-

tal reinforcement is not as great as originally supposed by Blondet et al. (1989), Shing et al. (1990),

Anderson and Priestley (1992), and the TCCMaR committee (NEHRP, 1997). While these studies

assumed that the direct strength contribution of the horizontal reinforcement to the shear strength

was limited to the reinforcement in the middle half of the vertical section, the regression showed

that the direct contribution was approximately 12 percent of the strength capacity. The observed
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Figure 21.14: Effect of vertical reinforcement distribution on wall ductility

difference in strength contribution between the experimental data and the theoretical results can be

explained through strut-and-tie modeling theory.

The generation of strut-and-tie models revealed that the horizontal reinforcement princi-

pally acts by confining the transverse spreading and splitting forces in the inclined compression

struts. In the cases where the horizontal reinforcement is directly engaged in resisting the lateral

load, the bars in roughly the top and bottom quarters of the wall do not contribute because the other
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struts interfere with the anchorage of the bars. This behavior agrees with the hypothesis of Blondet

et al. and Shing et al. that only the reinforcement in the middle half of the wall contributes because

there is not sufficient development length for the bars at the bottom and top to be fully engaged.

While their hypothesis agrees with the amount of reinforcement that contributes, the method in

which the bars contribute is different from what has been assumed.

The horizontal bars are only engaged after diagonal cracks form in the wall. In the extreme

load state the cracks can be assumed to travel between the struts, separating the panel into seg-

ments, as shown in Figure 21.15a. The struts and masonry within each segment can be assumed to

act as a unit in which plane sections remain plane. Since the toe of the strut is restrained laterally

by the lateral component of the compression force, the horizontal bars spanning the cracks between

segments will act more like longitudinal reinforcement in a beam by preventing the segment from

rotating, as shown in Figure 21.15b.

(a) Path of shear crack (b) Force distribution in stirrups

Figure 21.15: Behavior of stirrups in a shear wall
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The length of the vertical reinforcement bars anchored in the base of the wall and the strain

in each bar is proportional to the absolute rotation of the attached wall segment. The horizontal

bars traverse the masonry segments and so the strain in each horizontal bar is proportional to the

relative rotations of the panels and to the distance of the bar from the base of the wall. The vertical

reinforcement is generally not smaller than the horizontal reinforcement bars. The difference in

strains and bar areas between the two reinforcement directions result in the vertical reinforcement

being the principal mechanism resiting the rotation in each segment. The principal role of the

horizontal reinforcement is to distribution the lateral forces between the wall segments and to

prevent the segments from separating from each other.

Sveinsson et al. (1985) observed that sufficient anchorage of horizontal stirrups was nec-

essary to prevent the sudden brittle behavior associated with sudden anchorage failure. They ob-

served that to be sufficiently anchored the horizontal stirrups must be anchored around a vertical

reinforcement bar with a 180 degree hook or welded to a plate. Since the grade of steel used in

reinforcement is typically not suitable for welding, all horizontal bars should be hooked around a

vertical bar at both ends.

It is also necessary that the vertical bar be sized to provide the necessary anchorage for the

strut and stirrup. The AASHTO (2012) provision permit the strut anchored by a stirrup and vertical

bar to extend 6 vertical bar diameters from the intersection of the two bars in both the vertical and

out-of-plane directions. If the diameter of the vertical bar is less than one-twelfth of the masonry

thickness, then the thickness of the strut cannot be assumed to be the same as the wall thickness.

The reason is that without sufficient area for the masonry strut to bear against the vertical bar, it is

possible that the force in the stirrup could cause the vertical bar to be pulled through the masonry,

causing lateral splitting of the masonry.

Researchers Matsumura (1985), Sveinsson et al. (1985), Yancey and Scribner (1989), Nolph

(2010), and Elmapruk (2010) observed that the relationship between the horizontal reinforcement

and the increase in wall shear strength is not linear. Sveinsson et al., Nolph, and Elmapruk further

observed that there is an upper limit above which any increase in the amount of horizontal rein-

forcement does not increase the shear strength of the wall. Sveinsson et al. determined that the

maximum effective horizontal reinforcement ratio was on the order of 0.07% whereas Nolph found
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that the maximum ratio was in the range of 0.085% to 0.100%. One probable explanation for this

observed phenomenon is given by the strut-and-tie modeling theory.

When a horizontal stirrup is anchored around a vertical bar, the lateral force in the stirrup is

transferred from the stirrup through the vertical bar into the adjoining compression strut. The force

transfer between the vertical bar and strut is accomplished through bearing of the strut against the

bar and is effective for a distance of 6 vertical bar diameters from the center of the anchorage.

When the stirrup is small, the cross sectional area of the strut is more than sufficient to resist the

lateral force and the strength of the anchorage is governed by yielding of the stirrup. As the stirrup

size increases, the force in the strut increases to match the force in the stirrup. When the strength

capacity of the stirrup exceeds that of the strut the strength is governed by crushing and lateral

splitting of the masonry around the anchorage. As yielding of the stirrup is preferable to a sudden

brittle failure of the strut, Equation (20.1) was proposed to preclude failure of stirrup anchorages.

The limit imposed by Equation (20.1) is applied to each stirrup anchorage independently

as long as they are spaced more that 12 vertical bar diameters apart; otherwise, they are combined

into a single anchorage with multiple stirrups. As the horizontal reinforcement ratio is related to

the spacing of the stirrups and the Equation (20.1) limit is not, the two cannot be directly related

to each other. Since masonry shear walls are constructed with varying heights and reinforcement

spacings, there no single limit on horizontal reinforcement ratio that can be applied universally to

all walls. The difference in maximum effective horizontal reinforcement ratios observed between

Sveinsson et al. (1985) and Nolph (2010) were caused by the difference in reinforcement spacing

between the two studies.

Take for example the scenario of two walls constructed with identical horizontal reinforce-

ment ratios; the first wall has all reinforcement concentrated at a single location at the mid-height

of the wall and the second has the reinforcement distributed throughout its height. The former wall

has a significantly higher chance of suffering a stirrup anchorage failure because all of the horizon-

tal stirrup forced is concentrated into a single strut, as shown in Figure 21.16a. The latter wall will

show greater strength and ductility because the horizontal stirrup force is spread between multiple

struts, as shown in Figure 21.16b. This principal is in agreement with Thurston and Hutchison

(1982) and Porter and Baenziger (2007) who concluded that smaller bars distributed over the wall

height produced better inelastic wall performance than larger, concentrated bars.
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(a) Concentrated reinforcement

(b) Distributed Reinforcement

Figure 21.16: Effect of horizontal reinforcement distribution on strut width
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CHAPTER 22. SHEAR WALL BEHAVIOR

22.1 Introduction

This chapter will expand the discussion of the discoveries made during the course of this

study to the behavior and performance of masonry shear walls panels. Analysis on the example

shear wall described in Chapter 21 is presented to explain the qualitative relationships in this

chapter.

22.2 Components of Plasticity

Strut-and-tie models were observed to provide the best predictions for the ultimate shear

capacity of reinforcement masonry walls. The accuracy of the models is attributable to their con-

sideration of the plastic behavior of masonry shear walls under extreme strains. The plasticity of

reinforced masonry shear walls can be attributed to at least three factors: the non-linear behavior

of masonry, the bi-linear behavior of the reinforcement, and the redistribution of stresses through

masonry cracking.

22.2.1 Masonry Non-linearity

Masonry exhibits non-linear behavior for all but the smallest strains and is similar to the

behavior of concrete. To simplify the analysis process, the properties of the masonry panel are

typically smeared across the entire continuum. The constitutive model for the compressive be-

havior of masonry is typically assumed to be parabolic from the origin through the ultimate stress

and into the beginning phases of strain softening and to follow a inverse exponential function for

the strain softening tail. The model for the tensile behavior is linear up to the rupture strain after

which the model experiences a sharp decline in strength, which is commonly modeled using an

inverse exponential function (Lotfi and Shing, 1991; Al-Chaar and Mehrabi, 2008; Minaie, 2009).
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The crushing strains for masonry are taken as 0.0025 for concrete masonry and 0.0035 for clay

masonry (MSJC, 2013). Values for the masonry tensile rupture strain varied in the literature with

two values being 0.0001 (Al-Chaar and Mehrabi, 2008) or 0.000156 (Wu and Hao, 2008).

When computing the flexural capacity of reinforced masonry members, the non-linear dis-

tribution of compression stresses are typically idealized using the Whitney stress block approach.

The equivalent stress block is assumed to extend 80 percent of the way from the extreme com-

pression fiber to the neutral axis. The resultant force of the stress block is assumed to be equal to

0.8 f ′m multiplied by the compression area of the block. These parameters and the crushing strains

from the MSJC provisions can be used to determine the coefficients for the parabolic function for

the compressive behavior. To make the determination, it must be assumed that the compression

strains vary linearly from zero at the neutral axis to the rupture strain at the extreme compression

fiber and that the slope of the stress-strain curve is zero at the crushing strain.

Using this approach the constitutive model for masonry in compression can be expressed

as

σ

f ′m
= 1.68

ε

εmu
+ 0.36

(
ε

εmu

)2

− 0.32
(
ε

εmu

)3

(22.1)

where

σ = normal stress in the masonry,

f ′m = uniaxial compressive strength of masonry,

ε = normal strain in the masonry, and

εmu = crushing strain of the masonry.

A cubic polynomial is necessary to satisfy the third assumption that the slope of the stress-strain

curve is zero at the crushing strain. A plot of Equation (22.1) and the equivalent stress block is

shown in Figure 22.1. Using the integral to locate the strain corresponding to half the area under

the curve, it was determined that the resultant of the stress block was located slightly farther than

the center of the block from the neutral axis. This results in the the stress block representation

being slighting conservative when compared to the constitutive model.
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Figure 22.1: Consitutive model and stress block

To produce a curve with a resultant at the center of the stress block would require the use of

a fourth-order polynomial (as shown in Figure 22.2a) or to eliminate the assumption that the curve

slope is zero at the crushing strain (as shown in Figure 22.2b). Comparison of both plots with those

in the literature revealed that neither plot matched those developed from testing as well as that for

Equation (22.1). The fourth-order approximation in Figure 22.2a is not continually increasing up

to the peak strength. The non-zero slope at crushing strain in Figure 22.2b results in too much

strain softening at the crushing strain. The strain-softening branch of the curve typically changes

to positive curvature (or concavity) and an inverse exponential function at approximately half of

the ultimate stress (Lotfi and Shing, 1991).

Taking the derivative of Equation (22.1) produces the tangential elastic modulus for ma-

sonry given by

Em = 1.68
f ′m
εmu

. (22.2)

The above definition of tangential elastic modulus produces values of 672 f ′m for concrete masonry

and 480 f ′m for clay masonry. Both values are lower than the MSJC code specified values of 900 f ′m

for concrete masonry and 700 f ′m for clay masonry. The tensile constitutive model for masonry

is assumed to increase with a slope of Em until the rupture strain, after which point the strength

drops off. For the purpose of this discussion, it is assumed that the tensile stress is zero after the
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(b) Non-zero slope at crushing strain

Figure 22.2: Constitutive models with resultant centered in stress block

rupture strain is exceeded. This assumption ignores the effect of tensile strain softening but is more

accurate than the common design assumption for reinforced masonry that the tensile strength does

not participate at all.
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22.2.2 Reinforcement Yielding

The steel grades used for reinforcement bars are commonly assumed to demonstrate bi-

linear behavior for the strains typically used in design. The yielding of the vertical reinforcement

closest to the trailing edge of the wall permits the strains in the other bars to increase with increas-

ing load until each of them in turn also yields. This behavior results in a non-linear push-over

curve for masonry shear walls as each subsequent vertical bar yields, providing a large degree of

ductility and energy dissipation for cases where the wall does not fail in shear.

22.2.3 Masonry Cracking

Cracking in the masonry panel occurs in the elements where the normal tensile stress ex-

ceeds the rupture strength of the masonry. In unreinforced masonry, the onset of cracking typically

leads to failure of the member because of the weakest link theorem states that there is not enough

residual strength left in the material to dissipate the energy released by the initiation of cracking.

Reinforced masonry members are assumed to crack before the reinforcement can be fully engaged.

The reinforcement is able to absorb the energy released with the formation of new cracks and help

redistribute the path of stresses around the cracks to other portions of the member. As shear cracks

form, the Euler-Bernoulli assumption that plane sections remain plane is no longer applicable to

the member and the strains in the interior vertical bars are able to increase more than what is

determined through flexural theory.

22.3 Masonry Shear Wall Theory

At the beginning stages of lateral loading, the masonry panel is uncracked and the entire

length of the masonry is effective in resisting the overturning moment force. Due to strain compat-

ibility, the trailing-most reinforcement bars have some tensile contribution, but the contribution is

small compared to the tensile contribution of the masonry, as shown by the small vertical jumps at

x = 100 and 700 in Figure 22.3.

As the lateral shear load applied to the masonry panel increases, the normal tensile stress

in the extreme tensile fiber and the maximum shear stress in the center of the wall panel both

increase. The shear stress in the center of the wall is inversely related to the effective height of the
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Figure 22.3: Shear stress in uncracked shear wall

wall panel. For walls with lower axial stress and higher shear span ratios, the normal tensile stress

at the extreme tensile fiber will be the first to exceed the rupture stress and cracking will initiate as

horizontal cracks at the extreme tensile fiber, as shown in Figure 22.4. For walls with higher axial

stress and lower shear span ratios, the normal tensile stress at the wall center will be the first to

exceed the rupture stress (as shown in Figure 22.5a) and cracking will initiate as diagonal cracks

in the center of the wall panel (as shown in Figure 22.5b). In the former case the next stage of wall

performance will be dominated by flexural behavior and in the latter case it will be dominated by

shear behavior.

22.3.1 Flexural Behavior

When the tensile strain in the extreme tensile fiber of the masonry exceeds the rupture

strain, a horizontal crack propagates from the edge of the wall towards the other edge. As the

crack opens, the wall panel rotates further until the reinforcement is engaged sufficiently until static

equilibrium is regained. The effect of flexural rupturing of the masonry panel can be seen in Figure

22.6 which shows the increase in strain at the wall base that must occur before the uncracked shear

capacity is regained. After tensile cracking initiates, the distribution of shear stress in the wall

shown in Figure 22.4a is notably difference from the uncracked stress pattern shown in Figure

22.3. The horizontal tensile crack can be seen to propagate more than half-way through the panel,
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Figure 22.4: Initiation of tension cracking
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Figure 22.5: Initiation of diagonal cracking
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Figure 22.6: Shear load for pre- and post-cracking (σ0 = 0)

as shown in Figure 22.4b. This release in masonry tensile strain strain results in a large release of

energy which could be sufficient to rupture the flexural reinforcement bar if it is not sufficiently

large.

As the lateral load continues to increase, the stress increases in the vertical reinforcement

bars until each one reaches its yield stress. Each time a vertical bar begins to yield the slope of the

pushover curve decreases, as shown in Figure 22.7. The force of each reinforcement bar increases

the peak shear stress within the wall panel. The peak shear stress in the wall panel continues to

increase with increasing lateral load until one of three events happens: toe crushing, overturning,

sliding, and transition to shear behavior.

Toe crushing occurs when the compressive strain in the extreme compression fiber exceeds

the crushing strain of the masonry, typically characterized by tensile splitting and spalling of the

face shells. Panel overturning occurs when all of the vertical reinforcement bars have yielded,

eliminating the external equilibrium forces that prevent the wall from experiencing large rotational

deformations. Both failures are characterized as being flexural failure. In reality, the possibility

of the latter failure mode is not typical because either the vertical reinforcement will strain harden

until the toe experiences crushing or the horizontal crack will proliferate through the entire panel

causing a sharp decrease in shear capacity and resulting in a sliding failure. If the normal tensile

stress at the point of maximum shear exceeds the tensile rupture stress of the masonry before one
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Figure 22.7: Pushover curve for shear wall model (σ0 = 0)

of the flexural failure models occurs, then diagonal cracking will initiate at the point of maximum

shear and transitioning the behavior of the panel to become shear dominated.

22.3.2 Shear Behavior

The peak shear stress in the shear wall is located along the neutral axis. When the normal

tensile strain at the point of peak shear stress exceeds the rupture stress of the masonry, a diagonal

crack forms within the wall panel. This separation causes a release of energy in the wall panel as

the diagonal crack propagates and the vertical reinforcement crossing the crack to become engaged.

Since the diagonal cracks cross the horizontal planar sections of the wall, the Euler-Bernoulli beam

assumption is violated because the planar sections are no longer continuous. The segments of the

wall on either side of the crack can be assumed to experience different rotational deformations, as

shown in Figure 22.5b.

Diagonal cracking changes the shear stress distribution in both segments on either side

of the crack, reducing the peak shear stress in the wall panel. Both segments are subsequently

analyzed separately for each other and each has a distinct shear stress distribution, as shown in

Figure 22.8. Since the shear contributions from the reinforcement and axial loads are no longer

cumulative over the entire length of the wall, the peak shear stress in each segment is lower than

before the diagonal crack formed.
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Figure 22.8: Shear stress redistribution due to diagonal cracking
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Figure 22.9: Commencement of cracking in fan-shaped strut

Within each segment the stress paths in the wall can be represented by a single fan-shaped

strut extending from the top of the segment to the compression toe. The divergent compression

stress fields traveling from the bottom to the top of each strut induce transverse tensile forces within

the strut. As the transverse tensile stresses in the struts increases with increasing strut compression

load, diagonal cracks will form separating the strut into multiple segments, as shown in Figure

22.9. Diagonal cracks will continue to form with increasing lateral load creating one strut for each

vertical reinforcement bar in tension, forming the strut-and-tie model shown in Figure 22.10. At

this point the tensile strain in each bar is independent of the strains in the other bars.

The shear cracking enables the interior vertical reinforcement bars to experience higher

tensile strains for a given wall drift than an uncracked wall with a similar cross section. In the

uncracked plane sections, the strain in the reinforcement bars increases linearly from the neutral

axis to the extreme tension fiber. When the plane sections assumption is violated, the strains in

the interior bars are no longer governed by their distance from the neutral axis but are governed by

the principle of minimum strain energy. As a result, the flexural reinforcement at the edge of the

wall does not experience the same magnitude of yielding and energy dissipation in order for the
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Figure 22.10: Final strut-and-tie model

interior bars to begin yielding. This is, in large measure, why walls failing in shear experience less

ductility than walls failing in flexure.

Failure of walls dominated by shear behavior is caused by strut crushing, overturning,

or anchorage failure. Strut crushing occurs when the strength of one of the struts is exceeded

and typically occurs at the wall toe where multiple struts converge. Overturning occurs when

the vertical bars in tension all reach their yield strengths and is characterized by opening of the

diagonal cracks between struts. Similar to the case of flexural reinforcement, the vertical bars will

begin to strain harden until the panel toe experiences crushing. Anchorage failure occurs when

one of the reinforcement anchorages fails causing a loss of capacity for one strut and triggering

cascading failures of the remaining struts.

22.4 Conclusions

Use of the strut-and-tie modeling procedure reveals a more detailed and correct explanation

into the behavior of reinforced masonry shear walls. The observed decrease in wall ductility is due

to the wall cracking which enable the interior reinforcement to become effective at lower wall drifts
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and decreases the amount of yielding in the flexural reinforcement before the interior bars can be

fully stressed.
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CHAPTER 23. CONCLUSIONS

23.1 MSJC Shear Factor Modification

The analysis of the modification approach results led to the following conclusions:

1. Both weighted data groups appear to more-closely follow the normal distribution than the

lognormal.

2. The mean performance of current MSJC shear strength equation is approximately 0.97 for

predicting the strengths of fully-grouted walls, which is close enough to unity that no change

to γg is warranted for fully-grouted walls.

3. The mean for the partially-grouted data is 0.73, which is close enough to the assumed value

of 0.75 currently used for partially-grouted walls to warrant no change to γg for partially-

grouted walls.

4. The current factors listed in the MSJC code produce a probability of failure that is 21 percent

higher for partially-grouted masonry shear walls than for fully-grouted masonry shear walls.

The increase in failure probability for partially-grouted walls is due to the greater variance

for partially-grouted walls than for fully-grouted walls and needed to be accounted for in the

design strength so that the probabilities of failure for the two grouting type are similar.

5. The value of the resistance factor φv for partially-grouted masonry shear walls was deter-

mined to be 0.73 using tolerance intervals and 0.76 using LRFD theory. Both methods

produced values that were in good agreement with each other and show that the resistance

factor should be taken as 0.75 for partially-grouted shear walls.
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23.2 Linear Regression Modeling

The development of a new proposed shear strength model led to the following conclusions:

1. The development of the equation coefficients from Blondet et al. (1989) and Anderson and

Priestley (1992) could not be replicated using the data used in the original analyses. It

appears that theirs and other shear prediction models were not developed using multivariate

least-squares regressions. Researchers may have used bivariate regression after assuming

values for the other coefficients based on theory and engineering judgment. The coefficient

values chosen by the original researchers were not the optimum values which would have

minimized the error and the variance of each model.

2. The conclusion by the TCCMaR committee that the vertical reinforcement did not contribute

to shear strength did not agree with the linear regression analysis results. Using the origi-

nal dataset, it was detemined that the vertical reinforcement reinforcement had a statistically

significant contribution to the shear strength. The significance of the vertical reinforcement

strength contribution was close to that of the horizontal reinforcement. The proposed equa-

tion is given by

Vn = Vm + Vp + Vs

=
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(23.1)

3. The regression results showed that wall shear strength is more closely correlated with the

square root of the masonry compressive strength than to the compressive strength.

4. The shear strength of walls is better correlated to the reciprocal of the shear span ratio than

with the shear span ratio. This relationship has been shown in previous studies but was not

incorporated into the MSJC equation. The shear strength of fully-grouted walls is related to
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the shear length multiplied by the shear span ratio reciprocal. The shear strength of partially-

grouted walls is better correlated with the horizontal grout spacing multiplied by the shear

span ratio reciprocal.

5. The results from the stepwise regression analyses showed that the parameters
√

f ′m and σ0

were common to both grouting types.

6. The masonry has the greatest contribution to the shear strength of a wall.

7. The theory that the horizontal reinforcement is directly involved in resisting the lateral shear

force was determined to be invalid. The new hypothesis is that the horizontal reinforce-

ment works by keeping the diagonal cracks in the masonry closed and enabling the masonry

to transfer stresses via strut action and crack friction, similar to the role of the vertical rein-

forcement. Since diagonal cracking typically forms at a 45 °angle, the horizontal and vertical

reinforcement are equally effective in restricting the diagonal cracks from opening and have

the same coefficient.

8. The MSJC limit equation worked fairly well for because the MSJC equation tended to over-

predict the strength for stronger walls. The MSJC limit equation does not provide a useful

upper bound for the proposed model. A new limit was developed to use with the proposed

shear equation to better match the performance of the model and represent the behavior of

the components of the shear wall.

9. Comparison of the shear equations show a better fit for the proposed model over the MSJC

shear strength equation. The proposed model shows an improvement in the variance of the

predictions, with nearly every prediction laying closer the the perfect-fit-line than the MSJC

predictions.

10. The benefit of the proposed models is that it contains coefficients that were specifically de-

veloped for use with partially-grouted shear walls. The parameters and coefficients in the

proposed model better represent how each aspect of the walls affects their overall behav-

ior than the grouted wall factor approach because they were developed directly from the

experimental data.
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23.3 Strut-and-Tie Modeling

The development of the strut-and-tie modeling methodology provided the greatest insight

into how masonry shear walls perform. The analysis led to the following conclusions.

1. The values of βs from ACI 318 appeared to also work for masonry models. Further inves-

tigation and validation of the βs values from ACI 318 for use with masonry requires a text

matrix of specimen groups each with similar strut layouts but varying levels of reinforcement

and material strengths.

2. Strut-and-tie models for the fully-grouted specimens predict strengths that are closer to the

experimental strengths and have lower variation when the strut inclination factor is omit-

ted. Conversely, strut-and-time models for the partially-grouted specimens produce better

predicted strengths when the strut inclination factor is included. The reason for this dispar-

ity is likely explained by Drysdale and Hamid (1980) who observed that the grouted cores

decreased the level of anisotropy introduced by the bed joints by facilitating the transfer of

shear stresses between the different courses of masonry.

3. The end cells of partially grouted walls were always grouted and the effective thickness of

the wall for the final half-unit length was much greater than that of the ungrouted wall panels.

The stress fields in the grouted jamb are able to take a steeper descent to the wall toe because

of the greater shear area available in the jamb. A toe extension factor lx was found to account

for the observed difference between predicted and observed wall strengths.

4. The ACI 318 limits placed on reinforced concrete strut-and-tie models are not compatible

with modeling masonry shear walls. Additional research should be conducted to either de-

termined whether new limits should be imposed.

5. Strut-and-tie models provide more accurate and precise shear strength predictions than either

the MSJC or the proposed shear equation. This is associated with the ability of the strut-

and-tie modeling procedure to account for the geometric particularities of each wall. The

robustness of the strut-and-tie modeling procedure was shown to apply also to shear walls

with openings.
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6. Researchers up to this point have used an “equivalent truss model” for performing strut-and-

tie analysis. The full strut-and-tie modeling methodology is more accurate and precise than

“equivalent truss models” because it can be more easily generalized to all arrangements of

reinforced masonry shear walls.

7. Strut-and-tie modeling provides a more correct representation of the behavior of masonry

shear walls and provides insights into previously unexplained phenomena. These includes a

mechanical explanation of why the shear strength appears to be better correlated to the square

root of the compressive strength, how the horizontal and vertical reinforcement contribute to

shear strength, and why sections do not remain plane.

8. Strut-and-tie modeling is a valid tool for masonry shear wall analysis and design. The cri-

terion for selecting the optimum strut-and-tie model is that the model which minimizes the

ratio of reinforcement area to shear strength.

403



REFERENCES

AASHTO (2012). LRFD Bridge Design Specifications. American Association of State Highway
and Transportation Officials (AASHTO), Washington.

Abaqus (2014). Abaqus 6.14-AP. Dassault Systemes Simulia Corp., Providence, RI.

Abrams, D. P. (1988). “Dynamic and static testing of reinforced concrete masonry structures.”
Proceedings of the Ninth World Conference on Earthquake Engineering, vol. 6, 18–22. Tokyo-
Kyoto.

Abrams, D. P. and Kreger, M. E. (1982). “Modelling of reinforced concrete members at small
scales.” Proceedings of the Seventh World Conference on Earthquake Engineering, 585–592.
Istanbul.

Abrams, D. P. and Tangkijngamvong, S. (1984). “Dynamic response of reduced-scale models and
reinforced concrete structures.” Proceedings of the Eighth World Conference on Earthquake
Engineering, 371–378. San Francisco.

ACI 318 (2011). Building Code Requirements for Structural Concrete (ACI 318-02) and Commen-
tary (ACI 318R-02). American Concrete Institute (ACI), Farmington Hills, MI.

ACI-ASCE (1988). “Building code requirements for masonry structures (aci 530–88, and asce
5–88).”

Addessi, D., Mastrandrea, A., and Sacco, E. (2014). “An equilibrated macro-element for nonlinear
analysis of masonry structures.” Engineering Structures, 70, 82–93.

AISC (1986). Specification for Structural Steel Buildings–Load and Resistance Factor Design.
American Institute of Steel Construction (AISC), Chicago.

Al-Chaar, G. K. and Mehrabi, A. (2008). “Constitutive models for nonlinear finite element analysis
of masonry prisms and infill walls.” Tech. Rep. ERDC/CERL TR-08-19, Construction Engineer-
ing Research Laboratory, US Army Corps of Engineers, Washington.

Anderson, D. L. and Priestley, M. J. N. (1992). “In plane shear strength of masonry walls.” Pro-
ceedings of the 6th Canadian Masonry Symposium, vol. 1, 223–234. Saskatoon, SK, Canada.

404



ANSI Standard A58.1 (1982). Minimum Design Loads for Buildings and Other Structures. Amer-
ican National Standards Institute (ANSI), New York.

AS 3700 (2011). Code of practice for the use of masonry–Part 2: Structural use of reinforced and
prestressed masonry. Standards Australia Ltd, Sydney.

ASCE 7 (2010). Minimum Design Loads for Buildings and Other Structures. American Society
of Civil Engineers (ASCE), Reston, VA.

ASCE-ACI (1998). “Recent approaches to shear design of structural concrete.” Journal of Struc-
tural Engineering, 124(12), 1375–1417.

Astbury, N. F. and West, H. W. H. (1969). Tests on Storey-Height Brickwork Panels and Develop-
ment of Site Control Test for Brickwork, 216–225. Gulf Publishing, Co., Houston.

ASTM C1314 (2014). “Standard test method for compressive strength of masonry prisms.” Book
of Standards Volume: 04.05. ASTM International, West Conshohocken, PA.

ASTM C270 (2014). “Standard specification for mortar for unit masonry.” Book of Standards
Volume: 04.05. ASTM International, West Conshohocken, PA.

ASTM C34 (2014). “Standard specification for structural clay load-bearing wall tile.” Book of
Standards Volume: 04.05. ASTM International, West Conshohocken, PA.

ASTM C652 (2014). “Standard specification for hollow brick (hollow masonry units made from
clay or shale).” Book of Standards Volume: 04.05. ASTM International, West Conshohocken,
PA.

ASTM C90 (2014). “Standard specification for loadbearing concrete masonry units.” Book of
Standards Volume: 04.05. ASTM International, West Conshohocken, PA.

ASTM:C1072 (2014). “Standard test methods for measurement of masonry flexural bond
strength.” Book of Standards Volume: 04.05. ASTM International, West Conshohocken, PA.

Bažant, Z. P. (1997). “Scaling of quasibrittle fracture: asymptotic analysis.” International Journal
of Fracture, 83(1), 9–40.

Bažant, Z. P. (2009). “Universal size effect law and effect of crack depth on quasi-brittle structure
strength.” Journal of Engineering Mechanics, 135(2), 78–84.

Bažant, Z. P. and Yu, Q. (2006). “Reliability, brittleness, covert understrength factors, and fringe
formulas in concrete design codes.” Journal of Structural Engineering, 132(1), 3–12.

Bagenal, P. (1980). The illustrated atlas of the world’s great buildings: a history of world ar-
chitecture from the classical perfection of the Parthenon to the breathtaking grandeur of the
skyscraper. Leisure Books, London.

405



Bennett, R. M., Boyd, K. A., and Flanagan, R. D. (1997). “Compressive properties of structural
clay tile prisms.” Journal of Structural Engineering, 123(7), 920–926.

Bernoulli, J. (1713). Ars Conjectandi. Thurnisius, Basilea.

BIA (1969). Building Code Requirements for Engineered Brick Masonry. Brick Institute of Amer-
ica (BIA), McLean, VA.

Bienaymé, I. (1852). “Sur la probabilité des erreurs d’après la méthod des moindres carrés.”
Journal de Mathématiques Pures et Appliquées,, 171, 33–78.

Bienaymé, I. (1853). “Sur les differences qui distinguent l’interpolation de m. cauchy de la méthod
des moindres carrés, et qui assurent la supériorité de cette méthode.” Journal de Mathématiques
Pures et Appliquées,, 181, 299–308.

Bischoff, P. H. and Perry, S. H. (1991). “Compressive behaviour of concrete at high strain rates.”
Materials and Structures, 24(6), 425–450.

Blondet, J. M., Mayes, R. L., Kelly, T., Villablanca, R., and Klinger, R. E. (1989). “Performance of
engineered masonry in the Chilean earthquake of March 3, 1985: implications for U.S. design
practice.” Tech. Rep. 89-2, University of Texas at Austin, Austin, TX.

Blume, J. A. and Proulx, J. (1968). “Shear in grouted brick masonry wall elements.” Tech. rep.,
Western States Clay Products Association, San Francisco.

Borenstein, M. and Hedges, L. V. (2009). Introduction to Meta-Analysis. John Wiley & Sons,
Hoboken, NJ.

Boscovich, R. J. (1760). “Notes of b stay.” Philosophiae Recentioris, II. (French translation in
Boscovich and Maire 1770).

Boscovich, R. J. and Maire, C. (1755). De Litteraria Expeditione per Pontificam ditionem ad
dimentiendas duas Meridiani gradus. Palladis, Rome. (French translation in Boscovich and
Maire 1770).

Boult, B. F. (1979). “Concrete masonry prism testing.” American Concrete Institute Journal,
Proceedings, 76(4), 513–536.

Bowditch, N. (1809). “Observations of the comet of 1807.” Memoirs of the American Academy of
Arts and Sciences, 3(1), 1–17.

Bowditch, N. (1815). “Elements of the orbit of the comet of 1811.” Memoirs of the American
Academy of Arts and Sciences, 32(2), 313–325.

Bower, A. F. (2011). Applied mechanics of solids. CRC Press, Boca Raton, FL. (Available online
at: http://solidmechanics.org/).

406



Braguim, J. R. (1989). Contributions to the study of stiffening in steel structures for high rise build-
ings. Master’s thesis, Polytechnic School, University of São Paulo, São Paulo. (in Portuguese).

Brammer, D. R. (1995). The lateral force-deflection behaviour of nominally reinforced concrete
masonry walls. Master’s thesis, University of Auckland, Auckland.

Brunner, J. D. (1996). Shear Strength of Reinforced Masonry Walls. Master’s thesis, University of
Colorado, Boulder, Boulder, CO.

Brunner, J. D. and Shing, P. B. (1996). “Shear strength of reinforced masonry walls.” TMS Journal,
14(1), 65–77.

BS 5628-2 (2000). Code of practice for the use of masonry–Part 2: Structural use of reinforced
and prestressed masonry. British Standards Institution, London.

Carroll, R. J. and Ruppert, D. (1988). Transformation and Weighting in Regression. Chapman and
Hall, New York.

Cauchy, A. (1835). “Mémoire sur l’interpolation.” Reprinted in Journal de Mathématiques Pures
et Appliquées, 2, 193–205.

Cauchy, A. (1853a). “Mémoire sur l’évaluation d’inconnues déterminées par un grand nombre
d’équations approximatives du premier degré.” Comptes rendues hebdomadaires des scéances
de l’Académie des sciences, 36, 1114–1122.

Cauchy, A. (1853b). “Sur la probabilité des erreurs qui affectent des résultats moyens
d’observations de même nature.” Comptes rendues hebdomadaires des scéances de l’Académie
des sciences, 37, 264–272.

Cauchy, A.-L. (1853c). “Mémoire sur les résultats moyens d’un très grand nombre observations.”
Comptes rendues hebdomadaires des scéances de l’Académie des sciences, 37, 381–385.

CEB (1988). “Concrete structures under impact and impulsive loading.” Tech. Rep. Synthesis
Report/Bulletin d’Information No. 178, Comité Euro-International du Béton (CEB), Geneva.

Charry, J. (2010). Experimental study on the response of brick masonry walls subjected to shear
forces. Ph.D. thesis, Universitat Politècnica de Catalunya, Barcelona.

Chatterjee, S. and Hadi, A. S. (2006). Regression Analysis by Example. John Wiley & Sons,
Hoboken, NJ.

Chebyshev, P. L. (1859). “Sur l’interpolation par la méthode des moindres carrés.” Mémoires de
l’Académie de Science de St Pétersbourg, 115, 1–24.

Chebyshev, P. L. (1864). “Sur l’interpolation.” Mémoires de l’Académie impériale de science de
St Pétersbourg, 4(5).

407



Chebyshev, P. L. (1875). “Sur l’interpolation des valeurs équidistantes.” Mémoires de l’Académie
impériale de science de St Pétersbourg, 25(5).

Chebyshev, P. L. (1887). “Sur deux théorèmes relatifs aux probabilités.” Bulletin
physio–mathématique de l’Académie impériale de Science de St Pétersbourg, 115, 1–24.

Chen, S. W., Hidalgo, H. A., Mayes, L. R., Clough, R. W., and McNiven, H. M. (1978). “Cyclic
loading of masonry single piers, vol 2–height to width ratio of 1.” Tech. Rep. UCB/EERC–78/28,
University of California, Berkeley, CA.

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences, 2nd ed. Erlbaum Asso-
ciates, Hillsdale, NJ.

Collins, M. P. and Mi (1988). “Shear and torsion design of prestressed and non-prestressed con-
crete beams.” Journal of the Prestressed Concrete Institute, 25(5), 32–100.

Commission, C. S. S. (2009). “The field act and its relative effectiveness in reducing earthquake
damage in california public schools.” Tech. Rep. CSSC 09-02, State of California Seismic Safety
Commission, Sacramento, CA.

Cotes, R. (1722). Aestimatio Errorum in Mixtia Mathesi, per Variationes Partium Trianguli Plani
et Sphaerici. Lemgoviae.

CSA S304.1 (2004). Design of Masonry Structures. Canadian Standards Association, Mississauga.

Curtin, W. G. and Hendry, A. W. (1969). Design and Construction of Slender Wall Brickwork
Buildings, 329–335. Gulf Publishing, Co., Houston.

Da Porto, F., Mosele, F., and Modena, C. (2011). “In–plane cyclic behaviour of a new reinforced
masonry system: Experimental results.” Engineering Structures, 33(9), 2584–2596.

Davis, C. L. (2008). Evaluation of Design Provisions for In–Plane Shear in Masonry Walls. Mas-
ter’s thesis, Washington State University, Pullman, WA.

Dhanasekar, M. (2011). “Shear in reinforced and unreinforced masonry: Response, design and
construction.” Procedia Engineering, 14, 2069–2076.

Dillon, P. B. and Fonseca, F. S. (2014a). “Analysing masonry research data in matrix form.”
Proceedings of the 9th International Masonry Conference, 1592. Guimarães, Portugal.

Dillon, P. B. and Fonseca, F. S. (2014b). “Preliminary study into the standardisation of masonry
shear wall reporting methods.” Proceedings of the 9th International Masonry Conference, 1593.
Guimarães, Portugal.

Drysdale, R. G. and Hamid, A. A. (1980). “Concrete masonry under combined shear and com-
pression along the mortar joints.” Journal of the American Concrete Institute, 77(5), 314–320.

408



Drysdale, R. G. and Hamid, A. A. (2008). Masonry Structures: Behavior and Design, 3e. The
Masonry Society, Boulder, CO.

Eisenhart, C. (1961). Roger Joseph Boscovich and the combination of observations. Allen &
Unwin, London.

Ellingwood, B. (2000). “Lrfd: Implementing structural reliability in professional practice.” Engi-
neering Structures, 22, 106–115.

Ellingwood, B. and Galambos, T. V. (1982). “Probability-based criteria for structural design.”
Structural Safety, 1, 15–26.

Ellingwood, B., Galambos, T. V., MacGregor, J. G., and Cornell, C. A. (1980). “Development of
a probability based load criterion for american national standard a58.” Tech. Rep. NBS Special
Publication 557, National Bureau of Standards, Gaithersburg, MD.

Ellis, R. L. (1844). “On the method of least squares.” Transactions, Cambridge Philosophical
Society, 8, 204–219.

Elmapruk, J. H. (2010). Shear Strength of Partially Grouted Squat Masonry Shear Walls. Master’s
thesis, Washington State University, Pullman, WA.

Escrig, F. (2006). The great structures in Architecture: Antiquity to Baroque. WIT Press, Boston.

Esteva, L. (1966). “Behavior under alternating loads of masonry diaphragms framed by reinforced
concrete members.” Symposium on the effects of repeated loading on material and structural
elements. Mexico City.

Euler, L. (1749). Recherches sur la question des inégalités du movement de Saturne et de Jupiter,
sujt propose pour le prix de l’année 1748, par l’Académie royale des sciences de Paris, vol. 25,
45–157. Basel, Turcini, Romania.

Fattal, S. G. (1993). “Strength of partially grouted masonry walls under lateral loads.” Tech. Rep.
NISTIR 5147, National Institute of Standards and Technology, Gaithersburg, MD.

Fattal, S. G. and Cattaneo, L. (1976). Structural Performance of Masonry Walls Under Compres-
sion and Flexure. National Bureau of Standards, Washington.

Fattal, S. G. and Cattaneo, L. (1977). Evaluation of Structural Properties of Masonry in Existing
Buildings. National Bureau of Standards, Washington.

Fattal, S. G. and Todd, D. R. (1991). “Ultimate strength of masonry shear walls: Predictions vs test
results.” Tech. Rep. NISTIR 4633, National Institute of Standards and Technology, Gaithersburg,
MD.

Fieller, E. C. (1932). “The distribution of the index in a normal bivariate population.” Biometrika,
24(3/4), 428–440.

409



Fisher, R. A., Sir (1912). “On an absolute criterion for fitting frequency curves.” Messenger of
Mathematics, 41, 155–160.

Fisher, R. A., Sir (1915). “Frequency distribution of the values of the correlation coefficient in
samples from an indefinitely large population.” Biometrika, 10, 507–521.

Fisher, R. A., Sir (1921). “On the ‘probable error’ of a coefficient of correlation deduced from a
small sample.” Metron International Journal of Statistics, 1, 3–32.

Fisher, R. A., Sir (1922). “On the mathematical foundations of theoretical statistics.” Philosophical
Transactions of the Royal Society of London, 222, 309–368.

Fisher, R. A., Sir (1925). “Applications of ‘student’s’ distribution.” Metron International Journal
of Statistics, 5(3), 90–104.

Fisher, R. A., Sir (1928). “On a distribution yielding the error functions of several well know statis-
tics.” Proceedings of the International Congress of Mathematicians Vol. 2, 805–803. Toronto.

Fletcher, B., Sir (1996). Sir Banister Fletcher’s a history of architecture. C Scribner’s Sons, New
York.

Foraboschi, P. and Vanin, A. (2013). “Non-linear static analysis of masonry buildings based on a
strut-and-tie modeling.” Soil Dynamics and Earthquake Engineering, 55, 44–58.

Francis, A. J., Horman, C. B., and Jerrems, L. E. (1970). “The effect of joint thickness and other
factors on the compressive strength of brickwork.” Proceedings of the Second International
Brick Masonry Conference, 31–37. British Ceramic Research Association, Stoke-on-Trent, Eng-
land.

Fujisawa, M. (1985). “Effect of shear span ratio.” Proceedings of the 1st Joint Technical Coordi-
nating Committee on Masonry Research. Tokyo.

Galambos, T. V. and Ravindra, M. K. (1978). “Properties of steel for use in lrfd.” Journal
of the Structural Division, Proceedings of the American Society of Civil Engineers, 104(9),
1459–1468.

Galton, F., Sir (1875). “Statics by intercomparison, with remarks on the law of frequency of error.”
Philosophical Magazine, 49(4), 33–46.

Galton, F., Sir (1877). “Typical laws of heredity.” Nature, 15, 492–495, 512–514, 532–533.

Galton, F., Sir (1879). “The geometric mean, in vital and social statistics.” Proceedings, Royal
Society of London,, 29, 365–367.

Galton, F., Sir (1889a). “Co–relations and their measurement, chiefly from anthropometric data.”
Proceedings, Royal Society of London, 45, 135–145.

410



Galton, F., Sir (1889b). Natural Inheritance. Macmillan, London.

Galton, F., Sir (1899). “A geometric determination of the median value of a system of normal
variants, from two of its entities.” Nature, 61, 102–104.

Ganz, H. R. and Thürlimann, B. (1983). “Strength of brick walls under normal and shear forces.”
Proceedings of the 8th International Symposium on Load-Bearing Brickwork, 27–29. London.

Ganz, H. R. and Thürlimann, B. (1984). “Tests on masonry walls subjected to normal and shear
forces.” Tech. Rep. 7502–4, Institut für Baustatik und Konstruktion ETH, Zürich. (in German).

Gauss, C. F. (1809). Theoria motus corporum coelestium in sectionibus conicis solem ambientium.
Perthes et Besser, Hamburg.

Gauss, C. F. (1823). “Theoria combinationis observationum erroribus minimis obnoxiae pars prior,
et pars posterior.” Königliche Gesellschaft der Wissenschaften zu Göttingen, 5, 33–90.

Geary, R. C. (1930). “The frequency distribution of the quotient of two normal variates.” Journal
of the Royal Statistical Society, 93(3), 442–446.

Ghanem, G. M., Essawy, A. S., and Hamid, A. A. (1992). “Effect of steel distribution on the
behavior of partially reinforced masonry walls.” Proceedings of the 6th Canadian Masonry
Symposium, vol. 1, 365–376. Saskatoon, SK, Canada.

Ghanem, G. M., Salama, A. E., Elmagd, S. A., and Hamid, A. A. (1993). “Effect of axial compres-
sion on the behavior of partially reinforced masonry shear walls.” Proceedings of the 6th North
American Masonry Conference, 1145–1157. Philadelphia.

Glaisher, J. W. L. (1872). “On the law of facility of errors of observations and on the method of
least squares.” Memoires of the Royal Astronomical Society, 39, 75–124.

Gram, J. P. (1879). Om Rœkkeudviklinger, bestemte ved hjœlp af de mindste Kvadraters Methode.
Høst, Copenhagen.

Grimm, C. T. (2002). “Quality control of concrete masonry compressive strength.” TMS Journal,
20(1), 81–84.

Guo, P. (1991). Investigation and Modelling of the Mechanical Properties of Masonry. Ph.D.
thesis, McMaster Univeristy, Hamilton, Ontario.

Haach, V. G., Vasconcelos, G., and Lourenço, P. B. (2007). “Cyclic behaviour of truss type rein-
forced concrete masonry walls.” 7o Congresso de Sismologia e Engenharia Sísmica. Universi-
dade do Porto, Faculdade de Engenharia, Porto, Portugal.

Haach, V. G., Vasconcelos, G., and Lourenço, P. B. (2010a). “Experimental analysis of reinforced
concrete block masonry walls subjected to in–plane cyclic loading.” Journal of Structural Engi-
neering, 136(4), 452–462.

411



Haach, V. G., Vasconcelos, G., Lourenço, P. B., and Mohamad, G. (2010b). “Influence of the
mortar on the compressive behavior of concrete masonry prisms.” Mecânica Experimental, 18,
79–84.

Haider, W. (2007). Inplane Response of Wide Spaced Reinforced Masonry Shear Walls. Ph.D.
thesis, Central Queensland University, North Rockhampton, QLD, Australia.

Haider, W. and Dhanasekar, M. (2004). “Experimental study of monotonically loaded wide spaced
reinforced masonry shear walls.” Australian Journal of Structural Engineering, 52, 101–118.

Hald, A. (1998). A History of Mathematical Statistics From 1750 to 1930. Wiley, New York.

Hald, A. (2007). A History of Parametric Statistical Inference from Bernoulli to Fisher 1713–1935.
Springer, New York.

Hall, I. J. and Sampson, C. B. (1973). “Tolerance limits for the distribution of the product and
quotient of normal variates.” Biometrics, 29(1), 109–119.

Hamedzadeh, A. (2013). On the Shear Strength of Partially Grouted Concrete Masonry. Master’s
thesis, University of Calgary, Calgary.

Hamid, A. A., Chaderakeerthy, S. R., and Elnawawy, O. A. (1992). “Flexural tensile strength of
partially grouted concrete masonry.” Journal of Structural Engineering, 118(12), 3377–3392.

Hamid, A. H., Drysdale, R. G., and Heidebrecht, A. C. (1978). “Effect of grouting on the strength
characteristics of concrete block masonry.” Noland, J. L. and Amrhein, J. E., eds., Proceed-
ings of the North American Masonry Conference, 11, 11–1–11–17. University of Colorado, The
Masonry Society, Boulder, CO.

Hao, B., H Tarasov (2008). “Experimental study of dynamic material properties of clay brick and
mortar at different strain rates.” Australian Journal of Structural Engineering, 8(2), 117–131.

Hayya, J., Armstrong, D., and Gressis, N. (1975). “A note on the ratio of two normally distributed
variables*.” Management Science, 21(11), 1338–1341.

Hedstrom, R. O. (1961). “Load tests of patterned concrete masonry walls.” ACI Journal, 32(10),
12965–1286.

Hegemier, G. A., Krishnamoorthy, G., Nunn, R. O., and Moorthy, T. (2003). Lea’s Chemistry of
Cement and Concrete. Butterworth–Heinemann, Oxford.

Hegemier, G. A., Krishnamoorthy, G., Nunn, R. O., and Moorthy, T. V. (1978). “Prism tests for
the compressive strength of concrete masonry.” Proceedings of the North American Masonry
Conference, 18, 18–1–18–17. Boulder, CO.

Hess, R. L. (1979). “The shakeout scenario supplemental study: Unreinforced masonry (urm)
buildings.” Tech. Rep. U.S. Geological Survey Circular 1324, California Geological Survey

412



Special Report 207 version 1.0, U.S. Geological Survey and California Geological Survey,
Pasadena, CA and Sacramento, CA.

Hidalgo, P. A., Mayes, R. L., McNiven, H. D., and Clough, R. W. (1978). “Cyclic loading tests of
masonry single piers, vol. 1–height to width ratio of 2.” Tech. Rep. UCB/EERC–78/27, University
of California, Berkeley, CA.

Hidalgo, P. A., Mayes, R. L., McNiven, H. D., and Clough, R. W. (1979). “Cyclic loading tests
of masonry single piers, vol. 3–height to width ratio of 0.5.” Tech. Rep. UCB/EERC–79/12,
University of California, Berkeley, CA.

Hilsforf, H. K. (1969). “An investigation into the failure mechanism of brick masonry under axial
compression in designing.” Designing, engineering, and constructing with masonry products,
31–41. Gulf Publishing, Houston.

Hinkley, D. V. (1969). “On the ratio of two correlated normal random variables.” Biometrika,
56(3), 635–639.

Igarashi, I. and Matsumura, A. (1984). “Effects of height–to–length ratio on shear strength of
reinforced hollow concrete block loadbearing walls.” Transactions, Architectural Institute of
Japan, 59(10), 1783–1784. (in Japanese).

Igarashi, I., Matsumura, A., and Shigenobu, K. (1988). “Effectiveness of shear reinforcement in
fully grouted clay brick masonry walls.” Transactions, Architectural Institute of Japan, 63(10),
1229–1290. (in Japanese).

Ingham, J. M., Davidson, B. J., Brammer, D. R., and Voon, K. C. (2001). “Testing and codification
of partially grout–filled nominally–reinforced concrete masonry subjected to in–plane cyclic
loads.” TMS Journal, 191, 83–96.

Irwin, J. O. and Rest, E. D. V. (1961). “Edgar charles fieller, 1907-1960.” Journal of the Royal
Statistical Society: Series A (General), 124(2), 275–277.

Isoishi, H., Teshigawara, M., Nakaoka, A., and Terada, T. (1988). “Experimental study on seismic
performance of reinforced masonry beams.” Proceedings of the Ninth World Conference on
Earthquake Engineering, vol. 6, 151–156. Tokyo-Kyoto.

Johal, L. S. P. and Anderson, E. D. (1988). Shear Strength of Masonry Piers Under Cyclic Loading,
18–32.

Jorquera G, L. (1963). “Estudio experimental sobre la resistencia de muros de albañileria someti-
dos a cargas horizontales.” Primeras Jornadas Chilenas de Sismologia e Ingenieria Antisismica,
3, 1–30.

Kaminosono, T., Teshigawa, M., Hiraishi, H., Fujisawa, M., and Nakaoka, A. (1988). “Experi-
mental study on seismic performance of reinforced masonry walls.” Proceedings of the Ninth
World Conference on Earthquake Engineering, Vol. VI. Tokyo-Kyoto.

413



Kasparik, T. (2009). Behaviour of Partially Grouted Nominally Reinforced Masonry Shear Walls
under Dynamic Loading. Master’s thesis, McMaster University, Hamilton, ON, Canada.

Korany, Y. and Glanville, J. (2005). “Comparing masonry compressive strength in various codes.”
Concrete International, 27(7), 35–39.

Krishnamoorthy, K. and Mathew, T., eds. (2009). Statistical Tolerance Regions: theory, applica-
tion, and computation. John Wiley & Sons, Hoboken, NJ.

Kupfer, H. (1964). “Erweiterung der mohrsch’schen fachwerkanalogie mit hilfe des prinzips vom
minimum der formanderungsarbeit (expansion of morsch’s truss analogy by application of the
principle of minimum strain energy).” CEB Bulletin, 40.

Lambert, J. H. (1765). “Theorie der zuverlässigkeit der beobachtungen and versuche.” Beyträge,
1, 424–448.

Laplace, P. S. (1774). “Mémoire sur la probabilité des causes par les énènements.” Mémoires de
l’Académie Royale de Science de Paris (Savants Etrangers), 6, 621–656.

Laplace, P. S. (1786). “Mémoire sur les approximations des formules qui sont fonctions de très
grand nombres.” Mémoires de l’Académie Royale des Sciences de Paris, 1–88.

Laplace, P. S. (1793). “Sur quelques points du système du monde.” Mémoires de l’Académie
Royale des Sciences de Paris, 1–87.

Laplace, P. S. (1799). Mécanique céleste, vol. 2. Duprat, Paris.

Laplace, P. S. (1810). “Mémoire sur les approximations des formules qui sont fonctions de très
grands nombres et sur leur application aux probabilités.” Mémoires de l’Académie Royale des
Sciences de Paris, 353–415.

Laplace, P. S. (1812). Théorie analytique des probabilities. Courcier, Paris.

Lee, J. and Fenves, G. L. (1998). “Plastic-damage model for cyclic loading of concrete structures.”
Journal of Engineering Mechanics, 124(8), 892–900.

Legendre, A. M. (1798). Méthode pour déterminer la longueur exacte du quart du Méridien,
d’après les observations faites pour la mesure de l’arc compris entre Denkerque et Barcelonne.

Legendre, A. M. (1805). Nouvelles méthodes pour la détermination des orbites des comètes.
Courcier, Paris.

Levin, J. R. (1998). “What if there were no more bickering about statistical significance tests?”
Research in the Schools, 5(2), 43–53.

Liang, Q. Q., Uy, B., and Steven, G. P. (2002). “Performance-based optimization for strut-tie
modeling of structural concrete.” Journal of Structural Engineering, 128(6), 815–823.

414



Liapounov, A. M. (1901). “Nouvelle forme du théorème sur la limite de probabilité.” Mémoires
de l’Académie Impériale de Science de St Pétersbourg, 12(8), 1–24.

Liu, L., Tang, D., and Zhai, X. (2006). “Failure criteria for grouted concrete block masonry under
biaxial compression.” Advances in Structural Engineering, 9(2), 229–239.

Lobato, M. E. (2009). Simple method for the analysis of hollow masonry walls subjected to in
plane loading. Ph.D. thesis, Universitat Politècnica de Catalunya, Barcelona. (in Spanish).

Lotfi, H. R. and Shing, P. B. (1991). “An appraisal of smeared crack models for masonry shear
wall analysis.” Computers & Structures, 41(3), 413–425.

Lourenço, P. B., Alvarenga, R. C., and Silva, R. M. (2006). “Validation of a simplified model for
the design of masonry infilled frames.” Masonry International, 19.

Lubliner, J., Oliver, J., Oller, S., and Onate, E. (1989). “A plastic-damage model for concrete.”
International Journal of Solids and Structures, 25(3), 299–326.

Lévy, P. (1925). Calcul des Probabilités. Gaunthier–Villars, Paris.

MacGregor, J. G. (1983). “Load and resistance factors for concrete design.” ACI Journal Proveed-
ings, 80(4), 279–287.

Maleki, M. (2008). Behaviour of Partially Grouted Reinforced Masonry Shear Walls under Cyclic
Reversed Loading. Ph.D. thesis, McMaster University, Hamilton, ON, Canada.

Malhotra, V. M. and Mehta, P. K. (1996). Pozzolanic and Cementitious Materials. Taylor &
Francis, Oxford.

Malvar, L. J. and Crawford, J. E. (1998). “Dynamic increase factors for concrete.” Twenty-Eighth
DDESB Seminar.

Markov, A. A. (1900). Ischislenie veroyatnostej. St Petersburg.

Marti, P. (1985). “Basic tools of reinforced concrete beam design.” ACI Journal, Proceedings,
821, 45–56.

Martinez, J. L. (2003). Theoretical and experimental determination of stress interaction diagrams
in masonry structures and application to the analysis of historical construction. Ph.D. thesis,
Universidad Politécnica de Madrid, Madrid. (in Spanish).

MatLab (2014). MatLab R2014a. MathWorks, Natick, MA.

Matsumura, A. (1985). “Effect of shear reinforcement in concrete masonry wall.” Proceedings of
the 1st Joint Technical Coordinating Committee on Masonry Research. Tokyo.

415



Matsumura, A. (1987). “Shear strength of reinforced hollow unit masonry walls—differences
between partially grouted walls and fully grouted walls.” Proceedings of the 4th North American
Masonry Conference. Los Angeles.

Matsumura, A. (1988). “Shear strength of reinforced masonry walls.” Proceedings of the 9th
World Conference on Earthquake Engineering, Vol VI, 121–126. Tokyo.

Matsumura, A. and Igarashi, I. (1983). “Effects of height–to–length ratio on shear strength of filled
cell concrete masonry loadbearing walls.” Transactions, Architectural Institute of Japan, 58(9),
2367–2368. (in Japanese).

Matsumura, A. and Igarashi, I. (1991). “Influence of flexural reinforcement on shear strength of
hollow unit concrete masonry.” Transactions, Architectural Institute of Japan, (9), 1771–1772.
(in Japanese).

Mayer, T. (1750). “Abhandlung über die umwalzung des monds um seine axe und die scheinbare
bewegung der mondsflecten.” Kosmographische Nachrichten und Sammungen auf das Jahr
1748, 1, 52–183.

Mayes, R. L., Omote, Y., Chen, S., and Clough, R. W. (1976a). “Expected performance of uni-
form building code designed masonry structures.” Tech. Rep. UCB/EERC–76/7, University of
California, Berkeley, CA.

Mayes, R. L., Omote, Y., and Clough, R. W. (1976b). “Cyclic shear tests of masonry piers, vol
1–test results.” Tech. Rep. UCB/EERC–76/8, University of California, Berkeley, CA.

Mayes, R. L., Omote, Y., and Clough, R. W. (1976c). “Cyclic shear tests of masonry piers, vol
2–analysis of test results.” Tech. Rep. UCB/EERC–76/16, University of California, Berkeley,
CA.

Meli, R. and Salgado, G. (1969). “Comportamiento de muros de mampostería sujetos a carga
lateral, segundo informe.” Tech. rep., Insituto de Ingeniera, Universidad Nacional Autónoma de
México, Mexico City.

Meli, R., Wolf, A. Z., and Esteva, L. (1968). “Comportamiento de muros de mampostería hueca
ante carga lateral alternada.” Revista Ingeniera, 38(3), 371–390.

Minaie, E. (2009). Behavior and Vulnerability of Reinforced Masonry Shear Walls. Ph.D. thesis,
Drexel University, Philadelphia.

Mises, R. v. (1919). “Fundamentalsätze der wahrscheinlicnkeitsrechnung.” Mathematische
Zeitschrift, 4, 1–97.

Moivre, A. d. (1733). Approximato ad Summam Terminorum Binomii (a + b)n in Seriem expansi.
Printed for private circulation.

416
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APPENDIX A. EQUIVALENT METRIC REINFORCEMENT AREAS USED IN THIS
STUDY

Table A.1: American Reinforcement

Bar Area
Size (mm2)

#3 71.0
#4 129
#5 200
#6 284
#7 387
#8 510
#9 645
#10 819
#11 1006
9-ga 11.1
5-ga 21.7
3/16” 17.8

Table A.2: Australian Reinforcement

Bar Area
Size (mm2)

N12 110
N16 200
N20 310
N24 450
N28 620
N32 800
N36 1020
N40 1260
R6.5 30
R10 80
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Table A.3: Canadian Reinforcement

Bar Area
Size (mm2)

M10 100
M15 200
M20 300
M25 500
M30 700
M35 1000
M45 1500
M55 2500
D3 19.4
D4 25.8
D7 45.0

Table A.4: Japanese Reinforcement

Bar Area
Size (mm2)

D10 71
D13 129
D16 200
D19 284
D22 387
D25 510
D29 645
D32 819
D38 1006

Table A.5: Mexican Reinforcement

Bar Area
Size (mm2)

#2.5 49
#3 71
#4 127
#5 199
#6 287
#8 507
#10 794
#12 1140
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Table A.6: New Zealander Reinforcement

Bar Area
Size (mm2)

R6 28.3
D8 50.3
D10 78.5
D12 113
D16 201
D20 314
D22 380
D24 542
D25 491

Table A.7: Other Reinforcement

Ø Bar Area
(mm) (mm2)

2.5 4.91
3.1 7.55
3.33 8.71
3.66 10.5

4 12.6
4.2 13.9
4.76 17.8

5 19.6
6 28.3
9 63.6
10 78.5
13 133
16 201
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APPENDIX B. ANALYZING RESEARCH DATA IN MATRIX FORM

B.1 Introduction

The development of linear regression is considered to be the foundation of the field of

statistics. Regression was originally developed by scientists and geodesists as a tool for interpreting

observational data. Scientists and mathematicians expanded our understanding and acceptance

of this tool by incorporating principles of probability and mathematics to prove its validity and

usefulness. It was not until the beginning of the twentieth century that the topic of statistics began to

emerge as a distinct field from science. During the past near century, contemporary engineers have

lost sight of the fact that regression analysis was originally developed as a tool for scientists. Many

believe, erringly, that all but the most basic statistical analyses should be reserved for statisticians,

to the detriment of our field and science.

Statistics provides many tools within the area of linear modeling that could be useful to

engineers, but while—presumably for the reasons given above—many engineers have been taught

these tools they do not use them in their experimental analyses. The mathematics involved in using

these tools fits within the education of one with an advanced engineering education. This paper

will describe how the use of linear modeling and analysis of variance can be used to quantify and

understand the effects of input parameters used in engineering experiments.

Statistical tests can be used to make quantitative decisions and make objective conclusions

about the results in a study. This paper will further expound the benefits and uses of these tools by

considering the subject as it relates to masonry shear wall research.

B.2 Background

An epistemological review of masonry shear wall research has revealed that many masonry

research studies have been essentially comparative in nature. Researchers, in attempting to un-
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derstand the influence of certain input parameters on wall behavior, have focused primarily on the

relative effects of these parameters on the shear strength of masonry walls. These studies have

been noteworthy and laudable for their contribution to the conglomeration of masonry knowledge.

The state of the art of masonry understanding is at the point where further advancement in the field

will require more quantitative measures of the effects of design parameters.

The current state of the art in masonry research has been somewhat disjointed. On one

side of the epistemological spectrum, researchers have conducted studies to explore the effect

that different design (or input) parameters (e.g., quantity of shear reinforcement, amount of axial

load, type of grouting) have on masonry shear wall performance. On the far end of the spectrum,

researchers have attempted to fit existing constitutive models to masonry shear walls for modeling

the nonlinear performance of masonry shear walls within structural analysis software. Most of

these constitutive models have been based on those originally developed for concrete. A few

researchers have focused their attention at the center of the spectrum by attempting to understand

and model the mechanics of masonry shear walls using non-finite-element analytical methods. The

sole example that the authors have found in their review of the research has been the strut-and-tie

modeling procedure. The other modeling methods currently in use are principally empirical in

nature and have vague mechanical representation.

Much information has been gathered at both ends of the spectrum which will aid re-

searchers as they try to chip away at the problem from both sides and fill the knowledge gap

in the center. As stated earlier, many researchers have overlooked some statistical tools while an-

alyzing their data. By using some of these tools on existing data sets, additional insight can be

gleaned from these previous studies. A further benefit is that these tools provide a way to estimate

the effect size on shear strength for the design variables. Understanding of the effect size of the

design variables will help in developing and proving theories about the contribution of each design

parameter to the shear strength of the wall.

This appdendix will review the use of basic linear regression modeling and analysis of

variance (ANOVA) for finding point estimates and confidence intervals for the effect size of design

parameters and for performing hypothesis testing on the parameters.
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B.3 Linear Model Construction

Linear regression provides researchers means to quantify the contribution of individual

design parameters and ANOVA helps to examine how significant the contribution of each one of

these parameters is to the overall findings. Both tools (linear regression and ANOVA) can be used

together on existing data to develop new empirical models to describe the behavior of the subject

matter or to investigate areas of research need.

B.3.1 Data Types

There are two types of variables that are used within experimental designs, quantitative and

qualitative. Quantitative variables are represented by a numerical value and may be continuous or

discrete. Examples of quantitative variables include shear reinforcement ratio, shear span ratio,

shear area, and axial load. Qualitative variables are those in which their values are taken from a

list of categories. Examples of qualitative variables are partial versus full grouting, concrete versus

clay masonry, and monotonic versus cyclic testing procedures.

B.3.2 Data Matrix

The first and most intensive part of performing linear regression and ANOVA is the con-

struction of the data matrix. The data matrix contains the input data organized such that each

row represents an individual test specimen and each column represents an input parameter the

researcher wishes to study. In linear modeling, the regression coefficients come into the model

linearly. Each input parameter may include a single, unchanged input variable from the original

experimental data or may be formed by reparameterizing one or more input variables. The data

matrix must be full rank for the least squares regression method to produce a unique solution.

B.3.3 Parameter Selection

The number of parameters (i.e., columns) that can be included in the data matrix is governed

by the design of the experiment. Quantitative variables are the simplest to use in building a data

matrix because they only require a single column to represent the data used in the experiment.
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Experiments that contain only quantitative data typically produce data matrices that are full rank.

The case where a purely quantitative experiment produces a non-full-rank matrix is due to an

improper experimental design and can be easily avoided.

The introduction of qualitative variables into experimental designs produces the situation

where the data matrix is not full rank. In the case of qualitative variables, each category requires a

unique column. This means that each qualitative variable requires multiple columns to fully repre-

sent the data. Since each category in the study increases the number of columns in the data matrix

without increasing its rank, the matrix becomes non-full rank. The situations where the design

produces a non-full rank matrix can be rectified by redefining parameters and reparameterizing the

model.

Full Rank Case

To illustrate the full rank case, we will use a small example from Schultz et al. (1998)

who tested three different aspect ratios and two different sizes of shear reinforcement within six

specimens. One possible model that represents their experiment is

Vi = µ + β1

(
Mu

Vudv

)
i
+ β2

(
Av

s

)
i
+ εi (B.1)

where

Vi = the experimental shear strength for specimen i,

µ = the intercept and represents the mean shear strength for masonry,(
Mu

Vudv

)
i
= the shear span ratio for specimen i,(

Av

s

)
i

= the shear reinforcement level for specimen i,

εi = the error term for specimen i, and

β j = the regression coefficient for model term j.

The model given by Equation (B.1) is the simplest representation that can be constructed

from their data. While it is numerically correct, the parameters do not exhibit consistent units.
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Though this does not present a problem to the regression analysis, it does create a difficultly in

interpreting the results. This issue is easily rectified by reparameterizing the variables in the model.

The new, more-familiar-looking model is given by

Vi = β0
(
Anv

√
f ′m

)
i
+ β1

(
Mu

Vudv
Anv

√
f ′m

)
i
+ β2

(
dv

s
Av f y

)
i
+ εi (B.2)

where

Anv = the net shear area of the wall,

f ′m = the masonry compressive strengths, and

dv = the shear length of each wall specimen.

This updated model in (B.2) produces regression coefficients that are unit-less and the

model as a whole is more meaningful to engineers. It should be noted that though the shear

area changes from specimen to specimen, hence making the first term not constant, this does not

present a problem because the overall form of the model is still linear. This can be observed more

clearly by looking at a reparameterized form of the model given by

(
V

Anv

)
i
= β0

(√
f ′m

)
i
+ β1

(
Mu

Vudv

√
f ′m

)
i
+ β2

(
dv

Anvs
Av f y

)
i
+ εi . (B.3)

The reparameterized model (B.3)shows that the first term still represents the average masonry shear

strength neglecting the effects of aspect ratio and shear reinforcement.

A final note to mention is that neither of the latter two models represents the contribution of

the axial load on the shear strength of the wall. Schultz et al. (1998) varied the axial load between

specimens so as to maintain a constant axial stress in their specimens. Since the axial load in the

study was wholly correlated to the shear area, including it on right side of the equation would break

the necessary assumption that the parameters be independent. However, for purposes of coefficient

calculation and analysis, the axial load component of the strength can be subtracted from the left

side of the equation, as shown in

(V − 0.25Pu)i = β0
(
Anv

√
f ′m

)
i
+ β1

(
Mu

Vudv
Anv

√
f ′m

)
i
+ β2

(
dv

Anvs
Av f y

)
i
+εi . (B.4)
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After the regression coefficients have been computed and analyzed, the 0.25Pu term could

be moved to the right side to facilitate comparison with the existing MSJC (2013) shear strength

equation. In this example, the coefficient 0.25 for the axial load was assumed to match that cur-

rently used in the MSJC code, but another may have equally been chosen from another code for

comparison with that standard. For the case of our latest model, the matrix representation is given

by

*...........
,

43.9
46.6
32.2
39.8
50.2
40.0

+///////////
-

=



22.8 11.4 36.1
17.1 5.98 25.8
12.8 6.39 18.1
22.8 5.71 70.7
17.1 5.98 50.5
12.8 6.39 32.3



*.....
,

β0

β1

β2

+/////
-

+ εεε . (B.5)

Non-Full-Rank Case

When qualitative variables are included in the experimental design, the number of columns

in the matrix exceeds the rank of the matrix. Without any modification the problem cannot be

solved because a unique solution does not exist. However, modifying the data matrix is a simple

process and with some practice it is fairly intuitive.

To illustrate the process of data matrix modification, we will refer to the data from Tomaže-

vič et al. (1996) who tested 16 pairs of specimens subject to one of two axial loads, two loading

rates (static and dynamic), and four displacement-based loading histories. The loading histories

used were monotonic loading, incrementally increasing cyclic, sequential-phased displacement

cyclic procedure, and simulated seismic—referred to as loading types A, B, C, and D, respec-

tively. While the first variable in the study was quantitative, the other two variables were clearly

qualitative in nature. The study results could be represented by the model

Vi = µ + βσAnvσi + βsζsi + βdζdi + βAζAi + βBζBi + βCζCi + βDζDi + εi (B.6)

where

Vi = the experimental shear strength for specimen i,
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µ = the intercept and represents the mean shear strength for masonry,

Anv = the net shear area of the masonry,

σi = the axial stress applied to the specimen,

ζsi = 1 if specimen i was statically loaded and 0 otherwise,

ζdi = 1 if specimen i was dynamically loaded and 0 otherwise,

ζAi = 1 if specimen i was subjected to loading history A and 0 otherwise,

ζBi = 1 if specimen i was subjected to loading history B and 0 otherwise,

ζCi = 1 if specimen i was subjected to loading history C and 0 otherwise,

ζDi = 1 if specimen i was subjected to loading history D and 0 otherwise,

εi = the error term for specimen i,

and the betas represent the respective regression coefficient for each term.

At this point, it will be more helpful to represent the data in its matrix form

vvv =



1 60 1 0 1 0 0 0
1 60 1 0 0 1 0 0
1 60 1 0 0 0 1 0
1 60 1 0 0 0 0 1
1 60 0 1 1 0 0 0
1 60 0 1 0 1 0 0
1 60 0 1 0 0 1 0
1 60 0 1 0 0 0 1
1 120 1 0 1 0 0 0
1 120 1 0 0 1 0 0
1 120 1 0 0 0 1 0
1 120 1 0 0 0 0 1
1 120 0 1 1 0 0 0
1 120 0 1 0 1 0 0
1 120 0 1 0 0 1 0
1 120 0 1 0 0 0 1



*........................
,

µ

βσ

βs

βd

βA

βB

βC

βD

+////////////////////////
-

k N + εεε (B.7)

where vvv is a vector of experimental shear strengths and εεε is a vector of errors. In the above matrix

there are only six linearly independent columns, giving the matrix a rank of six. Since two of

the columns are linear combinations of the others the system of equations has no unique solution.
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As will be shown shortly, in addition to having no solution the form of (B.7) isn’t practical when

viewed in light of what the terms represent in reality.

By respecifying the parameters in (B.7) we can develop a form that is both full rank and

representative of masonry. To identify how to change the equation we will first look at how its

parameters are defined. As mentioned previously, µ represents the mean masonry strength minus

the effects of the other parameters. To represent the beta parameters, we will look more specifically

at βs and βd . The parameters βs and βd represent the contribution to masonry strength of the static

and dynamic loading rates. Including both terms is not realistic since both categories are mutually

exclusive and collectively exhaustive. The average strength µ could not exist without being loaded

at one rate or another. The same scenario is true of the loading history variables in this study. It

should now be apparent how redefining the parameters is not only necessary to find a solution but

also for the solution to represent realistic conditions.

To correct the problem it will be necessary to redefine the µ parameter since it currently has

no symbolic meaning. To do so will necessitate selecting a base testing scenario for the two sets

of parameters. The first set presents little difficultly because there are only two options and hence

a single degree of freedom between them. It presents a simple choice of whether we prefer that

the mean shear strength be tied to the static or to the dynamic loading rate. In this case, we believe

that it is better to tie the average value to the static loading rate because static loading rates have a

relatively constant effect whereas dynamic loading rates are approximately double-logarithmically

related to the strength gain Schultz et al. (1998).

Selecting from among the loading history parameters, however, is subjective because there

are three degrees of freedom and because the choice will affect the analyses of variance on the data

and how they are interpreted. The effect on the analysis will be covered more in-depth later in this

paper. For now, we will select the loading type B as the history which we will tie to the mean

shear strength. Having selected the two bases for our analysis, we redefine µ as µsB which is the

average masonry shear strength under static loading and subjected to load history B. The change

in definition permits us to eliminate the third and sixth columns in the data matrix. This produces
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the full-rank matrix

*......................................
,

47.05
41.22
32.64
40.57
51.33
42.85
43.69
42.79
61.52
45.05
49.23
53.78
62.12
50.45
57.26
60.19

+//////////////////////////////////////
-

k N =



1 60 1 1 0 0 0
1 60 1 0 1 0 0
1 60 1 0 0 1 0
1 60 1 0 0 0 1
1 60 0 1 0 0 0
1 60 0 0 1 0 0
1 60 0 0 0 1 0
1 60 0 0 0 0 1
1 120 1 1 0 0 0
1 120 1 0 1 0 0
1 120 1 0 0 1 0
1 120 1 0 0 0 1
1 120 0 1 0 0 0
1 120 0 0 1 0 0
1 120 0 0 0 1 0
1 120 0 0 0 0 1



*....................
,

µsB

βσ

βs

βd

βA/B

βC/B

βD/B

+////////////////////
-

k N + εεε (B.8)

where βA/B, βC/B, and βD/B represent the relative increase in shear strength for loading histories

A, C, and D—respectively—compared to that of loading history B.

B.3.4 Quantifying Parameter Influence

Having reviewed the necessary steps for parameter selection and data matrix construction,

we can determine the influence that each parameter has on the response of the wall. Linear regres-

sion modeling assumes that the data are related by the equation

yyy = X βX βX β + εεε (B.9)

where yyy is the response vector, XXX is the data matrix, βββ is the vector of regression coefficients, and

εεε is the vector of residuals.

Since we do not know the true values of the regression coefficients, we will estimate them

using least squares regression. The estimated coefficients are represented by β̂ββ where the hat

represents the fact that the coefficients are estimates of the unknown true values. Least squares

regression is a powerful tool because no stochastic or scedastic assumptions are required to find
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the unbiased estimators with minimum variance Rencher and Schaalje (2008). Essentially, least

squares regression will always find a solution no matter how well or poorly the equation fits the

data or how the data are distributed.

As the name implies, least squares regressions is based on minimizing the squares of the

errors, εεε′εεε. Through a relatively easy-to-follow processes that is readily found in most advanced

statistics texts (e.g., Rencher and Schaalje 2008), the εεε′εεε term can be rearranged and differentiated

to produce the estimates of the regression coefficients given by

β̂ββ =
(
XXX ′XXX

)−1 XXX ′yyy. (B.10)

Equation 10 shows, mathematically, the reason the data matrix must be full rank; otherwise, XXX ′XXX

is singular and has no inverse. Having obtained estimates for the regression coefficients, we can

now revisit the previous two examples to learn how to use and interpret the results.

Schultz et al.

In the case of the first example, representing the data from Schultz et al. (1998) in ma-

trix form—Equation (B.5)—and performing least squares regression produces estimates for the

regression coefficients given by

β̂ββ =
*...
,

β̂0

β̂1

β̂2

+///
-

=
*...
,

1.15
1.99
0.164

+///
-

. (B.11)

These coefficients can now be interpreted and compared to the existing body of knowledge. For

example, from the β̂2 term we observe a correlation of 0.164 between the level of shear reinforce-

ment and shear capacity of the wall. The data suggest that each unit increase in shear reinforcement

results in a net increase of 0.164 units in the ultimate shear capacity of the wall. This value is quite

low compared to the contribution cited by most code equations. However, there is also a possibil-

ity that the reinforcement had no contribution to the shear capacity in this study and that the 0.164

value is due to random variation in the data. We will check for this soon hereafter.
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Tomaževič et al.

In the case of the second example, the data from the Tomaževič et al. (1996) can be similarly

analyzed using least squares regression, producing the regression estimates given by

β̂ββ =

*...........
,

µ̂sB

β̂σ
β̂d

β̂A/B

β̂C/B

β̂D/B

+///////////
-

=

*...........
,

24.14
0.2030
4.953
10.61

0.8125
4.440

+///////////
-

. (B.12)

Interpretation of the coefficients for the quantitative parameters is identical to that from the previous

study. The data show that the mean masonry shear strength for the walls was 24.14 kN assuming

the walls are statically loaded using history B. The data suggest that a 1.0 kN increase in the axial

load increases the shear capacity by approximately 0.20 kN, which is not too different from the

coefficients used in many masonry standards.

Interpreting the coefficients for the qualitative parameters is also a straightforward process.

The β̂d coefficient suggests that a mean increase of roughly 5 kN was realised in the dynamic tested

walls compared to the statically tested ones. The procedure can be equally applied to the coefficient

for the monotonic loading, which suggests a mean increase of 10.6 kN in wall strength compared

to the step-wise increasing cyclic procedure. The simulated seismic procedure also produced a

notable increase in shear capacity, but this value, like the others, must first be substantiated before

attempting to draw conclusions.

B.3.5 Quantification of Significance

Having quantified the influence of each parameter, we will now determine whether the

influence is statistically significant. Understanding how significant a parameter is helps researchers

to know how strong of conclusions can be drawn from the data and whether to include or exclude

some parameters from the model Schmidt and Hunter (1997). The method that we will use in this

article is similar to that used for hypothesis testing, but rather than selecting a threshold probability

value a priori we will calculate the probability so that the researcher can gauge the significance
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in view of the experimental data. Unlike least squares regression, the effectiveness of significance

testing is based on the assumption that yyy is normally distributed with mean X βX βX β and variance σ2.

The first step is to rearrange, if necessary, the XXX matrix such that the parameters to be

analyzed are located in the last columns and the corresponding coefficients in the βββ vector are in

the last rows. Next, the XXX matrix and βββ vector are partitioned so that the parameters in question

can be removed from the analysis, forming a reduced model. The columns of XXX excluding the

selected parameter are labeled as the submatrix XXX1 and the columns for the parameters are labeled

as the submatrix XXX2. The rows in βββ are similarly partitioned as βββ1 and βββ2 vectors, respectively. To

simply notation, we will defineHHH and HHH1 such that

HHH = XXX
(
XXX ′XXX

)−1 XXX ′ (B.13)

and

HHH1 = XXX1
(
XXX ′1XXX1

)−1
XXX ′1 . (B.14)

To analyze the parameters, we calculate the F statistic using the equation

FFF =
yyy′ (HHH − HHH1) yyy/h

yyy′ (III − HHH) yyy/ (n − k)
(B.15)

where

h = the number of columns in XXX2,

k = the number of columns in XXX , and

n = the number of specimens (i.e., rows in XXX).

The p-value is found from area of the upper tail (i.e., right tail) of the F-distribution with h and

(n − k) degrees of freedom bounded on the left by the F statistic calculated above. A function to

calculate the upper-tail area of an F-distribution is included in most data analysis programs (e.g.,

F.INV.RT in MS Excel and pcdf in MatLab).

The p-value calculated from the above procedure represents the probability that the reduced

model XXX1βββ1, which ignores the selected parameters, better represents the data than the full model

X βX βX β with the selected parameters included. Lower p-values suggest that the parameters’ influence
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Table B.1: Full-Model Parameters for Schultz et al. (1998)

Parameter Value p

β̂0 1.15 0.625
β̂1 1.99 0.58
β̂2 0.164 0.745

on the final shear strength is significant and that the observed effect is not due to chance. Higher

p-values suggest that the findings from this study are inconclusive because the contribution to the

effect due to chance cannot be excluded.

The p-value is useful to researchers by giving them an objective means of judging if find-

ings are conclusive. It should be remembered that smaller studies contain fewer degrees of free-

dom and will typically have higher p-values. Researchers should consider the study size, observed

sources of error and variation during tests, masonry mechanics, and prior studies when interpreting

the p-values from their studies. Researchers should not be hesitant to make conclusions based on

low-significance observations for fear of their conclusions being misapplied. Results from indi-

vidual studies ought to be considered as tentative and preliminary since only a meta-analysis of

multiple studies has the power to form dependable scientific conclusions Vardeman (1992).

Schultz et al.

Returning to the example from Schultz et al. (1998) and following the above steps to ana-

lyze the significance of the parameter representing the shear reinforcement contribution produces

the p-values shown in Table B.1. Considering the small sample size used in that study, the p-value

for β̂ββ2 is still very high, suggesting that the 0.164 value obtained in Equation (B.11) was likely

either caused by variation in the data (and not by the reinforcement) or that the estimated form of

the model does not reflect its true form. With this understanding, we will likely choose to omit the

reinforcement parameter from the analysis and focus on the remaining variable from that study,

the aspect ratio. In choosing to eliminate the reinforcement parameter from the model, the XXX1

from the latest model becomes the data matrix XXX for the new model. Least squares regression is

performed on this new model to obtain the new coefficient estimates and respective p-value shown

in Table B.2.
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Table B.2: Full-Model Parameters for Schultz et al. (1998)

Parameter Value p

β̂0 1.84 0.088
β̂1 1.19 0.606

It can be seen that eliminating the last parameter drastically increased the significance of

the β̂0 term, suggesting that dropping the reinforcement parameter was the correct choice. It is

interesting to note that for the original model, the p-value for the β̂1 term was originally 0.580,

meaning that eliminating the reinforcement parameter from the model introduced more variance

into the aspect ratio parameter. A large reason for the poor fit with the aspect ratio parameter

is likely because we tried to fit a straight line to the data when some non-linear function (e.g., a

square root or a negative inverse relationship) would fit the data better. This would have likely been

discovered and corrected in the original parameterization process described earlier by looking at

plots of the data. If not, the analysis of variance process provides a way to identify poor correlations

to the data and to evaluate different models to select the best one.

By following the above steps, a better model to describe the data from Schultz et al. is

given by

(V − 0.25Pu)i = 2.82
(
Anv

√
f ′m

)
i
− 0.46

(
Vudv

Mu
Anv

√
f ′m

)
i
+ 0.33

(
dv

s
Av f y

)
i
+ εi

(B.16)

where p-values for the individual coefficients are 0.027, 0.319, and 0.496, respectively. As can be

seen, reparameterizing the model improves the p-values for all three of the coefficients. The above

equation can be rewritten in standard form as

Vi =

((
2.82 − 0.46

Vudv

Mu

)
Anv

√
f ′m

)
i
+ 0.25Pui + 0.33

(
dv

s
Av f y

)
i
+ εi (B.17)

The model fits the data better by using the reciprocal of the shear span ratio Vudv

Mu
in place of the

shear span ratio Mu

Vudv
which is typically found in the shear strength prediction equation in most

masonry standards.
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Table B.3: Full-Model Parameters for
Tomaževič et al. (1996)

Parameter Value p

µ̂sB 24.14 0.00043
β̂σ 0.203 0.0007
β̂d 4.953 0.18248
β̂A/B 10.61 0.02309
β̂C/B 0.8125 0.9996
β̂D/B 4.44 0.59773

Tomaževič et al.

The example from Tomaževič et al. (1996) will further show how this method can be used

to draw conclusions about the contribution of specific input parameters on the shear capacity of a

wall. The regression coefficients and corresponding p-values for Equation (B.8) are given in Table

B.3. It can be seen that the contribution of the β̂C−B coefficient is very insignificant, leading to the

conclusion that there is little, if any, difference between the incrementally increasing cyclic loading

procedure and the sequential-phased displacement cyclic procedure. Apart from the loading type

C, the analysis also shows that there is low significance in the difference between the simulated

seismic loading (type D) and loading type B.

The next step in the analysis is to modify the model by eliminating insignificant parameters

and to reanalyze the data to determine any difference. In this case, we will eliminate the parameter

for loading type C since we have seen that there is very little reason to maintain it in the model.

We have sufficient justification to remove the parameter for loading type D as well, but we will

only remove one parameter to demonstrate how the model changes with the removal of a single

parameter. In the process of reparameterizing the model, we refine the µ̂sB term to also encompass

walls tested using loading type C. The data table for the reduced model are given in Table B.4.

In the reduced model each of the parameters increased in significance. A large part of

this increase came from eliminating an insignificant parameter from the model. Eliminating a

parameter adds a degree of freedom to the analysis and can potentially decrease the variance for

some of the parameters. At this point, we see that the significance for the loading D case increased,

but not sufficiently for us to retain it in the model. We will, thus, eliminate the loading D parameter
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Table B.4: Reduced-Model Parameters for
Tomaževič et al. (1996)

Parameter Value p

µ̂sBC 24.55 0.00004
β̂σ 0.203 0.00017
β̂d 4.953 0.09694

β̂A/BC 10.61 0.00405
β̂D/BC 4.033 0.3889

Table B.5: Further Reduced-Model Parameters for
Tomaževič et al. (1996)

Parameter Value p

µ̂sBCD 25.89 0.00002
β̂σ 0.203 0.00017
β̂d 4.953 0.09674

β̂A/BCD 8.862 0.00797

from the model and redefine the mean to also encompass those tests using the simulated seismic

loading history. The latest reduced model is shown in Table B.5.

In the latest reduced model, it can be seen that eliminating the extraneous parameter for

seismic loading had little effect on the other parameters’ significance. Furthermore, all of the

terms are significant at the 10 percent level or better. This suggests that the latest reduced model

best represents the data from their study. Equipped with a model with all-significant parameters,

we can objectively draw conclusions based on the data.

From the Tomaževič et al. study, it is apparent that axial load, dynamic loading, and load-

ing history influence the shear capacity of a masonry shear wall. The data show a very significant

increase in shear strength for monotonically loaded wall compared to periodically and harmon-

ically loaded walls. This is likely because subsequent loadings at smaller displacements induce

multiple areas of masonry damage that decrease the shear capacity at higher displacements. The

data also suggest that there is no significant difference in shear strengths for walls tested using ei-

ther incrementally increasing cyclic, sequential-phased displacement cyclic, or simulated seismic

loading procedures. This conclusion is notably beneficial to those wanting to compare tests in the
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TCCMAR series to other tests because it appears that the two load procedures produce similar

results Dillon and Fonseca (2014a)

Some final notes should be made about this example. Since the data matrix was originally

non-full rank, the mean shear strength parameter was redefined to include the base assumption that

the data were tested statically using the loading type B procedure. This choice of basic assumptions

affects what conclusions can be obtained from the analysis. During the analysis we discovered that

the loading types C and D were not significantly different from type B. However, if loading type A

were selected as the base load history, the analysis would have determined that the parameters for

loading types B, C, and D were significantly different from type A, but it would not have identified

that there is little significant difference between types B, C, and D.

In linear regression modeling, the individual parameters entering the equation must be ad-

ditive. However, through reparameterization of the model and the use of logarithmic functions,

coefficients for multiplicative parameters can be found. For example, if we believed that the pa-

rameters for the dynamic and monotonic procedures should be multiplicative in nature—and they

likely are—then we can use algebraic manipulation to find a form of the problem that can be

solved. This produces the equation

Vi = γdynγmt µsBCD + βσσi + εi . (B.18)

where

γdyn = 1.33 is an adjustment coefficient for dynamically tested walls,

γmt = 1.19 is a strength adjustment coefficient for monotonically tested walls,

µsBCD = 25.65 kN, and

βσ = 0.203 m2 which was assumed from the previous analysis.

Equation (B.18) suggests that monotonic testing inflates the strength of a wall by about 19 per-

cent. The dynamic tests in their study averaged 33 percent higher strength, but this value is not

universally applicable due to variations produced by strain rate effects.

Tomaževič et al. actually tested 32 individual masonry specimens during the course of

their study; however, in the literature they report the average of each pair of identical specimens.
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It would be more ideal to analyze the entire data set with each specimen listed on a separate

row so that the full effects of the variance within each pair is included within the analysis of

variance. However, using the average from each pair made no difference in the estimated value

of each coefficient. Furthermore, since they designed their study as a balanced model (i.e., equal

numbers of specimens within each group and subgroup), the p-values determined in the analysis

are relatively correct as long as the variance is similar between the pairs.

B.4 Conclusions

In this article we have shown that experimental data on masonry can be represented in

matrix form to facilitate least squares regression and analysis of variance. This was demonstrated

using two examples from prior studies on the in-plane shear strength of masonry walls, Schultz

et al. (1998) and Tomaževič et al. (1996). The former study contained only quantitative data and

the latter contained both quantitative and qualitative data. Both studies were analyzed using least

squared regression and analysis of variance to draw conclusions from the data. Analysis of the

data from Schultz et al. (1998) led the following conclusions:

• It appears that the shear reinforcement did not contribute to the shear strength of the wall.

• The wall shear strength is better correlated with the reciprocal of the shear span ratio.

Analysis of the data from Tomaževič et al. (1996) led to the following conclusions:

• There appears to be no significant difference in shear strengths for walls tested using either

incrementally increasing cyclic, sequential-phased displacement cyclic, or simulated seismic

loading procedures. Data from tests using any one of these three histories can be effectively

compared without need for correction.

• Monotonic loaded specimens demonstrate an increase in apparent shear strength over speci-

mens tested using incrementally increasing cyclic load histories.

• Axial load has a positive correlation with wall shear capacity.

In both cases, the results from the statistical analysis revealed new insights from the data

that were not previously noted. These tools can be equally used with data from new research as
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well as from prior studies. By using these procedures to reanalyze data from existing studies, new

facts can be uncovered that were not previously revealed by the data, adding to the existing body

of knowledge.

Though not covered in this article, the advanced application of these procedures can be

used to compile and compare data from more than one research study.
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APPENDIX C. SHEAR TEST REPORTING METHODOLOGY STANDARDIZATION

C.1 Introduction

Our understanding of masonry has undergone a significant and substantial increase over

the past half century—greater than that from all the previous millennia combined. Much of this

increase in knowledge has been facilitated by the transition of masonry practice from traditional

construction methods to an engineered-design approach. As part of the transition to engineering

design masonry materials have been standardized and experimental studies have been performed to

better understand masonry as a building material. Standardization of the components and assembly

methods for masonry have created a consistency such that designers can be confident that the

structures that are constructed will meet or exceed the standards assumed during the design process.

To date, this same level of standardization has not been present in all aspects of the design and

execution of masonry research studies.

The growth in masonry knowledge over the last half century has been significant in helping

engineers understand masonry performance during seismic excitations. Researchers have had to

surmount the hurdles of anisotropy and modeling difficulties that are inherent in a material assem-

bled from so many different constituent materials. The effectuality of this growth has arisen from

the quantity of experimental studies that have taken place. These masonry studies have been con-

ducted on a very wide array of topics using diverse experimental methods. The breadth and quality

of the research have enabled engineers to quickly grasp and understand many of the qualities (both

positive and negative) that are unique to masonry as a building material.

Viewed in an epistemological light, the end goal of all masonry research is to develop

constitutive models that can accurately represent the strength and behavior of masonry elements.

These models are particularly necessary when trying to understand masonry performance under

seismic excitations because of the substantial variability present in these scenarios. Since single

research studies do not contain sufficient information to build or validate such models Schmidt and
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Hunter (1997), model construction and validation are performed through meta-analysis on a large

set of data amalgamated from multiple research studies. The data used in meta-analysis must be

compatible so that variations between research practices don’t artificially inflate the experimental

variance of the data.

One subfield of masonry research that is a key focus within the area of earthquake engi-

neering has been the testing of masonry shear walls and the development of predictive equations

for shear strength. Many new studies have been added to the repertoire of masonry shear wall

research since the current equations were originally developed. The development of new, updated

equations will necessitate the meta-analysis of many studies within the body of shear wall studies.

Within this conglomerate of data, researchers have used a wide array of procedures in designing,

performing, and reporting their experiments.

The varying implementation practices of masonry research have created uncertainty in how

data from one study relate to those of another and how they all relate to masonry in the field. For

example, uncertainties and biases that are present within shear wall test data result from disparities

in boundary conditions; neglecting strain rate effects; the use of varying loading patterns; and from

ignoring size effects. These uncertainties must be remedied to successfully synthesize the data

together.

The first and most important step of data synthesization is to choose a standard method to

report data for each source of uncertainty. This choice of standard is crucial because it will function

as the baseline for comparing data between past, present, and future research studies. The signif-

icance of standard selection necessitates that it not be made arbitrarily, but with a clearly stated

methodology and reasoning. Standard methods, objectively chosen and accepted, will provide a

means by which research data may be properly correlated with those from other studies. They also

broaden the scope of the combined research and make the results of the data synthesis more widely

applicable to the greater population of masonry structures

An important disclaimer that must be made is that the standards function solely as a baseline

measure and do not restrict researchers from performing specific types of tests, nor do they neces-

sitate that specific methods be employed in gathering experimental data. Each standard merely

requires that any data collected also be reported in a standardized form. However, for a standard

to be fully efficacious, correlations between the standard and other common measures must be
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quantified such that the standardization of data is possible. This field of masonry research has

been little-tread by researchers and the understanding of the varying correlation effects is poorly

understood, especially at a quantifiable level.

C.2 Purpose

This article will present a review of some of the experimental data practices used by re-

searchers in performing in-plane masonry shear wall research. In addition, it will present a me-

thodical procedure for developing appropriate standards to be used in systematically synthesizing

data from multiple masonry shear wall studies. The authors will discuss each source of uncertainty

listed previously and will recommend a method to be used in standardizing both past and future

research data. The authors will also address limitations in current understanding and list areas of

future research.

C.3 Methodology

The creation and selection of standards should be done as objectively and transparently

as possible. This ensures that the results of meta-analyses are acceptable within the professional

community and that such results can be replicated and expanded as additional masonry research

data become available. As described earlier, the use of disparate methods in gathering and reporting

data do not pollute the analysis, but enrich and broaden it. However, the varying methods in use

impose a situation in which a choice must be made between one or more methods as to which

one will become the standard for reporting data. To make the choice as unbiased and objective as

possible, the authors will first set out the methodologies to be used in selecting the standards to be

proposed in this article.

C.3.1 Plurality

The authors feel that the first criterion to be investigated while performing a systematic

review of the research literature ought to be to observe and note which procedures are used most

by researchers in our field. In addition to providing a de facto consensus about which method to
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choose, the preferential selection of one method over another by erudite researchers suggests that

there may be a rational basis to their preference.

C.3.2 Representation

The next criterion used in judging procedures will be to investigate which ones most accu-

rately agree with observed performance of masonry walls. It should be noted that this criterion is

liable, somewhat, to subjectivity because of the poor replicability of conditions under lateral load-

ing and because the results of tests may be somewhat biased by the testing procedures used. The

true behavior of masonry under seismic excitations is still somewhat uncertain and is evidenced by

the non-standard methods of testing used by researchers. At the very least, the authors will provide

and epistemic study of current procedures in light of the understood behavior of masonry shear

walls.

C.4 Analysis

C.4.1 Boundary Conditions

The actual boundary conditions for masonry shear walls are variable depending on the

configuration and stiffnesses of the wall and connecting elements. Researchers have attempted

various in-plane loading methods for testing masonry shear walls. While the individual test set-

ups have varied widely, the individual tests can be grouped into three types of boundary conditions,

namely: cantilever conditions, racking conditions, and fixed-fixed conditions. The use of each

type of end condition for 492 masonry shear wall tests are listed in Table 1. The table shows three

distinct trends in when each type was used, the number of studies using each one, and the number

of specimens in each individual study.

Racking tests were the predominant end condition in the first series of masonry shear wall

research. In racking tests the lateral load is applied to a top corner of the wall using a hydraulic

actuator. Lateral movement of the specimen is restrained at the opposite, lower corner of the

specimen and the overturning moment is resisted vertically by a frame connected at the same

upper corner as the actuator. The racking tests are quite similar in loading to diagonal compression
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tests, but enable the testing of full-size specimens and facilitate the application of axial load during

the test. Racking tests were quickly supplanted by other testing modes, first by cantilever tests and

eventually by fixed-fixed tests.

The first cantilever masonry test found was a single specimen tested in 1963. Cantilever

tests have the advantage in that they are simple to set up, require less-specialized equipment to

perform than fixed-fixed tests, and are more cost effective for smaller studies. This is evidenced by

the fact that studies using a cantilever test set-up only averaged about nine specimens per study. For

these reasons, it is the method used by the greatest number of researchers. In cantilever studies the

load is commonly applied to a beam affixed to the top of the masonry panel, causing the inflection

point (i.e., the height at which the lateral load is applied) to be located higher than the height of the

masonry wall. This is significant because it will affect the analytical results if a researcher assumes

the moment arm to be equal to the height of the masonry.

The first set of masonry walls tested under fixed-fixed conditions occurred in 1976. These

tests consisted of double-pier specimens in which the whole assemblage was tested as a cantilever

but each individual pier was subjected to fixed-fixed conditions. The first true fixed-fixed test

occurred in 1978. This method of testing is more complicated and expensive than the other two,

making it only economical for studies with larger quantities of specimens and advanced research

facilities. This is evidenced by the fact that studies using fixed-fixed conditions were performed

by fewer researchers but averaged over sixteen specimens each. The quantity of masonry walls

tested in this mode made this the most-used method in the research literature. With this method of

testing, the inflection point is generally considered to be located at the mid-height of the wall.

Since real-life conditions vary from wall to wall, there is not one method of testing that is

more representative than the others. However, there must be a way that data from the three types

of tests can be correlated together. Researchers have traditionally used the height to length ratio

of a masonry panel for the purpose of comparing the performance of walls panels with relatively

differing geometries. This term is called the aspect ratio. The aspect ratio has limited use within

masonry shear wall research and is only useful for comparing shear wall strengths for walls that

are tested under identical boundary conditions.

Since aspect ratio is insufficient at providing a means of comparing tests from studies which

use different boundary conditions, there must be a better parameter that overcome the limitations
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Table C.1: Summary of Boundary Conditions for Masonry Shear Wall Studies

Boundary Research Study Specimen
Conditions Study Specimens Count Count

Racking

Jorquera G (1963) 9

4 33
Scrivener (1966) 4
Meli and Salgado (1969) 8
Scrivener (1969) 12

Cantilever

Jorquera G (1963) 1

21 192

Meli et al. (1968) 10
Williams (1971) 21
Priestley and Bridgeman (1974) 4
Priestley (1977) 6
Priestley and Elders (1982) 3
Tomaževič and Lutman (1988) 16
Shing et al. (1990) 22
Ghanem et al. (1992) 6
Brammer (1995) 12
Tomaževič et al. (1996) 16
Haider and Dhanasekar (2004) 14
Voon (2007) 10
Maleki (2008) 5
Kasparik (2009) 5
Minaie (2009) 6
Haach et al. (2010a) 8
Nolph (2010) 6
Elmapruk (2010) 6
Da Porto et al. (2011) 14
Saiedi (2011) 1

Fixed

Mayes et al. (1976b) 17

16 267

Hidalgo et al. (1978) 9
Chen et al. (1978) 24
Hidalgo et al. (1979) 12
Thurston and Hutchison (1982) 8
Sveinsson et al. (1985) 26
Woodward and Rankin (1985) 7
Matsumura (1985) 75
Matsumura (1987) 6
Igarashi et al. (1988) 9
Kaminosono et al. (1988) 19
Johal and Anderson (1988) 32
Yancey and Scribner (1989) 9
Schultz (1996a) 6
Schultz et al. (1998) 6
Minaie (2009) 2
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of the aspect ratio. An absolute means of comparing wall geometries for all boundary conditions

has been developed through the research and is currently used in the code shear strength equation

for several codes. This ratio is called the shear span ratio. The shear span ratio has historically

been represented by a/D but more recently has been represented in its code form

a
D
≡

Mu

Vulw
(C.1)

where

a = is the vertical distance from the inflection point to point of maximum moment,

Mu = the ultimate moment demand at a along the height of the wall panel,

Vu = the ultimate shear demand at the same height along the wall panel, and

D = lw = the shear length of the wall panel.

The shear span ratio is defined as the ratio of the effective height between the points of maximum

and zero moment and the shear length of the wall (see (C.1)).

Recommendation

Researchers should use the shear span ratio over the aspect ratio when describing masonry

shear wall geometry. The shear span ratio is already in use in the shear strength equations from

several masonry standards. The shear span ratio is more favorable to use because it more directly

correlates to masonry shear strength than does the aspect ratio and permits research results to be

compared independent of the boundary conditions. It appears from the literature that some treat

the two terms as though they were synonymous. Though there is one situation where the two ratios

are equal, their definitions are distinct. The shear span ratio should be calculated by dividing the

vertical distance between the points of inflection and maximum moment by the shear length of the

wall or by using equation (C.1).
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C.4.2 Strain Rate Effects

Most materials exhibit an increase in strength that is proportional to the increase in the

strain rate on the material. To date, little quantitative research has been performed on strain rate

effects in masonry structural elements or materials. All the studies performed on shear walls found

in the literature show only qualitative type testing in which specimens are divided between static

and dynamic categories. Many of the properties for strain rate effects are inferred from research

about the strain rate effect in concrete. Many researchers (Abrams, 1988; Paulson and Abrams,

1990; Tomaževič and Velechovsky, 1992; Tomaževič, 2000; Tomaževič et al., 1996; Williams and

Scrivener, 1974) have observed strain rate effects in masonry. In all cases they have measured

higher shear strengths in dynamic than in static experiments. This increase in strength appears

to be limited solely to the strength of the specimens. It has been observed that the drift values

for characteristic points in the hysteresis envelopes (e.g., diagonal cracking) do not change with

differing strain rates Paulson and Abrams (1990); Tomaževič (2000).

Paulson and Abrams (1990) found that the strain rate can have an appreciable effect on

crack propagation within shear walls. They observed that cracking was more severe in the case of

statically tested specimens than for dynamically tested ones. In the case of the static specimens,

they observed cracks that slowly propagated over the course of several minutes as alternate stress

paths developed within the masonry panel. They hypothesized that one reason for the apparent

increase in strength for the dynamic specimens is that the wall is strained at a high enough rate that

crack dispersion is not able to occur.

It is probable that many, if not most, of the mechanics involved in the strain rate effects for

masonry are similar to those for concrete. Researchers have found that strain rate effects in com-

pression are more pronounced for concrete with weaker strength. Rossi et al. (1994) hypothesized

that this is due to the presence of free water in the concrete. Since lower strength concretes typi-

cally have a higher water/cement ratio, they would be more pronouncedly affected by increasing

strain rates. The potential impact of this phenomenon on masonry is uncertain.

In the case of brick masonry, very little free water remains in the units after the firing

process, but free water would be present in the mortar and grout of a clay masonry assemblage. In

the case of concrete masonry, the net strength of the units typically corresponds more closely to

the strengths of weaker concretes, but the units are made from a very low-slump (typically zero)
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concrete mix with a low water/cement ratio. Since these two properties seems to contradict each

other, it is uncertain whether the strain rate effects in concrete masonry would more closely match

those of stronger or weaker concretes.

Research conducted by Bischoff and Perry (1991); Malvar and Crawford (1998) has shown

that materials have a threshold strain rate below which the strength of the material is independent of

the strain rate. Below the threshold the strain rates are considered to be quasi-static (or often simply

referred to as static). Above the threshold the strain rates are considered dynamic. In the dynamic

rage the dynamic increase factor (DIF)—the ratio of strength to quasi-static strength—increases

as a logarithmic function of the strain rate. The threshold between the quasi-static and dynamic

ranges of loading is known as the reference static strain rate. The Comité Euro-International du

Béton (CEB, 1988) defines the transition strain rate as ε̇s = 30 × 10−6 s−1. Malvar and Crawford

(1998) have shown that strain rate effects in concrete are different in the tension and compression

directions.

Hao (2008) conducted uniaxial compressive tests to study the strain rate effects on brick

and mortar. They found a reference static strain rate of ε̇s = 20× 10−6 s−1 for mortar—a relatively

insignificant variation from the CEB value—and ε̇s = 2 × 10−6s−1 for brick. Wei and Hao (2009)

numerically synthesized these parameters together and derived a reference static strain rate of

ε̇s = 1 × 10−3 s−1 for a clay brick/mortar assemblage. They made no explanation as to why the

reference strain rate for the assembly is several orders of magnitude greater than the constituent

materials. Part of the reason may have been the lack of research into the strain rate effects for the

material under tension and their assuming the same coefficients for tension and compression.

The vast majority of masonry shear wall tests fall within the quasi-static range. This is

due to the specialized equipment and additional cost that dynamic testing requires. A large part

of all the masonry walls tests were carried out before the necessary equipment was developed. In

practice, masonry shear walls may be designed to resist static loads (e.g., earth pressure loads),

dynamic loads (e.g., seismic and wind loads), or both. In current design practice, there is no

distinction in the shear strength prediction equations for static or dynamic shear capacity.

Since masonry wall are a conglomeration of multiple different materials, their response to

strain rate effects is difficult to postulate. Hao (2008) found that clay brick is not as sensitive to

strain rate effects as is mortar. Since clay brick typically exhibits a greater strength than mortar, is
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it possible that at sufficiently high rates of strain that the strength of the mortar could exceed the

strength of the brick. Though there is likely a greater compatibility between mortar and concrete

block, the greater amount of free water within mortar could likely cause it to exceed the strength of

the concrete masonry units under sufficiently high rates of strain. A similar scenario could occur

in the case of grout and reinforcement. The case of reinforcement is more poignant.

The ultimate strength of steel is less sensitive to strain rate effects than its yield strength

and both are less sensitive than the strength of concrete and fired clay. Paulay and Priestley (1992)

point out that as the rate of strain increases for a reinforced masonry shear wall, the ultimate force

exerted on the reinforcement increases faster than the apparent strength of the steel. Under high

enough rates of strain it is theoretically possible for the reinforcement to instantaneously rupture at

the onset of cracking in the masonry panel. This is significant as a shear wall that fails in a ductile

manner at quasi-static loads could theoretically fail in a brittle manner under sufficiently high rates

of strain.

Recommendation

In order to correlate data between research studies, it is necessary to have a standard proce-

dure for reporting data that is independent of strain rate effects. The two options available are for

researchers to report the equivalent static or equivalent dynamic strength. Looking at the available

research it appears that it would be best for all to report the equivalent static strength.

More test data are available for static testing conditions than for dynamic conditions. The

effect of strain rate is still not well understood in masonry, especially under shear situations. Many

studies performing dynamic tests also included static tests for correlating the data. In these cases,

the data from the experiment can be used to determine the correlation between static and dynamic

tests. This correlation can then be used to adjust the data from the dynamically tested specimens

to provide their equivalent static shear strength.

In studies that solely use dynamic loadings there are currently no methods in place to adjust

the data. Until more research is performed on the strain rate effects for masonry assemblages, the

only possible means of correlating data for a dynamic-only study is to find one or more similar

studies in which both categories were tested and to use the correlation determined from those
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studies. This last method is encumbered by the fact that many researchers do not report any time

rate data from their studies.

Static loads can be considered to involve less uncertainty than dynamic loads. Static loads

can generally be determined analytically with a fairly good level of confidence. Dynamic loads are

dependent on a greater number of variables, many of which are uncertain or are determined prob-

abilistically. Dynamic loads occur randomly and generally have a lower probability of occurrence.

The uncertainty for static loading and strength conditions is much lower than that for dynamic

scenarios. Using representative strengths for static loads is justified because the phenomena are

fairly-well understood whereas the conservatism in the case of dynamic loads accounts for some

of the uncertainty.

Below the reference strain rate, the DIF is constant and equal to unity. This means that

there exists a wide range of quasi-static strain rates that are equivalent and are naturally correlated

to each other. Within the dynamic range of strain rates, all strengths are correlated to the rate of

strain used. To choose dynamic testing as the standard procedure would also require the selection

of a standardized strain rate. Selecting such a rate would be a highly subjective process since

all dynamic loads are highly variable functions of location, environment, and structure. No single

strain rate would effectively represent all possible situations. Additionally, any dynamic-equivalent

strength would be unconservative for static loads and would have to be reduced to find the static

capacity.

Using a dynamic strain rate standard would either require all future masonry researchers

to use dynamic strain rates in their tests or to have to adjust their static data to the dynamic equiv-

alent. In the first case, dynamic tests require more complicated test equipment and additional

considerations in setting up the test. The additional equipment, labor, and costs would make dy-

namic testing prohibitive for many researchers with an interest in masonry research. In the second

case, much research would need to be conducted to determine the correlation between the static

and hypothetically-chosen dynamic loading rates before past research data could be effectively

adjusted and compared to dynamically tested data. Even if this were to happen, all data adjusted

from static tests would be dependent on the results of these initial correlation studies, eliminating

some of the independence between research studies.
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In summary, the solely justifiable decision is to use the static-equivalent strength as the

standard for reporting masonry research data. By reporting the static-equivalent strength for their

study data, researchers will be able to correlate and compare their data to those from other re-

searchers and to masonry design equations already in place.

C.4.3 Loading History

Seismically induced loads on masonry walls are highly variable and unpredictable. There

have been multiple loading histories proposed and used in testing masonry shear walls. The ma-

sonry literature shows five procedures that have been used in testing masonry walls. This article

will refer to the differing loading procedures found in the literature as: Monotonic; Reversed

monotonic; Incrementally-increasing cyclic; Sequential-phased displacement, and Simulated seis-

mic. Each loading pattern may include different input parameters, but the overall motion is the

same. A summary of the loading histories used in the various masonry shear wall research studies

is provided in Table 2.

The monotonic method is the easiest to perform because it only requires a single-action

actuator. In the monotonic procedure, the specimen is loaded at a constant strain or stress rate

until failure. The reversed monotonic procedure is similar in how it begins, but after some level

of strength or damage the load is reversed and measurements are taken in the other direction. The

load may be reversed multiple times during the course of the test. Load reversal is accomplished

through either a dual-action actuator or by unmounting the actuator and affixing it to the other

side of the specimen. The primary differences between the reversed monotonic procedure and the

incrementally-increasing cyclic procedure are that the initial amplitudes of the reversed monotonic

are generally greater than the yield displacement of the wall, that the amplitudes increase very

little, and a lower number of load reversals is used.

In the incrementally-increasing cyclic procedure, the wall is subjected to cyclic lateral loads

of increasing amplitude. Two or three successive cycles are used at each displacement level before

increasing the amplitude. The initial set of cycles at designed to occur at or below the calculated

yield strength of the wall. The displacements for each subsequent group is chosen arbitrarily or to

correspond to calculated ductility ratios. The cycles can either be sinusoidal or saw-tooth shaped.
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The incrementally increasing cyclic procedure is the most-commonly used procedure in masonry

shear wall tests.

The sequential-phased displacement procedure was originally developed and proposed by

Porter (1987). It organizes drift cycles into undulated sets in which the drift amplitude of each

succeeding cycle gradually increases up to a peak then decreases to null. Each subsequent undu-

lated set has a higher peak wave amplitude. When the first major event (FME) occurs, the drift

amplitude during the event is recorded for that specimen. The peak amplitude for each subsequent

set is then determined as function of the drift at the FME. Reducing the amplitude to null between

each set helps to better define the hysteretic behavior by providing a stabilized hysteretic curve.

The simulated seismic procedures use either recorded or synthesized earthquake motions

to develop a loading history to apply to a masonry wall specimen. The history can either be

applied directly to the top of the wall or applied intertially through a shake table. Due to the

limitations of test equipment, the motions must be put through a band pass filter to eliminate those

frequencies that cannot be reproduced. Some researchers use a single earthquake motion while

others use several motions either separately or amalgamated together to form a new history. The

sheer number of variables and disparities between researchers make seismic-based procedures very

difficult to standardise.

Analysis performed by Dillon and Fonseca (2014a, see also Appendix B) on the data from

Tomaževič et al. (1996) found that there is no statistical significance between walls tested using the

incrementally-increasing cyclic and sequential-phased displacement procedures. They also found

that there was little statistical significance between those two procedures and the simulated seismic

history. On the other hand, Dillon and Fonseca found a very statistically significant difference

between the monotonic history and the periodic or harmonic histories. Their analysis of the data

showed a 19 percent increase in shear strength for walls that were tested monotonically as opposed

to those tested periodically or harmonically.

As part of this current study, a similar statistical analysis was performed on data from

Woodward and Rankin (1985) and Haider (2007). The authors found no statistically significant

difference between the reversed monotonic and incrementally-increasing cyclic loadings. This

suggests that the reversed monotonic loading may be included with data from the other periodic

loading patterns.
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Table C.2: Masonry Shear Wall Studies Using Monotonic Loading

Research Study Specimens Studies Specimens

Scrivener (1966) 4

7 60

Scrivener (1969) 12
Meli and Salgado (1969) 8
Woodward and Rankin (1985) 3
Matsumura (1987) 23
Ghanem et al. (1992, 1993) 6
Tomaževič et al. (1996) 4

Table C.3: Masonry Shear Wall Studies Using Reversed-Monotonic Loading

Research Study Specimens Studies Specimens

Jorquera G (1963) 10
3 24Woodward and Rankin (1985) 4

Haider (2007) 10

Recommendation

It is proposed that researchers report the strength of masonry shear wall data equivalent to

periodically and harmonically tested specimens. Data from wall tested under monotonic loading

would need to be adjusted to provide the strength equivalent to the other histories. Since monotonic

testing has not been used on masonry shear walls for nearly two decades, this practice would affect

few researchers.

Using the cyclic-equivalent strength to report masonry shear wall data is conservative for

design cases with monotonic loads since walls demonstrate a greater shear capacity under this

loading. Any uncertainty between the various periodic or harmonic loading patterns does not add

unnecessarily to the variance of the pool of shear wall data. The variation in loading patterns

from seismic loads is likely greater since they occur outside of laboratory conditions and have a

much more complicated frequency content. On the contrary, the variations in cyclic load testing

help make the data pool more representative of the random perturbations encountered in real-life

scenarios.
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Table C.4: Masonry Shear Wall Studies Using Phased-Sequential Displacement Loading

Research Study Specimens Studies Specimens

Meli et al. (1968) 10

32 398

Williams (1971) 21
Priestley and Bridgeman (1974) 4
Priestley (1977) 6
Mayes et al. (1976a) 17
Hidalgo et al. (1978) 9
Chen et al. (1978) 24
Hidalgo et al. (1979) 12
Thurston and Hutchison (1982) 8
Priestley and Elders (1982) 3
Sveinsson et al. (1985) 26
Matsumura (1985) 52
Matsumura (1987) 6
Igarashi et al. (1988) 9
Kaminosono et al. (1988) 19
Johal and Anderson (1988) 32
Tomaževič and Lutman (1988) 16
Brammer (1995) 12
Tomaževič et al. (1996) 4
Haider (2007) 40
Voon (2007) 10
Maleki (2008) 5
Minaie (2009) 8
Haach et al. (2010a) 8
Nolph (2010) 6
Elmapruk (2010) 6
Da Porto et al. (2011) 14
Yancey and Scribner (1989) 9
Shing et al. (1990) 22
Schultz (1996a) 6
Tomaževič et al. (1996) 4
Schultz et al. (1998) 6

Table C.5: Masonry Shear Wall Studies Using Simulated Seismic Loading

Research Study Specimens Studies Specimens

Tomaževič et al. (1996) 4
3 10Kasparik (2009) 5

Saiedi (2011) 1
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C.5 Size Effects

Due to cost, lab space, or other constraints, many researchers choose to test reduced-scale

models in their studies. When reduced-scale specimens are tested, different test parameters must

be scaled differently in order to provide for consistency of units. The vast majority of structural re-

searchers using small-small specimens favor the Simple Model Scaling over the Complete Model

Scaling due to the difficultly in scaling the modulus of elasticity of the material Hamedzadeh

(2013). In the Simple Model, the parameters of strength, stress, strain, Young’modulus, and veloc-

ity are maintained without scaling. The only notable parameter adjustment for the Simple Model is

that of time. However, since strain rate is not scaled in the Simple Model, no adjustment of strain

rate is necessary.

Size effects have been extensively studied and reviewed in the literature Tomaževič and

Velechovsky (1992); Tomaževič (2000); Abrams and Kreger (1982); Abrams and Tangkijngamvong

(1984); Bažant (1997, 2009). There appears to be an overall consensus as to validity of reduced-

scale testing, but there have been some limitations that have been noted. Abrams and Kreger

(1982) noted that reduced-scale models perform well in modeling energy dissipation, modeling

strength and stiffness degradation with increasing loading cycles, and in modeling hysteretic be-

havior. Abrams and Tangkijngamvong (1984) found that response and displacements were similar

between the models and prototypes, but that the cracking patterns were not the same. Tomaževič

(2000) summarized the applicability of scaling by noting that it can generally model the overall

behavior of the structural system and its global failure mechanisms, but the degree of accuracy in

modelling structural elements limits the reduction in model size.

Bažant 1997; 2009 has done much experimentally and analytically to understand the effect

that size has on quasi-brittle materials, e.g., concrete and masonry. Many of his tests have focused

on concrete specimens, but he suggests a likely correlation of his findings with masonry. He found

that the scaling factor (i.e., the ratio of strengths between models of differing scales) is a function

of the scale and the largest aggregate size. He notes that for materials with microscopically sized

aggregates (i.e., clay brick), the size effect is roughly unity within the typical scale limits for

masonry tests. For large aggregate sizes relative to the size of the structural elements the scale

effect is more pronounced, but it is still close to one at the scales used in masonry testing. The

findings of Bažant have two effects on reduced-scale masonry tests. First, the relatively small
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scale factors used in research aren’t significantly large enough to produce notable scale effects in

the studies. Second, since scale effects are a function of the ratio between element and aggregate

sizes, any size effects would be accounted for through the testing of reduced-scale masonry prisms.

Recommendation

There are two means whereby researchers can report the results of scaled masonry research.

The first is to report the reduced-scale data as measured from the experimental model. The second

is to report the equivalently adjusted full-scale data for the prototype. The second method is more

useful when interpreting results because they are more similar to the values to which designers

are accustomed. When comparing and compiling data from multiple research studies, it is not

advantageous for the parameters of one study to be outside of the typical range used for masonry

design. When analyzing data, the presence of outlying independent variables can unduly influence

the analysis due to their distance from the main body of data.

As discussed above, it has been shown that there are limits to the scale by which a masonry

model may be effectively reduced. Within these relatively small limits it has been found that

size effects are ineffectual, and any effect would be considered within the strength of masonry

prisms constructed of the same reduced-scale materials. It has been further shown that data is

more advantageous when represented in its equivalent full-scale form. This article proposes that

that standard method of reporting reduced-scale masonry test data is to report the full-scale data

for the equivalent prototype.

C.5.1 Shear Strength Reporting

Researchers used three methods were used two methods to report the experimental shear

strength of masonry shear walls. The first was that researchers reported the peak strengths in each

of the two directions (i.e., pushing and pulling). The second method was to report average of the

peak strength in each direction. The third method was to report the ultimate experimental shear

strength of the shear walls regardless of direction. Wall strengths found using monotonic testing

were naturally reported using this last method.
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The shear strength from the two directions are theoretically independent. After each load

reversal the diagonal shear cracks from the opposite direction close due to diagonal compression

forces. After these cracks close the diagonal compressive strength is unaffected. The shear capacity

for the new direction is unaffected by the strength degradation of the opposite direction. The theory

of strength independence is partially limited by horizontal shear cracking and yielding of the shear

reinforcement, which are not directionally independent. Some evidence of this strength indepen-

dence is the fact that the ultimate peak strength for different specimens is distributed between both

directions.

The variance between the two peak strengths provides an indication of the variance in

material strength within the wall panel.

Recommendation

Ideally, all three methods should be report together with the coefficient of variation for the

specimen. If only one method can be used then the first reporting method is preferable because

the ultimate, average, and coefficient variance of the wall can be determined from the data. The

average peak strength is more representative of the wall strength as a whole and is the most reported

value. The ultimate peak strength represents the upper limit of the specimen strength. Using this

value in regression analysis would result in an equation that is unconservative.

C.5.2 Prism Geometry

The effect of prism aspect ratio has been considered by several researchers. Hamid et al.

(1978) tested 146 concrete block masonry prisms and concluded that two block high prisms do

not accurately represent the strength and failure mode of walls. They found that three block high

prisms better represented the strength of the masonry walls for the block type used. They noted that

blocks of differing geometries may require more courses to overcome the influence of the lateral

confinement from the platens.

Boult (1979) tested several different types of masonry blocks using prism aspect ratios

between two and five. Their tests showed that the compressive prism strength decreased with

increasing aspect ratio. Boult observed that the decrease in compressive strength became negligible
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for heights between five and twelve courses. Hegemier et al. (1978) performed similar masonry

prism tests and concluded that it is the number of courses and that primarily influenced the prisms

strength and not the prisms aspect ratio.

Hilsforf (1969) performed analytical analysis of clay masonry prisms neglecting lateral

confinement. Hilsforf found from his analysis that mortar joint thickness also has an influence on

prism strength. The influence of joint thickness on prism strength was experimentally studied by

Francis et al. (1970) who tested a series of four-course brick prisms with varying joint thickness.

They found that joint thickness was significantly influential in the strength of the masonry prisms.

As joint thickness increased, the normalized prism strength (i.e., the ratio to prism strength to

masonry unit strength) decreased. They observed that the data trend lines followed the shapes

predicted by Hilsdorf, but their plot of the predicted values and trend lines in Figure C.1 shows

differences in vertical scaling between the two.
               

 

 

 

 

  

    
   

   

 

 

  

  

     

 

         
   

        
          

         
          

         
  

      
   

          
      

     

      
          

         
       

          
        

          
     
         
        

         
           

        
           

 
           

          
         

            
         

         
        

      
         

         
         
         

        
 

  

   
   
   

   

  
  

 
   
  
  
  

         
    

     
        

        
        

         
         

          
        
        

         
           

       
        

        
        

          
             

         
        

   
        

         
         

        
         

       
   

   
         
      

         
          
        

          
         
          

     

  
        

          
           

 
          

     
       

         
          

Figure C.1: Joint thickness versus normalized prism thickness (Francis et al., 1970)
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From a theoretically standpoint, the effect of prism height on prism strength can be ex-

plained by three causes, lateral confinement, Weakest Link Theory, and measurement error. Lat-

eral confinement has a pronounced effect for lower aspect ratios but diminishes quickly for ratios

greater than two. The Weakest Link Theory has an effect for all prisms heights but is likely over-

shadowed by lateral confinement effects at lower prism heights. Accidental eccentricity has an

increasing effect at greater prism aspect ratios due to secondary moment effects.

The principle failure mechanism of masonry prisms is the lateral tension induced in the

masonry units by the laterally expanding mortar. Hamid et al. (1978) found that in grouted prisms,

the lateral expansion of the grout also contributed to the lateral tensile failure of the masonry units.

In all prism tests, the ends of the prism are laterally confined due to friction between the ends and

the much stiff platens of the testing machine.

For prisms constructed from only two courses there is a gradient lateral confinement that

decreases from the ends to the mid-joint. The lateral tensile stress is maximum in the masonry only

at the points adjacent to the joint. These prisms demonstrate artificially high compressive strength.

In the case of prisms constructed of at least three courses, there is at least one course where the

lateral tensile stress is approximately constant over the whole height of the course. This means

that there is significantly more masonry volume that is available to initiate a failure. In summary,

it appears that the effect of lateral confinement becomes negligible for prisms with an aspect ratio

of 2 or more and constructed of at least three courses.

Masonry is classified as a quasi-brittle material along with concrete Bažant and Yu (2006)

and failure can be approximated by the Weakest Link Theorem. The Weakest Link Theorem

assumes that failure within a single element within the masonry initiates failure of the whole spec-

imen analogous to how a chain fails when a single link ruptures. Since the failure stresses of

individual elements within the masonry are randomly distributed, increasing the volume of the

stressed material increases the probability that the applied stress exceeds the ultimate stress of one

of the elements and initiates failure of the entire material.

As the number of courses increases the probability of failure increases, but at a diminishing

rate. The probability of failure P f for the whole material can be approximated by the equation

P f = 1 − [1 − P1(σk )]N (C.2)
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where N is the number of representative volume elements (RVE) in the material and P1(σk ) is the

probability of failure of one RVE under stress σ Bažant and Yu (2006). From (C.2) it can deduced

that the probability of failure is a function of the maximum lateral tensile stress and the volume

of masonry that is stressed to this level. The maximum aggregate size can be considered as the

characteristic length of one RVE.

The lateral tensile stress in the masonry is a function of the material and geometric proper-

ties of the prism. The stress increases as the ratio of stiffnesses between the masonry and mortar

decreases. The opposite is true in the cases of Poisson’s ratio; the stress increases as the ratio

between Poisson’s ratios for the masonry and mortar increases. In terms of geometry, the lateral

tensile stress in the masonry increases as the ratio of masonry unit height to joint thickness de-

creases. As the maximum lateral tensile stress increases the probability of failure increases and the

prism fails at a lower compressive load.

The number of RVEs in the prism is proportional to the height of the prism. Considering

the number of RVEs in vertical cross section of a masonry prism, the increases in the probability

of failure becomes negligible with the increase in the height of unconstrained masonry. It is likely

this effect that was observed in the study by Boult (1979) that led him to conclude that the dif-

ference between prisms with five to twelve courses is negligible. In the case of clay masonry the

characteristic length is microscopic and the number of RVEs is very high. In clay masonry prisms

the change in strength likely becomes negligible more quickly than for concrete masonry prisms.

Accidental eccentricity is a probable yet unstudied source of influence on prism strength.

The obvious source of eccentricity is eliminated through centering the specimen properly on the

bottom platen and by using a spherical-seated platen on top. Accidental eccentricity is caused

by lateral variations in material stiffnesses within the prism itself. Since the materials are not

uniformly stiff throughout the horizontal cross section, the center of rigidity of each specimen

layer is not necessarily coaxial with the center of mass or with the other layers. As the high

of the prism increases the effects of accidental eccentricity become more pronounced. Strength

reduction to account for the effects of accidental eccentricity would be difficult to predict based

on mechanics of materials because they are difficult to separate from the other causes of prism

strength degradation. The effects of accidental eccentricity are likely best approximated together

with the other influences on prism strength using empirical relationships.

466



The previous research and underlying theories suggest that prism strength is a function

of the number of courses and not of the aspect ratio, assuming that a minimum aspect ratio is

provided. Despite this knowledge, it appears that masonry standards throughout the world rely

solely on prism aspect ratio for correlating prism strengths. The American standards found in

ASTM C1314 use a prism aspect ratio of 2 for the base prisms height. The other masonry standards

investigated, Canadian Standards Association (CSA) S304.1, British Standards (BS) 5628-2, and

Australian Standards (AS) 3700, use a prism aspect ratio of 5 for the base prism height. Prisms

tested in using the US standards will always reflect a higher f ′m value.

The Canadian standard is the most detailed of the four in the area of prism strength. CSA

prescribes different conditions for solid and hollow masonry. It appears that this is because CSA

calculates aspect ratio based on the net dimensions of the prism and not the gross dimensions.

Since the ratio of height to face shell thickness in ungrouted, hollow concrete prisms is always

significantly higher than 5, CSA prescribes an adjustment factor of unity if the prism is constructed

of at least three courses. If a two-course prism is tested then a correction factor is applied. CSA

prescribes separate correction factors for hollow clay brick prisms and solid prisms based on aspect

ratio. The remaining three standards base their respective correction factors on gross dimensions

only and do not differentiate between solid or hollow and concrete or clay prisms. They contain

not correction the artificial strength inflation caused by using two-course prisms.

The Canadian justification of using the ratio of height to shell thickness does not appear to

agree with the underlying theory of prism failure. Hollow prisms typically fail as a result of lateral

tensile stresses that are coplanar with the shell plane and not normal to it. This is because the

smaller thickness of the mortar normal to the shell plane does not produce sufficient cumulative

lateral expansion for the shell to fail in this direction. Additionally, there is significantly more

vertical shell area along the shell plane to resist the lateral tensile stress as opposed to the vertical

shell area perpendicular to the shell plane. It appears that the use of gross prism dimensions is

a better method for calculating prism aspect ratio for hollow prisms. The penalty in the CSA

standard for prisms with only two courses agrees well with the findings of prism research.

Between the standards there are differing requirements for the quantity of prism specimens

to be tested. The American and Australian standards require that only three prisms be tested

whereas the Canadian and British standards require a minimum of five be tested. The British
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standard is unique is that uses an additional correction factor based on the number of prisms tests.

Another disparity between codes comes in how the f ′m value is calculated. In the American and

Australian standards the mean strength of the three prisms is used but the Canadian and British

standards used the lower bound of a statistical confidence interval based on the mean and standard

deviation of the data. The CSA uses a 95 percent confidence level and assumes that the data are

normally distributed. The BS uses a confidence interval that decreases as the number of tested

specimens increases from five to ten and assumes a log-normal distribution.

From a statistical view the Canadian and British standards produce better approximations

for prism strength because they use a higher sample size for testing and because they account for

the random variation in the prism data. The Australian standard follows the recommendations

of the research by requiring prisms to contain at least three courses. The other three standards

generally meet or exceed this requirement for clay bricks but permit block prisms with as few as

two courses.

Recommendation

There still remains much uncertainty over whether the prism aspect ratio or the number of

courses has more influence over the prism strength. It seems likely that prism strength is a function

of both parameters.There are also other factors, such as joint thickness, that have also been shown

to influence the strength but are completely ignored by modern standards. It is also uncertain

whether the relationships are the same for concrete masonry and clay masonry.

Until further research can be performed onto the area of masonry prism strength the best

course is to continue with using prism aspect ratio to correlate strength between difference prism

geometries. The ASTM practice of using a base masonry aspect ratio of 2 appears to be a carryover

from UBC Standard 21-17. As noted earlier, prisms tested under the American standard produce

strengths that are artificially high, especially if compared with the Canadian and British codes

which base the strength on a confidence interval lower bound. This likely produces shear strength

predictions that are unconservative since the equation was developed from older masonry research

which used prism aspect ratios greater than two.

Apart from the American practice there is a good consensus between masonry standards

and prism research that a prism aspect ratio of 5 is the preferable standard for reporting masonry
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strength. It is recommended that masonry prisms with aspect ratios of 5 or greater be tested. If other

aspect ratios are used then the prism strength should be corrected to correspond to the equivalent

strength for a prism aspect ratio of 5. The allowance in the masonry standards for testing block

masonry prisms constructed of two courses should be discontinued and replaced with a minimum

requirement of 3 courses.

The Canadian and British practices of using a confidence interval to compute the prism

strength is the statistically favorable approach. This approach is unsuited for comparing older

masonry studies because many of them only reported the mean strength of the tested prisms or did

not report masonry strength at all. When comparing older and contemporary studies it is necessary

to compare the mean strengths of the prisms.

C.5.3 Net Shear Area

There are multiple definitions for the shear area to be used in shear strength calculations

for partially grouted walls. These include the gross area, the net area, and the net shear area of a

horizontal cross section of the wall. Prior to a recent edition of the MSJC the definition to be used

by designers was ambiguous. In its 2011 code edition the MSJC settled on the net shear area which

is defined as the sum of the areas of the face shells, the grouted cores, and the webs adjacent to the

grouted cores. In the case of ungrouted, hollow masonry walls the net shear area is the area of the

face shells only.

The definition for net shear area assumes that the webs that do not contain grout are in-

effectual in resisting the in-plane shear load. Part of this is because of their narrow dimension in

the direction of shear is not well suited for carrying shear forces. These webs are also neglected

because they are commonly not bedded so there is no mortar to transfer the shear stresses between

adjacent webs.

Recommendation

The MSJC practice of using the net shear area for in-plane shear strength calculation is the

best method for representing the equivalent area that resists the shear mechanisms.
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C.5.4 Grouted, Solid, and Hollow Prism Strength

The MSJC defines solid masonry as those units whose net to gross volume is at least 75

percent. Units that do not meet this minimum threshold are considered to be hollow. Fully grouted

masonry are treated to be solid. When defining masonry strength the corresponding solid, grouted,

or hollow masonry prism strength are used in the strength calculations. The MSJC is ambiguous of

whether the grouted prism strength, hollow prism strength, or a weight average of the two should

be used for partially grouted masonry walls.

Recommendation

Nolph (2010) recommended that the hollow prism strength be used for partially grouted

wall, though he did not explain why. This is because the primary load resisting mechanism is the

masonry itself and the grout serves primarily as a medium to transfer stresses and strains between

the masonry and the reinforcement.

C.5.5 Shear Length

The length of the wall panel considered to participate in the lateral shear resistance varies

between codes. The definition of shear length considered in the codes are the total wall length

Lw, the effective length d, or some multiple of one of the values. The effective length is defined

as the distance from the extreme compression fiber in the masonry to centroid of the extreme

tensile reinforcement. This definition for effective length is the same as that employee by ACI for

reinforced concrete.

The use of the total wall length has merit from the standpoint that all reinforced masonry

shear walls are assumed to be cracked. Near the ultimate strength the shear cracks propagate both

horizontally and vertically through the masonry panel from one end to the other. In this state the

masonry shear strength component of the shear equation represents the strength from masonry

aggregate interlock. Since shear is resisted along cracks that extend through the entire length of

the panel, it is justifiable to assume that the masonry shear strength is a function of the entire wall

length.
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The use of the effective wall length has merit by the assumption that the masonry outside of

the tensile reinforcement is not vertically confined. Aggregate interlock requires vertical confine-

ment to keep the aggregates on either side a shear crack interlocked. Without vertical confinement

the aggregates would slide past each other and mechanical mode of shear resistance would be

replaced by friction. The vertical confinement of the shear cracks is provided by the vertical re-

inforcement and the vertical axial load. Since it is uncertain whether the influence of the vertical

reinforcement extends beyond the extreme-most vertical reinforcement bar, it is justifiable to ne-

glect the masonry in that region by using the effect wall length.

Recommendation

To date there has been no research found that has investigated the two shear length defi-

nitions to determine which is best suited for use in predicting masonry shear strength. Until this

question can be settle definitively it is recommended that researchers report both values to facilitate

the comparison of test results. It has been observed that this data is available in all masonry shear

wall research that has been reported.

C.6 Conclusions

This section has discusses the causes of uncertainty in masonry shear wall data reporting

from four disparities in testing methodology. The four sources of discrepancies discussed were

boundary conditions, strain rate effects, loading patterns, size effects. The testing methodologies

from each source have been reviewed by the extent of their use by researchers and by their relation

to actual masonry performance. This article recommended a standard method of reporting data for

each category. The recommended practices given in this article are summarized as follows.

The influence of different boundary conditions between specimens can be eliminated by

reporting the shear span ratio for each specimen. The shear span ratio should be calculated by

dividing the vertical distance between the point of inflection and maximum moment by the shear

length of the wall. For the purpose of this standard the shear length should be taken as the full

length of the shear wall.
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All test data should be adjusted to correspond to the statically tested strength. For studies

using dynamic loading, the best method is to test both static and dynamic specimens so that a study-

specific correlation coefficient can be determined. Statically tested specimens should be tested such

that no part of the wall experiences a compression strain rate greater than ε̇s = 20×10−6s−1, which

corresponds to the tested reference strain rate for mortar.

It is proposed that researchers report the strength of masonry shear wall data equivalent to

periodic or harmonic patterns. Data from wall tested under monotonic loading would need to be

adjusted to provide the cyclic-equivalent strength.

This article proposes that that standard method of reporting reduced-scale masonry test data

is to report the full-scale data for the equivalent prototype. It has been shown that there are limits

to the scale by which a masonry model may be effectively reduced. Within these relatively small

limits it has been found that size effects are ineffectual, and any effect would be considered in the

strength of masonry prisms constructed of the same reduced-scale materials. It has been further

shown that data is more advantageous when represented in its equivalent full-scale form.

One of the possible concerns about standardization is the loss of research freedom. Re-

search is conducted with the hope that the finding will advance the knowledge in that field of

study. The proposed standardization in reporting results do not govern what and how future ma-

sonry tests are conducted, they are merely a standardized means for researchers to share their data

with the masonry community. The choice is totally left up to the individual researcher whether

to use these standards to supplant or to supplement their existing means of reporting data. Using

standardized reporting methods will aid in making individual findings more useful, applicable, and

relevant to the collective masonry community.
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APPENDIX D. MASONRY PRISM STRENGTH PREDICTION

D.1 Introduction

Several studies were candidates for inclusion in the data set in which the prism strength

was not reported but which, instead, listed the strengths of the constituent materials. Currently, the

underlying principles of masonry prism behavior are fairly well understood at a qualitative level

but the high variability of prism data have made it difficult for researchers to formulate accurate

predictive equations for prism strength based in the strengths of the constituent materials. In order

for these candidate studies to be included within the data set, equations were formulated to estimate

prism strength from the constituent material strengths provided in the respective studies. The

studies included are listed in Tables D.1 and D.2.

The estimation of prism strength is likely to introduce measurement error into the analysis

due to the high variability of masonry prism strengths. Including a greater number of specimens

means that a larger domain of testing parameters would be included in the analysis. A larger

domain of specimen parameters would make the results more representative of a larger portion

of the masonry shear wall population. Since the results of this analysis are intended to cover the

entire masonry shear wall population, it was judged more valuable to the analysis to analyze a

greater number of specimens by including those with estimated f ′m values than to reduce possible

measurement error by excluding them.

Masonry prism tests typically demonstrate high variability, with a coefficient of variation

of 6.3 percent observed to be the average for several groups (Grimm, 2002). Some of this vari-

ability can be attributed to defects introduced during the assembly and handling of the prisms. The

unknown measurement error introduced by estimating f ′m values for specimens is assumed to be

less than that of prisms because constituent material tests typically have less variability. As better

models are developed in the future to quantify the behavior of masonry assemblages it may become
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more accurate and economical to estimate f ′m from a function of the constituent material properties

than from testing masonry prisms.

Any measurement error in the f ′m value has a reduced impact on the error of the whole

shear prediction equation. Part of this reduction comes from the use of the square root of the f ′m

value. The root function has the effect of reducing any error from the term, especially at the higher

values typically used for f ′m. The other part of the reduction is due to the fact that the f ′m value is

only used in the masonry component of the shear equation. The predicted shear strengths of the

axial load and shear reinforcement components of the shear equation are unaffected by an error in

the f ′m value.

D.2 Data Analysis

Two linear models were developed to predict the masonry prism compressive strength, one

for hollow and another for grouted prisms. The models were developed using linear regression on

a data set of masonry prisms and constituent material strengths and geometry. For each prism type

multiple models were developed and compared using adjusted R2 values. The data set contained

63 specimens that were missing values for the ungrouted prism strength and 20 specimens missing

values for the grouted prism strength Weighted linear regression was used to develop two models

to use in estimating values for these parameters These models were then used to estimate values

for the missing prism strength data.

The masonry research literature was reviewed for masonry prism test data with the nec-

essary parameters reported that could be used in building the linear regression models Since the

procedures for masonry prism testing are standardized and the results are related to a wide array

of masonry properties, the search for prism test data extended beyond the pool of masonry shear

wall research These parameters included unit strength, mortar strength, grout strength, joint thick-

ness, prism height, prism width, net to gross area ratio (ν), ungrouted prism strength, grouted prism

strength, and specimen count These data types were reported by the researchers with missing prism

strength data and could be used to estimate the missing prism data The majority of the prism data

found represented the average of multiple tests on identical specimen samples.

The data were organized into two data sets, one for building the ungrouted model and

one for building the grouted model Those data that included the ungrouted prism strengths were
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included in the former data set and those that included the grout and grouted prism strengths were

included in the latter data set Some data reported all three and were included in both data sets The

ungrouted data set included 200 data points and represented 432 individual prism tests The grouted

data set included 164 data point and represented 593 individual prism tests.

The data sets included prisms of varying heights and aspect ratios In order for the masonry

data to be compatible the grouted and ungrouted prism strengths were adjusted to correspond to a

standardized aspect ratio of 5 The reasoning behind the standardized aspect ratio of 5 is presented

in Appendix C of this paper

The data were analyzed using weighted least squares regression The weight chosen for each

data point was the number of trials tested for that point This was chosen so that the total of the

weights within each data set would be equal to the total number of specimens tested The weights

gave stronger influence to those data points that were averages of a greater number of specimens

These data points have lower variance and weighting them accordingly should have reduced the

variance of the two linear models.

D.3 Ungrouted Prism Model

Prior to attempting to fit a model to the data, partial regression plots were graphed of the

prism strength versus the various parameters The plots showed that there was too little variation in

the joint thickness data to include it as a parameter in the regression analysis Two initial models

were fit to the ungrouted data, a traditional arithmetical linear model and a logarithmic linear model

These models were initially built using the parameters of net to gross area ratio, unit strength, and

mortar strength for the predictor variables and ungrouted prism strength as the response variable.

The output of the regressions showed that the logarithmic model had a higher R2 value than

the corresponding arithmetical model, hinting that the logarithmic model better correlated with the

data Inspection of the output for the logarithmic model revealed that the p-value for the estimate of

the intercept was very high, signaling that the intercept contributed very little to the overall model

The new logarithmic model had a slightly improved correlation over the previous model, showing

that the intercept can be dropped from the model.

The residuals for the arithmetical model and the improved logarithmic model were com-

pared using normal probability plots The logarithmic model showed better fit to a normal distribu-
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tion than did the arithmetic model, which suggests that the prism data are log-normally distributed

This is likely since the variance of masonry prism data tends to increase proportionally with the

prism strength.

D.4 Grouted Prism Model

Prior to attempting to fit a model to the data, partial regression plots were graphed of the

prism strength versus the various parameters Two initial models were fit to the ungrouted data, a

traditional arithmetical linear model and a logarithmic linear model These models were initially

built using the parameters of joint thickness, net to gross area ratio, unit strength, mortar strength,

and grout strength for the predictor variables and ungrouted prism strength as the response variable.

The output of the regression showed that the arithmetical model had a notably higher R2

value than the corresponding arithmetical model The R2 values for both grouted models was no-

tably lower than the models for the ungrouted prism data, demonstrating the higher variability

in the grouted data from the addition of the grout in the prism The residuals for the two models

were compared using normal probability plots The logarithmic model showed better fit to a nor-

mal distribution than did the arithmetic model, which suggests that the prism data are log-normally

distributed.

A second arithmetic model was created to gauge the highest correlation possible with

a large number of parameters The second arithmetic model was built using forward selection,

second-order stepwise linear regression with adjusted R2 value used as the selection criterion The

predictor variables, squared roots of the predictor variables, and inverse of the predictor variables

were used as possible input parameters The resulting model contained 21 coefficients Three of

the coefficients with larger p-values were removed from the model one-by-one until all of the 18

remaining coefficients with small p-values remained Removal of the three coefficients negligibly

affected the R2 value

The second arithmetical model had an R2 value of 0.841 which still lagged behind those for

the ungrouted data models This model showed that it was very improbable to find a model with a

very good fit to the data The normal residual plot for this model showed an more significant depar-

ture from normality in the upper and lower tails It was decided to next attempt to find logarithmic

linear models with higher R2 values It was found during the building of the last arithmetic linear
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model that the narrowest width of the masonry prism was also correlated with the strength This

width parameter was also included in the building of the next models.

The first model included the joint thickness, net-to-gross area ratio, and the grout strength as

parameters The latter model included the prism width and grouted-to-gross area ratio as parameters

Both models also included the masonry unit strength, the sum of joint and unit strengths, and the

sum of grout and unit strengths The intercept was omitted from both models because it was found

to be non-influential The two models had nearly equal R2 values that exceeded the R2 values for the

first two grouted prism models The normal probability plots of the residuals for both models were

similar and showed a good match with normality. The latter model was chosen for the grouted data

because it had a root mean squared error nearly half that of the former and had one less coefficient.

D.5 Conclusions

Two linear models were produced to predict the masonry prism strengths for ungrouted and

grouted prisms The analyses for both ungrouted and grouted masonry data showed that the prism

data are log-normally distributed The models were used to predict the 83 missing prism strengths

from the data set shown in Tables D.1 and D.2.
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Table D.1: Predicted Strengths for Ungrouted Prisms

Study Specimen ν f ′
b

f ′j f ′
m(gro)

psi MPa psi MPa psi MPa

Scrivener 1969

C1 46% 2050 (14.1) 2880 (19.9) 1440 (9.9)
D2 46% 2700 (18.6) 3180 (21.9) 1796 (12.4)
C7 46% 2050 (14.1) 2880 (19.9) 1440 (9.9)
C8 46% 2050 (14.1) 2880 (19.9) 1440 (9.9)
C9 46% 2050 (14.1) 2880 (19.9) 1440 (9.9)

D11 46% 2700 (18.6) 3180 (21.9) 1796 (12.4)
C3 46% 2050 (14.1) 2880 (19.9) 1440 (9.9)

D12 46% 2700 (18.6) 3180 (21.9) 1796 (12.4)
D13 46% 2700 (18.6) 3180 (21.9) 1796 (12.4)
D14 46% 2700 (18.6) 3180 (21.9) 1796 (12.4)

Williams 1971 4 64% 7500 (51.7) 2300 (15.9) 4037 (27.8)

Hidalgo et al. 1978

HCBR-21-3 55% 8550 (58.9) 4380 (30.2) 4929 (34.0)
HCBR-21-4 55% 8550 (58.9) 4380 (30.2) 4929 (34.0)
HCBR-21-5 55% 8550 (58.9) 4380 (30.2) 4929 (34.0)
HCBR-21-7 55% 8550 (58.9) 4380 (30.2) 4929 (34.0)

Chen et al. 1978

HCBL-11-1 60% 1800 (12.4) 2754 (19.0) 1538 (10.6)
HCBL-11-2 60% 1800 (12.4) 2754 (19.0) 1538 (10.6)
HCBL-11-3 60% 1800 (12.4) 2965 (20.4) 1575 (10.9)
HCBL-11-4 60% 1800 (12.4) 2965 (20.4) 1575 (10.9)
HCBL-11-5 60% 1800 (12.4) 2754 (19.0) 1538 (10.6)
HCBL-11-6 60% 1800 (12.4) 2965 (20.4) 1575 (10.9)
HCBL-11-7 60% 1800 (12.4) 2322 (16.0) 1458 (10.0)
HCBL-11-8 60% 1800 (12.4) 2942 (20.3) 1571 (10.8)
HCBL-11-9 60% 1800 (12.4) 2942 (20.3) 1571 (10.8)
HCBL-11-10 60% 1800 (12.4) 2322 (16.0) 1458 (10.0)
HCBL-11-11 60% 1800 (12.4) 2322 (16.0) 1458 (10.0)
HCBR-11-1 53% 5816 (40.1) 3840 (26.5) 3551 (24.5)
HCBR-11-2 53% 5816 (40.1) 3840 (26.5) 3551 (24.5)
HCBR-11-3 53% 5816 (40.1) 3840 (26.5) 3551 (24.5)
HCBR-11-4 53% 5816 (40.1) 3044 (21.0) 3299 (22.7)
HCBR-11-5 53% 5816 (40.1) 3840 (26.5) 3551 (24.5)
HCBR-11-6 53% 5816 (40.1) 4316 (29.8) 3685 (25.4)
HCBR-11-7 53% 5816 (40.1) 1870 (12.9) 2828 (19.5)
HCBR-11-8 53% 5816 (40.1) 3080 (21.2) 3312 (22.8)
HCBR-11-9 53% 5816 (40.1) 3840 (26.5) 3551 (24.5)
HCBR-11-10 53% 5816 (40.1) 3044 (21.0) 3299 (22.7)
HCBR-11-11 53% 5816 (40.1) 3044 (21.0) 3299 (22.7)
HCBR-11-12 53% 5816 (40.1) 1870 (12.9) 2828 (19.5)
HCBR-11-13 53% 5816 (40.1) 3044 (21.0) 3299 (22.7)
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Table D.1: Predicted Strengths for Ungrouted Prisms (Continued)

Study Specimen ν f ′
b

f ′j f ′
m(ung)

psi MPa psi MPa psi MPa

Tomaževič and Lutman (1988)

CN-0 60% 2524 (17.4) 1349 (9.3) 1542 (10.6)
CN-14 60% 2524 (17.4) 1349 (9.3) 1541 (10.6)
CN-28 60% 2524 (17.4) 1349 (9.3) 1541 (10.6)
CN-50 60% 2524 (17.4) 1349 (9.3) 1541 (10.6)
CV-0 60% 2524 (17.4) 1349 (9.3) 1541 (10.6)
DN-0 60% 2248 (15.5) 1015 (7.0) 1301 (9.0)
DN-14 60% 2248 (15.5) 1015 (7.0) 1301 (9.0)
DN-28 60% 2248 (15.5) 1015 (7.0) 1301 (9.0)
DN-50 60% 2248 (15.5) 1015 (7.0) 1301 (9.0)
DV-0 60% 2248 (15.5) 1015 (7.0) 1301 (9.0)

WSRM #1 54% 5800 (40.0) 1200 (8.3) 2471 (17.0)
WSRM #2 54% 5800 (40.0) 1350 (9.3) 2565 (17.7)
WSRM #3 54% 5800 (40.0) 1410 (9.7) 2601 (17.9)
WSRM #4 54% 5800 (40.0) 1380 (9.5) 2583 (17.8)
WSRM #5 54% 5800 (40.0) 770 (5.3) 2148 (14.8)
WSRM #6 54% 5800 (40.0) 1000 (6.9) 2333 (16.1)

Haach et al. (2007) WSRM #7 54% 5800 (40.0) 730 (5.0) 2112 (14.6)
Haach et al. (2010a) WSRM #8 54% 5800 (40.0) 930 (6.4) 2280 (15.7)

ECRM #9 54% 5800 (40.0) 1450 (10.0) 2624 (18.1)
URM #10 54% 5800 (40.0) 740 (5.1) 2121 (14.6)

#11 54% 5800 (40.0) 990 (6.8) 2325 (16.0)
#12 54% 5800 (40.0) 990 (6.8) 2325 (16.0)
#13 54% 5800 (40.0) 990 (6.8) 2325 (16.0)
#14 54% 5800 (40.0) 990 (6.8) 2325 (16.0)
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APPENDIX E. FULL DATASET

This Appendix contains tables of the full dataset used in this study. The dataset was as-

sembled and formatted using the principles of data collection, scrutinization, and synthesization

detailed in Part II of this paper. A key to the symbols used within the tables is shown in Table

E.1. The dataset is grouped into four tables by specimen attribute. The four attribute groupings are

geometric properties (Table E.2), reinforcement details (Table E.3), material strengths (Table E.4),

and loadings (Table E.5). A key to the nomenclature used in this paper is provided in the front

matter.

Table E.1: Key to Symbols Used in Data Tables

∗Values that were not found in the paper and were assumed based on the context
and outside sources
†Values that were not explicitly stated in the paper but were calculated based on

other provided data
‡Values calculated using estimated functional relationships (see Appendix D)

481



T a
bl

e
E

.2
:G

eo
m

et
ri

c
Pr

op
er

tie
s

of
Sp

ec
im

en
s

H
ei

gh
t

L
en

gt
h

T
hi

ck
ne

ss
Sh

ea
rA

re
a

Se
ri

al
B

lo
ck

G
ro

ut
Sc

al
e

h g
h e

l w
d

t
t s

A
g

A
n
v

h g l w

M V
l w

B
ou

nd
ar

y

(m
m

)
(m

m
)

(m
m

)
(m

m
)

(m
m

)
(m

m
)

(m
m

2 )
(m

m
2 )

19
68

-M
X

-M
E

-0
9

C
M

U
PG

1
26

50
26

50
32

00
30

00
†

15
0

50
∗

48
00

00
33

03
22

0.
83

0.
83

C
an

til
e v

er
19

68
-M

X
-M

E
-1

0
C

M
U

PG
1

26
50

26
50

32
00

30
00
†

15
0

50
∗

48
00

00
33

03
22

0.
83

0.
83

C
an

til
e v

er
19

68
-M

X
-M

E
-1

1
C

M
U

PG
1

26
50

26
50

32
00

30
00
†

15
0

50
∗

48
00

00
33

03
22

0.
83

0.
83

C
an

til
e v

er
19

68
-M

X
-M

E
-1

2
C

M
U

PG
1

26
50

26
50

32
00

30
00
†

15
0

50
∗

48
00

00
29

74
19

0.
83

0.
83

C
an

til
e v

er
19

68
-M

X
-M

E
-1

3
C

M
U

PG
1

26
50

26
50

32
00

30
00
†

15
0

50
∗

48
00

00
29

74
19

0.
83

0.
83

C
an

til
e v

er
19

68
-M

X
-M

E
-1

4
C

M
U

PG
1

26
50

26
50

32
00

30
00
†

15
0

50
∗

48
00

00
33

03
22

0.
83

0.
83

C
an

til
e v

er
19

68
-M

X
-M

E
-1

5
C

M
U

PG
1

26
50

26
50

32
00

30
00
†

15
0

50
∗

48
00

00
29

74
19

0.
83

0.
83

C
an

til
e v

er
19

68
-M

X
-M

E
-1

6
C

M
U

PG
1

26
50

26
50

32
00

30
00
†

15
0

50
∗

48
00

00
33

03
22

0.
83

0.
83

C
an

til
ev

er
19

68
-M

X
-M

E
-1

7
C

M
U

PG
1

26
50

26
50

32
00

28
00
†

15
0

50
∗

48
00

00
33

03
22

0.
83

0.
83

C
an

til
e v

er
19

68
-M

X
-M

E
-1

8
C

M
U

PG
1

26
50

26
50

32
00

30
00
†

15
0

50
∗

48
00

00
33

03
22

0.
83

0.
83

C
an

til
ev

er
19

69
-M

X
-M

E
-1

1
C

M
U

PG
1

20
00

18
50

20
00

18
00
†

15
0

50
∗

30
00

00
18

00
00

1.
00

1.
00

C
an

til
ev

er
19

69
-M

X
-M

E
-1

4
C

M
U

PG
1

20
00

18
50

20
00

19
00
†

15
0

50
∗

30
00

00
14

00
00

1.
00

1.
00

C
an

til
e v

er
19

69
-M

X
-M

E
-1

5
C

M
U

PG
1

20
00

18
50

20
00

18
00
†

15
0

50
∗

30
00

00
18

00
00

1.
00

1.
00

C
an

til
ev

er
19

69
-M

X
-M

E
-1

6
C

M
U

PG
1

20
00

18
50

20
00

18
00
†

15
0

50
∗

30
00

00
18

00
00

1.
00

1.
00

C
an

til
e v

er
19

69
-M

X
-M

E
-1

7
C

M
U

PG
1

20
00

18
50

20
00

18
00
†

15
0

50
∗

30
00

00
18

00
00

1.
00

1.
00

C
an

til
ev

er
19

69
-M

X
-M

E
-1

8
C

M
U

PG
1

20
00

18
50

20
00

18
00
†

15
0

50
∗

30
00

00
18

00
00

1.
00

1.
00

C
an

til
e v

er
19

69
-M

X
-M

E
-1

9
C

M
U

PG
1

20
00

18
50

20
00

18
00
†

15
0

50
∗

30
00

00
18

00
00

1.
00

1.
00

C
an

til
e v

er
19

69
-M

X
-M

E
-2

0
C

M
U

PG
1

20
00

18
50

20
00

18
00
†

15
0

50
∗

30
00

00
18

00
00

1.
00

1.
00

C
an

til
ev

er
19

69
-M

X
-M

E
-2

1
C

M
U

PG
1

20
00

18
50

20
00

18
00
†

15
0

50
∗

30
00

00
18

00
00

1.
00

1.
00

C
an

til
e v

er
19

69
-M

X
-M

E
-2

4
C

M
U

PG
1

20
00

18
50

20
00

19
00
†

15
0

50
∗

30
00

00
14

00
00

1.
00

1.
00

C
an

til
ev

er
19

69
-M

X
-M

E
-2

5
C

M
U

FG
1

20
00

18
50

20
00

18
00
†

15
0

15
0∗

30
00

00
30

00
00

1.
00

1.
00

C
an

til
e v

er
19

69
-M

X
-M

E
-2

9
C

M
U

PG
1

20
00

18
50

20
00

18
00
†

15
0

50
∗

30
00

00
18

00
00

1.
00

1.
00

C
an

til
ev

er
19

71
-N

Z
-W

I-
01

C
la

y
FG

1
11

43
12

45
11

18
10

61
†

10
8

10
8

12
07

44
12

07
44

1.
02

1.
11

C
an

til
ev

er
19

71
-N

Z
-W

I-
02

C
la

y
FG

1
11

43
12

45
11

18
10

61
†

10
8

10
8

12
07

44
12

07
44

1.
02

1.
11

C
an

til
e v

er
19

71
-N

Z
-W

I-
03

C
la

y
FG

1
11

43
12

45
11

18
10

61
†

10
8

10
8

12
07

44
12

07
44

1.
02

1.
11

C
an

til
ev

er
19

71
-N

Z
-W

I-
04

C
la

y
PG

1
11

43
12

45
11

18
10

61
†

10
8

44
.5

12
07

44
76

77
4

1.
02

1.
11

C
an

til
e v

er
19

71
-N

Z
-W

I-
05

C
la

y
FG

1
11

43
12

45
11

18
10

61
†

10
8

10
8

12
07

44
12

07
44

1.
02

1.
11

C
an

til
e v

er
19

71
-N

Z
-W

I-
06

C
M

U
FG

1
12

19
13

21
12

19
11

43
†

92
92

11
21

48
11

21
48

1.
00

1.
08

C
an

til
e v

er

482



T a
bl

e
E

.2
:G

eo
m

et
ri

c
Pr

op
er

tie
s

of
D

at
as

et
(C

on
tin

ue
d)

H
ei

gh
t

L
en

gt
h

T
hi

ck
ne

ss
Sh

ea
rA

re
a

Se
ri

al
B

lo
ck

G
ro

ut
Sc

al
e

h g
h e

l w
d

t
t s

A
g

A
n
v

h g l w

M V
l w

B
ou

nd
ar

y

(m
m

)
(m

m
)

(m
m

)
(m

m
)

(m
m

)
(m

m
)

(m
m

2 )
(m

m
2 )

19
71

-N
Z

-W
I-

07
C

M
U

FG
1

12
19

13
21

12
19

11
43
†

92
92

11
21

48
11

21
48

1.
00

1.
08

C
an

til
e v

er
19

71
-N

Z
-W

I-
08

C
M

U
FG

1
12

19
13

21
12

19
11

43
†

92
92

11
21

48
11

21
48

1.
00

1.
08

C
an

til
e v

er
19

71
-N

Z
-W

I-
09

C
M

U
FG

1
12

19
13

21
12

19
11

43
†

92
92

11
21

48
11

21
48

1.
00

1.
08

C
an

til
e v

er
19

71
-N

Z
-W

I-
10

C
la

y
FG

1
11

43
12

45
11

18
10

61
†

10
8

10
8

12
07

44
12

07
44

1.
02

1.
11

C
an

til
e v

er
19

71
-N

Z
-W

I-
11

C
la

y
FG

1
11

43
12

45
11

18
10

61
†

10
8

10
8

12
07

44
12

07
44

1.
02

1.
11

C
an

til
e v

er
19

71
-N

Z
-W

I-
12

C
la

y
FG

1
11

94
12

95
66

0
60

3†
10

8
10

8
71

28
0

71
28

0
1.

81
1.

96
C

an
til

e v
er

19
71

-N
Z

-W
I-

13
C

la
y

FG
1

11
94

12
95

66
0

60
3†

10
8

10
8

71
28

0
71

28
0

1.
81

1.
96

C
an

til
e v

er
19

71
-N

Z
-W

I-
15

C
la

y
FG

1
11

94
12

95
66

0
60

3†
10

8
10

8
71

28
0

71
28

0
1.

81
1.

96
C

an
til

ev
er

19
71

-N
Z

-W
I-

16
C

la
y

FG
1

96
5

10
67

18
54

17
97
†

10
8

10
8

20
02

32
20

02
32

0.
52

0.
58

C
an

til
e v

er
19

71
-N

Z
-W

I-
17

C
la

y
FG

1
96

5
10

67
18

54
17

97
†

10
8

10
8

20
02

32
20

02
32

0.
52

0.
58

C
an

til
ev

er
19

71
-N

Z
-W

I-
18

C
la

y
FG

1
11

94
12

95
66

0
60

3†
10

8
10

8
71

28
0

71
28

0
1.

81
1.

96
C

an
til

ev
er

19
71

-N
Z

-W
I-

19
C

la
y

FG
1

11
94

12
95

11
18

10
61
†

10
8

10
8

12
07

44
12

07
44

1.
07

1.
16

C
an

til
e v

er
19

71
-N

Z
-W

I-
20

C
la

y
FG

1
11

94
12

95
11

18
10

61
†

10
8

10
8

12
07

44
12

07
44

1.
07

1.
16

C
an

til
ev

er
19

76
-U

S-
M

A
-0

1
C

M
U

FG
1

16
26

81
3

81
3

60
7†

14
3

14
3

11
62

59
11

62
59

2.
00

1.
00

Fi
x e

d
19

76
-U

S-
M

A
-0

2
C

M
U

FG
1

16
26

81
3

81
3

60
7†

14
3

14
3

11
62

59
11

62
59

2.
00

1.
00

Fi
xe

d
19

76
-U

S-
M

A
-0

3
C

M
U

FG
1

16
26

81
3

81
3

60
7†

14
3

14
3

11
62

59
11

62
59

2.
00

1.
00

Fi
x e

d
19

76
-U

S-
M

A
-0

4
C

M
U

FG
1

16
26

81
3

81
3

60
7†

14
3

14
3

11
62

59
11

62
59

2.
00

1.
00

Fi
x e

d
19

76
-U

S-
M

A
-0

5
C

M
U

FG
1

16
26

81
3

81
3

60
7†

14
3

14
3

11
62

59
11

62
59

2.
00

1.
00

Fi
xe

d
19

76
-U

S-
M

A
-0

6
C

M
U

FG
1

16
26

81
3

81
3

60
7†

14
3

14
3

11
62

59
11

62
59

2.
00

1.
00

Fi
x e

d
19

76
-U

S-
M

A
-0

7
C

M
U

FG
1

16
26

81
3

81
3

60
7†

14
3

14
3

11
62

59
11

62
59

2.
00

1.
00

Fi
xe

d
19

76
-U

S-
M

A
-0

8
C

M
U

FG
1

16
26

81
3

81
3

60
7†

14
3

14
3

11
62

59
11

62
59

2.
00

1.
00

Fi
x e

d
19

76
-U

S-
M

A
-0

9
C

M
U

FG
1

16
26

81
3

81
3

60
7†

14
3

14
3

11
62

59
11

62
59

2.
00

1.
00

Fi
xe

d
19

76
-U

S-
M

A
-1

0
C

M
U

FG
1

16
26

81
3

81
3

60
7†

14
3

14
3

11
62

59
11

62
59

2.
00

1.
00

Fi
xe

d
19

76
-U

S-
M

A
-1

1
C

M
U

PG
1

16
26

81
3

81
3

60
7†

14
3

63
.5

11
62

59
80

00
0

2.
00

1.
00

Fi
x e

d
19

76
-U

S-
M

A
-1

2
C

M
U

PG
1

16
26

81
3

81
3

60
7†

14
3

63
.5

11
62

59
80

00
0

2.
00

1.
00

Fi
xe

d
19

77
-N

Z
-P

R
-0

5
C

M
U

FG
1

16
51

18
29

24
28

22
26
†

14
3

14
3

34
72

04
34

72
04

0.
68

0.
75

C
an

til
e v

er
19

77
-N

Z
-P

R
-0

6
C

M
U

FG
1

16
51

18
29

24
28

22
26
†

14
3

14
3

34
72

04
34

72
04

0.
68

0.
75

C
an

til
e v

er
19

77
-N

Z
-P

R
-0

7
C

M
U

FG
1

16
51

18
29

24
28

22
26
†

14
3

14
3

34
72

04
34

72
04

0.
68

0.
75

C
an

til
e v

er

483



Ta
bl

e
E

.2
:G

eo
m

et
ri

c
Pr

op
er

tie
s

of
D

at
as

et
(C

on
tin

ue
d)

H
ei

gh
t

L
en

gt
h

T
hi

ck
ne

ss
Sh

ea
r A

re
a

Se
ri

al
B

lo
ck

G
ro

ut
Sc

al
e

h g
h e

l w
d

t
t s

A
g

A
n
v

h g l w

M V
l w

B
ou

nd
ar

y

(m
m

)
(m

m
)

(m
m

)
(m

m
)

(m
m

)
(m

m
)

(m
m

2 )
(m

m
2 )

19
77

-N
Z

-P
R

-0
8

C
M

U
FG

1
16

51
18

29
24

28
22

26
†

14
3

14
3

34
72

04
34

72
04

0.
68

0.
75

C
an

til
e v

er
19

77
-N

Z
-P

R
-0

9
C

M
U

FG
1

16
51

18
29

24
28

22
26
†

14
3

14
3

34
72

04
34

72
04

0.
68

0.
75

C
an

til
e v

er
19

77
-N

Z
-P

R
-1

0
C

M
U

FG
1

16
51

18
29

24
28

22
26
†

14
3

14
3

34
72

04
34

72
04

0.
68

0.
75

C
an

til
e v

er
19

78
-U

S-
C

H
-0

2
C

M
U

PG
1

14
22

71
1

12
19

10
67

19
4

69
.9

23
64

86
14

19
35

1.
17

0.
58

Fi
xe

d
19

78
-U

S-
C

H
-0

3
C

M
U

FG
1

14
22

71
1

12
19

10
67

19
4

19
4

23
64

86
23

64
86

1.
17

0.
58

Fi
x e

d
19

78
-U

S-
C

H
-0

4
C

M
U

FG
1

14
22

71
1

12
19

10
67

19
4

19
4

23
64

86
23

64
86

1.
17

0.
58

Fi
xe

d
19

78
-U

S-
C

H
-0

5
C

M
U

PG
1

14
22

71
1

12
19

10
67

19
4

69
.9

23
64

86
14

19
35

1.
17

0.
58

Fi
x e

d
19

78
-U

S-
C

H
-0

6
C

M
U

FG
1

14
22

71
1

12
19

10
67

19
4

19
4

23
64

86
23

64
86

1.
17

0.
58

Fi
xe

d
19

78
-U

S-
C

H
-0

7
C

M
U

FG
1

14
22

71
1

12
19

10
67

19
4

19
4

23
64

86
23

64
86

1.
17

0.
58

Fi
xe

d
19

78
-U

S-
C

H
-0

8
C

M
U

PG
1

14
22

71
1

12
19

10
67

19
4

69
.9

23
64

86
14

19
35

1.
17

0.
58

Fi
x e

d
19

78
-U

S-
C

H
-0

9
C

M
U

FG
1

14
22

71
1

12
19

10
67

19
4

19
4

23
64

86
23

64
86

1.
17

0.
58

Fi
xe

d
19

78
-U

S-
C

H
-1

0
C

M
U

PG
1

14
22

71
1

12
19

10
67

19
4

69
.9

23
64

86
14

19
35

1.
17

0.
58

Fi
x e

d
19

78
-U

S-
C

H
-1

1
C

M
U

FG
1

14
22

71
1

12
19

10
67

19
4

19
4

23
64

86
23

64
86

1.
17

0.
58

Fi
x e

d
19

78
-U

S-
C

H
-1

4
C

la
y

FG
1

14
22

71
1

12
19

10
67

18
7

18
7

22
79

53
22

79
53

1.
17

0.
58

Fi
xe

d
19

78
-U

S-
C

H
-1

5
C

la
y

FG
1

14
22

71
1

12
19

10
67

18
7

18
7

22
79

53
22

79
53

1.
17

0.
58

Fi
x e

d
19

78
-U

S-
C

H
-1

6
C

la
y

PG
1

14
22

71
1

12
19

10
67

18
7

82
.3

22
79

53
12

19
35

1.
17

0.
58

Fi
xe

d
19

78
-U

S-
C

H
-1

7
C

la
y

FG
1

14
22

71
1

12
19

10
67

18
7

18
7

22
79

53
22

79
53

1.
17

0.
58

Fi
x e

d
19

78
-U

S-
C

H
-1

8
C

la
y

FG
1

14
22

71
1

12
19

10
67

18
7

18
7

22
79

53
22

79
53

1.
17

0.
58

Fi
xe

d
19

78
-U

S-
C

H
-1

9
C

la
y

FG
1

14
22

71
1

12
19

10
67

18
7

18
7

22
79

53
22

79
53

1.
17

0.
58

Fi
xe

d
19

78
-U

S-
C

H
-2

0
C

la
y

PG
1

14
22

71
1

12
19

10
67

18
7

82
.3

22
79

53
12

19
35

1.
17

0.
58

Fi
x e

d
19

78
-U

S-
C

H
-2

1
C

la
y

FG
1

14
22

71
1

12
19

10
67

18
7

18
7

22
79

53
22

79
53

1.
17

0.
58

Fi
xe

d
19

78
-U

S-
C

H
-2

2
C

la
y

PG
1

14
22

71
1

12
19

10
67

18
7

82
.3

22
79

53
12

19
35

1.
17

0.
58

Fi
x e

d
19

78
-U

S-
C

H
-2

3
C

la
y

FG
1

14
22

71
1

12
19

10
67

18
7

18
7

22
79

53
22

79
53

1.
17

0.
58

Fi
xe

d
19

78
-U

S-
C

H
-2

4
C

la
y

FG
1

14
22

71
1

12
19

10
67

18
7

18
7

22
79

53
22

79
53

1.
17

0.
58

Fi
x e

d
19

78
-U

S-
H

I-
01

C
la

y
SU

1
20

32
10

16
10

67
99

1†
18

7
18

7
19

95
29

19
95

29
1.

90
0.

95
Fi

xe
d

19
78

-U
S-

H
I-

02
C

la
y

FG
1

20
32

10
16

10
67

99
1†

18
7

18
7

19
95

29
19

95
29

1.
90

0.
95

Fi
xe

d
19

78
-U

S-
H

I-
03

C
la

y
PG

1
20

32
10

16
10

67
99

1†
18

7
82

.3
19

95
29

11
03

22
1.

90
0.

95
Fi

xe
d

484



Ta
bl

e
E

.2
:G

eo
m

et
ri

c
Pr

op
er

tie
s

of
D

at
as

et
(C

on
tin

ue
d)

H
ei

gh
t

L
en

gt
h

T
hi

ck
ne

ss
Sh

ea
r A

re
a

Se
ri

al
B

lo
ck

G
ro

ut
Sc

al
e

h g
h e

l w
d

t
t s

A
g

A
n
v

h g l w

M V
l w

B
ou

nd
ar

y

(m
m

)
(m

m
)

(m
m

)
(m

m
)

(m
m

)
(m

m
)

(m
m

2 )
(m

m
2 )

19
78

-U
S-

H
I-

04
C

la
y

FG
1

20
32

10
16

10
67

99
1†

18
7

18
7

19
95

29
19

95
29

1.
90

0.
95

Fi
x e

d
19

78
-U

S-
H

I-
05

C
la

y
PG

1
20

32
10

16
10

67
99

1†
18

7
82

.3
19

95
29

11
03

22
1.

90
0.

95
Fi

x e
d

19
78

-U
S-

H
I-

06
C

la
y

FG
1

20
32

10
16

10
67

99
1†

18
7

18
7

19
95

29
19

95
29

1.
90

0.
95

Fi
x e

d
19

78
-U

S-
H

I-
07

C
la

y
PG

1
20

32
10

16
10

67
99

1†
18

7
82

.3
19

95
29

11
03

22
1.

90
0.

95
Fi

xe
d

19
78

-U
S-

H
I-

08
C

la
y

FG
1

20
32

10
16

10
67

99
1†

18
7

18
7

19
95

29
19

95
29

1.
90

0.
95

Fi
x e

d
19

78
-U

S-
H

I-
09

C
la

y
FG

1
20

32
10

16
10

67
99

1†
18

7
18

7
19

95
29

19
95

29
1.

90
0.

95
Fi

xe
d

19
79

-U
S-

H
I-

01
C

M
U

FG
1

10
16

50
8

20
32

18
29

19
4

19
4

39
42

08
39

42
08

0.
50

0.
25

Fi
x e

d
19

79
-U

S-
H

I-
02

C
M

U
FG

1
10

16
50

8
20

32
18

29
19

4
19

4
39

42
08

39
42

08
0.

50
0.

25
Fi

xe
d

19
79

-U
S-

H
I-

03
C

M
U

FG
1

10
16

50
8

20
32

18
29

19
4

19
4

39
42

08
39

42
08

0.
50

0.
25

Fi
xe

d
19

79
-U

S-
H

I-
04

C
M

U
FG

1
10

16
50

8
20

32
18

29
19

4
19

4
39

42
08

39
42

08
0.

50
0.

25
Fi

x e
d

19
79

-U
S-

H
I-

05
C

M
U

FG
1

10
16

50
8

20
32

18
29

19
4

19
4

39
42

08
39

42
08

0.
50

0.
25

Fi
xe

d
19

79
-U

S-
H

I-
06

C
M

U
FG

1
10

16
50

8
20

32
18

29
19

4
19

4
39

42
08

39
42

08
0.

50
0.

25
Fi

x e
d

19
79

-U
S-

H
I-

08
C

la
y

FG
1

10
16

50
8

19
81

18
29

18
7

18
7

37
04

47
37

04
47

0.
51

0.
26

Fi
x e

d
19

79
-U

S-
H

I-
09

C
la

y
FG

1
10

16
50

8
19

81
18

29
18

7
18

7
37

04
47

37
04

47
0.

51
0.

26
Fi

xe
d

19
79

-U
S-

H
I-

10
C

la
y

FG
1

10
16

50
8

19
81

18
29

18
7

18
7

37
04

47
37

04
47

0.
51

0.
26

Fi
x e

d
19

82
-N

Z
-T

H
-0

1
C

M
U

PG
1

24
00

12
00

16
00

15
00

14
0

70
†

22
40

00
14

39
34

1.
50

0.
75

Fi
xe

d
19

82
-N

Z
-T

H
-0

2
C

M
U

FG
1

24
00

12
00

16
00

15
00

14
0

14
0†

22
40

00
22

40
00

1.
50

0.
75

Fi
x e

d
19

82
-N

Z
-T

H
-0

3
C

M
U

PG
1

24
00

12
00

16
00

15
00

14
0

70
†

22
40

00
14

38
71

1.
50

0.
75

Fi
xe

d
19

82
-N

Z
-T

H
-0

4
C

M
U

PG
1

24
00

12
00

16
00

15
00

14
0

70
†

22
40

00
14

38
71

1.
50

0.
75

Fi
xe

d
19

82
-N

Z
-T

H
-0

5
C

M
U

FG
1

24
00

12
00

16
00

15
00

14
0

14
0†

22
40

00
22

40
00

1.
50

0.
75

Fi
x e

d
19

82
-N

Z
-T

H
-0

6
C

M
U

FG
1

24
00

12
00

16
00

15
00

14
0

14
0†

22
40

00
22

40
00

1.
50

0.
75

Fi
xe

d
19

82
-N

Z
-T

H
-0

8
C

M
U

FG
1

24
00

12
00

16
00

15
00

14
0

14
0†

22
40

00
22

40
00

1.
50

0.
75

Fi
x e

d
19

83
-J

P-
M

A
-0

1
C

M
U

FG
1

18
00

90
0

15
90

15
00

15
0

15
0†

23
85

00
23

85
00

1.
13

0.
57

Fi
xe

d
19

83
-J

P-
M

A
-0

3
C

M
U

FG
1

18
00

90
0

11
90

11
00

15
0

15
0†

17
85

00
17

85
00

1.
51

0.
76

Fi
x e

d
19

83
-J

P-
M

A
-0

4
C

M
U

FG
1

18
00

90
0

79
0

70
0

15
0

15
0†

11
85

00
11

85
00

2.
28

1.
14

Fi
xe

d
19

84
-J

P-
IG

-0
1

C
M

U
PG

1
18

00
90

0
19

70
18

80
15

0
60
†

29
55

00
21

00
64

0.
91

0.
46

Fi
xe

d
19

84
-J

P-
IG

-0
2

C
M

U
PG

1
18

00
90

0
19

70
18

80
15

0
60
†

29
55

00
21

00
64

0.
91

0.
46

Fi
xe

d

485



Ta
bl

e
E

.2
:G

eo
m

et
ri

c
Pr

op
er

tie
s

of
D

at
as

et
(C

on
tin

ue
d)

H
ei

gh
t

L
en

gt
h

T
hi

ck
ne

ss
Sh

ea
r A

re
a

Se
ri

al
B

lo
ck

G
ro

ut
Sc

al
e

h g
h e

l w
d

t
t s

A
g

A
n
v

h g l w

M V
l w

B
ou

nd
ar

y

(m
m

)
(m

m
)

(m
m

)
(m

m
)

(m
m

)
(m

m
)

(m
m

2 )
(m

m
2 )

19
84

-J
P-

IG
-0

3
C

M
U

PG
1

18
00

90
0

17
70

16
80

15
0

60
†

26
55

00
18

20
00

1.
02

0.
51

Fi
x e

d
19

84
-J

P-
IG

-0
4

C
M

U
PG

1
18

00
90

0
13

70
12

80
15

0
60
†

20
55

00
14

30
96

1.
31

0.
66

Fi
x e

d
19

84
-J

P-
IG

-0
5

C
M

U
PG

1
18

00
90

0
97

0
88

0
15

0
60
†

14
55

00
10

41
93

1.
86

0.
93

Fi
x e

d
19

84
-J

P-
IG

-0
6

C
M

U
PG

1
18

00
90

0
97

0
88

0
15

0
60
†

14
55

00
10

41
93

1.
86

0.
93

Fi
xe

d
19

85
-J

P-
FU

-0
1

C
M

U
FG

1
18

00
90

0
19

90
18

95
†

19
0

19
0

37
81

00
37

81
00

0.
90

0.
45

Fi
x e

d
19

85
-J

P-
FU

-0
2

C
la

y
FG

1
18

00
90

0
19

90
18

95
†

19
0

19
0

37
81

00
37

81
00

0.
90

0.
45

Fi
xe

d
19

85
-J

P-
FU

-0
3

C
M

U
FG

1
18

00
90

0
11

90
10

95
†

19
0

19
0

22
61

00
22

61
00

1.
51

0.
76

Fi
x e

d
19

85
-J

P-
FU

-0
4

C
la

y
FG

1
17

00
85

0
10

90
99

5†
19

0
19

0
20

71
00

20
71

00
1.

56
0.

78
Fi

xe
d

19
85

-J
P-

FU
-0

5
C

M
U

FG
1

18
00

90
0

79
0

69
5†

19
0

19
0

15
01

00
15

01
00

2.
28

1.
14

Fi
xe

d
19

85
-J

P-
FU

-0
6

C
la

y
FG

1
18

00
90

0
79

0
69

5†
19

0
19

0
15

01
00

15
01

00
2.

28
1.

14
Fi

x e
d

19
85

-J
P-

M
A

-0
1

C
M

U
FG

1
18

00
90

0
11

90
10

95
19

0
19

0
22

61
00

22
61

00
1.

51
0.

76
Fi

xe
d

19
85

-J
P-

M
A

-0
2

C
M

U
FG

1
18

00
90

0
11

90
10

95
19

0
19

0
22

61
00

22
61

00
1.

51
0.

76
Fi

x e
d

19
85

-J
P-

M
A

-0
3

C
M

U
FG

1
18

00
90

0
11

90
10

95
19

0
19

0
22

61
00

22
61

00
1.

51
0.

76
Fi

x e
d

19
85

-J
P-

M
A

-0
5

C
M

U
FG

1
18

00
90

0
11

90
10

95
19

0
19

0
22

61
00

22
61

00
1.

51
0.

76
Fi

xe
d

19
85

-J
P-

M
A

-0
6

C
M

U
FG

1
18

00
90

0
11

90
10

95
19

0
19

0
22

61
00

22
61

00
1.

51
0.

76
Fi

x e
d

19
85

-J
P-

YA
-0

5
C

M
U

FG
1

12
00

60
0

95
0

85
0†

19
0

19
0

18
05

00
18

05
00

1.
26

0.
63

Fi
xe

d
19

85
-J

P-
Y A

-0
6

C
M

U
FG

1
12

00
60

0
95

0
85

0†
19

0
19

0
18

05
00

18
05

00
1.

26
0.

63
Fi

x e
d

19
85

-J
P-

YA
-0

7
C

M
U

FG
1

20
00

10
00

95
0

85
0†

19
0

19
0

18
05

00
18

05
00

2.
11

1.
05

Fi
xe

d
19

85
-J

P-
YA

-0
8

C
M

U
FG

1
12

00
60

0
95

0
85

0†
19

0
19

0
18

05
00

18
05

00
1.

26
0.

63
Fi

xe
d

19
85

-J
P-

Y A
-0

9
C

M
U

FG
1

12
00

60
0

95
0

85
0†

19
0

19
0

18
05

00
18

05
00

1.
26

0.
63

Fi
x e

d
19

85
-U

S-
SV

-0
1

C
M

U
FG

1
14

22
71

1
12

19
11

43
†

19
4

19
4

23
64

86
23

64
86

1.
17

0.
58

Fi
xe

d
19

85
-U

S-
SV

-0
2

C
M

U
FG

1
14

22
71

1
12

19
11

43
†

19
4

19
4

23
64

86
23

64
86

1.
17

0.
58

Fi
x e

d
19

85
-U

S-
SV

-0
3

C
M

U
FG

1
14

22
71

1
12

19
11

43
†

14
3

14
3

17
43

17
17

43
17

1.
17

0.
58

Fi
xe

d
19

85
-U

S-
SV

-0
4

C
M

U
FG

1
14

22
71

1
12

19
11

43
†

14
3

14
3

17
43

17
17

43
17

1.
17

0.
58

Fi
x e

d
19

85
-U

S-
SV

-0
5

C
M

U
FG

1
14

22
71

1
12

19
11

43
†

14
3

14
3

17
43

17
17

43
17

1.
17

0.
58

Fi
xe

d
19

85
-U

S-
SV

-0
6

C
M

U
FG

1
14

22
71

1
12

19
11

43
†

14
3

14
3

17
43

17
17

43
17

1.
17

0.
58

Fi
xe

d
19

85
-U

S-
SV

-0
7

C
M

U
FG

1
14

22
71

1
12

19
11

43
†

14
3

14
3

17
43

17
17

43
17

1.
17

0.
58

Fi
xe

d

486



Ta
bl

e
E

.2
:G

eo
m

et
ri

c
Pr

op
er

tie
s

of
D

at
as

et
(C

on
tin

ue
d)

H
ei

gh
t

L
en

gt
h

T
hi

ck
ne

ss
Sh

ea
r A

re
a

Se
ri

al
B

lo
ck

G
ro

ut
Sc

al
e

h g
h e

l w
d

t
t s

A
g

A
n
v

h g l w

M V
l w

B
ou

nd
ar

y

(m
m

)
(m

m
)

(m
m

)
(m

m
)

(m
m

)
(m

m
)

(m
m

2 )
(m

m
2 )

19
85

-U
S-

SV
-0

8
C

M
U

FG
1

14
22

71
1

12
19

11
43
†

14
3

14
3

17
43

17
17

43
17

1.
17

0.
58

Fi
x e

d
19

85
-U

S-
SV

-0
9

C
M

U
FG

1
14

22
71

1
12

19
11

43
†

14
3

14
3

17
43

17
17

43
17

1.
17

0.
58

Fi
x e

d
19

85
-U

S-
SV

-1
0

C
M

U
FG

1
14

22
71

1
12

19
11

43
†

14
3

14
3

17
43

17
17

43
17

1.
17

0.
58

Fi
x e

d
19

85
-U

S-
SV

-1
1

C
M

U
FG

1
14

22
71

1
12

19
11

43
†

14
3

14
3

17
43

17
17

43
17

1.
17

0.
58

Fi
xe

d
19

85
-U

S-
SV

-1
2

C
M

U
FG

1
14

22
71

1
12

19
11

43
†

14
3

14
3

17
43

17
17

43
17

1.
17

0.
58

Fi
x e

d
19

85
-U

S-
SV

-1
3

C
la

y
FG

1
14

22
71

1
12

19
11

43
†

18
7

18
7

22
79

53
22

79
53

1.
17

0.
58

Fi
xe

d
19

85
-U

S-
SV

-1
5

C
la

y
FG

1
14

22
71

1
12

19
11

43
†

18
7

18
7

22
79

53
22

79
53

1.
17

0.
58

Fi
x e

d
19

85
-U

S-
SV

-1
6

C
la

y
FG

1
14

22
71

1
12

19
11

43
†

18
7

18
7

22
79

53
22

79
53

1.
17

0.
58

Fi
xe

d
19

85
-U

S-
SV

-1
7

C
la

y
FG

1
14

22
71

1
12

19
11

43
†

18
7

18
7

22
79

53
22

79
53

1.
17

0.
58

Fi
xe

d
19

85
-U

S-
SV

-1
8

C
la

y
FG

1
14

22
71

1
12

19
11

43
†

18
7

18
7

22
79

53
22

79
53

1.
17

0.
58

Fi
x e

d
19

85
-U

S-
SV

-1
9

C
la

y
FG

1
14

22
71

1
12

19
11

43
†

18
7

18
7

22
79

53
22

79
53

1.
17

0.
58

Fi
xe

d
19

85
-U

S-
SV

-2
0

C
la

y
FG

1
14

22
71

1
12

19
11

43
†

18
7

18
7

22
79

53
22

79
53

1.
17

0.
58

Fi
x e

d
19

85
-U

S-
SV

-2
1

C
la

y
FG

1
14

22
71

1
12

19
11

43
†

18
7

18
7

22
79

53
22

79
53

1.
17

0.
58

Fi
x e

d
19

85
-U

S-
SV

-2
2

C
la

y
FG

1
14

22
71

1
12

19
11

43
†

18
7

18
7

22
79

53
22

79
53

1.
17

0.
58

Fi
xe

d
19

85
-U

S-
SV

-2
3

C
la

y
FG

1
14

22
71

1
12

19
11

43
†

18
7

18
7

22
79

53
22

79
53

1.
17

0.
58

Fi
x e

d
19

85
-U

S-
SV

-2
4

C
la

y
FG

1
14

22
71

1
12

19
11

43
†

18
7

18
7

22
79

53
22

79
53

1.
17

0.
58

Fi
xe

d
19

85
-U

S-
SV

-2
5

C
la

y
FG

1
14

22
71

1
12

19
11

43
†

18
7

18
7

22
79

53
22

79
53

1.
17

0.
58

Fi
x e

d
19

85
-U

S-
SV

-2
6

C
la

y
FG

1
14

22
71

1
12

19
11

43
†

18
7

18
7

22
79

53
22

79
53

1.
17

0.
58

Fi
xe

d
19

86
-J

P-
IG

-0
1

C
la

y
FG

1
17

00
85

0
11

00
10

05
19

0
19

0
20

90
00

20
90

00
1.

55
0.

77
Fi

xe
d

19
86

-J
P-

IG
-0

2
C

la
y

FG
1

17
00

85
0

11
00

10
05

19
0

19
0

20
90

00
20

90
00

1.
55

0.
77

Fi
x e

d
19

86
-J

P-
IG

-0
3

C
la

y
FG

1
17

00
85

0
11

00
10

05
19

0
19

0
20

90
00

20
90

00
1.

55
0.

77
Fi

xe
d

19
86

-J
P-

IG
-0

4
C

la
y

FG
1

17
00

85
0

11
00

10
05

19
0

19
0

20
90

00
20

90
00

1.
55

0.
77

Fi
x e

d
19

86
-J

P-
M

A
-1

5
C

M
U

PG
1

18
00

90
0

92
0

85
5

15
0

60
13

80
00

10
15

48
1.

96
0.

98
Fi

xe
d

19
86

-J
P-

M
A

-1
6

C
M

U
PG

1
18

00
90

0
92

0
85

5
15

0
60

13
80

00
10

15
48

1.
96

0.
98

Fi
x e

d
19

86
-J

P-
M

A
-1

7
C

M
U

PG
1

18
00

90
0

13
20

12
55

15
0

60
19

80
00

14
03

87
1.

36
0.

68
Fi

xe
d

19
86

-J
P-

M
A

-1
8

C
M

U
PG

1
18

00
90

0
13

20
12

55
15

0
60

19
80

00
14

03
87

1.
36

0.
68

Fi
xe

d
19

86
-J

P-
M

A
-1

9
C

M
U

PG
1

18
00

90
0

13
70

12
93

15
0

60
20

55
00

14
30

96
1.

31
0.

66
Fi

xe
d

487



Ta
bl

e
E

.2
:G

eo
m

et
ri

c
Pr

op
er

tie
s

of
D

at
as

et
(C

on
tin

ue
d)

H
ei

gh
t

L
en

gt
h

T
hi

ck
ne

ss
Sh

ea
r A

re
a

Se
ri

al
B

lo
ck

G
ro

ut
Sc

al
e

h g
h e

l w
d

t
t s

A
g

A
n
v

h g l w

M V
l w

B
ou

nd
ar

y

(m
m

)
(m

m
)

(m
m

)
(m

m
)

(m
m

)
(m

m
)

(m
m

2 )
(m

m
2 )

19
86

-J
P-

M
A

-2
0

C
M

U
PG

1
18

00
90

0
13

20
12

55
15

0
60

19
80

00
14

03
87

1.
36

0.
68

Fi
x e

d
19

86
-J

P-
M

A
-2

1
C

M
U

PG
1

18
00

90
0

13
20

12
55

15
0

60
19

80
00

14
03

87
1.

36
0.

68
Fi

x e
d

19
86

-J
P-

M
A

-2
2

C
M

U
PG

1
18

00
90

0
13

20
12

55
15

0
60

19
80

00
14

03
87

1.
36

0.
68

Fi
x e

d
19

86
-J

P-
M

A
-2

3
C

M
U

PG
1

18
00

90
0

13
20

12
55

15
0

60
19

80
00

14
03

87
1.

36
0.

68
Fi

xe
d

19
86

-J
P-

M
A

-2
4

C
M

U
PG

1
18

00
90

0
13

20
12

55
15

0
60

19
80

00
14

03
87

1.
36

0.
68

Fi
x e

d
19

86
-J

P-
M

A
-2

5
C

M
U

PG
1

18
00

90
0

13
20

12
55

15
0

60
19

80
00

14
03

87
1.

36
0.

68
Fi

xe
d

19
86

-J
P-

M
A

-2
6

C
M

U
PG

1
18

00
90

0
13

20
12

55
15

0
60

19
80

00
14

03
87

1.
36

0.
68

Fi
x e

d
19

86
-J

P-
M

A
-2

7
C

M
U

PG
1

18
00

90
0

13
20

12
55

15
0

60
19

80
00

14
03

87
1.

36
0.

68
Fi

xe
d

19
86

-J
P-

M
A

-2
8

C
M

U
PG

1
18

00
90

0
13

20
12

55
15

0
60

19
80

00
14

03
87

1.
36

0.
68

Fi
xe

d
19

86
-J

P-
M

A
-2

9
C

M
U

PG
1

18
00

90
0

13
70

12
93

15
0

60
20

55
00

14
30

96
1.

31
0.

66
Fi

x e
d

19
86

-J
P-

M
A

-3
0

C
M

U
PG

1
18

00
90

0
13

20
12

55
15

0
60

19
80

00
14

03
87

1.
36

0.
68

Fi
xe

d
19

86
-J

P-
M

A
-3

1
C

M
U

PG
1

18
00

90
0

13
20

12
55

15
0

60
19

80
00

14
03

87
1.

36
0.

68
Fi

x e
d

19
86

-J
P-

M
A

-3
2

C
M

U
PG

1
18

00
90

0
13

70
12

93
15

0
60

20
55

00
14

30
96

1.
31

0.
66

Fi
x e

d
19

86
-J

P-
M

A
-3

3
C

M
U

PG
1

18
00

90
0

13
20

12
55

15
0

60
19

80
00

14
03

87
1.

36
0.

68
Fi

xe
d

19
86

-J
P-

M
A

-3
4

C
M

U
PG

1
18

00
90

0
13

70
12

93
15

0
60

20
55

00
14

30
96

1.
31

0.
66

Fi
x e

d
19

86
-J

P-
M

A
-3

5
C

M
U

PG
1

18
00

90
0

17
20

16
55

15
0

60
25

80
00

17
92

90
1.

05
0.

52
Fi

xe
d

19
86

-J
P-

M
A

-3
6

C
M

U
PG

1
18

00
90

0
17

20
16

55
15

0
60

25
80

00
17

92
90

1.
05

0.
52

Fi
x e

d
19

86
-J

P-
M

A
-3

7
C

M
U

PG
1

18
00

90
0

13
20

12
55

15
0

60
19

80
00

14
03

87
1.

36
0.

68
Fi

xe
d

19
86

-J
P-

M
A

-3
8

C
M

U
PG

1
18

00
90

0
13

70
12

93
15

0
60

20
55

00
14

30
96

1.
31

0.
66

Fi
xe

d
19

86
-J

P-
M

A
-5

3
C

la
y

PG
1

16
00

80
0

13
20

12
55

15
0

70
∗

19
80

00
14

43
87

1.
21

0.
61

Fi
x e

d
19

86
-J

P-
M

A
-5

4
C

la
y

PG
1

16
00

80
0

13
20

12
55

15
0

70
∗

19
80

00
14

43
87

1.
21

0.
61

Fi
xe

d
19

86
-J

P-
SH

-0
1

C
M

U
FG

1
18

00
90

0
11

90
10

95
19

0
19

0
22

61
00

22
61

00
1.

51
0.

76
Fi

x e
d

19
86

-J
P-

SH
-0

2
C

M
U

FG
1

18
00

90
0

11
90

10
95

19
0

19
0

22
61

00
22

61
00

1.
51

0.
76

Fi
xe

d
19

86
-J

P-
SH

-0
3

C
M

U
FG

1
18

00
90

0
11

90
10

95
19

0
19

0
22

61
00

22
61

00
1.

51
0.

76
Fi

x e
d

19
86

-J
P-

SH
-0

4
C

M
U

FG
1

18
00

90
0

11
90

10
95

19
0

19
0

22
61

00
22

61
00

1.
51

0.
76

Fi
xe

d
19

86
-J

P-
SH

-0
5

C
M

U
FG

1
18

00
90

0
11

90
10

95
19

0
19

0
22

61
00

22
61

00
1.

51
0.

76
Fi

xe
d

19
86

-J
P-

SH
-0

6
C

M
U

FG
1

18
00

90
0

11
90

10
95

19
0

19
0

22
61

00
22

61
00

1.
51

0.
76

Fi
xe

d

488



Ta
bl

e
E

.2
:G

eo
m

et
ri

c
Pr

op
er

tie
s

of
D

at
as

et
(C

on
tin

ue
d)

H
ei

gh
t

L
en

gt
h

T
hi

ck
ne

ss
Sh

ea
r A

re
a

Se
ri

al
B

lo
ck

G
ro

ut
Sc

al
e

h g
h e

l w
d

t
t s

A
g

A
n
v

h g l w

M V
l w

B
ou

nd
ar

y

(m
m

)
(m

m
)

(m
m

)
(m

m
)

(m
m

)
(m

m
)

(m
m

2 )
(m

m
2 )

19
87

-J
P-

O
K

-0
1

C
M

U
FG

1
18

00
90

0
11

90
10

95
†

19
0

19
0

22
61

00
22

61
00

1.
51

0.
76

Fi
x e

d
19

87
-J

P-
O

K
-0

2
C

M
U

FG
1

18
00

90
0

11
90

10
95
†

19
0

19
0

22
61

00
22

61
00

1.
51

0.
76

Fi
x e

d
19

87
-J

P-
O

K
-1

0
C

M
U

FG
1

18
00

90
0

12
00

11
05
†

19
0

19
0

22
80

00
22

80
00

1.
50

0.
75

Fi
x e

d
19

87
-J

P-
O

K
-1

1
C

M
U

FG
1

18
00

90
0

12
00

11
05
†

19
0

19
0

22
80

00
22

80
00

1.
50

0.
75

Fi
xe

d
19

88
-J

P-
IG

-0
5

C
la

y
FG

1
17

00
85

0
11

00
10

05
19

0
19

0
20

90
00

20
90

00
1.

55
0.

77
Fi

x e
d

19
88

-J
P-

IG
-0

6
C

la
y

FG
1

17
00

85
0

11
00

10
05

19
0

19
0

20
90

00
20

90
00

1.
55

0.
77

Fi
xe

d
19

88
-J

P-
IG

-0
7

C
la

y
FG

1
17

00
85

0
11

00
10

05
19

0
19

0
20

90
00

20
90

00
1.

55
0.

77
Fi

x e
d

19
88

-J
P-

IG
-0

8
C

la
y

FG
1

17
00

85
0

11
00

10
05

19
0

19
0

20
90

00
20

90
00

1.
55

0.
77

Fi
xe

d
19

88
-J

P-
IG

-0
9

C
la

y
FG

1
17

00
85

0
11

00
10

05
19

0
19

0
20

90
00

20
90

00
1.

55
0.

77
Fi

xe
d

19
88

-S
L

-T
O

-0
1

C
M

U
PG

0.
5

75
9

86
0

61
0

56
0†

10
0

40
†

61
00

0
36

38
7

1.
24

1.
41

C
an

til
e v

er
19

88
-S

L
-T

O
-0

2
C

M
U

PG
0.

5
75

9
86

0
61

0
56

0†
10

0
40
†

61
00

0
36

38
7

1.
24

1.
41

C
an

til
ev

er
19

88
-S

L
-T

O
-0

3
C

M
U

PG
0.

5
75

9
86

0
61

0
56

0†
10

0
40
†

61
00

0
36

38
7

1.
24

1.
41

C
an

til
e v

er
19

88
-S

L
-T

O
-0

4
C

M
U

PG
0.

5
75

9
86

0
61

0
56

0†
10

0
40
†

61
00

0
36

38
7

1.
24

1.
41

C
an

til
e v

er
19

88
-S

L
-T

O
-0

5
C

M
U

PG
0.

5
14

10
15

10
61

0
56

0†
10

0
40
†

61
00

0
36

38
7

2.
31

3.
12

C
an

til
ev

er
19

88
-S

L
-T

O
-0

9
C

M
U

PG
0.

5
75

9
86

0
61

0
56

0†
10

0
40
†

61
00

0
36

38
7

1.
24

1.
41

C
an

til
e v

er
19

88
-S

L
-T

O
-1

0
C

M
U

PG
0.

5
75

9
86

0
61

0
56

0†
10

0
40
†

61
00

0
36

38
7

1.
24

1.
41

C
an

til
ev

er
19

88
-S

L
-T

O
-1

1
C

M
U

PG
0.

5
75

9
86

0
61

0
56

0†
10

0
40
†

61
00

0
36

38
7

1.
24

1.
41

C
an

til
e v

er
19

88
-S

L
-T

O
-1

2
C

M
U

PG
0.

5
75

9
86

0
61

0
56

0†
10

0
40
†

61
00

0
36

38
7

1.
24

1.
41

C
an

til
ev

er
19

88
-S

L
-T

O
-1

3
C

M
U

PG
0.

5
14

10
15

10
61

0
56

0†
10

0
40
†

61
00

0
36

38
7

2.
31

3.
12

C
an

til
ev

er
19

88
-U

S-
JO

-0
1

C
la

y
PG

1
91

4
45

7
91

4
83

8†
19

4
82

.3
∗

17
73

16
10

25
80

1.
00

0.
50

Fi
x e

d
19

88
-U

S-
JO

-0
2

C
la

y
PG

1
91

4
45

7
91

4
83

8†
19

4
82

.3
∗

17
73

16
10

25
80

1.
00

0.
50

Fi
xe

d
19

88
-U

S-
JO

-0
3

C
la

y
PG

1
91

4
45

7
91

4
83

8†
19

4
82

.3
∗

17
73

16
10

25
80

1.
00

0.
50

Fi
x e

d
19

88
-U

S-
JO

-0
4

C
la

y
PG

1
91

4
45

7
91

4
83

8†
19

4
82

.3
∗

17
73

16
10

25
80

1.
00

0.
50

Fi
xe

d
19

88
-U

S-
JO

-0
5

C
la

y
PG

1
91

4
45

7
91

4
83

8†
19

4
82

.3
∗

17
73

16
10

25
80

1.
00

0.
50

Fi
x e

d
19

88
-U

S-
JO

-0
6

C
la

y
PG

1
91

4
45

7
91

4
83

8†
19

4
82

.3
∗

17
73

16
10

25
80

1.
00

0.
50

Fi
xe

d
19

88
-U

S-
JO

-0
7

C
la

y
PG

1
91

4
45

7
91

4
83

8†
19

4
82

.3
∗

17
73

16
10

25
80

1.
00

0.
50

Fi
xe

d
19

88
-U

S-
JO

-0
8

C
la

y
PG

1
91

4
45

7
91

4
83

8†
19

4
82

.3
∗

17
73

16
10

25
80

1.
00

0.
50

Fi
xe

d

489



Ta
bl

e
E

.2
:G

eo
m

et
ri

c
Pr

op
er

tie
s

of
D

at
as

et
(C

on
tin

ue
d)

H
ei

gh
t

L
en

gt
h

T
hi

ck
ne

ss
Sh

ea
r A

re
a

Se
ri

al
B

lo
ck

G
ro

ut
Sc

al
e

h g
h e

l w
d

t
t s

A
g

A
n
v

h g l w

M V
l w

B
ou

nd
ar

y

(m
m

)
(m

m
)

(m
m

)
(m

m
)

(m
m

)
(m

m
)

(m
m

2 )
(m

m
2 )

19
88

-U
S-

JO
-0

9
C

la
y

PG
1

91
4

45
7

91
4

83
8†

19
4

82
.3
∗

17
73

16
10

25
80

1.
00

0.
50

Fi
x e

d
19

88
-U

S-
JO

-1
0

C
la

y
PG

1
91

4
45

7
91

4
83

8†
19

4
82

.3
∗

17
73

16
10

25
80

1.
00

0.
50

Fi
x e

d
19

88
-U

S-
JO

-1
1

C
la

y
PG

1
91

4
45

7
91

4
83

8†
19

4
82

.3
∗

17
73

16
10

25
80

1.
00

0.
50

Fi
x e

d
19

88
-U

S-
JO

-1
2

C
la

y
PG

1
91

4
45

7
91

4
83

8†
19

4
82

.3
∗

17
73

16
10

25
80

1.
00

0.
50

Fi
xe

d
19

88
-U

S-
JO

-1
3

C
la

y
PG

1
91

4
45

7
91

4
83

8†
19

4
82

.3
∗

17
73

16
10

25
80

1.
00

0.
50

Fi
x e

d
19

88
-U

S-
JO

-1
4

C
la

y
PG

1
91

4
45

7
91

4
83

8†
19

4
82

.3
∗

17
73

16
10

25
80

1.
00

0.
50

Fi
xe

d
19

88
-U

S-
JO

-1
5

C
la

y
PG

1
91

4
45

7
91

4
83

8†
19

4
82

.3
∗

17
73

16
10

25
80

1.
00

0.
50

Fi
x e

d
19

88
-U

S-
JO

-1
6

C
la

y
PG

1
91

4
45

7
91

4
83

8†
19

4
82

.3
∗

17
73

16
10

25
80

1.
00

0.
50

Fi
xe

d
19

88
-U

S-
JO

-1
7

C
M

U
PG

1
81

3
40

6
81

3
71

1†
19

4
69

.9
∗

15
77

22
10

45
16

1.
00

0.
50

Fi
xe

d
19

88
-U

S-
JO

-1
8

C
M

U
PG

1
81

3
40

6
81

3
71

1†
19

4
69

.9
∗

15
77

22
10

45
16

1.
00

0.
50

Fi
x e

d
19

88
-U

S-
JO

-1
9

C
M

U
PG

1
81

3
40

6
81

3
71

1†
19

4
69

.9
∗

15
77

22
10

45
16

1.
00

0.
50

Fi
xe

d
19

88
-U

S-
JO

-2
0

C
M

U
PG

1
81

3
40

6
81

3
71

1†
19

4
69

.9
∗

15
77

22
10

45
16

1.
00

0.
50

Fi
x e

d
19

88
-U

S-
JO

-2
1

C
M

U
PG

1
81

3
40

6
81

3
71

1†
19

4
69

.9
∗

15
77

22
10

45
16

1.
00

0.
50

Fi
x e

d
19

88
-U

S-
JO

-2
2

C
M

U
PG

1
81

3
40

6
81

3
71

1†
19

4
69

.9
∗

15
77

22
10

45
16

1.
00

0.
50

Fi
xe

d
19

88
-U

S-
JO

-2
3

C
M

U
PG

1
81

3
40

6
81

3
71

1†
19

4
69

.9
∗

15
77

22
10

45
16

1.
00

0.
50

Fi
x e

d
19

88
-U

S-
JO

-2
4

C
M

U
PG

1
81

3
40

6
81

3
71

1†
19

4
69

.9
∗

15
77

22
10

45
16

1.
00

0.
50

Fi
xe

d
19

88
-U

S-
JO

-2
5

C
M

U
PG

1
81

3
40

6
81

3
71

1†
19

4
69

.9
∗

15
77

22
10

45
16

1.
00

0.
50

Fi
x e

d
19

88
-U

S-
JO

-2
6

C
M

U
PG

1
81

3
40

6
81

3
71

1†
19

4
69

.9
∗

15
77

22
10

45
16

1.
00

0.
50

Fi
xe

d
19

88
-U

S-
JO

-2
7

C
M

U
PG

1
81

3
40

6
81

3
71

1†
19

4
69

.9
∗

15
77

22
10

45
16

1.
00

0.
50

Fi
xe

d
19

88
-U

S-
JO

-2
8

C
M

U
PG

1
81

3
40

6
81

3
71

1†
19

4
69

.9
∗

15
77

22
10

45
16

1.
00

0.
50

Fi
x e

d
19

88
-U

S-
JO

-2
9

C
M

U
PG

1
81

3
40

6
81

3
71

1†
19

4
69

.9
∗

15
77

22
10

45
16

1.
00

0.
50

Fi
xe

d
19

88
-U

S-
JO

-3
0

C
M

U
PG

1
81

3
40

6
81

3
71

1†
19

4
69

.9
∗

15
77

22
10

45
16

1.
00

0.
50

Fi
x e

d
19

88
-U

S-
JO

-3
1

C
M

U
PG

1
81

3
40

6
81

3
71

1†
19

4
69

.9
∗

15
77

22
10

45
16

1.
00

0.
50

Fi
xe

d
19

88
-U

S-
JO

-3
2

C
M

U
PG

1
81

3
40

6
81

3
71

1†
19

4
69

.9
∗

15
77

22
10

45
16

1.
00

0.
50

Fi
x e

d
19

88
-U

S-
SH

-0
3

C
M

U
FG

1
18

29
18

29
18

29
17

27
†

14
3

14
3

26
15

47
26

15
47

1.
00

1.
00

C
an

til
ev

er
19

88
-U

S-
SH

-0
4

C
M

U
FG

1
18

29
18

29
18

29
17

27
†

14
3

14
3

26
15

47
26

15
47

1.
00

1.
00

C
an

til
ev

er
19

88
-U

S-
SH

-0
5

C
M

U
FG

1
18

29
18

29
18

29
17

27
†

14
3

14
3

26
15

47
26

15
47

1.
00

1.
00

C
an

til
ev

er

490



Ta
bl

e
E

.2
:G

eo
m

et
ri

c
Pr

op
er

tie
s

of
D

at
as

et
(C

on
tin

ue
d)

H
ei

gh
t

L
en

gt
h

T
hi

ck
ne

ss
Sh

ea
r A

re
a

Se
ri

al
B

lo
ck

G
ro

ut
Sc

al
e

h g
h e

l w
d

t
t s

A
g

A
n
v

h g l w

M V
l w

B
ou

nd
ar

y

(m
m

)
(m

m
)

(m
m

)
(m

m
)

(m
m

)
(m

m
)

(m
m

2 )
(m

m
2 )

19
88

-U
S-

SH
-0

6
C

M
U

FG
1

18
29

18
29

18
29

17
27
†

14
3

14
3

26
15

47
26

15
47

1.
00

1.
00

C
an

til
e v

er
19

88
-U

S-
SH

-0
7

C
M

U
FG

1
18

29
18

29
18

29
17

27
†

14
3

14
3

26
15

47
26

15
47

1.
00

1.
00

C
an

til
e v

er
19

88
-U

S-
SH

-0
8

C
M

U
FG

1
18

29
18

29
18

29
17

27
†

14
3

14
3

26
15

47
26

15
47

1.
00

1.
00

C
an

til
e v

er
19

88
-U

S-
SH

-0
9

C
M

U
FG

1
18

29
18

29
18

29
17

27
†

14
3

14
3

26
15

47
26

15
47

1.
00

1.
00

C
an

til
ev

er
19

88
-U

S-
SH

-1
0

C
M

U
FG

1
18

29
18

29
18

29
17

27
†

14
3

14
3

26
15

47
26

15
47

1.
00

1.
00

C
an

til
e v

er
19

88
-U

S-
SH

-1
1

C
M

U
FG

1
18

29
18

29
18

29
17

27
†

14
3

14
3

26
15

47
26

15
47

1.
00

1.
00

C
an

til
ev

er
19

88
-U

S-
SH

-1
3

C
M

U
FG

1
18

29
18

29
18

29
17

27
†

14
3

14
3

26
15

47
26

15
47

1.
00

1.
00

C
an

til
e v

er
19

88
-U

S-
SH

-1
4

C
M

U
FG

1
18

29
18

29
18

29
17

27
†

14
3

14
3

26
15

47
26

15
47

1.
00

1.
00

C
an

til
ev

er
19

88
-U

S-
SH

-1
5

C
M

U
FG

1
18

29
18

29
18

29
17

27
†

14
3

14
3

26
15

47
26

15
47

1.
00

1.
00

C
an

til
ev

er
19

88
-U

S-
SH

-1
6

C
M

U
FG

1
18

29
18

29
18

29
17

27
†

14
3

14
3

26
15

47
26

15
47

1.
00

1.
00

C
an

til
e v

er
19

89
-U

S-
YA

-0
2

C
M

U
PG

1
14

22
71

1
12

19
11

19
†

19
4

63
.5
∗

23
64

86
12

70
97

1.
17

0.
58

Fi
xe

d
19

89
-U

S-
Y A

-0
3

C
M

U
PG

1
14

22
71

1
12

19
11

19
†

19
4

63
.5
∗

23
64

86
12

70
97

1.
17

0.
58

Fi
x e

d
19

89
-U

S-
Y A

-0
4

C
M

U
PG

1
14

22
71

1
12

19
11

19
†

19
4

63
.5
∗

23
64

86
12

70
97

1.
17

0.
58

Fi
x e

d
19

89
-U

S-
YA

-0
5

C
M

U
PG

1
14

22
71

1
12

19
11

19
†

19
4

63
.5
∗

23
64

86
12

70
97

1.
17

0.
58

Fi
xe

d
19

89
-U

S-
Y A

-0
6

C
M

U
PG

1
14

22
71

1
12

19
11

19
†

19
4

63
.5
∗

23
64

86
12

70
97

1.
17

0.
58

Fi
x e

d
19

89
-U

S-
YA

-0
8

C
M

U
PG

1
14

22
71

1
12

19
11

19
†

19
4

63
.5
∗

23
64

86
12

70
97

1.
17

0.
58

Fi
xe

d
19

89
-U

S-
Y A

-0
9

C
M

U
PG

1
14

22
71

1
12

19
11

19
†

19
4

63
.5
∗

23
64

86
12

70
97

1.
17

0.
58

Fi
x e

d
19

89
-U

S-
YA

-1
0

C
M

U
PG

1
14

22
71

1
12

19
11

19
†

19
4

63
.5
∗

23
64

86
12

70
97

1.
17

0.
58

Fi
xe

d
19

90
-U

S-
SH

-2
1

C
la

y
FG

1
18

29
18

29
18

29
17

27
†

13
7

13
7

25
05

73
25

05
73

1.
00

1.
00

C
an

til
ev

er
19

90
-U

S-
SH

-2
2

C
la

y
FG

1
18

29
18

29
18

29
17

27
†

13
7

13
7

25
05

73
25

05
73

1.
00

1.
00

C
an

til
e v

er
19

91
-J

P-
M

A
-0

1
C

M
U

FG
1

18
00

90
0

13
90

12
90
†

19
0

19
0

26
41

00
26

41
00

1.
29

0.
65

Fi
xe

d
19

91
-J

P-
M

A
-0

2
C

M
U

FG
1

18
00

90
0

13
90

12
90
†

19
0

19
0

26
41

00
26

41
00

1.
29

0.
65

Fi
x e

d
19

91
-J

P-
M

A
-0

3
C

M
U

FG
1

18
00

90
0

13
90

12
90
†

19
0

19
0

26
41

00
26

41
00

1.
29

0.
65

Fi
xe

d
19

91
-J

P-
M

A
-0

4
C

M
U

FG
1

18
00

90
0

21
90

12
90
†

19
0

19
0

41
61

00
41

61
00

0.
82

0.
41

Fi
x e

d
19

91
-J

P-
M

A
-0

5
C

M
U

FG
1

18
00

90
0

21
90

20
90
†

19
0

19
0

41
61

00
41

61
00

0.
82

0.
41

Fi
xe

d
19

91
-J

P-
M

A
-0

6
C

M
U

FG
1

18
00

90
0

21
90

20
90
†

19
0

19
0

41
61

00
41

61
00

0.
82

0.
41

Fi
xe

d
19

92
-U

S-
G

H
-0

1
C

M
U

PG
0.

33
3

94
0

94
0

94
0

90
6†

48
17
∗

45
12

0
21

09
7

1.
00

1.
00

C
an

til
ev

er

491



Ta
bl

e
E

.2
:G

eo
m

et
ri

c
Pr

op
er

tie
s

of
D

at
as

et
(C

on
tin

ue
d)

H
ei

gh
t

L
en

gt
h

T
hi

ck
ne

ss
Sh

ea
r A

re
a

Se
ri

al
B

lo
ck

G
ro

ut
Sc

al
e

h g
h e

l w
d

t
t s

A
g

A
n
v

h g l w

M V
l w

B
ou

nd
ar

y

(m
m

)
(m

m
)

(m
m

)
(m

m
)

(m
m

)
(m

m
)

(m
m

2 )
(m

m
2 )

19
92

-U
S-

G
H

-0
2

C
M

U
PG

0.
33

3
94

0
94

0
94

0
90

6†
48

17
∗

45
12

0
23

22
6

1.
00

1.
00

C
an

til
e v

er
19

93
-U

S-
G

H
-0

5
C

M
U

PG
0.

33
3

94
0

94
0

94
0

90
6†

48
17
∗

45
12

0
21

09
7

1.
00

1.
00

C
an

til
e v

er
19

93
-U

S-
G

H
-0

6
C

M
U

PG
0.

33
3

94
0

94
0

94
0

90
6†

48
17
∗

45
12

0
21

09
7

1.
00

1.
00

C
an

til
e v

er
19

94
-U

S-
B

R
-0

1
C

la
y

FG
1

13
21

14
35

14
22

13
20
†

13
7

13
7

19
48

14
19

48
14

0.
93
†

1.
01

C
an

til
ev

er
19

94
-U

S-
B

R
-0

2
C

la
y

FG
1

13
21

14
35

18
29

17
27
†

13
7

13
7

25
05

73
25

05
73

0.
72
†

0.
78

C
an

til
e v

er
19

94
-U

S-
B

R
-0

3
C

la
y

FG
1

13
21

14
35

22
35

21
33
†

13
7

13
7

30
61

95
30

61
95

0.
59
†

0.
64

C
an

til
ev

er
19

95
-N

Z
-B

R
-0

1
C

M
U

FG
1

20
00

24
00

18
00

17
00
†

90
90

16
20

00
16

20
00

1.
11

1.
22

C
an

til
e v

er
19

95
-N

Z
-B

R
-0

2
C

M
U

PG
1

20
00

24
00

26
00

25
00
†

90
60

23
40

00
15

59
12

0.
77

0.
85

C
an

til
ev

er
19

95
-N

Z
-B

R
-0

3
C

M
U

FG
1

20
00

24
00

26
00

25
00
†

90
90

23
40

00
23

40
00

0.
77

0.
85

C
an

til
ev

er
19

95
-N

Z
-B

R
-0

4
C

M
U

FG
1

20
00

24
00

42
00

41
00
†

90
90

37
80

00
37

80
00

0.
48

0.
52

C
an

til
e v

er
19

95
-N

Z
-B

R
-0

6
C

M
U

PG
1

20
00

24
00

18
00

17
00
†

14
0

60
25

20
00

10
79

51
1.

11
1.

22
C

an
til

ev
er

19
95

-N
Z

-B
R

-0
7

C
M

U
PG

1
20

00
24

00
26

00
25

00
†

14
0

60
36

40
00

15
59

12
0.

77
0.

85
C

an
til

e v
er

19
95

-N
Z

-B
R

-0
8

C
M

U
PG

1
20

00
24

00
42

00
41

00
†

14
0

60
58

80
00

25
18

34
0.

48
0.

52
C

an
til

e v
er

19
95

-N
Z

-B
R

-1
0

C
M

U
PG

1
20

00
24

00
18

00
17

00
†

14
0

60
25

20
00

10
79

51
1.

11
1.

22
C

an
til

ev
er

19
95

-N
Z

-B
R

-1
1

C
M

U
PG

1
20

00
24

00
26

00
25

00
†

14
0

60
36

40
00

15
59

12
0.

77
0.

85
C

an
til

e v
er

19
95

-N
Z

-B
R

-1
2

C
M

U
PG

1
20

00
24

00
42

00
41

00
†

14
0

60
58

80
00

25
18

34
0.

48
0.

52
C

an
til

ev
er

19
96

-S
L

-T
O

-0
6

C
M

U
PG

0.
5

75
9

38
0

61
0

56
0†

10
0

40
∗

61
00

0
36

51
6

1.
24

1.
36

C
an

til
e v

er
19

96
-S

L
-T

O
-0

8
C

M
U

PG
0.

5
75

9
38

0
61

0
56

0†
10

0
40
∗

61
00

0
36

51
6

1.
24

1.
36

C
an

til
ev

er
19

96
-S

L
-T

O
-1

0
C

M
U

PG
0.

5
75

9
38

0
61

0
56

0†
10

0
40
∗

61
00

0
36

51
6

1.
24

1.
36

C
an

til
ev

er
19

96
-S

L
-T

O
-1

2
C

M
U

PG
0.

5
75

9
38

0
61

0
56

0†
10

0
40
∗

61
00

0
36

51
6

1.
24

1.
36

C
an

til
e v

er
19

96
-S

L
-T

O
-1

4
C

M
U

PG
0.

5
75

9
38

0
61

0
56

0†
10

0
40
∗

61
00

0
36

51
6

1.
24

1.
36

C
an

til
ev

er
19

96
-S

L
-T

O
-1

6
C

M
U

PG
0.

5
75

9
38

0
61

0
56

0†
10

0
40
∗

61
00

0
36

51
6

1.
24

1.
36

C
an

til
e v

er
19

96
-U

S-
SH

-0
2

C
M

U
PG

1
14

22
71

1
20

32
19

30
†

19
4

67
.4

39
42

08
#R

E
F!

0.
70

0.
35

Fi
xe

d
19

98
-U

S-
SH

-0
1

C
M

U
PG

1
14

22
71

1
28

45
27

43
†

19
4

67
.4

55
19

30
24

18
87

0.
50

0.
25

Fi
x e

d
19

98
-U

S-
SH

-0
2

C
M

U
PG

1
14

22
71

1
20

32
19

30
†

19
4

67
.4

39
42

08
18

70
90

0.
70

0.
35

Fi
xe

d
19

98
-U

S-
SH

-0
3

C
M

U
PG

1
14

22
71

1
14

22
13

20
†

19
4

67
.4

27
58

68
14

59
76

1.
00

0.
50

Fi
xe

d
19

98
-U

S-
SH

-0
4

C
M

U
PG

1
14

22
71

1
28

45
27

43
†

19
4

67
.4

55
19

30
24

18
87

0.
50

0.
25

Fi
xe

d

492



Ta
bl

e
E

.2
:G

eo
m

et
ri

c
Pr

op
er

tie
s

of
D

at
as

et
(C

on
tin

ue
d)

H
ei

gh
t

L
en

gt
h

T
hi

ck
ne

ss
Sh

ea
r A

re
a

Se
ri

al
B

lo
ck

G
ro

ut
Sc

al
e

h g
h e

l w
d

t
t s

A
g

A
n
v

h g l w

M V
l w

B
ou

nd
ar

y

(m
m

)
(m

m
)

(m
m

)
(m

m
)

(m
m

)
(m

m
)

(m
m

2 )
(m

m
2 )

19
98

-U
S-

SH
-0

5
C

M
U

PG
1

14
22

71
1

20
32

19
30
†

19
4

67
.4

39
42

08
18

70
90

0.
70

0.
35

Fi
x e

d
19

98
-U

S-
SH

-0
6

C
M

U
PG

1
14

22
71

1
14

22
13

20
†

19
4

67
.4

27
58

68
14

59
76

1.
00

0.
50

Fi
x e

d
20

00
-J

P-
O

H
-0

1
C

M
U

FG
1

18
00

90
0

11
97

11
44
†

19
7

19
7

23
58

09
23

58
09

1.
50

0.
75

Fi
x e

d
20

00
-J

P-
O

H
-0

2
C

M
U

FG
1

18
00

90
0

11
97

11
44
†

19
7

19
7

23
58

09
23

58
09

1.
50

0.
75

Fi
xe

d
20

00
-J

P-
O

H
-0

3
C

M
U

FG
1

18
00

90
0

11
97

11
44
†

19
7

19
7

23
58

09
23

58
09

1.
50

0.
75

Fi
x e

d
20

00
-J

P-
O

H
-0

4
C

M
U

FG
1

18
00

90
0

11
97

11
44
†

19
7

19
7

23
58

09
23

58
09

1.
50

0.
75

Fi
xe

d
20

07
-A

U
-H

A
-0

1
C

la
y

PG
1

22
45

24
08

28
70

27
85

15
0

70
43

05
00

23
29

00
0.

78
0.

84
C

an
til

e v
er

20
07

-A
U

-H
A

-0
2

C
la

y
PG

1
22

45
24

08
28

70
27

85
15

0
70

43
05

00
23

29
00

0.
78

0.
84

C
an

til
ev

er
20

07
-A

U
-H

A
-0

3
C

la
y

PG
1

22
45

24
08

28
70

27
85

15
0

70
43

05
00

23
29

00
0.

78
0.

84
C

an
til

ev
er

20
07

-A
U

-H
A

-0
4

C
la

y
PG

1
22

45
24

08
28

70
27

85
15

0
70

43
05

00
23

29
00

0.
78

0.
84

C
an

til
e v

er
20

07
-A

U
-H

A
-0

5
C

la
y

PG
1

22
45

24
08

28
70

27
85

15
0

70
43

05
00

23
29

00
0.

78
0.

84
C

an
til

ev
er

20
07

-A
U

-H
A

-0
6

C
la

y
PG

1
22

45
24

08
28

70
27

85
15

0
70

43
05

00
23

29
00

0.
78

0.
84

C
an

til
e v

er
20

07
-A

U
-H

A
-0

7
C

la
y

PG
1

22
45

24
08

28
70

26
10

15
0

70
43

05
00

23
29

00
0.

78
0.

84
C

an
til

e v
er

20
07

-A
U

-H
A

-0
8

C
la

y
PG

1
22

45
24

08
28

70
26

10
15

0
70

43
05

00
23

29
00

0.
78

0.
84

C
an

til
ev

er
20

07
-A

U
-H

A
-0

9
C

la
y

PG
1

22
45

24
08

28
70

27
85

15
0

70
43

05
00

21
69

00
0.

78
0.

84
C

an
til

e v
er

20
07

-A
U

-H
A

-1
1

C
la

y
PG

1
14

12
14

12
28

70
27

85
15

0
70

43
05

00
23

29
00

0.
49

0.
49

C
an

til
ev

er
20

07
-A

U
-H

A
-1

2
C

la
y

PG
1

14
12

14
12

28
70

27
85

15
0

70
43

05
00

23
29

00
0.

49
0.

49
C

an
til

e v
er

20
07

-A
U

-H
A

-1
3

C
la

y
PG

1
14

12
14

12
12

70
11

85
15

0
70

19
05

00
14

25
80

1.
11

1.
11

C
an

til
ev

er
20

07
-A

U
-H

A
-1

4
C

la
y

PG
1

14
12

14
12

12
70

11
85

15
0

70
19

05
00

14
25

80
1.

11
1.

11
C

an
til

ev
er

20
07

-N
Z

-V
O

-0
1

C
M

U
FG

1
18

00
18

38
18

00
17

00
†

14
0

14
0

25
20

00
25

20
00

1.
00

1.
02

C
an

til
e v

er
20

07
-N

Z
-V

O
-0

2
C

M
U

FG
1

18
00

18
38

18
00

17
00
†

14
0

14
0

25
20

00
25

20
00

1.
00

1.
02

C
an

til
ev

er
20

07
-N

Z
-V

O
-0

4
C

M
U

FG
1

18
00

18
38

18
00

17
00
†

14
0

14
0

25
20

00
25

20
00

1.
00

1.
02

C
an

til
e v

er
20

07
-N

Z
-V

O
-0

5
C

M
U

PG
1

18
00

18
38

18
00

17
00
†

14
0

30
25

20
00

18
58

06
1.

00
1.

02
C

an
til

ev
er

20
07

-N
Z

-V
O

-0
6

C
M

U
PG

1
18

00
18

38
18

00
17

00
†

14
0

30
25

20
00

15
48

38
1.

00
1.

02
C

an
til

e v
er

20
07

-N
Z

-V
O

-0
7

C
M

U
FG

1
18

00
18

38
18

00
17

00
†

14
0

14
0

25
20

00
25

20
00

1.
00

1.
02

C
an

til
ev

er
20

07
-N

Z
-V

O
-0

8
C

M
U

FG
1

18
00

18
38

18
00

17
00
†

14
0

14
0

25
20

00
25

20
00

1.
00

1.
02

C
an

til
ev

er
20

07
-N

Z
-V

O
-0

9
C

M
U

FG
1

36
00

36
38

18
00

17
00
†

14
0

14
0

25
20

00
25

20
00

2.
00

2.
02

C
an

til
ev

er

493



Ta
bl

e
E

.2
:G

eo
m

et
ri

c
Pr

op
er

tie
s

of
D

at
as

et
(C

on
tin

ue
d)

H
ei

gh
t

L
en

gt
h

T
hi

ck
ne

ss
Sh

ea
r A

re
a

Se
ri

al
B

lo
ck

G
ro

ut
Sc

al
e

h g
h e

l w
d

t
t s

A
g

A
n
v

h g l w

M V
l w

B
ou

nd
ar

y

(m
m

)
(m

m
)

(m
m

)
(m

m
)

(m
m

)
(m

m
)

(m
m

2 )
(m

m
2 )

20
07

-N
Z

-V
O

-1
0

C
M

U
FG

1
18

00
18

38
30

00
29

00
†

14
0

14
0

42
00

00
42

00
00

0.
60

0.
61

C
an

til
e v

er
20

07
-P

O
-H

A
-0

2
C

M
U

PG
0.

5
80

8
94

8
12

06
11

03
†

10
0

30
†

11
21

58
55

08
0

0.
66

0.
66

C
an

til
e v

er
20

07
-P

O
-H

A
-0

3
C

M
U

PG
0.

5
80

8
94

8
12

06
11

03
†

10
0

30
†

11
21

58
55

08
0

0.
66

0.
66

C
an

til
e v

er
20

07
-P

O
-H

A
-0

4
C

M
U

PG
0.

5
80

8
94

8
12

06
11

03
†

10
0

30
†

11
21

58
55

08
0

0.
66

0.
66

C
an

til
ev

er
20

07
-P

O
-H

A
-0

5
C

M
U

PG
0.

5
80

8
94

8
12

06
11

03
†

10
0

30
†

11
21

58
55

08
0

0.
66

0.
66

C
an

til
e v

er
20

08
-C

A
-M

A
-0

1
C

M
U

PG
0.

5
18

00
18

00
18

00
17

55
90

31
16

20
00

72
90

3
1.

00
1.

00
C

an
til

ev
er

20
08

-C
A

-M
A

-0
2

C
M

U
PG

0.
5

18
00

18
00

18
00

17
55

90
31

16
20

00
72

90
3

1.
00

1.
00

C
an

til
e v

er
20

08
-C

A
-M

A
-0

4
C

M
U

PG
0.

5
90

0
90

0
18

00
17

55
90

31
16

20
00

72
90

3
0.

50
0.

50
C

an
til

ev
er

20
08

-C
A

-M
A

-0
5

C
M

U
PG

0.
5

27
00

27
00

18
00

17
55

90
31

16
20

00
72

90
3

1.
50

1.
50

C
an

til
ev

er
20

09
-U

S-
M

I-
01

C
M

U
PG

1
26

42
26

42
38

51
37

54
†

19
4

63
.5
∗

74
70

94
33

16
12

0.
69

0.
69

C
an

til
e v

er
20

09
-U

S-
M

I-
02

C
M

U
PG

1
26

42
26

42
38

51
37

54
†

19
4

63
.5
∗

74
70

94
33

16
12

0.
69

0.
69

C
an

til
ev

er
20

09
-U

S-
M

I-
03

C
M

U
PG

1
26

42
13

21
38

51
37

54
†

19
4

63
.5
∗

74
70

94
33

16
12

0.
69

0.
34

Fi
x e

d
20

09
-U

S-
M

I-
04

C
M

U
PG

1
26

42
13

21
38

51
37

54
†

19
4

63
.5
∗

74
70

94
33

16
12

0.
69

0.
34

Fi
x e

d
20

09
-U

S-
M

I-
07

C
la

y
FG

1
26

42
26

42
38

51
37

54
†

14
3

14
3

55
06

93
55

06
93

0.
69

0.
69

C
an

til
ev

er
20

09
-U

S-
M

I-
08

C
la

y
FG

1
26

42
26

42
38

51
37

54
†

14
3

14
3

55
06

93
55

06
93

0.
69

0.
69

C
an

til
e v

er
20

10
-U

S-
E

L
-0

1
C

M
U

PG
1

14
22

15
24

26
31

25
35
†

19
4

63
.5
∗

51
04

14
22

96
77

0.
58

0.
58

C
an

til
ev

er
20

10
-U

S-
E

L
-0

2
C

M
U

PG
1

14
22

15
24

26
31

25
35
†

19
4

63
.5
∗

51
04

14
22

96
77

0.
58

0.
58

C
an

til
e v

er
20

10
-U

S-
E

L
-0

3
C

M
U

PG
1

14
22

15
24

26
31

25
35
†

19
4

63
.5
∗

51
04

14
22

96
77

0.
58

0.
58

C
an

til
ev

er
20

10
-U

S-
E

L
-0

4
C

M
U

PG
1

14
22

15
24

26
31

25
35
†

19
4

63
.5
∗

51
04

14
22

96
77

0.
58

0.
58

C
an

til
ev

er
20

10
-U

S-
E

L
-0

5
C

M
U

PG
1

14
22

15
24

26
31

25
35
†

19
4

63
.5
∗

51
04

14
25

03
22

0.
58

0.
58

C
an

til
e v

er
20

10
-U

S-
E

L
-0

6
C

M
U

PG
1

14
22

15
24

26
31

25
35
†

19
4

63
.5
∗

51
04

14
27

16
12

0.
58

0.
58

C
an

til
ev

er
20

10
-U

S-
N

O
-0

1
C

M
U

PG
1

23
37

23
37

26
31

25
35
†

19
4

63
.5
∗

51
04

14
22

96
77

0.
89

0.
89

C
an

til
e v

er
20

10
-U

S-
N

O
-0

2
C

M
U

PG
1

23
37

23
37

26
31

25
35
†

19
4

63
.5
∗

51
04

14
22

96
77

0.
89

0.
89

C
an

til
ev

er
20

10
-U

S-
N

O
-0

3
C

M
U

PG
1

23
37

23
37

26
31

25
35
†

19
4

63
.5
∗

51
04

14
22

96
77

0.
89

0.
89

C
an

til
e v

er
20

10
-U

S-
N

O
-0

4
C

M
U

PG
1

23
37

23
37

26
31

25
35
†

19
4

63
.5
∗

51
04

14
25

03
22

0.
89

0.
89

C
an

til
ev

er
20

10
-U

S-
N

O
-0

5
C

M
U

PG
1

23
37

23
37

26
31

25
35
†

19
4

63
.5
∗

51
04

14
27

16
12

0.
89

0.
89

C
an

til
ev

er
20

10
-U

S-
N

O
-0

6
C

M
U

FG
1

23
37

23
37

26
31

25
35
†

19
4

19
4

51
04

14
51

04
14

0.
89

0.
89

C
an

til
ev

er

494



T a
bl

e
E

.3
:R

ei
nf

or
ce

m
en

tD
et

ai
ls

of
Sp

ec
im

en
s

R
ei

nf
or

ce
m

en
t

R
ei

nf
or

ce
m

en
t A

re
a

R
ei

nf
or

ce
m

en
t S

pa
ci

ng
G

ro
ut

Sp
ac

in
g

Se
ri

al
Fl

e x
ur

al
V

er
tic

al
Sh

ea
r

Jo
in

t
A
t

A
c

A
h

A
j

s c
s h

s j
s g

h
s g

v

(m
m

2 )
(m

m
2 )

(m
m

2 )
(m

m
2 )

(m
m

)
(m

m
)

(m
m

)
(m

m
)

(m
m

)

19
68

-M
X

-M
E

-0
9

(2
)2

#4
(3

)#
3

–
Ø

2.
5m

m
12

29
71

–
4.

91
65

0†
–

40
0

65
0

26
50

19
68

-M
X

-M
E

-1
0

(2
)2

#4
(3

)#
3

–
Ø

2.
5m

m
12

29
71

–
4.

91
65

0†
–

40
0

65
0

26
50

19
68

-M
X

-M
E

-1
1

(2
)2

#4
(3

)#
3

–
Ø

2.
5m

m
12

29
71

–
4.

91
65

0†
–

40
0

65
0

26
50

19
68

-M
X

-M
E

-1
2

(2
)#

4
#3

–
Ø

2.
5m

m
57

9
71

–
4.

91
13

00
†

–
40

0
13

00
26

50
19

68
-M

X
-M

E
-1

3
(2

)#
4

#3
–

Ø
2.

5m
m

57
9

71
–

4.
91

13
00
†

–
40

0
13

00
26

50
19

68
-M

X
-M

E
-1

4
(2

)2
#4

(3
)#

3
–

–
12

29
71

–
–

65
0†

–
–

65
0

26
50

19
68

-M
X

-M
E

-1
5

(2
)#

4
#3

–
–

57
9

71
–

–
13

00
†

–
–

13
00

26
50

19
68

-M
X

-M
E

-1
6

(2
)2

#4
(3

)#
3

–
Ø

2.
5m

m
12

29
71

–
4.

91
65

0†
–

40
0

65
0

26
50

19
68

-M
X

-M
E

-1
7

(2
)4

#4
(3

)#
3

–
Ø

2.
5m

m
22

45
71

–
4.

91
65

0†
–

40
0

65
0

26
50

19
68

-M
X

-M
E

-1
8

(2
)2

#4
(3

)#
3

–
Ø

2.
5m

m
12

29
71

–
4.

91
65

0†
–

40
0

65
0

26
50

19
69

-M
X

-M
E

-1
1

(2
)2

#5
–

–
–

79
6

–
–

–
–

–
–

16
00

20
00

19
69

-M
X

-M
E

-1
4

2#
5

–
–

–
39

8
–

–
–

–
–

–
18

00
20

00
19

69
-M

X
-M

E
-1

5
(2

)2
#5

–
–

–
79

6
–

–
–

–
–

–
16

00
20

00
19

69
-M

X
-M

E
-1

6
(2

)2
#5

–
–

–
79

6
–

–
–

–
–

–
16

00
20

00
19

69
-M

X
-M

E
-1

7
(2

)2
#5

–
–

–
79

6
–

–
–

–
–

–
16

00
20

00
19

69
-M

X
-M

E
-1

8
(2

)2
#5

(2
)#

4
–

–
79

6
12

7
–

–
63

3†
–

–
63

3
20

00
19

69
-M

X
-M

E
-1

9
(2

)2
#4

–
–

–
55

4
–

–
–

–
–

–
16

00
20

00
19

69
-M

X
-M

E
-2

0
(2

)2
#5

(2
)#

4
–

–
79

6
12

7
–

–
63

3†
–

–
63

3
20

00
19

69
-M

X
-M

E
-2

1
(2

)2
#5

–
–

–
79

6
–

–
–

–
–

–
16

00
20

00
19

69
-M

X
-M

E
-2

4
2#

3
–

–
–

15
3

–
–

–
–

–
–

18
00

20
00

19
69

-M
X

-M
E

-2
5

(2
)2

#5
(2

)#
4

–
–

79
6

12
7

–
–

63
3†

–
–

0
0

19
69

-M
X

-M
E

-2
9

(2
)2

#5
–

–
–

79
6

–
–

–
–

–
–

16
00

20
00

19
71

-N
Z

-W
I-

01
#3

(2
)#

3
–

–
71

71
–

–
30

4.
8†

–
–

0
0

19
71

-N
Z

-W
I-

02
#3

(2
)#

3
–

–
71

71
–

–
30

4.
8†

–
–

0
0

19
71

-N
Z

-W
I-

03
#3

(2
)#

3
–

–
71

71
–

–
30

4.
8†

–
–

0
0

19
71

-N
Z

-W
I-

04
#3

(2
)#

3
–

–
71

71
–

–
30

4.
8†

–
–

30
5

11
43

19
71

-N
Z

-W
I-

05
#3

(2
)#

3
–

–
71

71
–

–
30

4.
8†

–
–

0
0

19
71

-N
Z

-W
I-

06
#3

(2
)#

3
–

–
71

71
–

–
40

6.
4†

–
–

0
0

495



T a
bl

e
E

.3
:R

ei
nf

or
ce

m
en

tD
et

ai
ls

of
D

at
as

et
(C

on
tin

ue
d)

R
ei

nf
or

ce
m

en
t

R
ei

nf
or

ce
m

en
t A

re
a

R
ei

nf
or

ce
m

en
t S

pa
ci

ng
G

ro
ut

Sp
ac

in
g

Se
ri

al
Fl

e x
ur

al
V

er
tic

al
Sh

ea
r

Jo
in

t
A
t

A
c

A
h

A
j

s c
s h

s j
s g

h
s g

v

(m
m

2 )
(m

m
2 )

(m
m

2 )
(m

m
2 )

(m
m

)
(m

m
)

(m
m

)
(m

m
)

(m
m

)

19
71

-N
Z

-W
I-

07
#3

(2
)#

3
–

–
71

71
–

–
40

6.
4†

–
–

0
0

19
71

-N
Z

-W
I-

08
#3

(2
)#

3
–

–
71

71
–

–
40

6.
4†

–
–

0
0

19
71

-N
Z

-W
I-

09
#3

(2
)#

3
–

–
71

71
–

–
40

6.
4†

–
–

0
0

19
71

-N
Z

-W
I-

10
#7

–
–

–
38

7
–

–
–

40
6.

4†
–

–
0

0
19

71
-N

Z
-W

I-
11

#7
–

2#
5

–
38

7
–

40
0

–
40

6.
4†

38
1†

–
0

0
19

71
-N

Z
-W

I-
12

#3
–

–
–

71
–

–
–

–
–

–
0

0
19

71
-N

Z
-W

I-
13

#3
–

–
–

71
–

–
–

–
–

–
0

0
19

71
-N

Z
-W

I-
15

(2
)#

6
–

–
–

56
8

–
–

–
–

–
–

0
0

19
71

-N
Z

-W
I-

16
#3

(4
)#

3
–

–
71

71
–

–
30

4.
8†

–
–

0
0

19
71

-N
Z

-W
I-

17
#3

(4
)#

3
–

–
71

71
–

–
30

4.
8†

–
–

0
0

19
71

-N
Z

-W
I-

18
#3

–
–

–
71

–
–

–
–

–
–

0
0

19
71

-N
Z

-W
I-

19
#3

(2
)#

3
–

–
71

71
–

–
30

4.
8†

–
–

0
0

19
71

-N
Z

-W
I-

20
#3

(2
)#

3
–

–
71

71
–

–
30

4.
8†

–
–

0
0

19
76

-U
S-

M
A

-0
1

#6
–

–
–

28
4

–
–

–
–

–
–

0
0

19
76

-U
S-

M
A

-0
2

#6
–

–
–

28
4

–
–

–
–

–
–

0
0

19
76

-U
S-

M
A

-0
3

#4
–

–
–

12
9

–
–

–
–

–
–

0
0

19
76

-U
S-

M
A

-0
4

#4
–

–
–

12
9

–
–

–
–

–
–

0
0

19
76

-U
S-

M
A

-0
5

#6
–

–
–

28
4

–
–

–
–

–
–

0
0

19
76

-U
S-

M
A

-0
6

#6
–

–
–

28
4

–
–

–
–

–
–

0
0

19
76

-U
S-

M
A

-0
7

#6
–

(3
)#

5
–

28
4

–
20

0
–

–
40

6†
–

0
0

19
76

-U
S-

M
A

-0
8

#6
–

(3
)#

5
–

28
4

–
20

0
–

–
40

6†
–

0
0

19
76

-U
S-

M
A

-0
9

#8
–

–
–

51
0

–
–

–
–

–
–

0
0

19
76

-U
S-

M
A

-1
0

#8
–

–
–

51
0

–
–

–
–

–
–

0
0

19
76

-U
S-

M
A

-1
1

#8
–

–
–

51
0

–
–

–
–

–
–

40
1

16
26

19
76

-U
S-

M
A

-1
2

#8
–

–
–

51
0

–
–

–
–

–
–

40
1

16
26

19
77

-N
Z

-P
R

-0
5

(2
)#

6
(4

)#
6

(8
)#

6
–

56
8

28
4

28
4

–
36

4†
20

6†
–

0
0

19
77

-N
Z

-P
R

-0
6

(2
)#

6
(2

)#
5

(8
)#

5
–

56
8

20
0

20
0

–
60

7†
20

6†
–

0
0

19
77

-N
Z

-P
R

-0
7

(2
)#

6
(4

)#
6

(8
)#

6
–

56
8

28
4

28
4

–
36

4†
20

6†
–

0
0

496



Ta
bl

e
E

.3
:R

ei
nf

or
ce

m
en

tD
et

ai
ls

of
D

at
as

et
(C

on
tin

ue
d)

R
ei

nf
or

ce
m

en
t

R
ei

nf
or

ce
m

en
t A

re
a

R
ei

nf
or

ce
m

en
t S

pa
ci

ng
G

ro
ut

Sp
ac

in
g

Se
ri

al
Fl

e x
ur

al
V

er
tic

al
Sh

ea
r

Jo
in

t
A
t

A
c

A
h

A
j

s c
s h

s j
s g

h
s g

v

(m
m

2 )
(m

m
2 )

(m
m

2 )
(m

m
2 )

(m
m

)
(m

m
)

(m
m

)
(m

m
)

(m
m

)

19
77

-N
Z

-P
R

-0
8

(2
)#

6
(2

)#
5

(8
)#

5
–

56
8

20
0

20
0

–
60

7†
20

6†
–

0
0

19
77

-N
Z

-P
R

-0
9

(2
)#

6
(4

)#
6

(8
)#

6
–

56
8

28
4

28
4

–
36

4†
20

6†
–

0
0

19
77

-N
Z

-P
R

-1
0

(2
)#

6
(4

)#
6

(8
)#

6
–

56
8

28
4

28
4

–
36

4†
20

6†
–

0
0

19
78

-U
S-

C
H

-0
2

#5
–

–
–

20
0

–
–

–
–

–
–

91
5

14
22

19
78

-U
S-

C
H

-0
3

#5
–

–
–

20
0

–
–

–
–

–
–

0
0

19
78

-U
S-

C
H

-0
4

#5
–

#5
–

20
0

–
20

0
–

–
71

1†
–

0
0

19
78

-U
S-

C
H

-0
5

#5
–

#5
–

20
0

–
20

0
–

–
71

1†
–

91
5

71
1

19
78

-U
S-

C
H

-0
6

#8
–

(4
)#

5
–

51
0

–
20

0
–

–
28

4†
–

0
0

19
78

-U
S-

C
H

-0
7

#8
–

–
–

51
0

–
–

–
–

–
–

0
0

19
78

-U
S-

C
H

-0
8

#8
–

–
–

51
0

–
–

–
–

–
–

91
5

14
22

19
78

-U
S-

C
H

-0
9

#8
–

2#
5

–
51

0
–

20
0

–
–

47
4†

–
0

0
19

78
-U

S-
C

H
-1

0
#8

–
(2

)#
5

–
51

0
–

20
0

–
–

47
4†

–
91

5
47

4
19

78
-U

S-
C

H
-1

1
–

–
(4

)#
6

–
–

–
28

4
–

–
28

4†
–

0
0

19
78

-U
S-

C
H

-1
4

#5
–

–
–

20
0

–
–

–
–

–
–

0
0

19
78

-U
S-

C
H

-1
5

#5
–

#5
–

20
0

–
20

0
–

–
71

1†
–

0
0

19
78

-U
S-

C
H

-1
6

#5
–

#5
–

20
0

–
20

0
–

–
71

1†
–

91
5

71
1

19
78

-U
S-

C
H

-1
7

#5
–

(5
)#

5
–

20
0

–
20

0
–

–
23

7†
–

0
0

19
78

-U
S-

C
H

-1
8

#8
–

(5
)#

5
–

51
0

–
20

0
–

–
23

7†
–

0
0

19
78

-U
S-

C
H

-1
9

#8
–

–
–

51
0

–
–

–
–

–
–

0
0

19
78

-U
S-

C
H

-2
0

#8
–

–
–

51
0

–
–

–
–

–
–

91
5

14
22

19
78

-U
S-

C
H

-2
1

#8
–

#5
–

51
0

–
20

0
–

–
47

4†
–

0
0

19
78

-U
S-

C
H

-2
2

#8
–

(2
)#

5
–

51
0

–
20

0
–

–
47

4†
–

91
5

47
4

19
78

-U
S-

C
H

-2
3

#8
–

(5
)#

6
–

51
0

–
28

4
–

–
23

7†
–

0
0

19
78

-U
S-

C
H

-2
4

#8
–

(5
)#

6
–

51
0

–
28

4
–

–
23

7†
–

0
0

19
78

-U
S-

H
I-

01
–

–
–

–
–

–
–

–
–

–
–

0
0

19
78

-U
S-

H
I-

02
#8

–
–

–
51

0
–

–
–

–
–

–
0

0
19

78
-U

S-
H

I-
03

#8
–

–
–

51
0

–
–

–
–

–
–

91
5

20
32

497



T a
bl

e
E

.3
:R

ei
nf

or
ce

m
en

tD
et

ai
ls

of
D

at
as

et
(C

on
tin

ue
d)

R
ei

nf
or

ce
m

en
t

R
ei

nf
or

ce
m

en
t A

re
a

R
ei

nf
or

ce
m

en
t S

pa
ci

ng
G

ro
ut

Sp
ac

in
g

Se
ri

al
Fl

e x
ur

al
V

er
tic

al
Sh

ea
r

Jo
in

t
A
t

A
c

A
h

A
j

s c
s h

s j
s g

h
s g

v

(m
m

2 )
(m

m
2 )

(m
m

2 )
(m

m
2 )

(m
m

)
(m

m
)

(m
m

)
(m

m
)

(m
m

)

19
78

-U
S-

H
I-

04
#8

–
2#

5
–

51
0

–
40

0
–

–
67

7†
–

0
0

19
78

-U
S-

H
I-

05
#8

–
2#

5
–

51
0

–
40

0
–

–
67

7†
–

91
5

67
7

19
78

-U
S-

H
I-

06
#8

–
(3

)#
5

–
51

0
–

20
0

–
–

50
8†

–
0

0
19

78
-U

S-
H

I-
07

#8
–

(3
)#

5
–

51
0

–
20

0
–

–
50

8†
–

91
5

50
8

19
78

-U
S-

H
I-

08
#8

–
(4

)#
5

–
51

0
–

20
0

–
–

40
6†

–
0

0
19

78
-U

S-
H

I-
09

#8
–

(5
)#

5
–

51
0

–
20

0
–

–
33

9†
–

0
0

19
79

-U
S-

H
I-

01
#7

#7
–

–
38

7
38

7
–

–
91

4†
–

–
0

0
19

79
-U

S-
H

I-
02

#7
#7

#5
–

38
7

38
7

20
0

–
91

4†
50

8†
–

0
0

19
79

-U
S-

H
I-

03
#7

#7
2#

5
–

38
7

38
7

40
0

–
91

4†
33

9†
–

0
0

19
79

-U
S-

H
I-

04
#7

#7
(3

)#
5

–
38

7
38

7
20

0
–

91
4†

25
4†

–
0

0
19

79
-U

S-
H

I-
05

#7
#7

(4
)#

5
–

38
7

38
7

20
0

–
91

4†
20

3†
–

0
0

19
79

-U
S-

H
I-

06
#7

#7
(4

)#
6

–
38

7
38

7
28

4
–

91
4†

20
3†

–
0

0
19

79
-U

S-
H

I-
08

#7
#7

#6
–

38
7

38
7

28
4

–
91

4
50

8†
–

0
0

19
79

-U
S-

H
I-

09
#7

#7
2#

6
–

38
7

38
7

56
8

–
91

4
33

9†
–

0
0

19
79

-U
S-

H
I-

10
#7

#7
(3

)#
6

–
38

7
38

7
28

4
–

91
4

25
4†

–
0

0
19

82
-N

Z
-T

H
-0

1
D

12
D

10
(2

)D
12

–
11

3
78

.5
11

3
–

70
0

80
0†

–
70

0
80

0
19

82
-N

Z
-T

H
-0

2
D

10
(6

)D
10

(1
2)

D
10

–
78

.5
78

.5
78

.5
–

20
0

20
0†

–
0

0
19

82
-N

Z
-T

H
-0

3
D

16
D

16
–

–
20

1
20

1
–

–
70

0
–

–
70

0
24

00
19

82
-N

Z
-T

H
-0

4
D

16
D

16
(4

)D
12

–
20

1
20

1
11

3
–

70
0

48
0†

–
70

0
48

0
19

82
-N

Z
-T

H
-0

5
D

16
(2

)D
16

(1
2)

D
16

–
20

1
20

1
20

1
–

46
7

20
0†

–
0

0
19

82
-N

Z
-T

H
-0

6
D

16
D

16
(4

)D
16

–
20

1
20

1
20

1
–

70
0

48
0†

–
0

0

19
82

-N
Z

-T
H

-0
8

D
20

(2
)D

20
&

(2
)D

16
(1

2)
D

20
–

31
4

15
7

21
6

–
28

0
20

0†
–

0
0

19
83

-J
P-

M
A

-0
1

2D
25

(3
)D

10
D

10
–

10
20

71
71

–
40

0
40

0
–

0
0

19
83

-J
P-

M
A

-0
3

2D
22

(2
)D

10
D

10
–

77
4

78
.5

71
–

40
0

40
0

–
0

0
19

83
-J

P-
M

A
-0

4
D

29
D

10
D

10
–

64
5

71
71

–
40

0
40

0
–

0
0

19
84

-J
P-

IG
-0

1
2D

22
(4

)Ø
9

(2
)Ø

13
–

77
4

63
.6

12
9

–
39

0
60

0
–

39
0

60
0

19
84

-J
P-

IG
-0

2
2D

22
(4

)Ø
9

(2
)Ø

13
–

77
4

63
.6

12
9

–
39

0
60

0
–

39
0

60
0

498



Ta
bl

e
E

.3
:R

ei
nf

or
ce

m
en

tD
et

ai
ls

of
D

at
as

et
(C

on
tin

ue
d)

R
ei

nf
or

ce
m

en
t

R
ei

nf
or

ce
m

en
t A

re
a

R
ei

nf
or

ce
m

en
t S

pa
ci

ng
G

ro
ut

Sp
ac

in
g

Se
ri

al
Fl

e x
ur

al
V

er
tic

al
Sh

ea
r

Jo
in

t
A
t

A
c

A
h

A
j

s c
s h

s j
s g

h
s g

v

(m
m

2 )
(m

m
2 )

(m
m

2 )
(m

m
2 )

(m
m

)
(m

m
)

(m
m

)
(m

m
)

(m
m

)

19
84

-J
P-

IG
-0

3
D

29
(3

)Ø
9

(2
)Ø

13
–

64
5

63
.6

12
9

–
39

0
60

0
–

39
0

60
0

19
84

-J
P-

IG
-0

4
D

25
(2

)Ø
9

(2
)Ø

13
–

51
0

63
.6

12
9

–
39

0
60

0
–

39
0

60
0

19
84

-J
P-

IG
-0

5
D

22
Ø

9
(2

)Ø
13

–
38

7
63

.6
12

9
–

39
0

60
0

–
39

0
60

0
19

84
-J

P-
IG

-0
6

D
22

Ø
9

(2
)Ø

13
–

38
7

63
.6

12
9

–
39

0
60

0
–

39
0

60
0

19
85

-J
P-

FU
-0

1
2D

19
(6

)D
16

(5
)D

13
–

76
8

20
0

12
9

–
40

0
40

0
–

0
0

19
85

-J
P-

FU
-0

2
2D

19
(6

)D
16

(5
)D

13
–

76
8

20
0

12
9

–
30

0
40

0
–

0
0

19
85

-J
P-

FU
-0

3
2D

19
(4

)D
16

(5
)D

13
–

76
8

20
0

12
9

–
40

0
40

0
–

0
0

19
85

-J
P-

FU
-0

4
2D

19
(4

)D
16

(5
)D

13
–

76
8

20
0

12
9

–
30

0
40

0
–

0
0

19
85

-J
P-

FU
-0

5
2D

19
(2

)D
16

(5
)D

13
–

76
8

20
0

12
9

–
40

0
40

0
–

0
0

19
85

-J
P-

FU
-0

6
2D

19
(2

)D
16

(5
)D

13
–

76
8

20
0

12
9

–
30

0
40

0
–

0
0

19
85

-J
P-

M
A

-0
1

2D
19

(2
)D

16
–

–
76

8
20

0
–

–
40

0
–

–
0

0
19

85
-J

P-
M

A
-0

2
2D

19
(2

)D
16

(5
)D

13
–

76
8

20
0

12
9

–
40

0
40

0
–

0
0

19
85

-J
P-

M
A

-0
3

2D
19

(2
)D

16
(9

)D
13

–
76

8
20

0
12

9
–

40
0

20
0

–
0

0
19

85
-J

P-
M

A
-0

5
2D

25
(2

)D
16

(9
)D

13
–

10
20

20
0

12
9

–
40

0
20

0
–

0
0

19
85

-J
P-

M
A

-0
6

2D
25

(2
)D

16
(9

)2
D

13
–

10
20

20
0

25
8

–
40

0
20

0
–

0
0

19
85

-J
P-

YA
-0

5
2D

25
D

16
(3

)D
13

–
10

20
20

0
12

9
–

40
0

40
0

–
0

0
19

85
-J

P-
YA

-0
6

2D
25

D
16

(6
)D

13
–

10
20

20
0

12
9

–
40

0
20

0
–

0
0

19
85

-J
P-

Y A
-0

7
2D

25
D

16
(5

)D
13

–
10

20
20

0
12

9
–

40
0

40
0

–
0

0
19

85
-J

P-
YA

-0
8

2D
25

D
16

(4
)D

13
–

10
20

20
0

12
9

–
40

0
30

0
–

0
0

19
85

-J
P-

Y A
-0

9
2D

25
D

16
(8

)D
13

–
10

20
20

0
12

9
–

40
0

15
0

–
0

0
19

85
-U

S-
SV

-0
1

#5
–

(4
)#

5
–

20
0

–
20

0
–

–
28

4†
–

0
0

19
85

-U
S-

SV
-0

2
#5

–
(4

)#
5

–
20

0
–

20
0

–
–

28
4†

–
0

0
19

85
-U

S-
SV

-0
3

#7
–

(4
)#

5
–

38
7

–
20

0
–

–
28

4†
–

0
0

19
85

-U
S-

SV
-0

4
#4

(4
)#

4
(4

)#
5

–
12

9
12

9
20

0
–

21
3

28
4†

–
0

0
19

85
-U

S-
SV

-0
5

#7
–

(4
)#

5
–

38
7

–
20

0
–

–
28

4†
–

0
0

19
85

-U
S-

SV
-0

6
#7

–
2#

5
–

38
7

–
20

0
–

–
47

4†
–

0
0

19
85

-U
S-

SV
-0

7
#4

(4
)#

4
2#

5
–

12
9

12
9

20
0

–
21

3
47

4†
–

0
0

499



Ta
bl

e
E

.3
:R

ei
nf

or
ce

m
en

tD
et

ai
ls

of
D

at
as

et
(C

on
tin

ue
d)

R
ei

nf
or

ce
m

en
t

R
ei

nf
or

ce
m

en
t A

re
a

R
ei

nf
or

ce
m

en
t S

pa
ci

ng
G

ro
ut

Sp
ac

in
g

Se
ri

al
Fl

e x
ur

al
V

er
tic

al
Sh

ea
r

Jo
in

t
A
t

A
c

A
h

A
j

s c
s h

s j
s g

h
s g

v

(m
m

2 )
(m

m
2 )

(m
m

2 )
(m

m
2 )

(m
m

)
(m

m
)

(m
m

)
(m

m
)

(m
m

)

19
85

-U
S-

SV
-0

8
#7

–
2#

5
–

38
7

–
20

0
–

–
47

4†
–

0
0

19
85

-U
S-

SV
-0

9
#7

–
–

(8
)3

/1
6”

tr
us

s
38

7
–

–
35

.6
–

–
20

3†
0

0

19
85

-U
S-

SV
-1

0
#7

–
2#

5
(8

)3
/1

6”
tr

us
s

38
7

–
20

0
35

.6
–

47
4†

20
3†

0
0

19
85

-U
S-

SV
-1

1
#7

–
2#

5
–

38
7

–
20

0
–

–
47

4†
–

0
0

19
85

-U
S-

SV
-1

2
#7

–
2#

5
–

38
7

–
20

0
–

–
47

4†
–

0
0

19
85

-U
S-

SV
-1

3
#5

–
(5

)#
5

–
20

0
–

20
0

–
–

23
7†

–
0

0
19

85
-U

S-
SV

-1
5

#5
–

(5
)#

5
–

20
0

–
20

0
–

–
23

7†
–

0
0

19
85

-U
S-

SV
-1

6
#7

–
2#

5
–

38
7

–
40

0
–

–
47

4†
–

0
0

19
85

-U
S-

SV
-1

7
#7

–
(5

)#
5

–
38

7
–

20
0

–
–

23
7†

–
0

0
19

85
-U

S-
SV

-1
8

#7
(2

)#
5

2#
5

–
38

7
20

0
40

0
–

35
6

47
4†

–
0

0
19

85
-U

S-
SV

-1
9

#5
(2

)#
5

(5
)#

5
–

20
0

20
0

20
0

–
35

6
23

7†
–

0
0

19
85

-U
S-

SV
-2

0
#4

(4
)#

4
2#

5
–

12
9

12
9

40
0

–
21

3
47

4†
–

0
0

19
85

-U
S-

SV
-2

1
#4

(4
)#

4
(5

)#
5

–
12

9
12

9
20

0
–

21
3

23
7†

–
0

0
19

85
-U

S-
SV

-2
2

#7
–

2#
5

–
38

7
–

40
0

–
–

47
4†

–
0

0
19

85
-U

S-
SV

-2
3

#7
–

(5
)#

5
–

38
7

–
20

0
–

–
23

7†
–

0
0

19
85

-U
S-

SV
-2

4
#7

–
(2

)2
#4

–
38

7
–

25
8

–
–

47
4†

–
0

0
19

85
-U

S-
SV

-2
5

#5
–

(5
)2

#4
–

38
7

–
25

8
–

–
23

7†
–

0
0

19
85

-U
S-

SV
-2

6
#7

–
–

(8
)3

/1
6”

tr
us

s
38

7
–

–
35

.6
–

–
20

3†
0

0

19
86

-J
P-

IG
-0

1
2D

19
(2

)D
16

–
–

76
8

20
0

–
–

30
0

–
–

0
0

19
86

-J
P-

IG
-0

2
2D

19
(2

)D
16

(4
)D

13
–

76
8

20
0

12
9

–
30

0
40

0
–

0
0

19
86

-J
P-

IG
-0

3
2D

19
(2

)D
16

(8
)D

13
–

76
8

20
0

12
9

–
30

0
20

0
–

0
0

19
86

-J
P-

IG
-0

4
2D

19
(2

)D
16

(8
)2

D
13

–
76

8
20

0
25

8
–

30
0

20
0

–
0

0
19

86
-J

P-
M

A
-1

5
2D

22
†

Ø
9†

Ø
9†

–
77

4
63

.6
63

.6
–

40
0

90
0

–
40

0
90

0
19

86
-J

P-
M

A
-1

6
D

25
†

Ø
9†

Ø
9†

–
51

0
63

.6
63

.6
–

40
0

90
0

–
40

0
90

0
19

86
-J

P-
M

A
-1

7
2D

22
†

(2
)Ø

9†
–

–
77

4
63

.6
–

–
40

0
–

–
40

0
18

00
19

86
-J

P-
M

A
-1

8
2D

22
†

(2
)Ø

9†
–

–
77

4
63

.6
–

–
40

0
–

–
40

0
18

00
19

86
-J

P-
M

A
-1

9
2D

22
†

(2
)Ø

9†
–

–
77

4
63

.6
–

–
40

0
–

–
40

0
18

00

500



T a
bl

e
E

.3
:R

ei
nf

or
ce

m
en

tD
et

ai
ls

of
D

at
as

et
(C

on
tin

ue
d)

R
ei

nf
or

ce
m

en
t

R
ei

nf
or

ce
m

en
t A

re
a

R
ei

nf
or

ce
m

en
t S

pa
ci

ng
G

ro
ut

Sp
ac

in
g

Se
ri

al
Fl

e x
ur

al
V

er
tic

al
Sh

ea
r

Jo
in

t
A
t

A
c

A
h

A
j

s c
s h

s j
s g

h
s g

v

(m
m

2 )
(m

m
2 )

(m
m

2 )
(m

m
2 )

(m
m

)
(m

m
)

(m
m

)
(m

m
)

(m
m

)

19
86

-J
P-

M
A

-2
0

2D
22
†

(2
)Ø

9†
–

–
77

4
63

.6
–

–
40

0
–

–
40

0
18

00
19

86
-J

P-
M

A
-2

1
2D

22
†

(2
)Ø

9†
–

–
77

4
63

.6
–

–
40

0
–

–
40

0
18

00
19

86
-J

P-
M

A
-2

2
2D

22
†

(2
)Ø

9†
Ø

9†
–

77
4

63
.6

63
.6

–
40

0
90

0
–

40
0

90
0

19
86

-J
P-

M
A

-2
3

2D
22
†

(2
)Ø

9†
Ø

9†
–

77
4

63
.6

63
.6

–
40

0
90

0
–

40
0

90
0

19
86

-J
P-

M
A

-2
4

D
29
†

(2
)Ø

9†
Ø

9†
–

64
5

63
.6

63
.6

–
40

0
90

0
–

40
0

90
0

19
86

-J
P-

M
A

-2
5

2D
22
†

(2
)Ø

9†
Ø

9†
–

77
4

63
.6

63
.6

–
40

0
90

0
–

40
0

90
0

19
86

-J
P-

M
A

-2
6

2D
22
†

(2
)Ø

9†
Ø

9†
–

77
4

63
.6

63
.6

–
40

0
90

0
–

40
0

90
0

19
86

-J
P-

M
A

-2
7

2D
22
†

(2
)Ø

9†
Ø

9†
–

77
4

63
.6

63
.6

–
40

0
90

0
–

40
0

90
0

19
86

-J
P-

M
A

-2
8

2D
22
†

(2
)Ø

9†
(2

)Ø
9†

–
77

4
63

.6
63

.6
–

40
0

60
0

–
40

0
60

0
19

86
-J

P-
M

A
-2

9
2D

22
†

(2
)Ø

9†
(2

)Ø
9†

–
77

4
63

.6
63

.6
–

40
0

60
0

–
40

0
60

0
19

86
-J

P-
M

A
-3

0
2D

22
†

(2
)Ø

9†
(2

)Ø
9†

–
77

4
63

.6
63

.6
–

40
0

60
0

–
40

0
60

0
19

86
-J

P-
M

A
-3

1
2D

22
†

(2
)Ø

9†
(3

)Ø
9†

–
77

4
63

.6
63

.6
–

40
0

40
0

–
40

0
40

0
19

86
-J

P-
M

A
-3

2
2D

22
†

(2
)Ø

9†
(3

)Ø
9†

–
77

4
63

.6
63

.6
–

40
0

40
0

–
40

0
40

0
19

86
-J

P-
M

A
-3

3
2D

22
†

(2
)Ø

9†
(3

)Ø
9†

–
77

4
63

.6
63

.6
–

40
0

40
0

–
40

0
40

0
19

86
-J

P-
M

A
-3

4
2D

22
†

(2
)Ø

9†
(4

)Ø
9†

–
77

4
63

.6
36

.6
–

40
0

20
0

–
40

0
20

0
19

86
-J

P-
M

A
-3

5
2D

22
†

(3
)Ø

9†
Ø

9†
–

77
4

63
.6

63
.6

–
40

0
90

0
–

40
0

90
0

19
86

-J
P-

M
A

-3
6

D
25

& D
22
†

(3
)Ø

9†
Ø

9†
–

89
7

63
.6

63
.6

–
40

0
90

0
–

40
0

90
0

19
86

-J
P-

M
A

-3
7

D
13
†

(2
)Ø

9†
Ø

9†
–

12
9

63
.6

63
.6

–
40

0
60

0
–

40
0

60
0

19
86

-J
P-

M
A

-3
8

D
19
†

(2
)Ø

9†
Ø

9†
–

28
4

63
.6

63
.6

–
40

0
90

0
–

40
0

90
0

19
86

-J
P-

M
A

-5
3

2D
22
†

(3
)Ø

9†
Ø

9†
–

77
4

63
.6

63
.6

–
33

3∗
40

0
–

33
3

40
0

19
86

-J
P-

M
A

-5
4

2D
22
†

(3
)Ø

9†
Ø

9†
–

77
4

63
.6

63
.6

–
33

3∗
40

0
–

33
3

40
0

19
86

-J
P-

SH
-0

1
2D

25
(2

)D
16

(8
)D

13
–

10
20

20
0

12
9

–
40

0
20

0
–

0
0

19
86

-J
P-

SH
-0

2
2D

25
(2

)D
16

(8
)D

13
–

10
20

20
0

12
9

–
40

0
20

0
–

0
0

19
86

-J
P-

SH
-0

3
2D

25
(2

)D
16

(8
)D

13
4m

m
la

dd
er

10
20

20
0

12
9

25
.1

40
0

20
0

20
0

0
0

19
86

-J
P-

SH
-0

4
2D

19
(2

)D
16

(8
)D

13
–

76
8

20
0

12
9

–
40

0
20

0
–

0
0

19
86

-J
P-

SH
-0

5
2D

25
(2

)D
16

(8
)D

13
–

10
20

20
0

12
9

–
40

0
20

0
–

0
0

19
86

-J
P-

SH
-0

6
2D

25
(2

)D
16

(8
)D

13
–

10
20

20
0

12
9

–
40

0
20

0
–

0
0

501



Ta
bl

e
E

.3
:R

ei
nf

or
ce

m
en

tD
et

ai
ls

of
D

at
as

et
(C

on
tin

ue
d)

R
ei

nf
or

ce
m

en
t

R
ei

nf
or

ce
m

en
t A

re
a

R
ei

nf
or

ce
m

en
t S

pa
ci

ng
G

ro
ut

Sp
ac

in
g

Se
ri

al
Fl

e x
ur

al
V

er
tic

al
Sh

ea
r

Jo
in

t
A
t

A
c

A
h

A
j

s c
s h

s j
s g

h
s g

v

(m
m

2 )
(m

m
2 )

(m
m

2 )
(m

m
2 )

(m
m

)
(m

m
)

(m
m

)
(m

m
)

(m
m

)

19
87

-J
P-

O
K

-0
1

2D
19

(4
)D

16
(5

)D
13

–
76

8
20

0
12

9
–

40
0

40
0

–
0

0
19

87
-J

P-
O

K
-0

2
2D

19
(4

)D
16

(5
)D

13
–

76
8

20
0

12
9

–
40

0
40

0
–

0
0

19
87

-J
P-

O
K

-1
0

2D
19

(2
)D

16
(5

)D
13

–
76

8
20

0
12

9
–

40
0

40
0

–
0

0
19

87
-J

P-
O

K
-1

1
2D

19
(2

)D
16

(5
)D

13
–

76
8

20
0

12
9

–
40

0
40

0
–

0
0

19
88

-J
P-

IG
-0

5
2D

25
(2

)D
16

–
–

10
20

20
0

–
–

30
0

–
–

0
0

19
88

-J
P-

IG
-0

6
2D

25
(2

)D
16

(4
)D

13
–

10
20

20
0

12
9

–
30

0
40

0
–

0
0

19
88

-J
P-

IG
-0

7
2D

25
(2

)D
16

(8
)D

13
–

10
20

20
0

12
9

–
30

0
20

0
–

0
0

19
88

-J
P-

IG
-0

8
2D

25
(2

)D
16

(8
)2

D
13

–
10

20
20

0
25

8
–

30
0

20
0

–
0

0
19

88
-J

P-
IG

-0
9

D
22

(2
)D

16
(8

)D
13

–
38

7
20

0
12

9
–

30
0

20
0

–
0

0
19

88
-S

L
-T

O
-0

1
Ø

10
m

m
–

–
–

78
.5

–
–

–
–

–
–

51
0

75
9

19
88

-S
L

-T
O

-0
2

Ø
10

m
m

–
–

2Ø
3.

1m
m

78
.5

–
–

15
.1

–
–

11
0

51
0

75
9

19
88

-S
L

-T
O

-0
3

Ø
10

m
m

–
–

2Ø
4.

2m
m

78
.5

–
–

27
.7

–
–

11
0

51
0

75
9

19
88

-S
L

-T
O

-0
4

Ø
10

m
m

–
–

2Ø
6m

m
78

.5
–

–
56

.5
–

–
11

0
51

0
75

9
19

88
-S

L
-T

O
-0

5
Ø

10
m

m
–

–
–

78
.5

–
–

–
–

–
–

51
0

14
10

19
88

-S
L

-T
O

-0
9

2Ø
10

m
m

–
–

–
15

7
–

–
–

–
–

–
51

0
75

9
19

88
-S

L
-T

O
-1

0
2Ø

10
m

m
–

–
2Ø

3.
1m

m
15

7
–

–
15

.1
–

–
11

0
51

0
75

9
19

88
-S

L
-T

O
-1

1
2Ø

10
m

m
–

–
2Ø

4.
2m

m
15

7
–

–
27

.7
–

–
11

0
51

0
75

9
19

88
-S

L
-T

O
-1

2
2Ø

10
m

m
–

–
2Ø

6m
m

15
7

–
–

56
.5

–
–

11
0

51
0

75
9

19
88

-S
L

-T
O

-1
3

2Ø
10

m
m

–
–

–
15

7
–

–
–

–
–

–
51

0
14

10
19

88
-U

S-
JO

-0
1

#5
–

–
–

20
0

–
–

–
–

–
–

76
2

91
4

19
88

-U
S-

JO
-0

2
#5

–
–

–
20

0
–

–
–

–
–

–
76

2
91

4
19

88
-U

S-
JO

-0
3

#5
–

–
–

20
0

–
–

–
–

–
–

76
2

91
4

19
88

-U
S-

JO
-0

4
#5

–
–

–
20

0
–

–
–

–
–

–
76

2
91

4
19

88
-U

S-
JO

-0
5

#5
–

–
–

20
0

–
–

–
–

–
–

76
2

91
4

19
88

-U
S-

JO
-0

6
#5

–
–

–
20

0
–

–
–

–
–

–
76

2
91

4
19

88
-U

S-
JO

-0
7

#5
–

–
–

20
0

–
–

–
–

–
–

76
2

91
4

19
88

-U
S-

JO
-0

8
#5

–
–

–
20

0
–

–
–

–
–

–
76

2
91

4

502



Ta
bl

e
E

.3
:R

ei
nf

or
ce

m
en

tD
et

ai
ls

of
D

at
as

et
(C

on
tin

ue
d)

R
ei

nf
or

ce
m

en
t

R
ei

nf
or

ce
m

en
t A

re
a

R
ei

nf
or

ce
m

en
t S

pa
ci

ng
G

ro
ut

Sp
ac

in
g

Se
ri

al
Fl

e x
ur

al
V

er
tic

al
Sh

ea
r

Jo
in

t
A
t

A
c

A
h

A
j

s c
s h

s j
s g

h
s g

v

(m
m

2 )
(m

m
2 )

(m
m

2 )
(m

m
2 )

(m
m

)
(m

m
)

(m
m

)
(m

m
)

(m
m

)

19
88

-U
S-

JO
-0

9
#5

–
–

–
20

0
–

–
–

–
–

–
76

2
91

4
19

88
-U

S-
JO

-1
0

#5
–

–
–

20
0

–
–

–
–

–
–

76
2

91
4

19
88

-U
S-

JO
-1

1
#5

–
–

–
20

0
–

–
–

–
–

–
76

2
91

4
19

88
-U

S-
JO

-1
2

#5
–

–
–

20
0

–
–

–
–

–
–

76
2

91
4

19
88

-U
S-

JO
-1

3
#5

–
–

–
20

0
–

–
–

–
–

–
76

2
91

4
19

88
-U

S-
JO

-1
4

#5
–

–
–

20
0

–
–

–
–

–
–

76
2

91
4

19
88

-U
S-

JO
-1

5
#5

–
–

–
20

0
–

–
–

–
–

–
76

2
91

4
19

88
-U

S-
JO

-1
6

#5
–

–
–

20
0

–
–

–
–

–
–

76
2

91
4

19
88

-U
S-

JO
-1

7
#5

–
–

–
20

0
–

–
–

–
–

–
60

9
81

3
19

88
-U

S-
JO

-1
8

#5
–

–
–

20
0

–
–

–
–

–
–

60
9

81
3

19
88

-U
S-

JO
-1

9
#5

–
–

–
20

0
–

–
–

–
–

–
60

9
81

3
19

88
-U

S-
JO

-2
0

#5
–

–
–

20
0

–
–

–
–

–
–

60
9

81
3

19
88

-U
S-

JO
-2

1
#5

–
–

–
20

0
–

–
–

–
–

–
60

9
81

3
19

88
-U

S-
JO

-2
2

#5
–

–
–

20
0

–
–

–
–

–
–

60
9

81
3

19
88

-U
S-

JO
-2

3
#5

–
–

–
20

0
–

–
–

–
–

–
60

9
81

3
19

88
-U

S-
JO

-2
4

#5
–

–
–

20
0

–
–

–
–

–
–

60
9

81
3

19
88

-U
S-

JO
-2

5
#5

–
–

–
20

0
–

–
–

–
–

–
60

9
81

3
19

88
-U

S-
JO

-2
6

#5
–

–
–

20
0

–
–

–
–

–
–

60
9

81
3

19
88

-U
S-

JO
-2

7
#5

–
–

–
20

0
–

–
–

–
–

–
60

9
81

3
19

88
-U

S-
JO

-2
8

#5
–

–
–

20
0

–
–

–
–

–
–

60
9

81
3

19
88

-U
S-

JO
-2

9
#5

–
–

–
20

0
–

–
–

–
–

–
60

9
81

3
19

88
-U

S-
JO

-3
0

#5
–

–
–

20
0

–
–

–
–

–
–

60
9

81
3

19
88

-U
S-

JO
-3

1
#5

–
–

–
20

0
–

–
–

–
–

–
60

9
81

3
19

88
-U

S-
JO

-3
2

#5
–

–
–

20
0

–
–

–
–

–
–

60
9

81
3

19
88

-U
S-

SH
-0

3
#7

(3
)#

7
(5

)#
3

–
38

7
38

7
71

–
40

6
40

6
–

0
0

19
88

-U
S-

SH
-0

4
#7

(3
)#

7
(5

)#
3

–
38

7
38

7
71

–
40

6
40

6
–

0
0

19
88

-U
S-

SH
-0

5
#7

(3
)#

7
(5

)#
3

–
38

7
38

7
71

–
40

6
40

6
–

0
0

503



T a
bl

e
E

.3
:R

ei
nf

or
ce

m
en

tD
et

ai
ls

of
D

at
as

et
(C

on
tin

ue
d)

R
ei

nf
or

ce
m

en
t

R
ei

nf
or

ce
m

en
t A

re
a

R
ei

nf
or

ce
m

en
t S

pa
ci

ng
G

ro
ut

Sp
ac

in
g

Se
ri

al
Fl

e x
ur

al
V

er
tic

al
Sh

ea
r

Jo
in

t
A
t

A
c

A
h

A
j

s c
s h

s j
s g

h
s g

v

(m
m

2 )
(m

m
2 )

(m
m

2 )
(m

m
2 )

(m
m

)
(m

m
)

(m
m

)
(m

m
)

(m
m

)

19
88

-U
S-

SH
-0

6
#5

(3
)#

5
(5

)#
3

–
20

0
20

0
71

–
40

6
40

6
–

0
0

19
88

-U
S-

SH
-0

7
#7

(3
)#

7
(5

)#
3

–
38

7
38

7
71

–
40

6
40

6
–

0
0

19
88

-U
S-

SH
-0

8
#5

(3
)#

5
(5

)#
4

–
20

0
20

0
12

9
–

40
6

40
6

–
0

0
19

88
-U

S-
SH

-0
9

#5
(3

)#
5

(5
)#

3
–

20
0

20
0

71
–

40
6

40
6

–
0

0
19

88
-U

S-
SH

-1
0

#5
(3

)#
5

(5
)#

3
–

20
0

20
0

71
–

40
6

40
6

–
0

0
19

88
-U

S-
SH

-1
1

#7
(3

)#
7

(5
)#

4
–

38
7

38
7

12
9

–
40

6
40

6
–

0
0

19
88

-U
S-

SH
-1

3
#6

(3
)#

6
(5

)#
5

–
28

4
28

4
20

0
–

40
6

40
6

–
0

0
19

88
-U

S-
SH

-1
4

#6
(3

)#
6

(5
)#

3
–

28
4

28
4

71
–

40
6

40
6

–
0

0
19

88
-U

S-
SH

-1
5

#6
(3

)#
6

(5
)#

4
–

28
4

28
4

12
9

–
40

6
40

6
–

0
0

19
88

-U
S-

SH
-1

6
#7

(3
)#

7
(5

)#
4

–
38

7
38

7
12

9
–

40
6

40
6

–
0

0
19

89
-U

S-
YA

-0
2

–
–

–
9-

ga
.l

ad
de

r
–

–
–

22
.2

–
–

40
6

10
19

14
22

19
89

-U
S-

Y A
-0

3
–

–
–

9-
ga

.l
ad

de
r

–
–

–
22

.2
–

–
20

3
10

19
14

22
19

89
-U

S-
YA

-0
4

–
–

2#
4

–
–

–
25

8
–

–
71

1
–

10
19

71
1

19
89

-U
S-

YA
-0

5
–

–
(3

)#
5

–
–

–
20

0
–

–
71

1
–

10
19

71
1

19
89

-U
S-

Y A
-0

6
–

–
(2

)#
5

–
–

–
20

0
–

–
47

4
–

10
19

47
4

19
89

-U
S-

YA
-0

8
–

–
#3

9-
ga

.l
ad

de
r

–
–

71
22

.2
–

71
1

40
6

10
19

71
1

19
89

-U
S-

YA
-0

9
–

–
2#

4
&

1#
5

9-
ga

.l
ad

de
r

–
–

32
9

22
.2

–
71

1
20

3
10

19
71

1

19
89

-U
S-

Y A
-1

0
–

–
(2

)#
5

–
–

–
20

0
–

–
47

4
–

10
19

47
4

19
90

-U
S-

SH
-2

1
#6

(3
)#

6
(5

)#
3

–
28

4
28

4
71

–
40

6
40

6
–

0
0

19
90

-U
S-

SH
-2

2
#6

(3
)#

6
(5

)#
3

–
28

4
28

4
71

–
40

6
40

6
–

0
0

19
91

-J
P-

M
A

-0
1

D
22

(2
)D

10
(2

)D
13

–
38

7
78

.5
12

9
–

40
0

60
0

–
0

0
19

91
-J

P-
M

A
-0

2
D

25
(2

)D
10

(2
)D

13
–

51
0

78
.5

12
9

–
40

0
60

0
–

0
0

19
91

-J
P-

M
A

-0
3

D
32

(2
)D

10
(2

)D
13

–
81

9
78

.5
12

9
–

40
0

60
0

–
0

0
19

91
-J

P-
M

A
-0

4
D

25
(4

)D
10

(2
)D

13
–

51
0

71
12

9
–

40
0

60
0

–
0

0
19

91
-J

P-
M

A
-0

5
D

32
(4

)D
10

(2
)D

13
–

81
9

71
12

9
–

40
0

60
0

–
0

0
19

91
-J

P-
M

A
-0

6
D

38
(4

)D
10

(2
)D

13
–

81
9

71
12

9
–

40
0

60
0

–
0

0
19

92
-U

S-
G

H
-0

1
2#

4/
3

–
(2

)2
#4

/3
–

26
.6

–
26

.6
–

87
2

87
1

–
87

2
87

1

504



Ta
bl

e
E

.3
:R

ei
nf

or
ce

m
en

tD
et

ai
ls

of
D

at
as

et
(C

on
tin

ue
d)

R
ei

nf
or

ce
m

en
t

R
ei

nf
or

ce
m

en
t A

re
a

R
ei

nf
or

ce
m

en
t S

pa
ci

ng
G

ro
ut

Sp
ac

in
g

Se
ri

al
Fl

e x
ur

al
V

er
tic

al
Sh

ea
r

Jo
in

t
A
t

A
c

A
h

A
j

s c
s h

s j
s g

h
s g

v

(m
m

2 )
(m

m
2 )

(m
m

2 )
(m

m
2 )

(m
m

)
(m

m
)

(m
m

)
(m

m
)

(m
m

)

19
92

-U
S-

G
H

-0
2

#5
/3

#5
/3

(3
)#

5/
3

–
18

.6
18

.6
18

.6
–

43
6

43
7

–
43

6
43

7
19

93
-U

S-
G

H
-0

5
#5

/3
#5

/3
(3

)#
5/

3
–

18
.6

18
.6

18
.6

–
43

6
43

7
–

43
6

43
7

19
93

-U
S-

G
H

-0
6

#5
/3

#5
/3

(3
)#

5/
3

–
18

.6
18

.6
18

.6
–

43
6

43
7

–
43

6
43

7
19

94
-U

S-
B

R
-0

1
#6

(2
)#

6
(4

)#
3

–
28

4
28

4
0.

71
–

40
6

40
6

–
0

0
19

94
-U

S-
B

R
-0

2
#6

(3
)#

6
(4

)#
3

–
28

4
28

4
0.

71
–

40
6

40
6

–
0

0
19

94
-U

S-
B

R
-0

3
#6

(4
)#

6
(4

)#
3

–
28

4
28

4
0.

71
–

40
6

40
6

–
0

0
19

95
-N

Z
-B

R
-0

1
D

10
D

10
–

–
78

.5
78

.5
–

–
80

0
–

–
0

0
19

95
-N

Z
-B

R
-0

2
D

10
(2

)D
10

–
–

78
.5

78
.5

–
–

80
0

–
–

80
0

20
00

19
95

-N
Z

-B
R

-0
3

D
10

(2
)D

10
–

–
78

.5
78

.5
–

–
80

0
–

–
0

0
19

95
-N

Z
-B

R
-0

4
D

10
(4

)D
10

–
–

78
.5

78
.5

–
–

80
0

–
–

0
0

19
95

-N
Z

-B
R

-0
6

D
12

D
12

–
–

11
3

11
3

–
–

80
0

–
–

80
0

20
00

19
95

-N
Z

-B
R

-0
7

D
12

(2
)D

12
–

–
11

3
11

3
–

–
80

0
–

–
80

0
20

00
19

95
-N

Z
-B

R
-0

8
D

12
(4

)D
12

–
–

11
3

11
3

–
–

80
0

–
–

80
0

20
00

19
95

-N
Z

-B
R

-1
0

D
12

D
12

–
–

11
3

11
3

–
–

80
0

–
–

80
0

20
00

19
95

-N
Z

-B
R

-1
1

D
12

(2
)D

12
–

–
11

3
11

3
–

–
80

0
–

–
80

0
20

00
19

95
-N

Z
-B

R
-1

2
D

12
(4

)D
12

–
–

11
3

11
3

–
–

80
0

–
–

80
0

20
00

19
96

-S
L

-T
O

-0
6

#1
0

–
–

6m
m

la
dd

er
78

.5
–

–
56

.5
–

–
11

0
51

0
75

9
19

96
-S

L
-T

O
-0

8
#1

0
–

–
6m

m
la

dd
er

78
.5

–
–

56
.5

–
–

11
0

51
0

75
9

19
96

-S
L

-T
O

-1
0

#1
0

–
–

6m
m

la
dd

er
78

.5
–

–
56

.5
–

–
11

0
51

0
75

9
19

96
-S

L
-T

O
-1

2
#1

0
–

–
6m

m
la

dd
er

78
.5

–
–

56
.5

–
–

11
0

51
0

75
9

19
96

-S
L

-T
O

-1
4

#1
0

–
–

6m
m

la
dd

er
78

.5
–

–
56

.5
–

–
11

0
51

0
75

9
19

96
-S

L
-T

O
-1

6
#1

0
–

–
6m

m
la

dd
er

78
.5

–
–

56
.5

–
–

11
0

51
0

75
9

19
96

-U
S-

SH
-0

2
2#

6
–

2#
3

–
56

8
–

14
2

–
–

71
1

–
18

28
71

1
19

98
-U

S-
SH

-0
1

2#
6

–
–

9-
ga

la
dd

er
56

8
–

–
22

.2
–

–
20

3
26

41
14

22
19

98
-U

S-
SH

-0
2

2#
6

–
–

9-
ga

la
dd

er
56

8
–

–
22

.2
–

–
20

3
18

28
14

22
19

98
-U

S-
SH

-0
3

2#
6

–
–

9-
ga

la
dd

er
56

8
–

–
22

.2
–

–
20

3
12

18
14

22
19

98
-U

S-
SH

-0
4

2#
6

–
–

5-
ga

la
dd

er
56

8
–

–
43

.4
–

–
20

3
26

41
14

22

505



Ta
bl

e
E

.3
:R

ei
nf

or
ce

m
en

tD
et

ai
ls

of
D

at
as

et
(C

on
tin

ue
d)

R
ei

nf
or

ce
m

en
t

R
ei

nf
or

ce
m

en
t A

re
a

R
ei

nf
or

ce
m

en
t S

pa
ci

ng
G

ro
ut

Sp
ac

in
g

Se
ri

al
Fl

e x
ur

al
V

er
tic

al
Sh

ea
r

Jo
in

t
A
t

A
c

A
h

A
j

s c
s h

s j
s g

h
s g

v

(m
m

2 )
(m

m
2 )

(m
m

2 )
(m

m
2 )

(m
m

)
(m

m
)

(m
m

)
(m

m
)

(m
m

)

19
98

-U
S-

SH
-0

5
2#

6
–

–
5-

ga
la

dd
er

56
8

–
–

43
.4

–
–

20
3

18
28

14
22

19
98

-U
S-

SH
-0

6
2#

6
–

–
5-

ga
la

dd
er

56
8

–
–

43
.4

–
–

20
3

12
18

14
22

20
00

-J
P-

O
H

-0
1

2D
25

(2
)D

16
(2

)D
13

–
10

20
20

0
12

9
–

40
0

60
0

–
0

0
20

00
-J

P-
O

H
-0

2
2D

25
(2

)D
16

(2
)D

13
–

10
20

20
0

12
9

–
40

0
60

0
–

0
0

20
00

-J
P-

O
H

-0
3

2D
25

(2
)D

16
(2

)D
13

–
10

20
20

0
12

9
–

40
0

60
0

–
0

0
20

00
-J

P-
O

H
-0

4
2D

25
(2

)D
16

(2
)D

13
–

10
20

20
0

12
9

–
40

0
60

0
–

0
0

20
07

-A
U

-H
A

-0
1

N
12

2N
16

–
–

11
0

40
0

–
–

13
50

–
–

13
50

22
45

20
07

-A
U

-H
A

-0
2

N
12

2N
16

–
–

11
0

40
0

–
–

13
50

–
–

13
50

22
45

20
07

-A
U

-H
A

-0
3

N
12

(2
)N

16
–

–
11

0
20

0
–

–
90

0
–

–
90

0
22

45
20

07
-A

U
-H

A
-0

4
N

12
(2

)N
16

–
–

11
0

20
0

–
–

90
0

–
–

90
0

22
45

20
07

-A
U

-H
A

-0
5

N
12

(2
)N

16
–

–
11

0
20

0
–

–
90

0
–

–
90

0
22

45
20

07
-A

U
-H

A
-0

6
N

12
(2

)N
16

–
–

11
0

20
0

–
–

90
0

–
–

90
0

22
45

20
07

-A
U

-H
A

-0
7

(2
)N

12
–

–
–

22
0

–
–

–
–

–
–

23
50

22
45

20
07

-A
U

-H
A

-0
8

(2
)N

12
–

–
–

22
0

–
–

–
–

–
–

23
50

22
45

20
07

-A
U

-H
A

-0
9

(2
)N

12
–

–
–

22
0

–
–

–
–

–
–

27
00

22
45

20
07

-A
U

-H
A

-1
1

N
12

(2
)N

12
–

–
11

0
11

0
–

–
90

0
–

–
90

0
14

12
20

07
-A

U
-H

A
-1

2
N

12
(2

)N
12

–
–

11
0

11
0

–
–

90
0

–
–

90
0

14
12

20
07

-A
U

-H
A

-1
3

(2
)N

12
–

–
–

22
0

–
–

–
0

–
–

11
00

14
12

20
07

-A
U

-H
A

-1
4

(2
)N

12
–

–
–

22
0

–
–

–
0

–
–

11
00

14
12

20
07

-N
Z

-V
O

-0
1

D
20

(3
)D

20
(5

)R
6

–
31

4
31

4
28

.3
–

40
0

40
0

–
0

0
20

07
-N

Z
-V

O
-0

2
D

20
(3

)D
20

(1
)R

6
–

31
4

31
4

28
.3

–
40

0
17

00
–

0
0

20
07

-N
Z

-V
O

-0
4

D
20

(3
)D

20
2D

10
–

31
4

31
4

15
7

–
40

0
17

00
–

0
0

20
07

-N
Z

-V
O

-0
5

D
20

(3
)D

20
–

–
31

4
31

4
–

–
40

0
–

–
40

0
18

00
20

07
-N

Z
-V

O
-0

6
D

20
D

20
–

–
31

4
31

4
–

–
80

0
–

–
80

0
18

00
20

07
-N

Z
-V

O
-0

7
D

20
(3

)D
20

(5
)R

6
–

31
4

31
4

28
.3

–
40

0
40

0
–

0
0

20
07

-N
Z

-V
O

-0
8

D
20

(3
)D

20
(5

)R
6

–
31

4
31

4
28

.3
–

40
0

40
0

–
0

0
20

07
-N

Z
-V

O
-0

9
D

H
25

(3
)D

H
25

(9
)R

6
–

49
1

49
1

28
.3

–
40

0
40

0
–

0
0

506



Ta
bl

e
E

.3
:R

ei
nf

or
ce

m
en

tD
et

ai
ls

of
D

at
as

et
(C

on
tin

ue
d)

R
ei

nf
or

ce
m

en
t

R
ei

nf
or

ce
m

en
t A

re
a

R
ei

nf
or

ce
m

en
t S

pa
ci

ng
G

ro
ut

Sp
ac

in
g

Se
ri

al
Fl

e x
ur

al
V

er
tic

al
Sh

ea
r

Jo
in

t
A
t

A
c

A
h

A
j

s c
s h

s j
s g

h
s g

v

(m
m

2 )
(m

m
2 )

(m
m

2 )
(m

m
2 )

(m
m

)
(m

m
)

(m
m

)
(m

m
)

(m
m

)

20
07

-N
Z

-V
O

-1
0

D
20

(6
)D

20
(5

)R
6

–
31

4
31

4
28

.3
–

40
0

40
0

–
0

0
20

07
-P

O
-H

A
-0

2
Ø

5m
m

tr.
Ø

5m
m

tr.
–

Ø
4m

m
tr.

39
.3

39
.3

–
25

.1
50

0
–

30
0

50
0

80
0

20
07

-P
O

-H
A

-0
3

Ø
5m

m
tr.

Ø
5m

m
tr.

–
Ø

4m
m

tr.
39

.3
39

.3
–

25
.1

50
0

–
30

0
50

0
80

0
20

07
-P

O
-H

A
-0

4
Ø

5m
m

tr.
Ø

5m
m

tr.
–

Ø
4m

m
tr.

39
.3

39
.3

–
25

.1
50

0
–

30
0

50
0

80
0

20
07

-P
O

-H
A

-0
5

Ø
5m

m
tr.

Ø
5m

m
tr.

–
Ø

4m
m

tr.
39

.3
39

.3
–

25
.1

50
0

–
30

0
50

0
80

0
20

08
-C

A
-M

A
-0

1
M

10
M

10
(3

)D
4

–
10

0
10

0
25

.8
–

85
5

85
5

–
85

5
85

5
20

08
-C

A
-M

A
-0

2
#3

(2
)#

3
(3

)D
3

–
71

71
19

.4
–

57
0

57
0

–
57

0
57

0
20

08
-C

A
-M

A
-0

4
M

10
M

10
(2

)D
3

–
10

0
10

0
19

.4
–

85
5

85
5

–
85

5
85

5
20

08
-C

A
-M

A
-0

5
M

10
M

10
(4

)D
4

–
10

0
10

0
25

.8
–

85
5

85
5

–
85

5
85

5
20

09
-U

S-
M

I-
01

#6
(2

)#
6

(3
)#

6
–

28
4

28
4

28
4

–
12

19
13

21
–

12
19

13
21

20
09

-U
S-

M
I-

02
#6

(2
)#

6
(3

)#
6

–
28

4
28

4
28

4
–

12
19

13
21

–
12

19
13

21
20

09
-U

S-
M

I-
03

#6
(2

)#
6

(3
)#

6
–

28
4

28
4

28
4

–
12

19
13

21
–

12
19

13
21

20
09

-U
S-

M
I-

04
#6

(2
)#

6
(3

)#
6

–
28

4
28

4
28

4
–

12
19

13
21

–
12

19
13

21
20

09
-U

S-
M

I-
07

#6
(2

)#
6

(3
)#

6
–

28
4

28
4

28
4

–
12

19
13

21
–

0
0

20
09

-U
S-

M
I-

08
#6

(2
)#

6
(3

)#
6

–
28

4
28

4
28

4
–

12
19

13
21

–
0

0
20

10
-U

S-
E

L
-0

1
2#

6
2#

6
#5

–
56

8
56

8
20

0
–

12
19

71
1

–
12

19
71

1
20

10
-U

S-
E

L
-0

2
2#

6
2#

6
#6

–
56

8
56

8
28

4
–

12
19

71
1

–
12

19
71

1
20

10
-U

S-
E

L
-0

3
2#

6
2#

6
2#

5
–

56
8

56
8

40
0

–
12

19
71

1
–

12
19

71
1

20
10

-U
S-

E
L

-0
4

2#
6

2#
6

#5
–

56
8

56
8

20
0

–
12

19
71

1
–

12
19

71
1

20
10

-U
S-

E
L

-0
5

2#
6

(2
)#

6
#5

–
56

8
28

4
20

0
–

81
3

71
1

–
81

3
71

1
20

10
-U

S-
E

L
-0

6
2#

6
(3

)#
5

#5
–

56
8

20
0

20
0

–
61

0
71

1
–

61
0

71
1

20
10

-U
S-

N
O

-0
1

2#
7

2#
7

#5
–

77
4

77
4

20
0

–
12

19
10

16
–

12
19

10
16

20
10

-U
S-

N
O

-0
2

2#
7

2#
7

#6
–

77
4

77
4

28
4

–
12

19
10

16
–

12
19

10
16

20
10

-U
S-

N
O

-0
3

2#
7

2#
7

2#
5

–
77

4
77

4
40

0
–

12
19

10
16

–
12

19
10

16
20

10
-U

S-
N

O
-0

4
2#

6
(2

)2
#6

#5
–

56
8

56
8

20
0

–
81

3
10

16
–

81
3

10
16

20
10

-U
S-

N
O

-0
5

2#
6

(3
)2

#5
#5

–
56

8
14

2
20

0
–

61
0

10
16

–
61

0
10

16
20

10
-U

S-
N

O
-0

6
2#

7
2#

7
#5

–
77

4
77

4
20

0
–

12
19

10
16

–
0

0

507



T a
bl

e
E

.4
:M

at
er

ia
lS

tr
en

gt
h

of
Sp

ec
im

en
s

R
ei

nf
or

ce
m

en
t Y

ie
ld

St
re

ng
th

s
M

as
on

ry
St

re
ng

th
s

Pr
is

m
St

re
ng

th

Se
ri

al
f y

t
f y

c
f y

h
f y

j
f′ b

f′ j
f′ g

f′ p
u

f′ p
g

C
ou

rs
es

h t
k

f′ m
co

r

(M
Pa

)
(M

Pa
)

(M
Pa

)
(M

Pa
)

(M
Pa

)
(M

Pa
)

(M
Pa

)
(M

Pa
)

(M
Pa

)
(M

Pa
)

19
68

-M
X

-M
E

-0
9

24
5

24
5

24
5

–
12

.3
–

–
10

.3
–

3∗
3.

93
0.

93
8

9.
7

19
68

-M
X

-M
E

-1
0

24
5

24
5

24
5

–
12

.3
–

–
10

.3
–

3∗
3.

93
0.

93
8

9.
7

19
68

-M
X

-M
E

-1
1

24
5

24
5

24
5

–
12

.3
–

–
10

.3
–

3∗
3.

93
0.

93
8

9.
7

19
68

-M
X

-M
E

-1
2

24
5

24
5

24
5

–
12

.3
–

–
10

.3
–

3∗
3.

93
0.

93
8

9.
7

19
68

-M
X

-M
E

-1
3

24
5

24
5

24
5

–
12

.3
–

–
10

.3
–

3∗
3.

93
0.

93
8

9.
7

19
68

-M
X

-M
E

-1
4

24
5

24
5

–
–

12
.3

–
–

10
.3

–
3∗

3.
93

0.
93

8
9.

7
19

68
-M

X
-M

E
-1

5
24

5
24

5
–

–
12

.3
–

–
10

.3
–

3∗
3.

93
0.

93
8

9.
7

19
68

-M
X

-M
E

-1
6

24
5

24
5

24
5

–
12

.3
–

–
10

.3
–

3∗
3.

93
0.

93
8

9.
7

19
68

-M
X

-M
E

-1
7

24
5

24
5

24
5

–
12

.3
–

–
10

.3
–

3∗
3.

93
0.

93
8

9.
7

19
68

-M
X

-M
E

-1
8

24
5

24
5

24
5

–
12

.3
–

–
10

.3
–

3∗
3.

93
0.

93
8

9.
7

19
69

-M
X

-M
E

-1
1

39
2

–
–

–
–

15
.2

29
.3

10
.3

–
3∗

3.
93

0.
93

8
9.

7
19

69
-M

X
-M

E
-1

4
39

2
–

–
–

–
20

.4
33

.0
14

.4
–

3∗
3.

93
0.

93
8

13
.5

19
69

-M
X

-M
E

-1
5

39
2

–
–

–
–

25
.7

13
.3

14
.4

–
3∗

3.
93

0.
93

8
13

.5
19

69
-M

X
-M

E
-1

6
39

2
–

–
–

–
23

.0
15

.9
14

.4
–

3∗
3.

93
0.

93
8

13
.5

19
69

-M
X

-M
E

-1
7

39
2

–
–

–
–

24
.8

18
.8

14
.4

–
3∗

3.
93

0.
93

8
13

.5
19

69
-M

X
-M

E
-1

8
39

2
39

2
–

–
–

20
.4

10
.6

14
.4

–
3∗

3.
93

0.
93

8
13

.5
19

69
-M

X
-M

E
-1

9
39

2
–

–
–

–
17

.6
8.

1
14

.4
–

3∗
3.

93
0.

93
8

13
.5

19
69

-M
X

-M
E

-2
0

39
2

39
2

–
–

–
17

.5
11

.9
14

.4
–

3∗
3.

93
0.

93
8

13
.5

19
69

-M
X

-M
E

-2
1

39
2

–
–

–
–

17
.6

14
.5

14
.4

–
3∗

3.
93

0.
93

8
13

.5
19

69
-M

X
-M

E
-2

4
39

2
–

–
–

–
24

.1
23

.1
14

.4
–

3∗
3.

93
0.

93
8

13
.5

19
69

-M
X

-M
E

-2
5

39
2

39
2

–
–

–
17

.7
11

.7
14

.4
14

.4
∗

3∗
3.

93
0.

93
8

13
.5

19
69

-M
X

-M
E

-2
9

39
2

–
–

–
–

11
.6

12
.3

14
.4

–
3∗

3.
93

0.
93

8
13

.5
19

71
-N

Z
-W

I-
01

34
5

34
5

–
–

51
.7

15
.9

19
.3

–
21

.9
‡

3
5.

56
1

21
.9

19
71

-N
Z

-W
I-

02
34

5
34

5
–

–
51

.7
15

.9
19

.3
–

21
.9
‡

3
5.

56
1

21
.9

19
71

-N
Z

-W
I-

03
34

5
34

5
–

–
51

.7
15

.9
19

.3
–

21
.9
‡

3
5.

56
1

21
.9

19
71

-N
Z

-W
I-

04
34

5
34

5
–

–
51

.7
15

.9
19

.3
27

.8
‡

–
3

5.
56

1
27

.8
19

71
-N

Z
-W

I-
05

34
5

34
5

–
–

51
.7

15
.9

19
.3

–
21

.9
‡

3
5.

56
1

21
.9

19
71

-N
Z

-W
I-

06
34

5
34

5
–

–
37

.2
15

.9
19

.3
–

19
.0
‡

3
6.

52
1

19
.0

508



T a
bl

e
E

.4
:M

at
er

ia
lS

tr
en

gt
h

of
D

at
as

et
(C

on
tin

ue
d)

R
ei

nf
or

ce
m

en
t Y

ie
ld

St
re

ng
th

s
M

as
on

ry
St

re
ng

th
s

Pr
is

m
St

re
ng

th

Se
ri

al
f y

t
f y

c
f y

h
f y

j
f′ b

f′ j
f′ g

f′ p
u

f′ p
g

C
ou

rs
es

h t
k

f′ m
co

r

(M
Pa

)
(M

Pa
)

(M
Pa

)
(M

Pa
)

(M
Pa

)
(M

Pa
)

(M
Pa

)
(M

Pa
)

(M
Pa

)
(M

Pa
)

19
71

-N
Z

-W
I-

07
34

5
34

5
–

–
37

.2
15

.9
19

.3
–

19
.0
‡

3
6.

52
1

19
.0

19
71

-N
Z

-W
I-

08
34

5
34

5
–

–
37

.2
15

.9
19

.3
–

19
.0
‡

3
6.

52
1

19
.0

19
71

-N
Z

-W
I-

09
34

5
34

5
–

–
37

.2
15

.9
19

.3
–

19
.0
‡

3
6.

52
1

19
.0

19
71

-N
Z

-W
I-

10
34

5
–

–
–

51
.7

15
.9

19
.3

–
21

.9
‡

3
5.

56
1

21
.9

19
71

-N
Z

-W
I-

11
34

5
–

34
5∗

–
51

.7
15

.9
19

.3
–

21
.9
‡

3
5.

56
1

21
.9

19
71

-N
Z

-W
I-

12
34

5
–

–
–

51
.7

15
.9

19
.3

–
21

.9
‡

3
5.

56
1

21
.9

19
71

-N
Z

-W
I-

13
34

5
–

–
–

51
.7

15
.9

19
.3

–
21

.9
‡

3
5.

56
1

21
.9

19
71

-N
Z

-W
I-

15
34

5
–

–
–

51
.7

15
.9

19
.3

–
21

.9
‡

3
5.

56
1

21
.9

19
71

-N
Z

-W
I-

16
34

5
34

5
–

–
51

.7
15

.9
19

.3
–

21
.9
‡

3
5.

56
1

21
.9

19
71

-N
Z

-W
I-

17
34

5
34

5
–

–
51

.7
15

.9
19

.3
–

21
.9
‡

3
5.

56
1

21
.9

19
71

-N
Z

-W
I-

18
34

5
–

–
–

51
.7

15
.9

19
.3

–
21

.9
‡

3
5.

56
1

21
.9

19
71

-N
Z

-W
I-

19
34

5
34

5
–

–
51

.7
15

.9
19

.3
–

21
.9
‡

3
5.

56
1

21
.9

19
71

-N
Z

-W
I-

20
34

5
34

5
–

–
51

.7
15

.9
19

.3
–

21
.9
‡

3
5.

56
1

21
.9

19
76

-U
S-

M
A

-0
1

54
5

–
–

–
20

.3
15

.9
14

.0
–

15
.7

5
7.

04
1

15
.7

19
76

-U
S-

M
A

-0
2

54
5

–
–

–
20

.3
15

.9
14

.0
–

15
.7

5
7.

04
1

15
.7

19
76

-U
S-

M
A

-0
3

37
3

–
–

–
20

.3
15

.9
14

.0
–

14
.6

5
7.

04
1

14
.6

19
76

-U
S-

M
A

-0
4

37
3

–
–

–
20

.3
15

.9
14

.0
–

14
.6

5
7.

04
1

14
.6

19
76

-U
S-

M
A

-0
5

53
8

–
–

–
20

.3
15

.9
14

.0
–

16
.8

5
7.

04
1

16
.8

19
76

-U
S-

M
A

-0
6

53
8

–
–

–
20

.3
15

.9
14

.0
–

16
.8

5
7.

04
1

16
.8

19
76

-U
S-

M
A

-0
7

53
8

–
46

7
–

20
.3

15
.9

14
.0

–
18

.1
5

7.
04

1
18

.1
19

76
-U

S-
M

A
-0

8
53

8
–

46
7

–
20

.3
15

.9
14

.0
–

18
.1

5
7.

04
1

18
.1

19
76

-U
S-

M
A

-0
9

54
1

–
–

–
20

.3
15

.9
14

.0
–

16
.3

5
7.

04
1

16
.3

19
76

-U
S-

M
A

-1
0

54
1

–
–

–
20

.3
15

.9
14

.0
–

16
.3

5
7.

04
1

16
.3

19
76

-U
S-

M
A

-1
1

51
6

–
–

–
20

.3
15

.9
14

.0
17

.8
15

.5
5

7.
04

1
17

.8
19

76
-U

S-
M

A
-1

2
51

6
–

–
–

20
.3

15
.9

14
.0

17
.8

15
.5

5
7.

04
1

17
.8

19
77

-N
Z

-P
R

-0
5

52
8

52
8

50
5

–
30

.7
37

.9
24

.8
–

19
.3

3
4.

20
0.

95
4

18
.4

19
77

-N
Z

-P
R

-0
6

43
2

43
2

42
1

–
30

.7
42

.9
24

.8
–

18
.3

3
4.

20
0.

95
4

17
.5

19
77

-N
Z

-P
R

-0
7

47
4

47
4

51
3

–
30

.7
32

.4
24

.8
–

20
.4

3
4.

20
0.

95
4

19
.5

509



Ta
bl

e
E

.4
:M

at
er

ia
lS

tr
en

gt
h

of
D

at
as

et
(C

on
tin

ue
d)

R
ei

nf
or

ce
m

en
t Y

ie
ld

St
re

ng
th

s
M

as
on

ry
St

re
ng

th
s

Pr
is

m
St

re
ng

th

Se
ri

al
f y

t
f y

c
f y

h
f y

j
f′ b

f′ j
f′ g

f′ p
u

f′ p
g

C
ou

rs
es

h t
k

f′ m
co

r

(M
P a

)
(M

Pa
)

(M
Pa

)
(M

Pa
)

(M
P a

)
(M

Pa
)

(M
Pa

)
(M

P a
)

(M
Pa

)
(M

Pa
)

19
77

-N
Z

-P
R

-0
8

45
4

45
4

42
7

–
30

.7
32

.5
24

.8
–

21
.2

3
4.

20
0.

95
4

20
.2

19
77

-N
Z

-P
R

-0
9

48
8

48
8

48
9

–
30

.7
33

.5
24

.8
–

18
.3

3
4.

20
0.

95
4

17
.5

19
77

-N
Z

-P
R

-1
0

47
2

47
2

48
8

–
30

.7
38

.7
24

.8
–

24
.5

3
4.

20
0.

95
4

23
.4

19
78

-U
S-

C
H

-0
2

48
8

–
–

–
12

.4
19

.0
26

.3
10

.6
‡

9.
2

5
5.

19
1

10
.6

19
78

-U
S-

C
H

-0
3

48
8

–
–

–
12

.4
20

.4
27

.7
10

.9
‡

12
.6

5
5.

19
1

12
.6

19
78

-U
S-

C
H

-0
4

48
8

–
33

0
–

12
.4

20
.4

27
.7

10
.9
‡

12
.6

5
5.

19
1

12
.6

19
78

-U
S-

C
H

-0
5

48
8

–
33

0
–

12
.4

19
.0

26
.3

10
.6
‡

9.
2

5
5.

19
1

10
.6

19
78

-U
S-

C
H

-0
6

48
8

–
33

0
–

12
.4

20
.4

27
.7

10
.9
‡

12
.6

5
5.

19
1

12
.6

19
78

-U
S-

C
H

-0
7

48
8

–
–

–
12

.4
16

.0
47

.5
10

.0
‡

13
.1

5
5.

19
1

13
.1

19
78

-U
S-

C
H

-0
8

47
7

–
–

–
12

.4
20

.3
47

.3
10

.8
‡

13
.1

5
5.

19
1

10
.8

19
78

-U
S-

C
H

-0
9

47
7

–
33

0
–

12
.4

20
.3

47
.3

10
.8
‡

13
.1

5
5.

19
1

13
.1

19
78

-U
S-

C
H

-1
0

47
7

–
33

0
–

12
.4

16
.0

47
.5

10
.0
‡

9.
2

5
5.

19
1

10
.0

19
78

-U
S-

C
H

-1
1

47
7

–
50

9
–

12
.4

16
.0

47
.5

10
.0
‡

9.
2

5
5.

19
1

9.
2

19
78

-U
S-

C
H

-1
4

51
7

–
–

–
40

.1
26

.5
29

.1
24

.5
‡

17
.5

10
5.

38
1

17
.5

19
78

-U
S-

C
H

-1
5

49
2

–
48

3
–

40
.1

21
.0

29
.8

22
.7
‡

18
.8

10
5.

38
1

18
.8

19
78

-U
S-

C
H

-1
6

49
2

–
48

3
–

40
.1

26
.5

39
.9

24
.5
‡

17
.5

10
5.

38
1

24
.5

19
78

-U
S-

C
H

-1
7

49
2

–
44

3
–

40
.1

29
.8

33
.5

25
.4
‡

18
.8

10
5.

38
1

18
.8

19
78

-U
S-

C
H

-1
8

51
7

–
50

1
–

40
.1

12
.9

29
.1

19
.5
‡

17
.5

10
5.

38
1

17
.5

19
78

-U
S-

C
H

-1
9

47
7

–
–

–
40

.1
21

.2
29

.0
22

.8
‡

19
.8

10
5.

38
1

19
.8

19
78

-U
S-

C
H

-2
0

47
7

–
–

–
40

.1
26

.5
39

.9
24

.5
‡

17
.5

10
5.

38
1

24
.5

19
78

-U
S-

C
H

-2
1

50
2

–
47

4
–

40
.1

21
.0

29
.8

22
.7
‡

18
.8

10
5.

38
1

18
.8

19
78

-U
S-

C
H

-2
2

50
2

–
47

4
–

40
.1

21
.0

29
.8

22
.7
‡

18
.8

10
5.

38
1

22
.7

19
78

-U
S-

C
H

-2
3

52
4

–
50

9
–

40
.1

12
.9

29
.1

19
.5
‡

17
.5

10
5.

38
1

17
.5

19
78

-U
S-

C
H

-2
4

50
2

–
51

5
–

40
.1

21
.0

29
.8

22
.7
‡

18
.8

10
5.

38
1

18
.8

19
78

-U
S-

H
I-

01
–

–
–

–
58

.9
30

.2
35

.7
–

31
10

5.
38

1
31

.0
19

78
-U

S-
H

I-
02

32
6

–
34

3
–

58
.9

30
.2

35
.7

–
31

10
5.

38
1

31
.0

19
78

-U
S-

H
I-

03
32

6
–

34
3

–
58

.9
30

.2
35

.7
34

.0
†

31
10

5.
38

1
34

.0

510



Ta
bl

e
E

.4
:M

at
er

ia
lS

tr
en

gt
h

of
D

at
as

et
(C

on
tin

ue
d)

R
ei

nf
or

ce
m

en
t Y

ie
ld

St
re

ng
th

s
M

as
on

ry
St

re
ng

th
s

Pr
is

m
St

re
ng

th

Se
ri

al
f y

t
f y

c
f y

h
f y

j
f′ b

f′ j
f′ g

f′ p
u

f′ p
g

C
ou

rs
es

h t
k

f′ m
co

r

(M
P a

)
(M

Pa
)

(M
Pa

)
(M

Pa
)

(M
P a

)
(M

Pa
)

(M
Pa

)
(M

P a
)

(M
Pa

)
(M

Pa
)

19
78

-U
S-

H
I-

04
32

6
–

34
3

–
58

.9
30

.2
35

.7
–

31
10

5.
38

1
31

.0
19

78
-U

S-
H

I-
05

32
6

–
34

3
–

58
.9

30
.2

35
.7

34
.0
†

31
10

5.
38

1
34

.0
19

78
-U

S-
H

I-
06

32
6

–
34

3
–

58
.9

30
.2

35
.7

–
31

10
5.

38
1

31
.0

19
78

-U
S-

H
I-

07
32

6
–

34
3

–
58

.9
30

.2
35

.7
34

.0
†

31
10

5.
38

1
34

.0
19

78
-U

S-
H

I-
08

32
6

–
34

3
–

58
.9

30
.2

35
.7

–
31

10
5.

38
1

31
.0

19
78

-U
S-

H
I-

09
32

6
–

34
3

–
58

.9
30

.2
35

.7
–

31
10

5.
38

1
31

.0
19

79
-U

S-
H

I-
01

55
4

55
4

–
–

12
.9

38
.1

26
.8

–
20

.6
5

5.
19

1
20

.6
19

79
-U

S-
H

I-
02

55
4

55
4

48
0

–
12

.9
38

.1
26

.8
–

20
.6

5
5.

19
1

20
.6

19
79

-U
S-

H
I-

03
55

4
55

4
48

0
–

12
.9

38
.1

26
.8

–
20

.6
5

5.
19

1
20

.6
19

79
-U

S-
H

I-
04

55
4

55
4

48
0

–
12

.9
38

.1
26

.8
–

20
.6

5
5.

19
1

20
.6

19
79

-U
S-

H
I-

05
55

4
55

4
48

0
–

12
.9

38
.1

26
.8

–
20

.6
5

5.
19

1
20

.6
19

79
-U

S-
H

I-
06

55
4

55
4

46
4

–
12

.9
38

.1
26

.8
–

20
.6

5
5.

19
1

20
.6

19
79

-U
S-

H
I-

08
55

4
55

4
46

4
–

40
.1

23
.9

26
.8

–
19

.6
10

5.
38

1
19

.6
19

79
-U

S-
H

I-
09

55
4

55
4

46
4

–
40

.1
23

.9
26

.8
–

19
.6

10
5.

38
1

19
.6

19
79

-U
S-

H
I-

10
55

4
55

4
46

4
–

40
.1

23
.9

26
.8

–
19

.6
10

5.
38

1
19

.6
19

82
-N

Z
-T

H
-0

1
38

9
38

9
38

9
–

–
–

26
.0

16
.0

14
.9

3
4.

21
0.

95
5

15
.3

19
82

-N
Z

-T
H

-0
2

47
7

47
7

47
7

–
–

–
26

.0
16

.0
14

.9
3

4.
21

0.
95

5
14

.2
19

82
-N

Z
-T

H
-0

3
38

9
38

9
–

–
–

–
26

.0
16

.0
14

.9
3

4.
21

0.
95

5
15

.3
19

82
-N

Z
-T

H
-0

4
38

9
38

9
38

9
–

–
–

26
.0

16
.0

14
.9

3
4.

21
0.

95
5

15
.3

19
82

-N
Z

-T
H

-0
5

45
4

45
4

45
4

–
–

–
26

.0
16

.0
14

.9
3

4.
21

0.
95

5
14

.2
19

82
-N

Z
-T

H
-0

6
45

4
45

4
45

4
–

–
–

26
.0

16
.0

14
.9

3
4.

21
0.

95
5

14
.2

19
82

-N
Z

-T
H

-0
8

43
4

43
4

43
4

–
–

–
26

.0
16

.0
14

.9
3

4.
21

0.
95

5
14

.2
19

83
-J

P-
M

A
-0

1
37

3∗
35

7
35

7
–

–
–

–
–

21
.8

3
3.

93
0.

93
8

20
.5

19
83

-J
P-

M
A

-0
3

38
9∗

35
7

35
7

–
–

–
–

–
21

.8
3

3.
93

0.
93

8
20

.5
19

83
-J

P-
M

A
-0

4
35

5∗
35

7
35

7
–

–
–

–
–

21
.8

3
3.

93
0.

93
8

20
.5

19
84

-J
P-

IG
-0

1
38

9
32

1
34

4
–

–
–

–
24

.4
–

3
3.

93
0.

93
8

22
.9

19
84

-J
P-

IG
-0

2
38

9
32

1
34

4
–

–
–

–
24

.4
–

3
3.

93
0.

93
8

22
.9

511



Ta
bl

e
E

.4
:M

at
er

ia
lS

tr
en

gt
h

of
D

at
as

et
(C

on
tin

ue
d)

R
ei

nf
or

ce
m

en
t Y

ie
ld

St
re

ng
th

s
M

as
on

ry
St

re
ng

th
s

Pr
is

m
St

re
ng

th

Se
ri

al
f y

t
f y

c
f y

h
f y

j
f′ b

f′ j
f′ g

f′ p
u

f′ p
g

C
ou

rs
es

h t
k

f′ m
co

r

(M
P a

)
(M

Pa
)

(M
Pa

)
(M

Pa
)

(M
P a

)
(M

Pa
)

(M
Pa

)
(M

P a
)

(M
Pa

)
(M

Pa
)

19
84

-J
P-

IG
-0

3
35

5
32

1
34

4
–

–
–

–
24

.4
–

3
3.

93
0.

93
8

22
.9

19
84

-J
P-

IG
-0

4
37

3
32

1
34

4
–

–
–

–
24

.4
–

3
3.

93
0.

93
8

22
.9

19
84

-J
P-

IG
-0

5
38

9
32

1
34

4
–

–
–

–
24

.4
–

3
3.

93
0.

93
8

22
.9

19
84

-J
P-

IG
-0

6
38

9
32

1
34

4
–

–
–

–
24

.4
–

3
3.

93
0.

93
8

22
.9

19
85

-J
P-

FU
-0

1
38

7
37

1
35

5
–

–
–

–
–

17
.9

3
3.

11
0.

88
6

15
.9

19
85

-J
P-

FU
-0

2
38

7
36

4
35

5
–

–
–

–
–

21
.4

3
1.

53
0.

78
2

16
.7

19
85

-J
P-

FU
-0

3
38

7
37

1
35

5
–

–
–

–
–

22
.8

3
3.

11
0.

88
6

20
.2

19
85

-J
P-

FU
-0

4
38

7
37

1
35

5
–

–
–

–
–

25
.2

3
1.

53
0.

78
2

19
.7

19
85

-J
P-

FU
-0

5
38

7
37

1
35

5
–

–
–

–
–

17
.9

3
3.

11
0.

88
6

15
.9

19
85

-J
P-

FU
-0

6
38

7
37

1
35

5
–

–
–

–
–

21
.4

3
1.

53
0.

78
2

16
.7

19
85

-J
P-

M
A

-0
1

37
0

37
2

–
–

–
–

–
–

22
.3

3
3.

11
0.

88
6

19
.8

19
85

-J
P-

M
A

-0
2

37
0

37
2

34
0

–
–

–
–

–
22

.3
3

3.
11

0.
88

6
19

.8
19

85
-J

P-
M

A
-0

3
37

0
37

2
34

0
–

–
–

–
–

22
.3

3
3.

11
0.

88
6

19
.8

19
85

-J
P-

M
A

-0
5

36
7

37
2

34
0

–
–

–
–

–
22

.3
3

3.
11

0.
88

6
19

.8
19

85
-J

P-
M

A
-0

6
36

7
37

2
34

0
–

–
–

–
–

22
.3

3
3.

11
0.

88
6

19
.8

19
85

-J
P-

YA
-0

5
37

6
37

2
35

5
–

–
–

–
–

20
.8

3
3.

11
0.

88
6

18
.4

19
85

-J
P-

Y A
-0

6
37

6
37

2
35

5
–

–
–

–
–

20
.8

3
3.

11
0.

88
6

18
.4

19
85

-J
P-

YA
-0

7
37

6
37

2
35

5
–

–
–

–
–

20
.8

3
3.

11
0.

88
6

18
.4

19
85

-J
P-

YA
-0

8
37

6
37

2
35

5
–

–
–

–
–

27
.0

3
3.

11
0.

88
6

23
.9

19
85

-J
P-

Y A
-0

9
37

6
37

2
37

2
–

–
–

–
–

27
.0

3
3.

11
0.

88
6

23
.9

19
85

-U
S-

SV
-0

1
46

5
–

40
7

–
–

–
–

–
22

.5
5

3.
04

0.
88

2
19

.9
19

85
-U

S-
SV

-0
2

46
5

–
40

7
–

–
–

–
–

22
.5

5
3.

04
0.

88
2

19
.9

19
85

-U
S-

SV
-0

3
39

1
–

43
8

–
–

–
–

–
12

.2
5

4.
13

0.
95

11
.6

19
85

-U
S-

SV
-0

4
41

0
41

0
43

8
–

–
–

–
–

12
.2

5
4.

13
0.

95
11

.6
19

85
-U

S-
SV

-0
5

39
1

–
43

8
–

–
–

–
–

13
.9

5
4.

13
0.

95
13

.2
19

85
-U

S-
SV

-0
6

39
1

–
43

8
–

–
–

–
–

13
.9

5
4.

13
0.

95
13

.2
19

85
-U

S-
SV

-0
7

41
0

41
0

43
8

–
–

–
–

–
13

.9
5

4.
13

0.
95

13
.2

512



Ta
bl

e
E

.4
:M

at
er

ia
lS

tr
en

gt
h

of
D

at
as

et
(C

on
tin

ue
d)

R
ei

nf
or

ce
m

en
t Y

ie
ld

St
re

ng
th

s
M

as
on

ry
St

re
ng

th
s

Pr
is

m
St

re
ng

th

Se
ri

al
f y

t
f y

c
f y

h
f y

j
f′ b

f′ j
f′ g

f′ p
u

f′ p
g

C
ou

rs
es

h t
k

f′ m
co

r

(M
P a

)
(M

Pa
)

(M
Pa

)
(M

Pa
)

(M
P a

)
(M

Pa
)

(M
Pa

)
(M

P a
)

(M
Pa

)
(M

Pa
)

19
85

-U
S-

SV
-0

8
39

1
–

43
8

–
–

–
–

–
13

.9
5

4.
13

0.
95

13
.2

19
85

-U
S-

SV
-0

9
39

1
–

43
8

43
8

–
–

–
–

13
.9

5
4.

13
0.

95
13

.2
19

85
-U

S-
SV

-1
0

39
1

–
43

8
43

8
–

–
–

–
13

.9
5

4.
13

0.
95

13
.2

19
85

-U
S-

SV
-1

1
39

1
–

43
8

–
–

–
–

–
13

.9
5

4.
13

0.
95

13
.2

19
85

-U
S-

SV
-1

2
39

1
–

43
8

–
–

–
–

–
13

.9
5

4.
13

0.
95

13
.2

19
85

-U
S-

SV
-1

3
46

5
–

46
5

–
–

–
–

–
25

.6
5

1.
55

0.
78

4
20

.1
19

85
-U

S-
SV

-1
5

46
5

–
46

5
–

–
–

–
–

25
.6

5
1.

55
0.

78
4

20
.1

19
85

-U
S-

SV
-1

6
39

1
–

43
8

–
–

–
–

–
19

.8
5

1.
55

0.
78

4
15

.5
19

85
-U

S-
SV

-1
7

39
1

–
43

8
–

–
–

–
–

19
.8

5
1.

55
0.

78
4

15
.5

19
85

-U
S-

SV
-1

8
39

1
43

8
43

8
–

–
–

–
–

19
.8

5
1.

55
0.

78
4

15
.5

19
85

-U
S-

SV
-1

9
43

8
43

8
43

8
–

–
–

–
–

19
.8

5
1.

55
0.

78
4

15
.5

19
85

-U
S-

SV
-2

0
41

0
41

0
43

8
–

–
–

–
–

19
.8

5
1.

55
0.

78
4

15
.5

19
85

-U
S-

SV
-2

1
41

0
41

0
43

8
–

–
–

–
–

19
.8

5
1.

55
0.

78
4

15
.5

19
85

-U
S-

SV
-2

2
39

1
–

43
8

–
–

–
–

–
19

.8
5

1.
55

0.
78

4
15

.5
19

85
-U

S-
SV

-2
3

39
1

–
43

8
–

–
–

–
–

19
.8

5
1.

55
0.

78
4

15
.5

19
85

-U
S-

SV
-2

4
39

1
–

41
0

–
–

–
–

–
19

.8
5

1.
55

0.
78

4
15

.5
19

85
-U

S-
SV

-2
5

41
0

–
41

7
–

–
–

–
–

19
.8

5
1.

55
0.

78
4

15
.5

19
85

-U
S-

SV
-2

6
39

1
–

–
43

8
–

–
–

–
25

.6
5

1.
55

0.
78

4
20

.1
19

86
-J

P-
IG

-0
1

37
0

37
2

–
–

–
–

–
–

28
.6

3
1.

53
0.

78
2

22
.4

19
86

-J
P-

IG
-0

2
37

0
37

2
34

0
–

–
–

–
–

28
.6

3
1.

53
0.

78
2

22
.4

19
86

-J
P-

IG
-0

3
37

0
37

2
34

0
–

–
–

–
–

28
.6

3
1.

53
0.

78
2

22
.4

19
86

-J
P-

IG
-0

4
37

0
37

2
34

0
–

–
–

–
–

28
.6

3
1.

53
0.

78
2

22
.4

19
86

-J
P-

M
A

-1
5

38
9∗

32
1∗

32
1∗

–
–

–
–

26
.4

–
3

3.
93

0.
93

8
24

.8
19

86
-J

P-
M

A
-1

6
34

6∗
32

1∗
32

1∗
–

–
–

–
43

.3
–

3
3.

93
0.

93
8

40
.6

19
86

-J
P-

M
A

-1
7

38
9∗

32
1∗

–
–

–
–

–
26

.4
–

3
3.

93
0.

93
8

24
.8

19
86

-J
P-

M
A

-1
8

38
9∗

32
1∗

–
–

–
–

–
26

.4
–

3
3.

93
0.

93
8

24
.8

19
86

-J
P-

M
A

-1
9

38
9∗

32
1∗

–
–

–
–

–
22

.5
–

3
3.

93
0.

93
8

21
.1

513



Ta
bl

e
E

.4
:M

at
er

ia
lS

tr
en

gt
h

of
D

at
as

et
(C

on
tin

ue
d)

R
ei

nf
or

ce
m

en
t Y

ie
ld

St
re

ng
th

s
M

as
on

ry
St

re
ng

th
s

Pr
is

m
St

re
ng

th

Se
ri

al
f y

t
f y

c
f y

h
f y

j
f′ b

f′ j
f′ g

f′ p
u

f′ p
g

C
ou

rs
es

h t
k

f′ m
co

r

(M
P a

)
(M

Pa
)

(M
Pa

)
(M

Pa
)

(M
P a

)
(M

Pa
)

(M
Pa

)
(M

P a
)

(M
Pa

)
(M

Pa
)

19
86

-J
P-

M
A

-2
0

38
9∗

32
1∗

–
–

–
–

–
22

.5
–

3
3.

93
0.

93
8

21
.1

19
86

-J
P-

M
A

-2
1

38
9∗

32
1∗

–
–

–
–

–
43

.3
–

3
3.

93
0.

93
8

40
.6

19
86

-J
P-

M
A

-2
2

38
9∗

32
1∗

32
1∗

–
–

–
–

26
.4

–
3

3.
93

0.
93

8
24

.8
19

86
-J

P-
M

A
-2

3
38

9∗
32

1∗
32

1∗
–

–
–

–
26

.4
–

3
3.

93
0.

93
8

24
.8

19
86

-J
P-

M
A

-2
4

35
5∗

32
1∗

32
1∗

–
–

–
–

43
.3

–
3

3.
93

0.
93

8
40

.6
19

86
-J

P-
M

A
-2

5
38

9∗
32

1∗
32

1∗
–

–
–

–
43

.3
–

3
3.

93
0.

93
8

40
.6

19
86

-J
P-

M
A

-2
6

38
9∗

32
1∗

32
1∗

–
–

–
–

43
.3

–
3

3.
93

0.
93

8
40

.6
19

86
-J

P-
M

A
-2

7
38

9∗
32

1∗
32

1∗
–

–
–

–
43

.3
–

3
3.

93
0.

93
8

40
.6

19
86

-J
P-

M
A

-2
8

38
9∗

32
1∗

32
1∗

–
–

–
–

26
.4

–
3

3.
93

0.
93

8
24

.8
19

86
-J

P-
M

A
-2

9
38

9∗
32

1∗
32

1∗
–

–
–

–
22

.5
–

3
3.

93
0.

93
8

21
.1

19
86

-J
P-

M
A

-3
0

38
9∗

32
1∗

32
1∗

–
–

–
–

43
.3

–
3

3.
93

0.
93

8
40

.6
19

86
-J

P-
M

A
-3

1
38

9∗
32

1∗
32

1∗
–

–
–

–
26

.4
–

3
3.

93
0.

93
8

24
.8

19
86

-J
P-

M
A

-3
2

38
9∗

32
1∗

32
1∗

–
–

–
–

22
.5

–
3

3.
93

0.
93

8
21

.1
19

86
-J

P-
M

A
-3

3
38

9∗
32

1∗
32

1∗
–

–
–

–
43

.3
–

3
3.

93
0.

93
8

40
.6

19
86

-J
P-

M
A

-3
4

38
9∗

32
1∗

32
1∗

–
–

–
–

22
.5

–
3

3.
93

0.
93

8
21

.1
19

86
-J

P-
M

A
-3

5
38

9∗
32

1∗
32

1∗
–

–
–

–
26

.4
–

3
3.

93
0.

93
8

24
.8

19
86

-J
P-

M
A

-3
6

36
5∗

32
1∗

32
1∗

–
–

–
–

43
.3

–
3

3.
93

0.
93

8
40

.6
19

86
-J

P-
M

A
-3

7
35

8∗
32

1∗
32

1∗
–

–
–

–
26

.4
–

3
3.

93
0.

93
8

24
.8

19
86

-J
P-

M
A

-3
8

35
5∗

32
1∗

32
1∗

–
–

–
–

22
.5

–
3

3.
93

0.
93

8
21

.1
19

86
-J

P-
M

A
-5

3
38

9∗
32

1∗
32

1∗
–

–
–

–
34

.7
–

3
1.

93
0.

80
9

28
.1

19
86

-J
P-

M
A

-5
4

38
9∗

32
1∗

32
1∗

–
–

–
–

42
.0

–
3

1.
93

0.
80

9
34

.0
19

86
-J

P-
SH

-0
1

34
6

34
8

35
8

–
–

–
–

–
29

.0
3

3.
11

0.
88

6
25

.7
19

86
-J

P-
SH

-0
2

34
6

34
8

35
8

–
–

–
–

–
26

.1
3

3.
11

0.
88

6
23

.1
19

86
-J

P-
SH

-0
3

34
6

34
8

35
8

47
2

–
–

–
–

26
.1

3
3.

11
0.

88
6

23
.1

19
86

-J
P-

SH
-0

4
35

5
34

8
35

8
–

–
–

–
–

26
.1

3
3.

11
0.

88
6

23
.1

19
86

-J
P-

SH
-0

5
34

6
34

8
35

8
–

–
–

–
–

26
.4

3
3.

11
0.

88
6

23
.4

19
86

-J
P-

SH
-0

6
34

6
34

8
35

8
–

–
–

–
–

31
.4

3
3.

11
0.

88
6

27
.8

514



Ta
bl

e
E

.4
:M

at
er

ia
lS

tr
en

gt
h

of
D

at
as

et
(C

on
tin

ue
d)

R
ei

nf
or

ce
m

en
t Y

ie
ld

St
re

ng
th

s
M

as
on

ry
St

re
ng

th
s

Pr
is

m
St

re
ng

th

Se
ri

al
f y

t
f y

c
f y

h
f y

j
f′ b

f′ j
f′ g

f′ p
u

f′ p
g

C
ou

rs
es

h t
k

f′ m
co

r

(M
P a

)
(M

Pa
)

(M
Pa

)
(M

Pa
)

(M
P a

)
(M

Pa
)

(M
Pa

)
(M

P a
)

(M
Pa

)
(M

Pa
)

19
87

-J
P-

O
K

-0
1

38
7

37
1

35
5

–
–

–
–

–
22

.8
3

3.
11

0.
88

6
20

.2
19

87
-J

P-
O

K
-0

2
38

7
37

1
35

5
–

–
–

–
–

22
.8

3
3.

11
0.

88
6

20
.2

19
87

-J
P-

O
K

-1
0

38
7

32
2

35
5

–
–

–
–

–
19

.9
3

3.
11

0.
88

6
17

.6
19

87
-J

P-
O

K
-1

1
38

7
32

2
35

5
–

–
–

–
–

33
.2

3
3.

11
0.

88
6

29
.4

19
88

-J
P-

IG
-0

5
36

0
37

2
–

–
–

–
–

–
26

.4
3

1.
53

0.
78

2
20

.6
19

88
-J

P-
IG

-0
6

36
0

37
2

35
4

–
–

–
–

–
26

.4
3

1.
53

0.
78

2
20

.6
19

88
-J

P-
IG

-0
7

36
0

37
2

35
4

–
–

–
–

–
26

.4
3

1.
53

0.
78

2
20

.6
19

88
-J

P-
IG

-0
8

36
0

37
2

35
4

–
–

–
–

–
26

.4
3

1.
53

0.
78

2
20

.6
19

88
-J

P-
IG

-0
9

38
9

37
2

35
4

–
–

–
–

–
26

.4
3

1.
53

0.
78

2
20

.6
19

88
-S

L
-T

O
-0

1
52

2
–

–
–

17
.4

9.
3

9.
3

26
.8

–
–

–
1

26
.8

19
88

-S
L

-T
O

-0
2

52
2

–
32

3
–

17
.4

9.
3

9.
3

26
.8

–
–

–
1

26
.8

19
88

-S
L

-T
O

-0
3

52
2

–
39

1
–

17
.4

9.
3

9.
3

26
.8

–
–

–
1

26
.8

19
88

-S
L

-T
O

-0
4

52
2

–
25

3
–

17
.4

9.
3

9.
3

26
.8

–
–

–
1

26
.8

19
88

-S
L

-T
O

-0
5

52
2

–
–

–
17

.4
9.

3
9.

3
26

.8
–

–
–

1
26

.8
19

88
-S

L
-T

O
-0

9
52

2
–

–
–

15
.5

7.
0

7.
0

23
.8

–
–

–
1

23
.8

19
88

-S
L

-T
O

-1
0

52
2

–
32

3
–

15
.5

7.
0

7.
0

23
.8

–
–

–
1

23
.8

19
88

-S
L

-T
O

-1
1

52
2

–
39

1
–

15
.5

7.
0

7.
0

23
.8

–
–

–
1

23
.8

19
88

-S
L

-T
O

-1
2

52
2

–
25

3
–

15
.5

7.
0

7.
0

23
.8

–
–

–
1

23
.8

19
88

-S
L

-T
O

-1
3

52
2

–
–

–
15

.5
7.

0
7.

0
23

.8
–

–
–

1
23

.8
19

88
-U

S-
JO

-0
1

34
5

–
–

–
32

.7
20

.3
–

17
.5

–
3

3.
09

0.
88

5
15

.5
19

88
-U

S-
JO

-0
2

34
5

–
–

–
32

.7
20

.3
–

17
.5

–
3

3.
09

0.
88

5
15

.5
19

88
-U

S-
JO

-0
3

34
5

–
–

–
32

.7
14

.1
–

15
.8

–
3

3.
09

0.
88

5
14

.0
19

88
-U

S-
JO

-0
4

34
5

–
–

–
32

.7
14

.2
–

15
.8

–
3

3.
09

0.
88

5
14

.0
19

88
-U

S-
JO

-0
5

34
5

–
–

–
32

.7
15

.7
–

11
.9

–
3

3.
09

0.
88

5
10

.5
19

88
-U

S-
JO

-0
6

34
5

–
–

–
32

.7
15

.7
–

11
.9

–
3

3.
09

0.
88

5
10

.5
19

88
-U

S-
JO

-0
7

34
5

–
–

–
32

.7
18

.3
–

18
.0

–
3

3.
09

0.
88

5
15

.9
19

88
-U

S-
JO

-0
8

34
5

–
–

–
32

.7
18

.3
–

18
.0

–
3

3.
09

0.
88

5
15

.9

515



Ta
bl

e
E

.4
:M

at
er

ia
lS

tr
en

gt
h

of
D

at
as

et
(C

on
tin

ue
d)

R
ei

nf
or

ce
m

en
t Y

ie
ld

St
re

ng
th

s
M

as
on

ry
St

re
ng

th
s

Pr
is

m
St

re
ng

th

Se
ri

al
f y

t
f y

c
f y

h
f y

j
f′ b

f′ j
f′ g

f′ p
u

f′ p
g

C
ou

rs
es

h t
k

f′ m
co

r

(M
P a

)
(M

Pa
)

(M
Pa

)
(M

Pa
)

(M
P a

)
(M

Pa
)

(M
Pa

)
(M

P a
)

(M
Pa

)
(M

Pa
)

19
88

-U
S-

JO
-0

9
34

5
–

–
–

32
.7

15
.2

–
18

.3
–

3
3.

09
0.

88
5

16
.2

19
88

-U
S-

JO
-1

0
34

5
–

–
–

32
.7

15
.2

–
18

.3
–

3
3.

09
0.

88
5

16
.2

19
88

-U
S-

JO
-1

1
34

5
–

–
–

32
.7

15
.5

–
18

.0
–

3
3.

09
0.

88
5

15
.9

19
88

-U
S-

JO
-1

2
34

5
–

–
–

32
.7

15
.5

–
18

.0
–

3
3.

09
0.

88
5

15
.9

19
88

-U
S-

JO
-1

3
34

5
–

–
–

32
.7

15
.0

–
17

.2
–

3
3.

09
0.

88
5

15
.2

19
88

-U
S-

JO
-1

4
34

5
–

–
–

32
.7

15
.0

–
17

.2
–

3
3.

09
0.

88
5

15
.2

19
88

-U
S-

JO
-1

5
34

5
–

–
–

32
.7

15
.4

–
14

.9
–

3
3.

09
0.

88
5

13
.2

19
88

-U
S-

JO
-1

6
34

5
–

–
–

32
.7

15
.4

–
14

.9
–

3
3.

09
0.

88
5

13
.2

19
88

-U
S-

JO
-1

7
34

5
–

–
–

19
.3

15
.8

–
8.

6
–

3
3.

09
0.

88
5

7.
6

19
88

-U
S-

JO
-1

8
34

5
–

–
–

19
.3

15
.8

–
8.

6
–

3
3.

09
0.

88
5

7.
6

19
88

-U
S-

JO
-1

9
34

5
–

–
–

19
.3

17
.2

–
9.

2
–

3
3.

09
0.

88
5

8.
1

19
88

-U
S-

JO
-2

0
34

5
–

–
–

19
.3

17
.2

–
9.

2
–

3
3.

09
0.

88
5

8.
1

19
88

-U
S-

JO
-2

1
34

5
–

–
–

19
.3

19
.6

–
8.

4
–

3
3.

09
0.

88
5

7.
4

19
88

-U
S-

JO
-2

2
34

5
–

–
–

19
.3

19
.6

–
8.

4
–

3
3.

09
0.

88
5

7.
4

19
88

-U
S-

JO
-2

3
34

5
–

–
–

19
.3

22
.3

–
11

.2
–

3
3.

09
0.

88
5

9.
9

19
88

-U
S-

JO
-2

4
34

5
–

–
–

19
.3

22
.3

–
11

.2
–

3
3.

09
0.

88
5

9.
9

19
88

-U
S-

JO
-2

5
34

5
–

–
–

19
.3

17
.3

–
9.

2
–

3
3.

09
0.

88
5

8.
1

19
88

-U
S-

JO
-2

6
34

5
–

–
–

19
.3

17
.3

–
9.

2
–

3
3.

09
0.

88
5

8.
1

19
88

-U
S-

JO
-2

7
34

5
–

–
–

19
.3

18
.1

–
11

.0
–

3
3.

09
0.

88
5

9.
7

19
88

-U
S-

JO
-2

8
34

5
–

–
–

19
.3

18
.1

–
11

.0
–

3
3.

09
0.

88
5

9.
7

19
88

-U
S-

JO
-2

9
34

5
–

–
–

19
.3

19
.6

–
8.

4
–

3
3.

09
0.

88
5

7.
4

19
88

-U
S-

JO
-3

0
34

5
–

–
–

19
.3

19
.6

–
8.

4
–

3
3.

09
0.

88
5

7.
4

19
88

-U
S-

JO
-3

1
34

5
–

–
–

19
.3

17
.9

–
8.

3
–

3
3.

09
0.

88
5

7.
4

19
88

-U
S-

JO
-3

2
34

5
–

–
–

19
.3

17
.9

–
8.

3
–

3
3.

09
0.

88
5

7.
4

19
88

-U
S-

SH
-0

3
43

4
43

4
38

6
–

16
.5

27
.6

30
.3

–
20

.7
3

4.
20

0.
95

4
19

.8
19

88
-U

S-
SH

-0
4

49
6

49
6

38
6

–
16

.5
20

.7
20

.7
–

17
.9

3
4.

20
0.

95
4

17
.1

19
88

-U
S-

SH
-0

5
49

6
49

6
38

6
–

16
.5

20
.7

20
.7

–
17

.9
3

4.
20

0.
95

4
17

.1

516



Ta
bl

e
E

.4
:M

at
er

ia
lS

tr
en

gt
h

of
D

at
as

et
(C

on
tin

ue
d)

R
ei

nf
or

ce
m

en
t Y

ie
ld

St
re

ng
th

s
M

as
on

ry
St

re
ng

th
s

Pr
is

m
St

re
ng

th

Se
ri

al
f y

t
f y

c
f y

h
f y

j
f′ b

f′ j
f′ g

f′ p
u

f′ p
g

C
ou

rs
es

h t
k

f′ m
co

r

(M
P a

)
(M

Pa
)

(M
Pa

)
(M

Pa
)

(M
P a

)
(M

Pa
)

(M
Pa

)
(M

P a
)

(M
Pa

)
(M

Pa
)

19
88

-U
S-

SH
-0

6
44

1
44

1
38

6
–

16
.5

20
.7

20
.7

–
17

.9
3

4.
20

0.
95

4
17

.1
19

88
-U

S-
SH

-0
7

49
6

49
6

38
6

–
16

.5
20

.7
27

.6
–

20
.7

3
4.

20
0.

95
4

19
.8

19
88

-U
S-

SH
-0

8
44

1
44

1
46

2
–

16
.5

20
.7

27
.6

–
20

.7
3

4.
20

0.
95

4
19

.8
19

88
-U

S-
SH

-0
9

44
1

44
1

38
6

–
16

.5
20

.7
27

.6
–

20
.7

3
4.

20
0.

95
4

19
.8

19
88

-U
S-

SH
-1

0
44

1
44

1
38

6
–

17
.9

18
.6

20
.0

–
22

.1
3

4.
20

0.
95

4
21

.1
19

88
-U

S-
SH

-1
1

49
6

49
6

46
2

–
17

.9
18

.6
20

.0
–

22
.1

3
4.

20
0.

95
4

21
.1

19
88

-U
S-

SH
-1

3
44

8
44

8
44

1
–

17
.9

20
.7

26
.2

–
22

.8
3

4.
20

0.
95

4
21

.8
19

88
-U

S-
SH

-1
4

44
8

44
8

38
6

–
17

.9
20

.7
26

.2
–

22
.8

3
4.

20
0.

95
4

21
.8

19
88

-U
S-

SH
-1

5
44

8
44

8
46

2
–

17
.9

20
.7

26
.2

–
22

.8
3

4.
20

0.
95

4
21

.8
19

88
-U

S-
SH

-1
6

49
6

49
6

46
2

–
17

.9
18

.6
40

.7
–

17
.2

3
4.

20
0.

95
4

16
.4

19
89

-U
S-

YA
-0

2
0

–
–

69
3

27
.2

–
–

21
.1

8.
5

2∗
2.

05
0.

81
7

17
.2

19
89

-U
S-

YA
-0

3
0

–
–

69
3

27
.2

–
–

21
.1

7.
7

2∗
2.

05
0.

81
7

17
.2

19
89

-U
S-

YA
-0

4
0

–
33

6
–

27
.2

–
–

21
.1

8.
4

2∗
2.

05
0.

81
7

17
.2

19
89

-U
S-

YA
-0

5
0

–
43

9
–

27
.2

–
–

21
.1

8.
7

2∗
2.

05
0.

81
7

17
.2

19
89

-U
S-

Y A
-0

6
0

–
38

5
–

27
.2

–
–

21
.1

7.
5

2∗
2.

05
0.

81
7

17
.2

19
89

-U
S-

YA
-0

8
0

–
35

5∗
69

3
27

.2
–

–
21

.1
7.

5
2∗

2.
05

0.
81

7
17

.2
19

89
-U

S-
Y A

-0
9

0
–

35
5

69
3

27
.2

–
–

21
.1

5.
9

2∗
2.

05
0.

81
7

17
.2

19
89

-U
S-

YA
-1

0
0

–
37

3
–

27
.2

–
–

21
.1

7.
4

2∗
2.

05
0.

81
7

17
.2

19
90

-U
S-

SH
-2

1
44

8
44

8
38

6
–

45
.5

22
.8

26
.9

–
26

.2
6

4.
38

0.
96

6
25

.3
19

90
-U

S-
SH

-2
2

44
8

44
8

38
6

–
45

.5
22

.8
26

.9
–

26
.2

6
4.

38
0.

96
6

25
.3

19
91

-J
P-

M
A

-0
1

37
3

34
7

36
1

–
–

–
–

–
11

.9
3

3.
11

0.
88

6
10

.5
19

91
-J

P-
M

A
-0

2
36

9
34

7
36

1
–

–
–

–
–

11
.9

3
3.

11
0.

88
6

10
.5

19
91

-J
P-

M
A

-0
3

39
3

34
7

36
1

–
–

–
–

–
11

.9
3

3.
11

0.
88

6
10

.5
19

91
-J

P-
M

A
-0

4
36

9
34

7
36

1
–

–
–

–
–

11
.9

3
3.

11
0.

88
6

10
.5

19
91

-J
P-

M
A

-0
5

39
3

34
7

36
1

–
–

–
–

–
11

.9
3

3.
11

0.
88

6
10

.5
19

91
-J

P-
M

A
-0

6
44

2
34

7
36

1
–

–
–

–
–

11
.9

3
3.

11
0.

88
6

10
.5

19
92

-U
S-

G
H

-0
1

44
3

44
3

44
3

–
19

.3
15

.5
31

.0
15

.9
20

.0
3

4.
17

0.
95

3
15

.2

517



Ta
bl

e
E

.4
:M

at
er

ia
lS

tr
en

gt
h

of
D

at
as

et
(C

on
tin

ue
d)

R
ei

nf
or

ce
m

en
t Y

ie
ld

St
re

ng
th

s
M

as
on

ry
St

re
ng

th
s

Pr
is

m
St

re
ng

th

Se
ri

al
f y

t
f y

c
f y

h
f y

j
f′ b

f′ j
f′ g

f′ p
u

f′ p
g

C
ou

rs
es

h t
k

f′ m
co

r

(M
P a

)
(M

Pa
)

(M
Pa

)
(M

Pa
)

(M
P a

)
(M

Pa
)

(M
Pa

)
(M

P a
)

(M
Pa

)
(M

Pa
)

19
92

-U
S-

G
H

-0
2

44
7

44
7

44
7

–
19

.3
15

.5
31

.0
15

.9
20

.0
3

4.
17

0.
95

3
15

.2
19

93
-U

S-
G

H
-0

5
44

3
44

3
44

3
–

19
.3

15
.5

31
.0

15
.9

20
.0

3
4.

17
0.

95
3

15
.2

19
93

-U
S-

G
H

-0
6

44
3

44
3

44
3

–
19

.3
15

.5
31

.0
15

.9
20

.0
3

4.
17

0.
95

3
15

.2
19

94
-U

S-
B

R
-0

1
45

2
45

2
42

7
–

–
–

–
–

22
.5

6∗
4.

38
0.

96
6

21
.7

19
94

-U
S-

B
R

-0
2

44
5

44
5

44
5

–
–

–
–

–
23

.1
6∗

4.
38

0.
96

6
22

.3
19

94
-U

S-
B

R
-0

3
44

5
44

5
44

5
–

–
–

–
–

23
.1

6∗
4.

38
0.

96
6

22
.3

19
95

-N
Z

-B
R

-0
1

30
0

30
0

–
–

–
–

–
–

10
.0
†

3∗
4.

21
0.

95
5

9.
6

19
95

-N
Z

-B
R

-0
2

30
0

30
0

–
–

–
–

–
8.

3†
–

3∗
4.

21
0.

95
5

7.
9

19
95

-N
Z

-B
R

-0
3

30
0

30
0

–
–

–
–

–
–

10
.0
†

3∗
4.

21
0.

95
5

9.
6

19
95

-N
Z

-B
R

-0
4

30
0

30
0

–
–

–
–

–
–

10
.0
†

3∗
4.

21
0.

95
5

9.
6

19
95

-N
Z

-B
R

-0
6

30
0

30
0

–
–

–
–

–
13

.1
†

–
3∗

4.
21

0.
95

5
12

.5
19

95
-N

Z
-B

R
-0

7
30

0
30

0
–

–
–

–
–

10
.0
†

–
3∗

4.
21

0.
95

5
9.

6
19

95
-N

Z
-B

R
-0

8
30

0
30

0
–

–
–

–
–

16
.3
†

–
3∗

4.
21

0.
95

5
15

.6
19

95
-N

Z
-B

R
-1

0
30

0
30

0
–

–
–

–
–

10
.0
†

–
3∗

4.
21

0.
95

5
9.

6
19

95
-N

Z
-B

R
-1

1
30

0
30

0
–

–
–

–
–

10
.8
†

–
3∗

4.
21

0.
95

5
10

.3
19

95
-N

Z
-B

R
-1

2
30

0
30

0
–

–
–

–
–

10
.0
†

–
3∗

4.
21

0.
95

5
9.

6
19

96
-S

L
-T

O
-0

6
52

2
–

–
25

3
–

–
–

13
.0
†

–
–

–
1∗

13
.0

19
96

-S
L

-T
O

-0
8

52
2

–
–

25
3

–
–

–
13

.0
†

–
–

–
1∗

13
.0

19
96

-S
L

-T
O

-1
0

52
2

–
–

25
3

–
–

–
13

.0
†

–
–

–
1∗

13
.0

19
96

-S
L

-T
O

-1
2

52
2

–
–

25
3

–
–

–
13

.0
†

–
–

–
1∗

13
.0

19
96

-S
L

-T
O

-1
4

52
2

–
–

25
3

–
–

–
13

.0
†

–
–

–
1∗

13
.0

19
96

-S
L

-T
O

-1
6

52
2

–
–

25
3

–
–

–
13

.0
†

–
–

–
1∗

13
.0

19
96

-U
S-

SH
-0

2
41

4
–

41
4

–
–

21
.6

29
.6

17
.1

17
.6

2
2.

05
0.

81
7

14
.0

19
98

-U
S-

SH
-0

1
41

4
–

–
51

7
23

.3
22

.2
28

.2
14

.5
16

.5
2

2.
05

0.
81

7
11

.9
19

98
-U

S-
SH

-0
2

41
4

–
–

51
7

23
.3

22
.2

28
.2

14
.5

16
.5

2
2.

05
0.

81
7

11
.9

19
98

-U
S-

SH
-0

3
41

4
–

–
51

7
23

.3
22

.2
28

.2
14

.5
16

.5
2

2.
05

0.
81

7
11

.9
19

98
-U

S-
SH

-0
4

41
4

–
–

51
7

23
.3

22
.2

28
.2

14
.5

16
.5

2
2.

05
0.

81
7

11
.9

518



Ta
bl

e
E

.4
:M

at
er

ia
lS

tr
en

gt
h

of
D

at
as

et
(C

on
tin

ue
d)

R
ei

nf
or

ce
m

en
t Y

ie
ld

St
re

ng
th

s
M

as
on

ry
St

re
ng

th
s

Pr
is

m
St

re
ng

th

Se
ri

al
f y

t
f y

c
f y

h
f y

j
f′ b

f′ j
f′ g

f′ p
u

f′ p
g

C
ou

rs
es

h t
k

f′ m
co

r

(M
P a

)
(M

Pa
)

(M
Pa

)
(M

Pa
)

(M
P a

)
(M

Pa
)

(M
Pa

)
(M

P a
)

(M
Pa

)
(M

Pa
)

19
98

-U
S-

SH
-0

5
41

4
–

–
51

7
23

.3
22

.2
28

.2
14

.5
16

.5
2

2.
05

0.
81

7
11

.9
19

98
-U

S-
SH

-0
6

41
4

–
–

51
7

23
.3

22
.2

28
.2

14
.5

16
.5

2
2.

05
0.

81
7

11
.9

20
00

-J
P-

O
H

-0
1

36
0∗

37
2∗

35
5∗

–
–

–
–

–
22

.8
3

3.
00

0.
87

9
20

.0
20

00
-J

P-
O

H
-0

2
36

0∗
37

2∗
35

5∗
–

–
–

–
–

22
.8

3
3.

00
0.

87
9

20
.0

20
00

-J
P-

O
H

-0
3

36
0∗

37
2∗

35
5∗

–
–

–
–

–
22

.8
3

3.
00

0.
87

9
20

.0
20

00
-J

P-
O

H
-0

4
36

0∗
37

2∗
35

5∗
–

–
–

–
–

22
.8

3
3.

00
0.

87
9

20
.0

20
07

-A
U

-H
A

-0
1

42
0

42
0

–
–

40
.0

8.
3

28
.4

17
.0
‡

12
.5

4
2.

10
0.

82
13

.9
20

07
-A

U
-H

A
-0

2
42

0
42

0
–

–
40

.0
9.

3
23

.6
17

.7
‡

11
.9

4
2.

10
0.

82
14

.5
20

07
-A

U
-H

A
-0

3
42

0
42

0
–

–
40

.0
9.

7
29

.5
17

.9
‡

13
.7

4
2.

10
0.

82
14

.7
20

07
-A

U
-H

A
-0

4
42

0
42

0
–

–
40

.0
9.

5
31

.5
17

.8
‡

14
.4

4
2.

10
0.

82
14

.6
20

07
-A

U
-H

A
-0

5
42

0
42

0
–

–
40

.0
5.

3
34

.8
14

.8
‡

15
.5

4
2.

10
0.

82
12

.1
20

07
-A

U
-H

A
-0

6
42

0
42

0
–

–
40

.0
6.

9
39

.7
16

.1
‡

15
.7

4
2.

10
0.

82
13

.2
20

07
-A

U
-H

A
-0

7
42

0
–

–
–

40
.0

5.
0

36
.5

14
.6
‡

18
.4

4
2.

10
0.

82
12

.0
20

07
-A

U
-H

A
-0

8
42

0
–

–
–

40
.0

6.
4

34
.7

15
.7
‡

18
.1

4
2.

10
0.

82
12

.9
20

07
-A

U
-H

A
-0

9
42

0
–

–
–

40
.0

10
.0

39
.7

18
.1
‡

20
.1

4
2.

10
0.

82
14

.8
20

07
-A

U
-H

A
-1

1
42

0
42

0
–

–
40

.0
6.

8
28

.2
20

.4
‡

20
.3

4
2.

10
0.

82
16

.7
20

07
-A

U
-H

A
-1

2
42

0
42

0
–

–
40

.0
6.

8
28

.2
20

.4
‡

20
.3

4
2.

10
0.

82
16

.7
20

07
-A

U
-H

A
-1

3
42

0
–

–
–

40
.0

6.
8

28
.2

20
.4
‡

20
.3

4
2.

10
0.

82
16

.7
20

07
-A

U
-H

A
-1

4
42

0
–

–
–

40
.0

6.
8

28
.2

20
.4
‡

20
.3

4
2.

10
0.

82
16

.7
20

07
-N

Z
-V

O
-0

1
31

8
31

8
32

5
–

–
–

–
–

17
.6

3
4.

21
0.

95
5

16
.8

20
07

-N
Z

-V
O

-0
2

31
8

31
8

32
5

–
–

–
–

–
17

.6
3

4.
21

0.
95

5
16

.8
20

07
-N

Z
-V

O
-0

4
31

8
31

8
32

0
–

–
–

–
–

17
.0

3
4.

21
0.

95
5

16
.2

20
07

-N
Z

-V
O

-0
5

31
8

31
8

–
–

–
–

–
18

.5
∗

18
.5
∗

3
4.

21
0.

95
5

17
.7

20
07

-N
Z

-V
O

-0
6

31
8

31
8

–
–

–
–

–
18

.5
∗

18
.5
∗

3
4.

21
0.

95
5

17
.7

20
07

-N
Z

-V
O

-0
7

31
8

31
8

32
5

–
–

–
–

–
18

.8
3

4.
21

0.
95

5
18

.0
20

07
-N

Z
-V

O
-0

8
31

8
31

8
32

5
–

–
–

–
–

18
.8

3
4.

21
0.

95
5

18
.0

20
07

-N
Z

-V
O

-0
9

32
0

32
0

32
5

–
–

–
–

–
24

.3
3

4.
21

0.
95

5
23

.2

519



Ta
bl

e
E

.4
:M

at
er

ia
lS

tr
en

gt
h

of
D

at
as

et
(C

on
tin

ue
d)

R
ei

nf
or

ce
m

en
t Y

ie
ld

St
re

ng
th

s
M

as
on

ry
St

re
ng

th
s

Pr
is

m
St

re
ng

th

Se
ri

al
f y

t
f y

c
f y

h
f y

j
f′ b

f′ j
f′ g

f′ p
u

f′ p
g

C
ou

rs
es

h t
k

f′ m
co

r

(M
P a

)
(M

Pa
)

(M
Pa

)
(M

Pa
)

(M
P a

)
(M

Pa
)

(M
Pa

)
(M

P a
)

(M
Pa

)
(M

Pa
)

20
07

-N
Z

-V
O

-1
0

31
8

31
8

32
5

–
–

–
–

–
24

.3
3

4.
21

0.
95

5
23

.2
20

07
-P

O
-H

A
-0

2
58

0
58

0
58

0
–

12
.1

3.
8

3.
8

14
.8
†

–
3

3.
20

0.
89

2
13

.2
20

07
-P

O
-H

A
-0

3
58

0
58

0
58

0
–

12
.1

7.
1

7.
1

14
.8
†

–
3

3.
20

0.
89

2
13

.2
20

07
-P

O
-H

A
-0

4
58

0
58

0
58

0
–

12
.1

8.
6

8.
6

14
.8
†

–
3

3.
20

0.
89

2
13

.2
20

07
-P

O
-H

A
-0

5
58

0
58

0
58

0
–

12
.1

7.
7

7.
7

14
.8
†

–
3

3.
20

0.
89

2
13

.2
20

08
-C

A
-M

A
-0

1
49

2
49

2
69

1
–

–
21

.4
37

.6
21

.6
12

.4
4

4.
39

0.
96

6
20

.9
20

08
-C

A
-M

A
-0

2
50

3
50

3
74

4
–

–
21

.4
37

.6
21

.6
12

.4
4

4.
39

0.
96

6
20

.9
20

08
-C

A
-M

A
-0

4
49

2
49

2
74

4
–

–
21

.4
37

.6
21

.6
12

.4
4

4.
39

0.
96

6
20

.9
20

08
-C

A
-M

A
-0

5
49

2
49

2
69

1
–

–
21

.4
37

.6
21

.6
12

.4
4

4.
39

0.
96

6
20

.9
20

09
-U

S-
M

I-
01

41
4∗

41
4∗

41
4∗

–
14

.0
13

.8
22

.0
17

.2
–

4∗
4.

14
0.

95
1

16
.4

20
09

-U
S-

M
I-

02
41

4∗
41

4∗
41

4∗
–

14
.0

12
.6

22
.0

17
.2

–
4∗

4.
14

0.
95

1
16

.4
20

09
-U

S-
M

I-
03

41
4∗

41
4∗

41
4∗

–
14

.0
13

.8
22

.0
17

.2
–

4∗
4.

14
0.

95
1

16
.4

20
09

-U
S-

M
I-

04
41

4∗
41

4∗
41

4∗
–

14
.0

12
.6

22
.0

17
.2

–
4∗

4.
14

0.
95

1
16

.4
20

09
-U

S-
M

I-
07

41
4∗

41
4∗

41
4∗

–
–

13
.8

22
.0

–
22

.0
†

4∗
2.

78
0.

86
5

19
.0

20
09

-U
S-

M
I-

08
41

4∗
41

4∗
41

4∗
–

–
12

.6
22

.0
–

22
.0
†

4∗
2.

78
0.

86
5

19
.0

20
10

-U
S-

E
L

-0
1

42
7

42
7

60
8

–
–

14
.9

18
.2

17
.5

24
.5

2
2.

05
0.

81
7

14
.3

20
10

-U
S-

E
L

-0
2

42
7

42
7

42
7

–
–

14
.9

18
.2

17
.5

24
.5

2
2.

05
0.

81
7

14
.3

20
10

-U
S-

E
L

-0
3

42
7

42
7

45
2

–
–

14
.9

18
.2

17
.5

24
.5

2
2.

05
0.

81
7

14
.3

20
10

-U
S-

E
L

-0
4

42
7

42
7

45
2

–
–

14
.9

18
.2

17
.5

24
.5

2
2.

05
0.

81
7

14
.3

20
10

-U
S-

E
L

-0
5

42
7

42
7

45
2

–
–

14
.9

18
.2

17
.5

24
.5

2
2.

05
0.

81
7

14
.3

20
10

-U
S-

E
L

-0
6

42
7

45
2

45
2

–
–

14
.9

18
.2

17
.5

24
.5

2
2.

05
0.

81
7

14
.3

20
10

-U
S-

N
O

-0
1

43
9

43
9

43
9

–
18

.1
–

29
.2

11
.3

–
3

3.
10

0.
88

6
10

.0
20

10
-U

S-
N

O
-0

2
43

9
43

9
43

9
–

18
.1

–
29

.2
11

.3
–

3
3.

10
0.

88
6

10
.0

20
10

-U
S-

N
O

-0
3

43
9

43
9

43
9

–
18

.1
–

29
.2

11
.3

–
3

3.
10

0.
88

6
10

.0
20

10
-U

S-
N

O
-0

4
43

9
43

9
43

9
–

18
.1

–
29

.2
11

.3
–

3
3.

10
0.

88
6

10
.0

20
10

-U
S-

N
O

-0
5

43
9

43
9

43
9

–
18

.1
–

29
.2

11
.3

–
3

3.
10

0.
88

6
10

.0
20

10
-U

S-
N

O
-0

6
43

9
43

9
43

9
–

18
.1

–
29

.2
–

18
.3

3
3.

10
0.

88
6

16
.2

520



T a
bl

e
E

.5
:L

oa
d

Pr
op

er
tie

s
of

Sp
ec

im
en

s

A
xi

al
Pe

ak
Sh

ea
rL

oa
d

C
or

re
ct

ed
Sh

ea
rS

tr
en

gt
h

L
oa

di
ng

F a
ilu

re
Se

ri
al

P
V m

in
V m

ax
V a

vg
k a

vg
k m

on
o

k r
at

e
V c

or
P a

tte
rn

R
at

e
M

od
e

(k
N

)
(k

N
)

(k
N

)
(k

N
)

(k
N

)

19
68

-M
X

-M
E

-0
9

0
–

20
0

20
0

0.
94

1
1

18
8

C
yc

lic
Q

ua
si

-S
ta

tic
∗

Sh
ea

r
19

68
-M

X
-M

E
-1

0
19

6
–

25
5

25
5

0.
94

1
1

24
0

C
yc

lic
Q

ua
si

-S
ta

tic
∗

Sh
ea

r
19

68
-M

X
-M

E
-1

1
98

.1
–

33
5

33
5

0.
94

1
1

31
5

C
yc

lic
Q

ua
si

-S
ta

tic
∗

Sh
ea

r
19

68
-M

X
-M

E
-1

2
0

–
10

8
10

8
0.

94
1

1
10

2
C

yc
lic

Q
ua

si
-S

ta
tic
∗

Sh
ea

r
19

68
-M

X
-M

E
-1

3
0

–
12

5
12

5
0.

94
1

1
11

8
C

yc
lic

Q
ua

si
-S

ta
tic
∗

Sh
ea

r
19

68
-M

X
-M

E
-1

4
98

.1
–

26
5

26
5

0.
94

1
1

24
9

C
yc

lic
Q

ua
si

-S
ta

tic
∗

Sh
ea

r
19

68
-M

X
-M

E
-1

5
0

–
97

97
0.

94
1

1
91

C
yc

lic
Q

ua
si

-S
ta

tic
∗

Sh
ea

r
19

68
-M

X
-M

E
-1

6
19

6
–

27
7

27
7

0.
94

1
1

26
0

C
yc

lic
Q

ua
si

-S
ta

tic
∗

Sh
ea

r
19

68
-M

X
-M

E
-1

7
0

–
25

5
25

5
0.

94
1

1
24

0
C

yc
lic

Q
ua

si
-S

ta
tic
∗

Sh
ea

r
19

68
-M

X
-M

E
-1

8
0

–
21

6
21

6
0.

94
1

1
20

3
C

yc
lic

Q
ua

si
-S

ta
tic
∗

Sh
ea

r
19

69
-M

X
-M

E
-1

1
0

–
14

4
14

4
0.

94
0.

81
4

1
11

0
M

on
ot

on
ic

Q
ua

si
-S

ta
tic
∗

Sh
ea

r
19

69
-M

X
-M

E
-1

4
49

–
13

5
13

5
0.

94
0.

81
4

1
10

3
M

on
ot

on
ic

Q
ua

si
-S

ta
tic
∗

Sh
ea

r
19

69
-M

X
-M

E
-1

5
98

–
21

5
21

5
0.

94
0.

81
4

1
16

5
M

on
ot

on
ic

Q
ua

si
-S

ta
tic
∗

Sh
ea

r
19

69
-M

X
-M

E
-1

6
19

6
–

25
9

25
9

0.
94

0.
81

4
1

19
8

M
on

ot
on

ic
Q

ua
si

-S
ta

tic
∗

Sh
ea

r
19

69
-M

X
-M

E
-1

7
0

–
12

1
12

1
0.

94
0.

81
4

1
93

M
on

ot
on

ic
Q

ua
si

-S
ta

tic
∗

Sh
ea

r
19

69
-M

X
-M

E
-1

8
0

–
17

8
17

8
0.

94
0.

81
4

1
13

6
M

on
ot

on
ic

Q
ua

si
-S

ta
tic
∗

Sh
ea

r
19

69
-M

X
-M

E
-1

9
0

–
11

6
11

6
0.

94
0.

81
4

1
89

M
on

ot
on

ic
Q

ua
si

-S
ta

tic
∗

Sh
ea

r
19

69
-M

X
-M

E
-2

0
29

4
–

28
0

28
0

0.
94

0.
81

4
1

21
4

M
on

ot
on

ic
Q

ua
si

-S
ta

tic
∗

Sh
ea

r
19

69
-M

X
-M

E
-2

1
29

4
–

30
6

30
6

0.
94

0.
81

4
1

23
4

M
on

ot
on

ic
Q

ua
si

-S
ta

tic
∗

Sh
ea

r
19

69
-M

X
-M

E
-2

4
29

4
–

28
7

28
7

0.
94

0.
81

4
1

22
0

M
on

ot
on

ic
Q

ua
si

-S
ta

tic
∗

Sh
ea

r/
Fl

ex
ur

e
19

69
-M

X
-M

E
-2

5
0

–
31

8
31

8
0.

94
0.

81
4

1
24

3
M

on
ot

on
ic

Q
ua

si
-S

ta
tic
∗

Sh
ea

r
19

69
-M

X
-M

E
-2

9
0

–
16

7
16

7
0.

94
0.

81
4

1
12

8
M

on
ot

on
ic

Q
ua

si
-S

ta
tic
∗

Sh
ea

r
19

71
-N

Z
-W

I-
01

0
–

56
56

0.
94

1
1

52
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r/
Fl

ex
ur

e
19

71
-N

Z
-W

I-
02

10
3

–
91

91
0.

94
1

1
86

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r/

Fl
e x

ur
e

19
71

-N
Z

-W
I-

03
20

7
–

13
6

13
6

0.
94

1
1

12
8

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
71

-N
Z

-W
I-

04
41

4
–

14
6

14
6

0.
94

1
1

13
7

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
71

-N
Z

-W
I-

05
41

4
–

17
6

17
6

0.
94

1
1

16
5

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
71

-N
Z

-W
I-

06
0

–
50

50
0.

94
1

1
47

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r/

Fl
e x

ur
e

521



T a
bl

e
E

.5
:L

oa
d

Pr
op

er
tie

s
of

D
at

as
et

(C
on

tin
ue

d)

A
xi

al
Pe

ak
Sh

ea
rL

oa
d

C
or

re
ct

ed
Sh

ea
rS

tr
en

gt
h

L
oa

di
ng

F a
ilu

re
Se

ri
al

P
V m

in
V m

ax
V a

vg
k a

vg
k m

on
o

k r
at

e
V c

or
P a

tte
rn

R
at

e
M

od
e

(k
N

)
(k

N
)

(k
N

)
(k

N
)

(k
N

)

19
71

-N
Z

-W
I-

07
95

.6
–

91
91

0.
94

1
1

86
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r/
Fl

ex
ur

e
19

71
-N

Z
-W

I-
08

19
1

–
13

1
13

1
0.

94
1

1
12

3
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

71
-N

Z
-W

I-
09

38
3

–
19

9
19

9
0.

94
1

1
18

7
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

71
-N

Z
-W

I-
10

19
8

–
16

7
16

7
0.

94
1

1
15

7
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

71
-N

Z
-W

I-
11

19
8

–
17

8
17

8
0.

94
1

1
16

7
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

71
-N

Z
-W

I-
12

12
0

–
47

47
0.

94
1

1
44

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r/

Fl
e x

ur
e

19
71

-N
Z

-W
I-

13
24

0
–

74
74

0.
94

1
1

69
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

71
-N

Z
-W

I-
15

12
0

–
71

71
0.

94
1

1
67

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
71

-N
Z

-W
I-

16
0

–
13

3
13

3
0.

94
1

1
12

5
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

71
-N

Z
-W

I-
17

33
4

–
31

4
31

4
0.

94
1

1
29

5
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

71
-N

Z
-W

I-
18

11
6

–
58

58
0.

94
1

0.
9

49
C

yc
lic

D
yn

am
ic

Sh
ea

r/
Fl

ex
ur

e
19

71
-N

Z
-W

I-
19

0
–

53
53

0.
94

1
0.

9
45

C
yc

lic
D

yn
am

ic
Sh

ea
r/

Fl
e x

ur
e

19
71

-N
Z

-W
I-

20
97

.9
–

93
93

0.
94

1
0.

9
79

C
yc

lic
D

yn
am

ic
Sh

ea
r/

Fl
ex

ur
e

19
76

-U
S-

M
A

-0
1

20
0

–
11

6
10

7
0.

94
1

1
10

0
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

76
-U

S-
M

A
-0

2
20

0
–

14
8

13
8

0.
94

1
0.

9
11

7
C

yc
lic

D
yn

am
ic

Sh
ea

r
19

76
-U

S-
M

A
-0

3
10

0
–

12
1

11
6

0.
94

1
1

10
9

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r/

Fl
ex

ur
e

19
76

-U
S-

M
A

-0
4

10
0

–
11

6
10

1
0.

94
1

0.
9

86
C

yc
lic

D
yn

am
ic

Sh
ea

r/
Fl

e x
ur

e
19

76
-U

S-
M

A
-0

5
0

–
91

82
0.

94
1

1
77

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
76

-U
S-

M
A

-0
6

0
–

11
3

97
0.

94
1

0.
9

82
C

yc
lic

D
yn

am
ic

Sh
ea

r
19

76
-U

S-
M

A
-0

7
20

0
–

18
1

17
4

0.
94

1
1

16
3

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
76

-U
S-

M
A

-0
8

20
0

–
21

5
19

6
0.

94
1

0.
9

16
6

C
yc

lic
D

yn
am

ic
Sh

ea
r

19
76

-U
S-

M
A

-0
9

40
0

–
13

1
12

8
0.

94
1

1
12

0
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

76
-U

S-
M

A
-1

0
40

0
–

15
2

14
6

0.
94

1
0.

9
12

3
C

yc
lic

D
yn

am
ic

Sh
ea

r
19

76
-U

S-
M

A
-1

1
20

0
–

89
84

0.
94

1
1

79
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

76
-U

S-
M

A
-1

2
20

0
–

97
92

0.
94

1
0.

9
78

C
yc

lic
D

yn
am

ic
Sh

ea
r

19
77

-N
Z

-P
R

-0
5

0
–

77
0

77
0

0.
94

1
1

72
3

C
yc

lic
Q

ua
si

-S
ta

tic
Sl

id
in

g
19

77
-N

Z
-P

R
-0

6
0

–
40

9
40

9
0.

94
1

1
38

4
C

yc
lic

Q
ua

si
-S

ta
tic

Sl
id

in
g

19
77

-N
Z

-P
R

-0
7

0
–

73
4

73
4

0.
94

1
1

69
0

C
yc

lic
Q

ua
si

-S
ta

tic
Sl

id
in

g

522



Ta
bl

e
E

.5
:L

oa
d

Pr
op

er
tie

s
of

D
at

as
et

(C
on

tin
ue

d)

A
xi

al
Pe

ak
Sh

ea
rL

oa
d

C
or

re
ct

ed
Sh

ea
rS

tr
en

gt
h

L
oa

di
ng

F a
ilu

re
Se

ri
al

P
V m

in
V m

ax
V a

vg
k a

vg
k m

on
o

k r
at

e
V c

or
P a

tte
rn

R
at

e
M

od
e

(k
N

)
(k

N
)

(k
N

)
(k

N
)

(k
N

)

19
77

-N
Z

-P
R

-0
8

0
–

45
8

45
8

0.
94

1
1

43
1

C
yc

lic
Q

ua
si

-S
ta

tic
Sl

id
in

g
19

77
-N

Z
-P

R
-0

9
24

0
–

91
6

91
6

0.
94

1
1

86
1

C
yc

lic
Q

ua
si

-S
ta

tic
Sl

id
in

g
19

77
-N

Z
-P

R
-1

0
24

0
–

91
2

91
2

0.
94

1
1

85
7

C
yc

lic
Q

ua
si

-S
ta

tic
Sl

id
in

g
19

78
-U

S-
C

H
-0

2
18

8
–

11
7

11
2

0.
94

1
0.

9
95

C
yc

lic
D

yn
am

ic
Sh

ea
r

19
78

-U
S-

C
H

-0
3

11
2

–
21

8
20

6
0.

94
1

0.
9

17
4

C
yc

lic
D

yn
am

ic
Sh

ea
r

19
78

-U
S-

C
H

-0
4

17
4

–
27

9
26

8
0.

94
1

0.
9

22
7

C
yc

lic
D

yn
am

ic
Sh

ea
r

19
78

-U
S-

C
H

-0
5

13
4

–
22

1
20

8
0.

94
1

0.
9

17
6

C
yc

lic
D

yn
am

ic
Sh

ea
r

19
78

-U
S-

C
H

-0
6

23
4

–
36

8
32

4
0.

94
1

0.
9

27
4

C
yc

lic
D

yn
am

ic
Sh

ea
r/

Fl
ex

ur
e

19
78

-U
S-

C
H

-0
7

14
8

–
29

3
23

8
0.

94
1

0.
9

20
2

C
yc

lic
D

yn
am

ic
Sh

ea
r

19
78

-U
S-

C
H

-0
8

13
0

–
16

9
16

4
0.

94
1

0.
9

13
9

C
yc

lic
D

yn
am

ic
Sh

ea
r

19
78

-U
S-

C
H

-0
9

18
6

–
25

3
23

8
0.

94
1

0.
9

20
2

C
yc

lic
D

yn
am

ic
Sh

ea
r

19
78

-U
S-

C
H

-1
0

13
9

–
22

3
21

7
0.

94
1

0.
9

18
3

C
yc

lic
D

yn
am

ic
Sh

ea
r

19
78

-U
S-

C
H

-1
1

22
6

–
39

0
37

6
0.

94
1

0.
9

31
8

C
yc

lic
D

yn
am

ic
Sh

ea
r

19
78

-U
S-

C
H

-1
4

23
3

–
44

0
42

0
0.

94
1

1
39

5
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r/
Fl

ex
ur

e
19

78
-U

S-
C

H
-1

5
50

8
–

55
5

53
1

0.
94

1
1

49
9

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r/

Fl
e x

ur
e

19
78

-U
S-

C
H

-1
6

23
9

–
23

3
20

2
0.

94
1

1
19

0
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

78
-U

S-
C

H
-1

7
27

5
–

54
5

51
7

0.
94

1
1

48
6

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r/

Fl
ex

ur
e

19
78

-U
S-

C
H

-1
8

37
9

–
44

1
42

1
0.

94
1

1
39

6
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r/
Fl

e x
ur

e
19

78
-U

S-
C

H
-1

9
19

3
–

38
1

35
8

0.
94

1
1

33
6

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
78

-U
S-

C
H

-2
0

16
6

–
21

8
19

1
0.

94
1

1
18

0
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

78
-U

S-
C

H
-2

1
24

1
–

46
6

45
2

0.
94

1
1

42
5

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
78

-U
S-

C
H

-2
2

11
9

–
23

1
20

5
0.

94
1

1
19

2
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

78
-U

S-
C

H
-2

3
37

8
–

43
2

42
0

0.
94

1
1

39
4

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
78

-U
S-

C
H

-2
4

49
2

–
51

7
50

4
0.

94
1

1
47

4
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

78
-U

S-
H

I-
01

79
9

–
41

2
33

5
0.

94
1

1
31

5
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

78
-U

S-
H

I-
02

50
7

–
32

8
28

3
0.

94
1

1
26

6
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r/
Fl

ex
ur

e
19

78
-U

S-
H

I-
03

14
7

–
13

8
12

1
0.

94
1

1
11

3
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r

523



Ta
bl

e
E

.5
:L

oa
d

Pr
op

er
tie

s
of

D
at

as
et

(C
on

tin
ue

d)

A
xi

al
Pe

ak
Sh

ea
rL

oa
d

C
or

re
ct

ed
Sh

ea
rS

tr
en

gt
h

L
oa

di
ng

F a
ilu

re
Se

ri
al

P
V m

in
V m

ax
V a

vg
k a

vg
k m

on
o

k r
at

e
V c

or
P a

tte
rn

R
at

e
M

od
e

(k
N

)
(k

N
)

(k
N

)
(k

N
)

(k
N

)

19
78

-U
S-

H
I-

04
57

2
–

42
4

37
6

0.
94

1
1

35
4

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r/

Fl
e x

ur
e

19
78

-U
S-

H
I-

05
23

8
–

23
0

21
2

0.
94

1
1

19
9

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
78

-U
S-

H
I-

06
67

8
–

47
3

43
7

0.
94

1
1

41
1

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r/

Fl
e x

ur
e

19
78

-U
S-

H
I-

07
23

3
–

23
1

21
1

0.
94

1
1

19
9

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
78

-U
S-

H
I-

08
66

8
–

47
7

44
2

0.
94

1
1

41
5

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r/

Fl
e x

ur
e

19
78

-U
S-

H
I-

09
65

6
–

48
0

42
3

0.
94

1
1

39
8

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r/

Fl
e x

ur
e

19
79

-U
S-

H
I-

01
52

7
–

89
1

84
1

0.
94

1
1

79
1

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
79

-U
S-

H
I-

02
54

3
–

94
2

89
6

0.
94

1
1

84
3

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
79

-U
S-

H
I-

03
66

1
–

11
18

10
79

0.
94

1
1

10
14

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
79

-U
S-

H
I-

04
57

6
–

97
2

93
4

0.
94

1
1

87
8

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r/

Sl
id

in
g

19
79

-U
S-

H
I-

05
58

2
–

10
18

98
0

0.
94

1
1

92
1

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r/

Sl
id

in
g

19
79

-U
S-

H
I-

06
63

6
–

11
65

11
21

0.
94

1
1

10
54

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
79

-U
S-

H
I-

08
38

3
–

85
0

81
3

0.
94

1
1

76
4

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
79

-U
S-

H
I-

09
50

8
–

10
09

94
2

0.
94

1
1

88
6

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
79

-U
S-

H
I-

10
63

3
–

11
39

10
93

0.
94

1
1

10
28

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
82

-N
Z

-T
H

-0
1

0
74

.6
77

.5
76

.1
1

1
1

76
C

yc
lic

Q
ua

si
-S

ta
tic
∗

Sl
id

in
g

19
82

-N
Z

-T
H

-0
2

0
19

0
20

4
19

7
1

1
1

19
7

C
yc

lic
Q

ua
si

-S
ta

tic
∗

Sl
id

in
g

19
82

-N
Z

-T
H

-0
3

0
94

10
6

10
0

1
1

1
10

0
C

yc
lic

Q
ua

si
-S

ta
tic
∗

Sh
ea

r
19

82
-N

Z
-T

H
-0

4
0

14
6

15
2

14
9

1
1

1
14

9
C

yc
lic

Q
ua

si
-S

ta
tic
∗

Sh
ea

r/
Fl

ex
ur

e
19

82
-N

Z
-T

H
-0

5
16

0
30

7
32

8
31

8
1

1
1

31
8

C
yc

lic
Q

ua
si

-S
ta

tic
∗

Sh
ea

r/
Fl

e x
ur

e
19

82
-N

Z
-T

H
-0

6
0

16
4

18
2

17
3

1
1

1
17

3
C

yc
lic

Q
ua

si
-S

ta
tic
∗

Sl
id

in
g

19
82

-N
Z

-T
H

-0
8

0
35

4
40

8
38

1
1

1
1

38
1

C
yc

lic
Q

ua
si

-S
ta

tic
∗

Sh
ea

r/
Sl

id
in

g
19

83
-J

P-
M

A
-0

1
11

7
38

2
42

4
40

3
1

1
1

40
3

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
83

-J
P-

M
A

-0
3

87
.2

24
6

33
3

29
0

1
1

1
29

0
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

83
-J

P-
M

A
-0

4
57

.8
15

7
19

1
17

4
1

1
1

17
4

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
84

-J
P-

IG
-0

1
29

0
22

5
23

8
23

2
1

0.
81

4
1

18
8

R
ev

er
se

d
M

on
ot

on
ic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

84
-J

P-
IG

-0
2

29
0

21
8

22
9

22
4

1
0.

81
4

1
18

2
R

ev
er

se
d

M
on

ot
on

ic
Q

ua
si

-S
ta

tic
Sh

ea
r

524



Ta
bl

e
E

.5
:L

oa
d

Pr
op

er
tie

s
of

D
at

as
et

(C
on

tin
ue

d)

A
xi

al
Pe

ak
Sh

ea
rL

oa
d

C
or

re
ct

ed
Sh

ea
rS

tr
en

gt
h

L
oa

di
ng

F a
ilu

re
Se

ri
al

P
V m

in
V m

ax
V a

vg
k a

vg
k m

on
o

k r
at

e
V c

or
P a

tte
rn

R
at

e
M

od
e

(k
N

)
(k

N
)

(k
N

)
(k

N
)

(k
N

)

19
84

-J
P-

IG
-0

3
26

0
18

1
21

1
19

6
1

0.
81

4
1

16
0

R
e v

er
se

d
M

on
ot

on
ic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

84
-J

P-
IG

-0
4

20
2

14
3

14
7

14
5

1
0.

81
4

1
11

8
R

e v
er

se
d

M
on

ot
on

ic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
84

-J
P-

IG
-0

5
71

.2
69

87
78

1
0.

81
4

1
64

R
e v

er
se

d
M

on
ot

on
ic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

84
-J

P-
IG

-0
6

71
.2

69
92

81
1

0.
81

4
1

66
R

e v
er

se
d

M
on

ot
on

ic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
85

-J
P-

FU
-0

1
74

1
88

7
11

39
10

13
1

1
1

10
13

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
85

-J
P-

FU
-0

2
74

1
91

2
11

38
10

25
1

1
1

10
25

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
85

-J
P-

FU
-0

3
44

3
43

0
46

1
44

5
1

1
1

44
5

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
85

-J
P-

FU
-0

4
40

6
39

6
42

4
41

0
1

1
1

41
0

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
85

-J
P-

FU
-0

5
29

4
29

8
31

6
30

7
1

1
1

30
7

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
85

-J
P-

FU
-0

6
29

4
29

7
31

6
30

7
1

1
1

30
7

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
85

-J
P-

M
A

-0
1

44
3

26
5

38
3

32
4

1
1

1
32

4
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

85
-J

P-
M

A
-0

2
44

3
42

9
46

7
44

8
1

1
1

44
8

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
85

-J
P-

M
A

-0
3

44
3

48
9

51
5

50
2

1
1

1
50

2
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

85
-J

P-
M

A
-0

5
44

3
49

1
51

8
50

5
1

1
1

50
5

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
85

-J
P-

M
A

-0
6

44
3

61
3

66
2

63
7

1
1

1
63

7
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

85
-J

P-
YA

-0
5

0
30

0
38

9
34

4
1

1
1

34
4

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
85

-J
P-

YA
-0

6
0

35
9

38
1

37
0

1
1

1
37

0
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

85
-J

P-
Y A

-0
7

0
26

8
31

4
29

1
1

1
1

29
1

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
85

-J
P-

YA
-0

8
0

30
9

45
3

38
1

1
1

1
38

1
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

85
-J

P-
Y A

-0
9

0
49

3
52

2
50

7
1

1
1

50
7

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
85

-U
S-

SV
-0

1
44

5
–

46
1

46
1

0.
94

1
1

43
4

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
85

-U
S-

SV
-0

2
71

2
–

56
1

56
1

0.
94

1
1

52
7

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
85

-U
S-

SV
-0

3
48

0
–

30
9

30
9

0.
94

1
1

29
0

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
85

-U
S-

SV
-0

4
48

0
–

30
8

30
8

0.
94

1
1

29
0

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
85

-U
S-

SV
-0

5
30

3
–

39
6

39
6

0.
94

1
1

37
2

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
85

-U
S-

SV
-0

6
48

0
–

41
0

41
0

0.
94

1
1

38
6

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
85

-U
S-

SV
-0

7
48

0
–

38
9

38
9

0.
94

1
1

36
6

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

525



Ta
bl

e
E

.5
:L

oa
d

Pr
op

er
tie

s
of

D
at

as
et

(C
on

tin
ue

d)

A
xi

al
Pe

ak
Sh

ea
rL

oa
d

C
or

re
ct

ed
Sh

ea
rS

tr
en

gt
h

L
oa

di
ng

F a
ilu

re
Se

ri
al

P
V m

in
V m

ax
V a

vg
k a

vg
k m

on
o

k r
at

e
V c

or
P a

tte
rn

R
at

e
M

od
e

(k
N

)
(k

N
)

(k
N

)
(k

N
)

(k
N

)

19
85

-U
S-

SV
-0

8
12

0
–

27
3

27
3

0.
94

1
1

25
6

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r/

Fl
e x

ur
e

19
85

-U
S-

SV
-0

9
48

0
–

33
4

33
4

0.
94

1
1

31
4

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
85

-U
S-

SV
-1

0
48

0
–

42
4

42
4

0.
94

1
1

39
8

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
85

-U
S-

SV
-1

1
30

3
–

34
2

34
2

0.
94

1
1

32
2

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
85

-U
S-

SV
-1

2
48

0
–

42
0

42
0

0.
94

1
1

39
4

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
85

-U
S-

SV
-1

3
71

2
–

52
5

52
5

0.
94

1
1

49
4

C
yc

lic
Q

ua
si

-S
ta

tic
Sl

id
in

g
19

85
-U

S-
SV

-1
5

44
5

–
42

9
42

9
0.

94
1

1
40

3
C

yc
lic

Q
ua

si
-S

ta
tic

Sl
id

in
g

19
85

-U
S-

SV
-1

6
48

0
–

32
1

32
1

0.
94

1
1

30
2

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
85

-U
S-

SV
-1

7
48

0
–

33
4

33
4

0.
94

1
1

31
4

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r/

Sl
id

in
g

19
85

-U
S-

SV
-1

8
48

0
–

41
0

41
0

0.
94

1
1

38
6

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
85

-U
S-

SV
-1

9
48

0
–

41
8

41
8

0.
94

1
1

39
3

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r/

Sl
id

in
g

19
85

-U
S-

SV
-2

0
48

0
–

35
4

35
4

0.
94

1
1

33
3

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
85

-U
S-

SV
-2

1
48

0
–

38
4

38
4

0.
94

1
1

36
1

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r/

Sl
id

in
g

19
85

-U
S-

SV
-2

2
48

0
–

38
0

38
0

0.
94

1
1

35
7

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
85

-U
S-

SV
-2

3
48

0
–

37
4

37
4

0.
94

1
1

35
2

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r/

Sl
id

in
g

19
85

-U
S-

SV
-2

4
48

0
–

39
3

39
3

0.
94

1
1

37
0

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
85

-U
S-

SV
-2

5
48

0
–

39
7

39
7

0.
94

1
1

37
3

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r/

Sl
id

in
g

19
85

-U
S-

SV
-2

6
48

0
–

46
9

46
9

0.
94

1
1

44
1

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
86

-J
P-

IG
-0

1
40

9
38

3
45

9
42

1
1

0.
81

4
1

34
3

R
ev

er
se

d
M

on
ot

on
ic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

86
-J

P-
IG

-0
2

40
9

34
3

41
2

37
8

1
0.

81
4

1
30

7
R

e v
er

se
d

M
on

ot
on

ic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
86

-J
P-

IG
-0

3
40

9
33

3
36

1
34

7
1

0.
81

4
1

28
3

R
ev

er
se

d
M

on
ot

on
ic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

86
-J

P-
IG

-0
4

40
9

35
9

43
0

39
5

1
0.

81
4

1
32

1
R

ev
er

se
d

M
on

ot
on

ic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
86

-J
P-

M
A

-1
5

0
73

84
79

1
1

1
79

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
86

-J
P-

M
A

-1
6

0
74

74
74

1
1

1
74

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
86

-J
P-

M
A

-1
7

0
58

60
59

1
1

1
59

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
86

-J
P-

M
A

-1
8

0
65

78
72

1
1

1
72

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
86

-J
P-

M
A

-1
9

10
1

84
10

9
97

1
1

1
97

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

526



Ta
bl

e
E

.5
:L

oa
d

Pr
op

er
tie

s
of

D
at

as
et

(C
on

tin
ue

d)

A
xi

al
Pe

ak
Sh

ea
rL

oa
d

C
or

re
ct

ed
Sh

ea
rS

tr
en

gt
h

L
oa

di
ng

F a
ilu

re
Se

ri
al

P
V m

in
V m

ax
V a

vg
k a

vg
k m

on
o

k r
at

e
V c

or
P a

tte
rn

R
at

e
M

od
e

(k
N

)
(k

N
)

(k
N

)
(k

N
)

(k
N

)

19
86

-J
P-

M
A

-2
0

19
4

78
95

87
1

1
1

87
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

86
-J

P-
M

A
-2

1
19

4
13

7
18

0
15

9
1

1
1

15
9

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
86

-J
P-

M
A

-2
2

0
64

10
0

82
1

1
1

82
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

86
-J

P-
M

A
-2

3
0

87
92

90
1

1
1

90
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

86
-J

P-
M

A
-2

4
0

93
14

2
11

8
1

1
1

11
8

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
86

-J
P-

M
A

-2
5

97
.0

10
2

17
2

13
7

1
1

1
13

7
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

86
-J

P-
M

A
-2

6
19

4
13

7
14

8
14

3
1

1
1

14
3

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
86

-J
P-

M
A

-2
7

29
1

16
6

19
1

17
9

1
1

1
17

9
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

86
-J

P-
M

A
-2

8
0

74
10

5
90

1
1

1
90

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
86

-J
P-

M
A

-2
9

10
1

15
1

15
5

15
3

1
1

1
15

3
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

86
-J

P-
M

A
-3

0
19

4
13

9
19

6
16

8
1

1
1

16
8

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
86

-J
P-

M
A

-3
1

0
88

13
2

11
0

1
1

1
11

0
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

86
-J

P-
M

A
-3

2
10

1
16

0
18

4
17

2
1

1
1

17
2

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
86

-J
P-

M
A

-3
3

19
4

15
2

21
6

18
4

1
1

1
18

4
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

86
-J

P-
M

A
-3

4
10

1
14

1
24

9
19

5
1

1
1

19
5

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
86

-J
P-

M
A

-3
5

0
10

8
11

8
11

3
1

1
1

11
3

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
86

-J
P-

M
A

-3
6

0
15

7
15

7
15

7
1

1
1

15
7

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
86

-J
P-

M
A

-3
7

0
44

57
51

1
1

1
51

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
86

-J
P-

M
A

-3
8

10
1

13
0

14
7

13
9

1
1

1
13

9
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

86
-J

P-
M

A
-5

3
0

18
4

21
4

19
9

1
1

1
19

9
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

86
-J

P-
M

A
-5

4
0

16
7

20
5

18
6

1
1

1
18

6
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

86
-J

P-
SH

-0
1

44
3

51
1

58
4

54
8

1
1

1
54

8
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

86
-J

P-
SH

-0
2

44
3

46
5

50
5

48
5

1
1

1
48

5
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

86
-J

P-
SH

-0
3

44
3

59
1

59
5

59
3

1
1

1
59

3
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

86
-J

P-
SH

-0
4

44
3

47
0

52
1

49
6

1
1

1
49

6
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r/
Fl

e x
ur

e
19

86
-J

P-
SH

-0
5

44
3

49
2

52
2

50
7

1
1

1
50

7
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

86
-J

P-
SH

-0
6

44
3

58
5

58
8

58
7

1
1

1
58

7
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r

527



Ta
bl

e
E

.5
:L

oa
d

Pr
op

er
tie

s
of

D
at

as
et

(C
on

tin
ue

d)

A
xi

al
Pe

ak
Sh

ea
rL

oa
d

C
or

re
ct

ed
Sh

ea
rS

tr
en

gt
h

L
oa

di
ng

F a
ilu

re
Se

ri
al

P
V m

in
V m

ax
V a

vg
k a

vg
k m

on
o

k r
at

e
V c

or
P a

tte
rn

R
at

e
M

od
e

(k
N

)
(k

N
)

(k
N

)
(k

N
)

(k
N

)

19
87

-J
P-

O
K

-0
1

88
7

51
2

57
5

54
4

1
1

1
54

4
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

87
-J

P-
O

K
-0

2
13

30
58

3
60

0
59

2
1

1
1

59
2

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
87

-J
P-

O
K

-1
0

44
7

49
1

52
2

50
6

1
1

1
50

6
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

87
-J

P-
O

K
-1

1
44

7
53

6
54

9
54

3
1

1
1

54
3

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
88

-J
P-

IG
-0

5
40

9
44

2
45

8
45

0
1

0.
81

4
1

36
6

R
e v

er
se

d
M

on
ot

on
ic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

88
-J

P-
IG

-0
6

40
9

39
2

50
3

44
8

1
0.

81
4

1
36

4
R

e v
er

se
d

M
on

ot
on

ic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
88

-J
P-

IG
-0

7
40

9
46

7
50

4
48

6
1

0.
81

4
1

39
5

R
e v

er
se

d
M

on
ot

on
ic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

88
-J

P-
IG

-0
8

40
9

47
1

56
7

51
9

1
0.

81
4

1
42

3
R

ev
er

se
d

M
on

ot
on

ic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
88

-J
P-

IG
-0

9
40

9
49

3
50

4
49

9
1

0.
81

4
1

40
6

R
ev

er
se

d
M

on
ot

on
ic

Q
ua

si
-S

ta
tic

Sh
ea

r/
Fl

ex
ur

e
19

88
-S

L
-T

O
-0

1
60

.0
–

–
33

0.
94

1
1

12
4

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
88

-S
L

-T
O

-0
2

60
.0

–
–

41
0.

94
1

1
15

3
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

88
-S

L
-T

O
-0

3
60

.0
–

–
35

0.
94

1
1

13
3

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
88

-S
L

-T
O

-0
4

60
.0

–
–

40
0.

94
1

1
15

2
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

88
-S

L
-T

O
-0

5
60

.0
–

–
26

0.
94

1
1

98
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

88
-S

L
-T

O
-0

9
60

.0
–

–
30

0.
94

1
1

11
3

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
88

-S
L

-T
O

-1
0

60
.0

–
–

35
0.

94
1

1
13

1
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

88
-S

L
-T

O
-1

1
60

.0
–

–
43

0.
94

1
1

16
2

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
88

-S
L

-T
O

-1
2

60
.0

–
–

47
0.

94
1

1
17

6
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

88
-S

L
-T

O
-1

3
60

.0
–

–
29

0.
94

1
1

10
9

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
88

-U
S-

JO
-0

1
0

–
96

96
0.

94
1

1
91

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
88

-U
S-

JO
-0

2
0

–
11

9
11

9
0.

94
1

1
11

1
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

88
-U

S-
JO

-0
3

0
–

11
5

11
5

0.
94

1
1

10
8

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
88

-U
S-

JO
-0

4
0

–
11

9
11

9
0.

94
1

1
11

2
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

88
-U

S-
JO

-0
5

0
–

12
8

12
8

0.
94

1
1

12
0

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
88

-U
S-

JO
-0

6
0

–
11

8
11

8
0.

94
1

1
11

1
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

88
-U

S-
JO

-0
7

0
–

11
3

11
3

0.
94

1
1

10
6

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
88

-U
S-

JO
-0

8
0

–
11

5
11

5
0.

94
1

1
10

8
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r

528



Ta
bl

e
E

.5
:L

oa
d

Pr
op

er
tie

s
of

D
at

as
et

(C
on

tin
ue

d)

A
xi

al
Pe

ak
Sh

ea
rL

oa
d

C
or

re
ct

ed
Sh

ea
rS

tr
en

gt
h

L
oa

di
ng

F a
ilu

re
Se

ri
al

P
V m

in
V m

ax
V a

vg
k a

vg
k m

on
o

k r
at

e
V c

or
P a

tte
rn

R
at

e
M

od
e

(k
N

)
(k

N
)

(k
N

)
(k

N
)

(k
N

)

19
88

-U
S-

JO
-0

9
0

–
12

8
12

8
0.

94
1

1
12

0
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

88
-U

S-
JO

-1
0

0
–

10
3

10
3

0.
94

1
1

97
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

88
-U

S-
JO

-1
1

0
–

10
0

10
0

0.
94

1
1

94
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

88
-U

S-
JO

-1
2

0
–

89
89

0.
94

1
1

84
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

88
-U

S-
JO

-1
3

0
–

91
91

0.
94

1
1

85
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

88
-U

S-
JO

-1
4

0
–

92
92

0.
94

1
1

87
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

88
-U

S-
JO

-1
5

0
–

92
92

0.
94

1
1

86
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

88
-U

S-
JO

-1
6

0
–

12
2

12
2

0.
94

1
1

11
5

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
88

-U
S-

JO
-1

7
0

–
77

77
0.

94
1

1
72

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
88

-U
S-

JO
-1

8
0

–
87

87
0.

94
1

1
82

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
88

-U
S-

JO
-1

9
0

–
93

93
0.

94
1

1
88

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
88

-U
S-

JO
-2

0
0

–
89

89
0.

94
1

1
84

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
88

-U
S-

JO
-2

1
0

–
83

83
0.

94
1

1
78

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
88

-U
S-

JO
-2

2
0

–
85

85
0.

94
1

1
80

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
88

-U
S-

JO
-2

3
0

–
92

92
0.

94
1

1
87

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
88

-U
S-

JO
-2

4
0

–
83

83
0.

94
1

1
78

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
88

-U
S-

JO
-2

5
0

–
91

91
0.

94
1

1
85

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
88

-U
S-

JO
-2

6
0

–
86

86
0.

94
1

1
81

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
88

-U
S-

JO
-2

7
0

–
88

88
0.

94
1

1
83

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
88

-U
S-

JO
-2

8
0

–
87

87
0.

94
1

1
82

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
88

-U
S-

JO
-2

9
0

–
87

87
0.

94
1

1
82

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
88

-U
S-

JO
-3

0
0

–
85

85
0.

94
1

1
80

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
88

-U
S-

JO
-3

1
0

–
83

83
0.

94
1

1
78

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
88

-U
S-

JO
-3

2
0

–
81

81
0.

94
1

1
76

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
88

-U
S-

SH
-0

3
48

0
44

5
46

7
45

6
1

1
1

45
6

Ph
as

ed
-S

eq
ue

nt
ia

l
Q

ua
si

-S
ta

tic
Sh

ea
r

19
88

-U
S-

SH
-0

4
0

32
0

38
7

35
4

1
1

1
35

4
Ph

as
ed

-S
eq

ue
nt

ia
l

Q
ua

si
-S

ta
tic

Sh
ea

r
19

88
-U

S-
SH

-0
5

17
8

39
6

41
8

40
7

1
1

1
40

7
Ph

as
ed

-S
eq

ue
nt

ia
l

Q
ua

si
-S

ta
tic

Sh
ea

r

529



Ta
bl

e
E

.5
:L

oa
d

Pr
op

er
tie

s
of

D
at

as
et

(C
on

tin
ue

d)

A
xi

al
Pe

ak
Sh

ea
rL

oa
d

C
or

re
ct

ed
Sh

ea
rS

tr
en

gt
h

L
oa

di
ng

F a
ilu

re
Se

ri
al

P
V m

in
V m

ax
V a

vg
k a

vg
k m

on
o

k r
at

e
V c

or
P a

tte
rn

R
at

e
M

od
e

(k
N

)
(k

N
)

(k
N

)
(k

N
)

(k
N

)

19
88

-U
S-

SH
-0

6
0

20
9

23
1

22
0

1
1

1
22

0
Ph

as
ed

-S
eq

ue
nt

ia
l

Q
ua

si
-S

ta
tic

Sh
ea

r/
F/

Sl
id

in
g

19
88

-U
S-

SH
-0

7
17

8
43

2
43

2
43

2
1

1
1

43
2

Ph
as

ed
-S

eq
ue

nt
ia

l
Q

ua
si

-S
ta

tic
Sh

ea
r

19
88

-U
S-

SH
-0

8
0

20
9

22
2

21
6

1
1

1
21

6
Ph

as
ed

-S
eq

ue
nt

ia
l

Q
ua

si
-S

ta
tic

Sh
ea

r/
Fl

id
in

g
19

88
-U

S-
SH

-0
9

48
0

42
7

42
7

42
7

1
1

1
42

7
Ph

as
ed

-S
eq

ue
nt

ia
l

Q
ua

si
-S

ta
tic

Sh
ea

r
19

88
-U

S-
SH

-1
0

17
8

29
8

30
7

30
3

1
1

1
30

3
Ph

as
ed

-S
eq

ue
nt

ia
l

Q
ua

si
-S

ta
tic

Sh
ea

r/
Fl

e x
ur

e
19

88
-U

S-
SH

-1
1

0
39

6
42

3
40

9
1

1
1

40
9

Ph
as

ed
-S

eq
ue

nt
ia

l
Q

ua
si

-S
ta

tic
Sh

ea
r/

Sl
id

in
g

19
88

-U
S-

SH
-1

3
48

0
48

5
51

6
50

0
1

1
1

50
0

Ph
as

ed
-S

eq
ue

nt
ia

l
Q

ua
si

-S
ta

tic
Sh

ea
r

19
88

-U
S-

SH
-1

4
48

0
43

6
49

8
46

7
1

1
1

46
7

Ph
as

ed
-S

eq
ue

nt
ia

l
Q

ua
si

-S
ta

tic
Sh

ea
r

19
88

-U
S-

SH
-1

5
17

8
36

5
41

8
39

1
1

1
1

39
1

Ph
as

ed
-S

eq
ue

nt
ia

l
Q

ua
si

-S
ta

tic
Sh

ea
r/

Fl
ex

ur
e

19
88

-U
S-

SH
-1

6
48

0
53

4
53

8
53

6
1

1
1

53
6

Ph
as

ed
-S

eq
ue

nt
ia

l
Q

ua
si

-S
ta

tic
Sh

ea
r

19
89

-U
S-

Y A
-0

2
32

1
12

9
15

6
14

3
1

1
1

14
3

Ph
as

ed
-S

eq
ue

nt
ia

l
Q

ua
si

-S
ta

tic
∗

Sh
ea

r
19

89
-U

S-
YA

-0
3

26
8

14
2

14
9

14
6

1
1

1
14

6
Ph

as
ed

-S
eq

ue
nt

ia
l

Q
ua

si
-S

ta
tic
∗

Sh
ea

r
19

89
-U

S-
Y A

-0
4

36
8

11
3

18
9

15
1

1
1

1
15

1
Ph

as
ed

-S
eq

ue
nt

ia
l

Q
ua

si
-S

ta
tic
∗

Sh
ea

r
19

89
-U

S-
YA

-0
5

27
5

14
5

15
6

15
1

1
1

1
15

1
Ph

as
ed

-S
eq

ue
nt

ia
l

Q
ua

si
-S

ta
tic
∗

Sh
ea

r
19

89
-U

S-
Y A

-0
6

29
4

15
7

16
4

16
1

1
1

1
16

1
Ph

as
ed

-S
eq

ue
nt

ia
l

Q
ua

si
-S

ta
tic
∗

Sh
ea

r
19

89
-U

S-
YA

-0
8

34
6

16
1

17
7

16
9

1
1

1
16

9
Ph

as
ed

-S
eq

ue
nt

ia
l

Q
ua

si
-S

ta
tic
∗

Sh
ea

r
19

89
-U

S-
YA

-0
9

39
5

19
2

20
1

19
7

1
1

1
19

7
Ph

as
ed

-S
eq

ue
nt

ia
l

Q
ua

si
-S

ta
tic
∗

Sh
ea

r
19

89
-U

S-
Y A

-1
0

31
0

14
8

17
2

16
0

1
1

1
16

0
Ph

as
ed

-S
eq

ue
nt

ia
l

Q
ua

si
-S

ta
tic
∗

Sh
ea

r
19

90
-U

S-
SH

-2
1

47
6

48
0

48
5

48
3

1
1

1
48

3
Ph

as
ed

-S
eq

ue
nt

ia
l

Q
ua

si
-S

ta
tic

Sh
ea

r
19

90
-U

S-
SH

-2
2

16
9

38
3

43
2

40
7

1
1

1
40

7
Ph

as
ed

-S
eq

ue
nt

ia
l

Q
ua

si
-S

ta
tic

Sh
ea

r
19

91
-J

P-
M

A
-0

1
12

9
24

7
25

7
25

2
1

1
1

25
2

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
91

-J
P-

M
A

-0
2

12
9

22
6

22
9

22
8

1
1

1
22

8
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

91
-J

P-
M

A
-0

3
12

9
27

0
27

3
27

1
1

1
1

27
1

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
91

-J
P-

M
A

-0
4

20
4

35
1

36
0

35
6

1
1

1
35

6
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

91
-J

P-
M

A
-0

5
20

4
40

2
47

2
43

7
1

1
1

43
7

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
91

-J
P-

M
A

-0
6

20
4

44
9

47
5

46
2

1
1

1
46

2
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

92
-U

S-
G

H
-0

1
30

.9
–

25
25

0.
94

0.
81

4
1

16
9

M
on

ot
on

ic
Q

ua
si

-S
ta

tic
Sh

ea
r

530



Ta
bl

e
E

.5
:L

oa
d

Pr
op

er
tie

s
of

D
at

as
et

(C
on

tin
ue

d)

A
xi

al
Pe

ak
Sh

ea
rL

oa
d

C
or

re
ct

ed
Sh

ea
rS

tr
en

gt
h

L
oa

di
ng

F a
ilu

re
Se

ri
al

P
V m

in
V m

ax
V a

vg
k a

vg
k m

on
o

k r
at

e
V c

or
P a

tte
rn

R
at

e
M

od
e

(k
N

)
(k

N
)

(k
N

)
(k

N
)

(k
N

)

19
92

-U
S-

G
H

-0
2

30
.9

–
30

30
0.

94
0.

81
4

1
20

8
M

on
ot

on
ic

Q
ua

si
-S

ta
tic

Sh
ea

r/
Fl

e x
ur

e
19

93
-U

S-
G

H
-0

5
30

.9
–

26
26

0.
94

0.
81

4
1

17
8

M
on

ot
on

ic
Q

ua
si

-S
ta

tic
Sh

ea
r/

Fl
e x

ur
e

19
93

-U
S-

G
H

-0
6

61
.9

–
35

35
0.

94
0.

81
4

1
23

9
M

on
ot

on
ic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

94
-U

S-
B

R
-0

1
37

0
–

–
54

0
0.

94
0.

81
4

1
41

3
M

on
ot

on
ic

Q
ua

si
-S

ta
tic
∗

Sh
ea

r/
Fl

e x
ur

e
19

94
-U

S-
B

R
-0

2
47

6
–

–
64

5
0.

94
0.

81
4

1
49

4
R

e v
er

se
d

M
on

ot
on

ic
Q

ua
si

-S
ta

tic
∗

Sh
ea

r
19

94
-U

S-
B

R
-0

3
58

2
–

–
86

0
0.

94
0.

81
4

1
65

8
M

on
ot

on
ic

Q
ua

si
-S

ta
tic
∗

Sh
ea

r
19

95
-N

Z
-B

R
-0

1
0

–
32

32
0.

94
1

1
30

C
yc

lic
Q

ua
si

-S
ta

tic
Sl

id
in

g
19

95
-N

Z
-B

R
-0

2
0

–
62

62
0.

94
1

1
58

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
95

-N
Z

-B
R

-0
3

0
–

63
63

0.
94

1
1

59
C

yc
lic

Q
ua

si
-S

ta
tic

Sl
id

in
g

19
95

-N
Z

-B
R

-0
4

0
–

14
4

14
4

0.
94

1
1

13
6

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
95

-N
Z

-B
R

-0
6

0
–

41
41

0.
94

1
1

39
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

95
-N

Z
-B

R
-0

7
0

–
81

81
0.

94
1

1
76

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
95

-N
Z

-B
R

-0
8

0
–

18
0

18
0

0.
94

1
1

16
9

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
95

-N
Z

-B
R

-1
0

0
–

47
47

0.
94

1
1

44
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

95
-N

Z
-B

R
-1

1
0

–
87

87
0.

94
1

1
82

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
95

-N
Z

-B
R

-1
2

0
–

19
8

19
8

0.
94

1
1

18
6

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

19
96

-S
L

-T
O

-0
6

12
0

–
45

45
0.

94
1

1
16

9
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

96
-S

L
-T

O
-0

8
12

0
–

50
50

0.
94

1
0.

9
17

1
C

yc
lic

D
yn

am
ic

Sh
ea

r
19

96
-S

L
-T

O
-1

0
12

0
–

49
49

0.
94

1
1

18
5

Ph
as

ed
-S

eq
ue

nt
ia

l
Q

ua
si

-S
ta

tic
Sh

ea
r

19
96

-S
L

-T
O

-1
2

12
0

–
57

57
0.

94
1

0.
9

19
4

Ph
as

ed
-S

eq
ue

nt
ia

l
D

yn
am

ic
Sh

ea
r

19
96

-S
L

-T
O

-1
4

12
0

–
54

54
0.

94
1

1
20

2
Si

m
ul

at
ed

Se
is

m
ic

Q
ua

si
-S

ta
tic

Sh
ea

r
19

96
-S

L
-T

O
-1

6
12

0
–

60
60

0.
94

1
0.

9
20

4
Si

m
ul

at
ed

Se
is

m
ic

D
yn

am
ic

Sh
ea

r
19

96
-U

S-
SH

-0
2

19
1

–
24

5
24

5
1

1
1

24
5

Ph
as

ed
-S

eq
ue

nt
ia

l
Q

ua
si

-S
ta

tic
Sh

ea
r

19
98

-U
S-

SH
-0

1
26

5
–

26
1

26
1

1
1

1
26

1
Ph

as
ed

-S
eq

ue
nt

ia
l

Q
ua

si
-S

ta
tic
∗

Sh
ea

r
19

98
-U

S-
SH

-0
2

18
5

–
25

4
25

4
1

1
1

25
4

Ph
as

ed
-S

eq
ue

nt
ia

l
Q

ua
si

-S
ta

tic
∗

Sh
ea

r
19

98
-U

S-
SH

-0
3

13
0

–
17

6
17

6
1

1
1

17
6

Ph
as

ed
-S

eq
ue

nt
ia

l
Q

ua
si

-S
ta

tic
∗

Sh
ea

r
19

98
-U

S-
SH

-0
4

26
6

–
24

3
24

3
1

1
1

24
3

Ph
as

ed
-S

eq
ue

nt
ia

l
Q

ua
si

-S
ta

tic
∗

Sh
ea

r

531



Ta
bl

e
E

.5
:L

oa
d

Pr
op

er
tie

s
of

D
at

as
et

(C
on

tin
ue

d)

A
xi

al
Pe

ak
Sh

ea
rL

oa
d

C
or

re
ct

ed
Sh

ea
rS

tr
en

gt
h

L
oa

di
ng

F a
ilu

re
Se

ri
al

P
V m

in
V m

ax
V a

vg
k a

vg
k m

on
o

k r
at

e
V c

or
P a

tte
rn

R
at

e
M

od
e

(k
N

)
(k

N
)

(k
N

)
(k

N
)

(k
N

)

19
98

-U
S-

SH
-0

5
18

8
–

27
0

27
0

1
1

1
27

0
Ph

as
ed

-S
eq

ue
nt

ia
l

Q
ua

si
-S

ta
tic
∗

Sh
ea

r
19

98
-U

S-
SH

-0
6

13
3

–
21

1
21

1
1

1
1

21
1

Ph
as

ed
-S

eq
ue

nt
ia

l
Q

ua
si

-S
ta

tic
∗

Sh
ea

r
20

00
-J

P-
O

H
-0

1
81

5
49

9
53

5
51

7
1

0.
81

4
1

42
1

R
e v

er
se

d
M

on
ot

on
ic

Q
ua

si
-S

ta
tic

Sh
ea

r
20

00
-J

P-
O

H
-0

2
40

8
44

3
48

0
46

1
1

0.
81

4
1

37
6

R
e v

er
se

d
M

on
ot

on
ic

Q
ua

si
-S

ta
tic

Sh
ea

r
20

00
-J

P-
O

H
-0

3
81

5
48

7
51

0
49

9
1

0.
81

4
1

40
6

R
e v

er
se

d
M

on
ot

on
ic

Q
ua

si
-S

ta
tic

Sh
ea

r
20

00
-J

P-
O

H
-0

4
40

8
40

7
55

6
48

2
1

0.
81

4
1

39
2

R
e v

er
se

d
M

on
ot

on
ic

Q
ua

si
-S

ta
tic

Sh
ea

r
20

07
-A

U
-H

A
-0

1
21

5
14

1
17

9
16

0
1

0.
81

4
1

13
0

R
e v

er
se

d
M

on
ot

on
ic

Q
ua

si
-S

ta
tic
∗

Sh
ea

r
20

07
-A

U
-H

A
-0

2
21

5
16

1
16

5
16

3
1

1
1

16
3

C
yc

lic
Q

ua
si

-S
ta

tic
∗

Sh
ea

r
20

07
-A

U
-H

A
-0

3
21

5
15

0
18

0
16

5
1

0.
81

4
1

13
4

R
ev

er
se

d
M

on
ot

on
ic

Q
ua

si
-S

ta
tic
∗

Sh
ea

r
20

07
-A

U
-H

A
-0

4
21

5
17

1
19

1
18

1
1

1
1

18
1

C
yc

lic
Q

ua
si

-S
ta

tic
∗

Sh
ea

r
20

07
-A

U
-H

A
-0

5
21

5
14

8
15

6
15

2
1

0.
81

4
1

12
4

R
e v

er
se

d
M

on
ot

on
ic

Q
ua

si
-S

ta
tic
∗

Sh
ea

r
20

07
-A

U
-H

A
-0

6
21

5
19

1
19

1
19

1
1

1
1

19
1

C
yc

lic
Q

ua
si

-S
ta

tic
∗

Sh
ea

r
20

07
-A

U
-H

A
-0

7
21

5
12

9
16

5
14

7
1

0.
81

4
1

12
0

R
e v

er
se

d
M

on
ot

on
ic

Q
ua

si
-S

ta
tic
∗

Sh
ea

r
20

07
-A

U
-H

A
-0

8
21

5
15

3
16

5
15

8
1

1
1

15
8

C
yc

lic
Q

ua
si

-S
ta

tic
∗

Sh
ea

r
20

07
-A

U
-H

A
-0

9
21

5
14

4
15

6
15

0
1

0.
81

4
1

12
2

R
e v

er
se

d
M

on
ot

on
ic

Q
ua

si
-S

ta
tic
∗

Sh
ea

r
20

07
-A

U
-H

A
-1

1
10

8
15

9
17

9
16

9
1

0.
81

4
1

13
8

R
ev

er
se

d
M

on
ot

on
ic

Q
ua

si
-S

ta
tic
∗

Sh
ea

r
20

07
-A

U
-H

A
-1

2
17

.2
11

8
12

4
12

1
1

0.
81

4
1

99
R

ev
er

se
d

M
on

ot
on

ic
Q

ua
si

-S
ta

tic
∗

Sh
ea

r
20

07
-A

U
-H

A
-1

3
53

.0
60

61
61

1
0.

81
4

1
49

R
e v

er
se

d
M

on
ot

on
ic

Q
ua

si
-S

ta
tic
∗

Sh
ea

r
20

07
-A

U
-H

A
-1

4
0

56
68

62
1

0.
81

4
1

51
R

ev
er

se
d

M
on

ot
on

ic
Q

ua
si

-S
ta

tic
∗

Sh
ea

r
20

07
-N

Z
-V

O
-0

1
0

20
5

21
5

21
0

1
1

1
21

0
C

yc
lic

Q
ua

si
-S

ta
tic
∗

Sh
ea

r/
Fl

e x
ur

e
20

07
-N

Z
-V

O
-0

2
0

17
7

19
5

18
6

1
1

1
18

6
C

yc
lic

Q
ua

si
-S

ta
tic
∗

Sh
ea

r
20

07
-N

Z
-V

O
-0

4
0

20
1

22
3

21
2

1
1

1
21

2
C

yc
lic

Q
ua

si
-S

ta
tic
∗

Sh
ea

r
20

07
-N

Z
-V

O
-0

5
0

13
4

14
3

13
8

1
1

1
13

8
C

yc
lic

Q
ua

si
-S

ta
tic
∗

Sh
ea

r
20

07
-N

Z
-V

O
-0

6
0

93
93

93
1

1
1

93
C

yc
lic

Q
ua

si
-S

ta
tic
∗

Sh
ea

r
20

07
-N

Z
-V

O
-0

7
12

6
26

1
26

3
26

2
1

1
1

26
2

C
yc

lic
Q

ua
si

-S
ta

tic
∗

Sh
ea

r
20

07
-N

Z
-V

O
-0

8
63

.2
24

4
25

0
24

7
1

1
1

24
7

C
yc

lic
Q

ua
si

-S
ta

tic
∗

Sh
ea

r
20

07
-N

Z
-V

O
-0

9
63

.2
20

4
20

7
20

6
1

1
1

20
6

C
yc

lic
Q

ua
si

-S
ta

tic
∗

Sh
ea

r

532



Ta
bl

e
E

.5
:L

oa
d

Pr
op

er
tie

s
of

D
at

as
et

(C
on

tin
ue

d)

A
xi

al
Pe

ak
Sh

ea
rL

oa
d

C
or

re
ct

ed
Sh

ea
rS

tr
en

gt
h

L
oa

di
ng

F a
ilu

re
Se

ri
al

P
V m

in
V m

ax
V a

vg
k a

vg
k m

on
o

k r
at

e
V c

or
P a

tte
rn

R
at

e
M

od
e

(k
N

)
(k

N
)

(k
N

)
(k

N
)

(k
N

)

20
07

-N
Z

-V
O

-1
0

63
.2

57
4

59
6

58
7

1
1

1
58

7
C

yc
lic

Q
ua

si
-S

ta
tic
∗

Sh
ea

r
20

07
-P

O
-H

A
-0

2
60

.0
53

53
53

1
1

1
21

1
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
20

07
-P

O
-H

A
-0

3
60

.0
62

65
64

1
1

1
25

5
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
20

07
-P

O
-H

A
-0

4
15

0
93

93
93

1
1

1
37

2
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
20

07
-P

O
-H

A
-0

5
15

0
93

94
94

1
1

1
37

4
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
20

08
-C

A
-M

A
-0

1
12

0
91

97
94

1
1

1
37

6
C

yc
lic

Q
ua

si
-S

ta
tic
∗

Sh
ea

r/
Fl

e x
ur

e
20

08
-C

A
-M

A
-0

2
12

0
93

10
4

99
1

1
1

39
4

C
yc

lic
Q

ua
si

-S
ta

tic
∗

Sh
ea

r/
Fl

e x
ur

e
20

08
-C

A
-M

A
-0

4
12

0
11

4
12

3
11

9
1

1
1

47
4

C
yc

lic
Q

ua
si

-S
ta

tic
∗

Sh
ea

r
20

08
-C

A
-M

A
-0

5
12

0
79

84
82

1
1

1
32

7
C

yc
lic

Q
ua

si
-S

ta
tic
∗

Sh
ea

r/
Fl

ex
ur

e
20

09
-U

S-
M

I-
01

22
2

–
0

31
8

1
1

1
31

8
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
20

09
-U

S-
M

I-
02

22
2

–
0

19
0

1
1

1
19

0
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
20

09
-U

S-
M

I-
03

0
–

0
24

1
1

1
1

24
1

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

20
09

-U
S-

M
I-

04
0

–
0

23
0

1
1

1
23

0
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
20

09
-U

S-
M

I-
07

22
2

–
36

0
36

0
1

1
1

36
0

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r/

Fl
ex

ur
e

20
09

-U
S-

M
I-

08
22

2
–

32
9

32
9

1
1

1
32

9
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r/
Fl

e x
ur

e
20

10
-U

S-
E

L
-0

1
49

.4
–

23
8

23
8

0.
94

1
1

22
4

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

20
10

-U
S-

E
L

-0
2

49
.4

–
25

2
25

2
0.

94
1

1
23

7
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
20

10
-U

S-
E

L
-0

3
49

.4
–

26
6

26
6

0.
94

1
1

25
0

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

20
10

-U
S-

E
L

-0
4

49
.4

–
28

6
28

6
0.

94
1

1
26

9
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
20

10
-U

S-
E

L
-0

5
49

.4
–

34
4

34
4

0.
94

1
1

32
3

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

20
10

-U
S-

E
L

-0
6

49
.4

–
40

0
40

0
0.

94
1

1
37

6
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
20

10
-U

S-
N

O
-0

1
49

.3
21

1
23

4
22

3
1

1
1

22
3

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

20
10

-U
S-

N
O

-0
2

49
.3

22
7

23
0

22
8

1
1

1
22

8
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
20

10
-U

S-
N

O
-0

3
49

.3
19

3
21

5
20

4
1

1
1

20
4

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

20
10

-U
S-

N
O

-0
4

49
.3

25
8

26
2

26
1

1
1

1
26

1
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r
20

10
-U

S-
N

O
-0

5
49

.3
29

0
30

2
29

6
1

1
1

29
6

C
yc

lic
Q

ua
si

-S
ta

tic
Sh

ea
r

20
10

-U
S-

N
O

-0
6

49
.3

31
1

35
5

33
3

1
1

1
33

3
C

yc
lic

Q
ua

si
-S

ta
tic

Sh
ea

r

533



APPENDIX F. COMPARISON OF MODEL PREDICTIONS BY GROUP

This Appendix provides graphical comparison of the performance of the different predic-

tion models. Figures F.1, F.2, F.3 present the goodness-of-fit statistics for each model segregated by

specimen group. The remaining figures present scatter plots of the predicted versus experimental

strengths for the specimens in each group, segregated by model.
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(a) Matsumura Model
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(b) AIJ Model
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(c) Blondet Model

Figure F.1: Root mean square error by model and group
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(d) Shing Model
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(e) Anderson Model
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(f) Fattal Model

Root mean square error by model and group (Continued)
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(g) NZS Model
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(h) Voon Model
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Figure F.2: Residual mean by model and group
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(c) Blondet Model

Figure F.3: Residual standard deviation by model and group
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Figure F.4: Model predictions for group 1
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Figure F.5: Model predictions for group 2
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Figure F.6: Model predictions for group 3
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Figure F.7: Model predictions for group 4
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Figure F.8: Model predictions for group 5
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Figure F.9: Model predictions for group 6
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Figure F.10: Model predictions for group 7
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Figure F.11: Model predictions for group 8
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Figure F.12: Model predictions for group 9
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Figure F.13: Model predictions for group 10
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Figure F.14: Model predictions for group 11
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Figure F.15: Model predictions for group 12
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Figure F.16: Model predictions for group 13
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Figure F.17: Model predictions for group 14
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Figure F.18: Model predictions for group 15
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Figure F.19: Model predictions for group 16
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Figure F.20: Model predictions for group 17
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Figure F.21: Model predictions for group 18
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Figure F.22: Model predictions for group 19
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Figure F.23: Model predictions for group 20

588



0 1 2 3
0

1

2

3

4

5

6

Experimental Strength (MPa)

Pr
ed

ic
te

d 
St

re
ng

th
 (M

Pa
)

(j) TCCMaR Model

0 1 2 3
0

1

2

3

4

5

6

Experimental Strength (MPa)

Pr
ed

ic
te

d 
St

re
ng

th
 (M

Pa
)

(k) UBC Model

0 1 2 3
0

1

2

3

4

5

6

Experimental Strength (MPa)

Pr
ed

ic
te

d 
St

re
ng

th
 (M

Pa
)

(l) AS Model

0 1 2 3
0

1

2

3

Experimental Strength (MPa)

Pr
ed

ic
te

d 
St

re
ng

th
 (M

Pa
)

(m) MSJC Model

0 1 2 3
0

1

2

3

Experimental Strength (MPa)

Pr
ed

ic
te

d 
St

re
ng

th
 (M

Pa
)

(n) BYU Model

Model predictions for group 20 (Continued)

589



0 1 2 3
0

1

2

3

Experimental Strength (MPa)

Pr
ed

ic
te

d 
St

re
ng

th
 (M

Pa
)

(a) Matsumura Model

0 1 2 3
0

1

2

3

Experimental Strength (MPa)

Pr
ed

ic
te

d 
St

re
ng

th
 (M

Pa
)

(b) AIJ Model

0 1 2 3
0

1

2

3

Experimental Strength (MPa)

Pr
ed

ic
te

d 
St

re
ng

th
 (M

Pa
)

(c) Blondet Model

0 1 2 3
0

1

2

3

Experimental Strength (MPa)

Pr
ed

ic
te

d 
St

re
ng

th
 (M

Pa
)

(d) Shing Model

0 1 2 3
0

1

2

3

Experimental Strength (MPa)

Pr
ed

ic
te

d 
St

re
ng

th
 (M

Pa
)

(e) Anderson Model

0 1 2 3
0

1

2

3

Experimental Strength (MPa)

Pr
ed

ic
te

d 
St

re
ng

th
 (M

Pa
)

(f) Fattal Model

0 1 2 3
0

1

2

3

Experimental Strength (MPa)

Pr
ed

ic
te

d 
St

re
ng

th
 (M

Pa
)

(g) NZS Model

0 1 2 3
0

1

2

3

Experimental Strength (MPa)

Pr
ed

ic
te

d 
St

re
ng

th
 (M

Pa
)

(h) Voon Model

0 1 2 3
0

1

2

3

Experimental Strength (MPa)

Pr
ed

ic
te

d 
St

re
ng

th
 (M

Pa
)

(i) CSA Model

Figure F.24: Model predictions for group 21
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Figure F.25: Model predictions for group 22
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Figure F.26: Model predictions for group 23
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Figure F.27: Model predictions for group 24
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Figure F.28: Model predictions for group 25
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Figure F.29: Model predictions for group 26
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Figure F.30: Model predictions for group 27
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Figure F.31: Model predictions for group 28

604



0 1 2 3
0

1

2

3

4

5

6

Experimental Strength (MPa)

Pr
ed

ic
te

d 
St

re
ng

th
 (M

Pa
)

(j) TCCMaR Model

0 1 2 3
0

1

2

3

4

5

6

Experimental Strength (MPa)

Pr
ed

ic
te

d 
St

re
ng

th
 (M

Pa
)

(k) UBC Model

0 1 2 3
0

1

2

3

4

5

6

Experimental Strength (MPa)

Pr
ed

ic
te

d 
St

re
ng

th
 (M

Pa
)

(l) AS Model

0 1 2 3
0

1

2

3

Experimental Strength (MPa)

Pr
ed

ic
te

d 
St

re
ng

th
 (M

Pa
)

(m) MSJC Model

0 1 2 3
0

1

2

3

Experimental Strength (MPa)

Pr
ed

ic
te

d 
St

re
ng

th
 (M

Pa
)

(n) BYU Model

Model predictions for group 28 (Continued)

605



0 1 2 3
0

1

2

3

Experimental Strength (MPa)

Pr
ed

ic
te

d 
St

re
ng

th
 (M

Pa
)

(a) Matsumura Model

0 1 2 3
0

1

2

3

Experimental Strength (MPa)

Pr
ed

ic
te

d 
St

re
ng

th
 (M

Pa
)

(b) AIJ Model

0 1 2 3
0

1

2

3

Experimental Strength (MPa)

Pr
ed

ic
te

d 
St

re
ng

th
 (M

Pa
)

(c) Blondet Model

0 1 2 3
0

1

2

3

Experimental Strength (MPa)

Pr
ed

ic
te

d 
St

re
ng

th
 (M

Pa
)

(d) Shing Model

0 1 2 3
0

1

2

3

Experimental Strength (MPa)

Pr
ed

ic
te

d 
St

re
ng

th
 (M

Pa
)

(e) Anderson Model

0 1 2 3
0

1

2

3

Experimental Strength (MPa)

Pr
ed

ic
te

d 
St

re
ng

th
 (M

Pa
)

(f) Fattal Model

0 1 2 3
0

1

2

3

Experimental Strength (MPa)

Pr
ed

ic
te

d 
St

re
ng

th
 (M

Pa
)

(g) NZS Model

0 1 2 3
0

1

2

3

Experimental Strength (MPa)

Pr
ed

ic
te

d 
St

re
ng

th
 (M

Pa
)

(h) Voon Model

0 1 2 3
0

1

2

3

Experimental Strength (MPa)

Pr
ed

ic
te

d 
St

re
ng

th
 (M

Pa
)

(i) CSA Model

Figure F.32: Model predictions for group 29
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Figure F.33: Model predictions for group 30
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Figure F.34: Model predictions for group 31
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Figure F.35: Model predictions for group 32
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Figure F.36: Model predictions for group 33
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Figure F.37: Model predictions for group 34
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Figure F.38: Model predictions for group 35
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Figure F.39: Model predictions for group 36

620



0 1 2 3
0

1

2

3

4

5

6

Experimental Strength (MPa)

Pr
ed

ic
te

d 
St

re
ng

th
 (M

Pa
)

(j) TCCMaR Model

0 1 2 3
0

1

2

3

4

5

6

Experimental Strength (MPa)

Pr
ed

ic
te

d 
St

re
ng

th
 (M

Pa
)

(k) UBC Model

0 1 2 3
0

1

2

3

4

5

6

Experimental Strength (MPa)

Pr
ed

ic
te

d 
St

re
ng

th
 (M

Pa
)

(l) AS Model

0 1 2 3
0

1

2

3

Experimental Strength (MPa)

Pr
ed

ic
te

d 
St

re
ng

th
 (M

Pa
)

(m) MSJC Model

0 1 2 3
0

1

2

3

Experimental Strength (MPa)

Pr
ed

ic
te

d 
St

re
ng

th
 (M

Pa
)

(n) BYU Model

Model predictions for group 36 (Continued)

621



0 1 2 3
0

1

2

3

Experimental Strength (MPa)

Pr
ed

ic
te

d 
St

re
ng

th
 (M

Pa
)

(a) Matsumura Model

0 1 2 3
0

1

2

3

Experimental Strength (MPa)

Pr
ed

ic
te

d 
St

re
ng

th
 (M

Pa
)

(b) AIJ Model

0 1 2 3
0

1

2

3

Experimental Strength (MPa)

Pr
ed

ic
te

d 
St

re
ng

th
 (M

Pa
)

(c) Blondet Model

0 1 2 3
0

1

2

3

Experimental Strength (MPa)

Pr
ed

ic
te

d 
St

re
ng

th
 (M

Pa
)

(d) Shing Model

0 1 2 3
0

1

2

3

Experimental Strength (MPa)

Pr
ed

ic
te

d 
St

re
ng

th
 (M

Pa
)

(e) Anderson Model

0 1 2 3
0

1

2

3

Experimental Strength (MPa)

Pr
ed

ic
te

d 
St

re
ng

th
 (M

Pa
)

(f) Fattal Model

0 1 2 3
0

1

2

3

Experimental Strength (MPa)

Pr
ed

ic
te

d 
St

re
ng

th
 (M

Pa
)

(g) NZS Model

0 1 2 3
0

1

2

3

Experimental Strength (MPa)

Pr
ed

ic
te

d 
St

re
ng

th
 (M

Pa
)

(h) Voon Model

0 1 2 3
0

1

2

3

Experimental Strength (MPa)

Pr
ed

ic
te

d 
St

re
ng

th
 (M

Pa
)

(i) CSA Model

Figure F.40: Model predictions for group 37
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Figure F.41: Model predictions for group 38
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Figure F.42: Model predictions for group 39
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Figure F.43: Model predictions for group 40
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Figure F.44: Model predictions for group 41
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Figure F.45: Model predictions for group 42
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Figure F.46: Model predictions for group 43
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Figure F.47: Model predictions for group 44
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Figure F.48: Model predictions for group 45
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(c) Blondet Model
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(e) Anderson Model
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(f) Fattal Model
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(h) Voon Model
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(i) CSA Model

Figure F.49: Model predictions for group 46
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(j) TCCMaR Model
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(k) UBC Model
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(l) AS Model
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(m) MSJC Model
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(n) BYU Model

Model predictions for group 46 (Continued)
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(b) AIJ Model
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(c) Blondet Model
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(d) Shing Model
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(e) Anderson Model
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(f) Fattal Model
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(h) Voon Model
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(i) CSA Model

Figure F.50: Model predictions for group 47
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(j) TCCMaR Model
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(k) UBC Model

0 1 2 3
0

1

2

3

4

5

6

Experimental Strength (MPa)

Pr
ed

ic
te

d 
St

re
ng

th
 (M

Pa
)

(l) AS Model
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Model predictions for group 47 (Continued)
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APPENDIX G. MODIFICATION OF EXISTING MSJC EQUATION

The values used in these suggested revisions represent the values determined through the

analysis in Part III of this study. The formatting used in this Appendix has been adjusted to match

that used in the MSJC (2013) code.

CODE
9.1.4.5 Shear in fully-grouted and solid ma-

sonry — The value of φ shall be taken as 0.80 for
fully-grouted masonry subjected to shear.

9.1.4.6 Shear in partially-grouted masonry —
The value of φ shall be taken as 0.75 for partially-
grouted and hollow masonry subjected to shear.

9.1.4.7 Shear in unreinforced masonry — The
value of φ shall be taken as 0.80 for masonry sub-
jected to shear not otherwise governed by the provi-
sions in 9.1.4.5 or 9.1.4.6.

9.3.4.1.2 Nominal shear strength — Nominal
shear strength, Vn , shall be calculated using Equation
9-21, and shall not be taken greater than the limits
given by 9.3.4.1.2 (a) through (c).

COMMENTARY
9.1.4.5 Shear in fully-grouted and solid ma-

sonry — The strength-reduction factor for calculat-
ing the design shear strength of fully-grouted and
solid masonry recognizes the greater uncertainty in
calculating nominal shear strength than in calculat-
ing nominal flexural strength.

9.1.4.6 Shear in partially-grouted masonry —
The amount of uncertainty for partially-grouted ma-
sonry is larger than that for fully-grouted and solid
masonry. A different shear strength-reduction factor
is specified for partially-grouted masonry to maintain
consistency in the probabilities of failure between the
two different grouting types.

9.1.4.7 Shear in unreinforced masonry —
The strength-reduction factor for calculating the de-
sign shear strength of unreinforced masonry recog-
nizes the greater uncertainty in calculating nominal
shear strength than in calculating nominal flexural
strength.

9.3.4.1.2 Nominal shear strength — The shear
strength equations in Section 9.3.4.1.2 are derived
from research (Shing et al, 1990a; Shing et al,
1990b). the equations have been compared with
results from 353 tests of masonry walls failing in
in-plane shear (current study). The test data en-
compassed both concrete masonry walls and clay
masonry walls, including both fully- and partially-
grouted walls. The average ratio of the test strength
to the calculated strength for fully grouted walls was
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Vn = (Vnm + Vns ) γg (Equation 9-21)

(a) Where Mu/(Vudv ) ≤ 0.25:

Vn ≤
(
6Anv

√
f ′m

)
γg (Equation 9-22)

(b) Where Mu/(Vudv ) ≥ 1.0:

Vn ≥
(
4Anv

√
f ′m

)
γg (Equation 9-23)

γg = 0.75 for partially grouted shear walls
and 1.0 otherwise.

(c) The maximum value of Vn for Mu/(Vudv )
between 0.25 and 1.0 shall be permitted to be
linearly interpolated.

9.3.4.1.2.1 Nominal masonry shear strength
— Shear strength provided by the masonry, Vnm ,
shall be calculated using Equation 9-24:

Vnm =[
4.0 − 1.75

(
Mu

Vudv

)]
Anv

√
f ′m + 0.25Pu

(Equation 9-24)

Mu/(Vudv ) shall be taken as a positive num-
ber and need not be taken greater than 1.0.

9.3.4.1.2.2 Nominal shear strength provided
by reinforcement — Nominal shear strength pro-
vided by shear reinforcement, Vns , shall be calcu-
lated as follows:

Vns = 0.5
(

Av

s

)
fy dv (Equation 9-25)

0.97 with a coefficient of variation of 0.24. The aver-
age ratio of the test strength to the calculated strength
for partially grouted walls was 0.73 with a coefficient
of variation of 0.30.

· · ·

· · ·

Partially grouted walls have been shown to
produce lower strengths than predicted by the shear
strength equations using just the reduction of net
area (current study; Minaie et al, 2010; Nolph and
ElGawady, 2011; Schultz, 1996b; Schultz, 1996c;
Schultz and Hutchinson, 2001b). The grouted shear
wall factor is used to compensate for this reduction
in nominal shear strength and has been validated by a
comparison of nominal shear strengths for 172 fully
grouted and 181 partially grouted shear wall tests.

9.3.4.1.2.1 Nominal masonry shear strength
— Portions of Equation 9-24 were originally derived
based on theoretical and empirical analysis on fully
grouted masonry test data (Blondet et al, 1989; An-
derson and Priestley, 1992). The current form of the
equation was assembled by members of the TCC-
MaR committee (NEHRP, 1994).

9.3.4.1.2.2 Nominal shear strength provided
by reinforcement — Equation 9-25 was chosen as-
suming that only the reinforcement in the middle half
of the wall height is effective in resisting the shear
strength (Blondet et al, 1989, Shing et al, 1990a;
Shing et al, 1990b). This assumption is based on the
observation that the anchorages of shear reinforce-
ment near the tops and bottoms of walls become in-
terrupted by diagonal cracking and are, therefore, not
able to develop their full theoretical strength contri-
butions.
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APPENDIX H. IMPROVEMENT OF EXISTING MSJC EQUATION

The values used in these suggested revisions represent the proposed equation developed

through the analysis in Part IV of this study. The formatting used in this Appendix has been

adjusted to match that used in the MSJC (2013) code.

CODE
2.1 — Notation

· · ·

Ac = area of nonprestressed longitudinal
confinement reinforcement, in2. (mm2)
· · ·

sgh = horizontal grout spacing of partially
grouted walls, in. (mm)
· · ·

ts = shear thickness of member, taken as the
total face shell thickness for partially
grouted members and as tsp otherwise,
in. (mm)
· · ·

Vnp = nominal shear strength provided by ax-
ial load, lb (N)
· · ·

9.3.4.1.2 Nominal shear strength — Nominal
shear strength, Vn , shall be calculated using Equation
9-21, and shall not be taken greater than the limits
given by 9.3.4.1.2.4.

Vn = Vnm + Vnp + Vns (Equation 9-21)

COMMENTARY

9.3.4.1.2 Nominal shear strength — The shear
strength equations in Section 9.3.4.1.2 are derived
from research (Shing et al, 1990a; Shing et al,
1990b). the equations have been compared with
results from 353 tests of masonry walls failing in
in-plane shear (current study). The test data en-
compassed both concrete masonry walls and clay
masonry walls, including both fully- and partially-
grouted walls. The average ratio of the test strength
to the calculated strength for fully grouted walls was
0.97 with a coefficient of variation of 0.24. The aver-
age ratio of the test strength to the calculated strength
for partially grouted walls was 0.73 with a coefficient
of variation of 0.30.

· · ·
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9.3.4.1.2.1 Nominal masonry shear strength
— Shear strength provided by the masonry, Vnm ,
shall be calculated using Equation 9-22 or Equation
9-23, as appropriate:

(a) For masonry which is partially grouted:

Vnm =

[
1.1 + 0.9

(
Vu sgh

Mu

)]
Anv

√
f ′m

(Equation 9-22)
(b) For masonry which is solid or fully grouted:

Vnm =

[
1.8 + 0.7

(
Vu dv

Mu

)]
Anv

√
f ′m

(Equation 9-23)

(Vudv )/Mu and (Vu sgh )/Mu shall both be
taken as a positive number.

9.3.4.1.2.2 Nominal shear strength provided
by axial load — Nominal shear strength provided by
axial load, Vnp , shall be calculated as follows:

Vnp = 0.15Pu (Equation 9-24)

9.3.4.1.2.3 Nominal shear strength provided
by reinforcement — Nominal shear strength pro-
vided by reinforcement, Vns , shall be calculated as
follows:

Vns = 0.12
[(

Ac fy
sc

)
dv +

(
Av fy

sv

)
h

]

(Equation 9-25)

· · ·

Partially grouted walls have been shown to
produce lower strengths than predicted by the shear
strength equations using just the reduction of net
area (current study; Minaie et al, 2010; Nolph and
ElGawady, 2011; Schultz, 1996b; Schultz, 1996c;
Schultz and Hutchinson, 2001b). The grouted shear
wall factor is used to compensate for this reduction
in nominal shear strength and has been validated by a
comparison of nominal shear strengths for 172 fully
grouted and 181 partially grouted shear wall tests.

9.3.4.1.2.1 Nominal masonry shear strength
— Equations 9-22 and 9-23 are empirically derived
from linear regression on 353 reinforced masonry
shear walls (current study). The regression results
showed that partially grouted shear wall strength
does not correlate as well with the shear span ratio
as do fully grouted walls. The ratio of the horizon-
tal grout spacing sgh to the shear height MU/Vu was
found to provide a better correlation to the partially
grouted wall test data. The different coefficients for
fully and partially grouted walls represent a better fit
for each subset of data and eliminate the need for a
grouted wall factor.

9.3.4.1.2.2 Nominal shear strength provided
by axial load — Equation 9-24 is empirically de-
rived from linear regression on 353 reinforced ma-
sonry shear walls (current study).

9.3.4.1.2.3 Nominal shear strength provided
by reinforcement — Equation 9-25 is empirically de-
rived from linear regression on 353 reinforced ma-
sonry shear walls (current study). It was found that
the shear reinforcement did not contribute in as great
a degree as had originally been assumed based on
theory. It was also found that longitudinal reinforce-
ment did have a statistically significant contribution
to wall shear strength. It has been found that both
types of reinforcement contribute by restraining the
diagonal tensile forces that develop perpendicular to
the shear stress fields in a member and by helping to
redistribute stresses within a cracked masonry mem-
ber.
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9.3.4.1.2.4 Limit to nominal shear strength —
Nominal shear strength, Vn , calculated in Equation
9-21 shall not be taken greater than the the force
necessary for the member to violate the conditions
of in-plane rotational equilibrium. When calculating
the rotational equilibrium capacity, all longitudinal
reinforcement may be considered to contribute up to
their respective yield strengths. Any unfactored axial
load may also be considered to contribute. The equi-
librium limit is give by Equations 9-26 and Equation
9-27:

(a) For computing the rotational equilibrium
limit, the depth of the equivalent compression
block shall by taken as:

av =

P +

(
Ac fy

sc

)
dv

0.8 f ′mts
(Equation 9-26)

(b) The rotational equilibrium limit shall be taken
as:

Vn ≤

[
P +

(
Ac fy

sc

)
dv

]
(dv − av )

2
Vu

Mu

(Equation 9-27)

9.3.4.1.2.3 Limit to nominal shear strength —
Is is possible for a masonry member to be stronger
than the externally applied forces and for the mem-
ber to fail via large rotational deformations. Equa-
tion 9-27 represents the force required for a rigid ma-
sonry member to overcome the external equilibrium
forces. Equation 9-27 is based on a diagonal strut
which travels from the inflection point of the member
to the compression block. The axial forces applied at
the inflection point are equal to the sum of the axial
load and the yield strengths of the longitudinal rein-
forcement in tension. The limit is equal to the shear
force required to cause the vertical component of the
diagonal strut to exceed the applied loads and rotate
about the centroid of the compression block. This
model ignores the tensile strength of the masonry.

The nominal shear strength limits given in pre-
vious version of the code were found to not be effec-
tive with the new shear strength equation. The new
shear strength equation was found to provide ade-
quate protection from critical (brittle) shear-related
failures without additional strength limits being im-
posed.
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APPENDIX I. STRUT-AND-TIE MODELING OF SHEAR WALLS

CODE

I.1 Definitions

Nodal Zone — The volume of masonry around
a nodal in which forces are transferred between
struts, ties, and/or other nodal zones.

Node — A point at which forces from struts,
ties, applied loads, and reactions within a strut-and-
tie model intersect.

Strut — A compression member in a strut-
and-tie model.

COMMENTARY

Nodal zones are represented as a triangular re-
gion of masonry with three faces. When more than
three forces intersect at a node the region around
the node is segmented into smaller nodal zones
with three faces each which bear against each other.
Nodal zones may be considered to occur within the
slabs or the foundation above or below the wall.

A node exists when at least three forces inter-
sect. All forces acting on a node must be in static
equilibrium.

Struts travel principally in the diagonal direc-
tion through the masonry panel. In partially-grouted
walls the struts travel principally through the face
shells and mortar joints of the panel. In fully-grouted
walls the struts travel through the masonry units,
mortar joints, and grouted cores of the panel. In ma-
sonry shear walls the compression capacity of the re-
inforcement is typically ignored.

There are three types of struts—prismatic, fan-
shaped, and bottle-shaped—as shown in Figure I.1.
Within masonry shear walls, bottle-shaped struts are
the most frequent strut type used because the ma-
sonry panel typically allow sufficient space between
struts for the stress fields to diverge. Prismatic struts
are typically limited to the end jamb of the wall. Fan-
shaped struts are also possible within masonry shear
walls but stresses within a fan-shaped strut are typi-
cally idealized as several smaller struts all converg-
ing together at the wall toe.
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(a) Prismatic strut

(b) Fan-shaped strut

(c) Bottle-shaped strut

Figure I.1: Strut types
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Strut-and-tie model — A model of a masonry
member based on a truss analogy in which the com-
pressive forces are represented as strut elements and
tensile forces are represented by ties. The struts and
ties connect at nodes forming a truss in which all
members are assumed to carry only axial loads.

Strut Inclination Angle — The angle between
the axis of the strut and direction normal to the bed
joint plane (typically the vertical direction).

Tie — A tension member in a strut-and-tie
model.

I.2 General

Strut-and-tie models may be used for design
and analysis of masonry shear walls with or without
openings.

Strut-and-tie models for masonry shear walls
shall follow the provisions in I.1 through I.5.

I.2.1 Strength Reduction Factor — The
strength reduction factor φ for strut-and-tie models
shall be taken as 0.90.

Strut-and-tie models are more complex than
other, simple truss models in which nodes are located
at the intersections of reinforcement bars. Within
strut-and-tie models the nodes must be moved and
the strut sizes adjusted to account for the geometry
of the model elements and provide the necessary an-
chorage for the ends of the elements.

The definition of the strut inclination angle
was selected such that the angle of 0 degree corre-
sponds to the loading used in masonry prism tests.
This angle represents what is considered to be the
masonry compressive strength. The angle also cor-
responds to the equilibrium state of struts within
an axially-loaded shear wall without any laterally-
applied load.

Tie consist of reinforcement bars embedded in
grout within the masonry panel and a prismatic sec-
tion of the grout and masonry immediately between
and adjacent to the reinforcement.

The performance of strut-and-tie models con-
structed for 155 masonry shear wall specimens was
compared against the experimental strengths. It was
observed that strut-and-tie models produced accurate
predictions when the models were developed satis-
fying the requirements of I.1 through I.5 (current
study).

Strut-and-tie have been observed to demon-
strate less uncertainty and to consistently produce
lower coefficients of variation than equation-based
prediction approaches. The reduction in uncertainty
is attributed to the models’ improved ability to ac-
count for the complex interactions between geomet-
ric and material strength properties. Equation-based
methods are linear models in which the influence of
each parameter is assumed to be linearly related to
the wall shear strength. This assumption of linear
correlation is a simplification of the observed behav-
ior which are necessitated to produce an equation
simple enough for regular use.

The application of strut-and-tie models to ma-
sonry design is based on the theory of plasticity.
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I.2.2 Equilibrium — The forces and reac-
tions applied to the strut-and-tie model shall be in
equilibrium. External forces shall be applied to the
model at nodes.

I.2.2.1 Distributed Loads — Distributed
loads shall be idealized as concentrated loads acting
at nodes. The magnitude of the idealized loads shall
be based on the principle of tributary length for the
node.

I.2.3 Continuity — Struts and ties shall be
continuous between nodes. Forces may be trans-
ferred into or from struts or ties only at nodes.

I.2.4 Geometry — The geometry and layout
of the struts, ties, and nodal zones shall be considered
in constructing the strut-and-tie model.

The lower-bound theorem of the theory of plasticity
states that strut-and-tie models should always pro-
duce a lower bound to the ultimate strength of the
member. This property is due in part to the mod-
els neglecting the strength contributions of ancillary
mechanisms such as crack friction, dowel action,
etc. Another way of stating the lower-bound the-
orem is by saying that strut-and-tie models should
never under-predict the wall strength, or that they are
conservative.

Mechanical modeling has shown that when the
provisions for strut-and-tie modeling in I.1 through
I.5 are properly applied, then the initiation of fail-
ure will be through yielding of the reinforcement.
Given the lower level of uncertainty compared to
equation-based predictions, the gravitation to pro-
ducing conservative predictions, and the tendency to-
ward ductile failure mode, it was judged that strut-
and-tie model design strength would be best repre-
sented using a strength reduction factor similar to
that of beams.

Strut-and-tie models are based on a truss anal-
ogy in which the truss elements are considered to re-
sist only axial loads. As a result, all forces and resul-
tants must be applies at the ends of struts and/or ties
at nodes.

The influence of each strut on the overall shear
capacity of the wall is a function of the load applied
to the strut and the strut’s inclination. This require-
ment is intended to prevent the designer from resolv-
ing all of the distributed load onto the strut(s) which
would produce the greatest lateral force component,
therefore artificially inflating the strength.

This requirement is necessary for the truss
analogy to hold.

Geometrical considerations in strut-and-tie
models are a distinguishing characteristic from other
truss analogies. In strut-and-tie models, the masonry
not included in struts or nodes and the reinforcement
not included within ties is assumed to not contribute
to the wall strength. These excluded materials could
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I.2.4.1 Crossing of Elements — Ties shall
be permitted to cross struts or other ties without
transferring forces between the two element. Struts
shall not overlap and shall only intersect or meet at
nodes.

I.2.4.2 Toe Extension — For struts which
traverse grouted and ungrouted portions of a wall,
the leading edge of struts ending within a grouted
column adjacent to a wall edge shall be permitted to
extend past the edge of the wall at the strut end by a
distance given by the toe extension length, lx . The
toe extension length shall be determined assuming
that the compression bearing area of the strut on the
leading side of the strut axis included the grouted cell
and adjacent webs.

be removed from the wall without a loss in equilib-
rium or in predicted strength. As a result, the mate-
rials within the struts, ties, and nodes must be suf-
ficient to meet all of the strength and anchorage re-
quirements. The provision against the overlapping
of struts is necessary to prevent the crushing of the
masonry within that area.

Through modeling of partially-grouted speci-
mens it was observed that limiting the thickness of
all struts to include only the face shell area pro-
duced predictions which were overly conservative.
The compressive stresses were allowed to spread to
the grouted cell over several different lengths, effec-
tively decreasing the horizontal length of the toe and
increasing the strut inclination angle, αs , as shown
in Figure I.2. It was determined that the centroid
of the compression area was the limit for which the
grouted core could be included in the compression
area of the strut. The toe extension length, lx , can
be determined depending on whether the axis of the
strut ends within or behind of the grouted length, lg .

(a) For cases where the axis ends within the
grouted length:

lx =
a
2

(
1 −

ts
tg

)
(b) For cases where the axis ends behind the

grouted length:

lx = lg

(
tg
ts
− 1

)

In many cases, a strut ending within the
grouted end cell of the wall is preceded by a near-
vertical strut traveling wholly within the strut. In
such cases the grouted length shall be measure from
the trailing edge of the near-vertical strut to the end
of the grouted zone, as shown in Figure I.3.
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(a) Axis ending within the grouted length
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(b) Axis ending behind the grouted length

Figure I.2: Toe extension length
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Figure I.3: Toe extension for second strut
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I.2.5 Transfer of Forces — Nodal zones
shall shall have three faces and transfer forces be-
tween three model elements, including struts, ties,
and other nodal zones. In the case where more than
three forces act on a node, the nodal region shall be
subdivided into smaller nodal zones such that each
resulting nodal zone has only three faces.

I.2.6 Strength Design — Struts, ties, and
nodal zones shall be designed such that the design
strength of each member is greater than or equal to
the ultimate factored force denoted by

φ Fn ≥ Fu (I.1)

where Fn is the nominal strength given in I.3 through
I.5. The ultimate factored load Fu shall act on the
cross section of a strut or tie or on one face of a nodal
zone.

I.3 Strength of Struts

I.3.1 Nominal Strut Compressive Strength
— The nominal compressive strength of a strut, Fns ,
shall be calculated using Equation I.2.

Fns = fme Ams (I.2)

I.3.2 Strut area — The effective cross sec-
tional area of a strut shall be the smaller of cross sec-
tional areas measured at each end of the strut perpen-
dicular to the strut axis.

A nodal zone is formed where a force path
changes direction, resulting in a third force being ap-
plied to the node. Additional forces may enter a node
but the analysis is simplified when the nodal region
is divided such that each nodal zone has three forces
acting on it, resulting in three faces, as shown in Fig-
ure I.4.

Figure I.4: Subdivision of nodal region

Strut-and-tie models are constructed using the
strength design methodology. The factored loads ap-
plied to the strut-and-tie model should be computed
using the applicable loading cases. As strut-and-
tie models are highly indeterminate, a model should
be constructed and analyzed for each of the relevant
loading cases. For each model, the value of the force
applies to each strut, tie, or node, Fu is determined
based on the applied loads and geometry of the ele-
ments.

The compressive strength of each strut is a
function of the cross-sectional area and the effective
strength. The effective compressive strength of the
masonry within struts has been observed to vary from
the measured uniaxial compressive strength.

The strut area is the product of the smallest
strut width and the shear thickness of the masonry,
ts . For fully-grouted masonry walls, the shear thick-
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I.3.3 Effective Masonry Strength — The ef-
fective strength of masonry, fme , within a strut shall
be calculated using Equation I.3 and shall not exceed
the nodal strength given by I.7.

fme = 0.8βs βα f ′m (I.3)

I.3.3.1 Strut Efficiency Factor —
The strut efficiency factor, βs , shall satisfy
the requirements in I.3.3.1 (a) through (c).

(a) For struts which are prismatic:
βs = 1.0

(b) For non-prismatic struts satisfying the re-
quirements in I.3.4.1:

βs = 0.75

(c) For non-prismatic struts not satisfying the re-
quirements in I.3.4.1:

βs = 0.60

I.3.3.2 Strut Inclination Factor — The strut
inclination factor, βα , shall be satisfy the require-
ments in I.3.3.2 (a) through (d).

(a) For fully-grouted masonry:
βα = 1.0

(b) For partially-grouted masonry with an incli-
nation angle, αs , of zero:

βα = 1.0

(c) For partially-grouted masonry with an incli-
nation angle, αs , greater than 35 degrees:

βα = 2/3

(d) The value of βα for αs between 0.0 and 35
degrees shall be permitted to be linearly inter-
polated.

ness of the masonry shall be taken as the gross wall
thickness. For partially-grouted masonry walls, the
shear thickness, ts , shall be taken as the total thick-
ness of the shells only.

The strength coefficient, 0.8 f ′m , in Equation
I.3 represents the effective masonry compressive
strength under sustained compression, similar to that
used for bearing strength.

The strut efficiency factor accounts for the re-
duction in effective compressive strength which re-
sults from the transverse force components of the
stress paths in fan- and bottle-shaped strut. These
transverse forces can cause the strut to split lon-
gitudinally decreasing the effective strength of the
strut. When sufficient transverse reinforcement is
provided as specified in I.3.4, the reinforcement re-
sists the transverse splitting force and restrains the
crack width, permitting the strut to resist a greater
amount of axial load. All struts should be considered
to be either fan- or bottle-shaped unless their prox-
imity to the edge of the wall would prevent the stress
from diverging from a prismatic path.

The strut inclination factor account for the re-
duction in effective compressive strength in partially-
grouted masonry. When partially-grouted masonry
is loaded in uniaxial compression normal to the bed
joints, only compressive forces are present across the
joint. As the inclination of the compressive force
increases, shear stresses are introduced across the
bed joint as the compression force travels from one
course to another. These shear stresses limit the ef-
fective force that can be applied at an angle across
the bed joint. This phenomenon has not be observed
for fully-grouted masonry and is attributed to the
shear stresses being transferred between courses by
the grouted cores (Drysdale and Hamid, 1980).

The values for the inclination factor were de-
veloped based on a bi-linear approximation of the
theoretical curved developed and compared against
experimental data by Liu et al. (2006), as shown in
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I.3.4 Transverse Reinforcement — If the
value of βs specified in I.3.3.1(b) is used, then the
strut shall be crossed by sufficient reinforcement to
resist the transverse tensile splitting force within the
strut.

I.3.4.1 Transverse Reinforcement Provided
— The total reinforcement crossing the strut shall
satisfy the requirement in Equation I.4.∑ Asi fy

si ts
sin αi ≥

fme

15
(I.4)

I.3.4.2 Transverse Reinforcement Place-
ment — The reinforcement in I.3.4.1 shall consist
of traverse reinforcement placed in one direction
at an angle α to the strut axis or in two orthogonal
directions at angles α1 and α2 to the strut axis.
If a strut is crossed by reinforcement in only one

Figure I.5. The inclination factor values were used in
constructing 46 strut-and-tie models and comparing
them against the respective experimental strengths.
It was observed that the selected values for the incli-
nation factor provided a good fit to the experimental
data.
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Figure I.5: Strut inclination factor

The reinforcement required by I.3.4 is neces-
sary to resist the transverse tensile forces within a
strut caused by the spreading of the strut. The axial
force within the strut may be assumed to spread at a
2:1 slope, for a length equal to one-sixth of the strut
length, as shown in Figure I.6. As a result, the width
of the strut at its mid-length, we f f , is given by

we f f = ws +
ls
6

The contribution of the transverse reinforcement in
resisting the splitting force can be assumed to act
over the entire length of the strut, encouraging the
use of smaller distributed bars rather than concen-
trating bars at the third points along the length of the
strut, as idealized by dashed lined in Figure I.6.

Unlike the approach taken in reinforced con-
crete in specifying a single value for the right side of
Equation I.4, it was felt that the wider range of pos-
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direction, then the angle α shall not be less than 40
degrees.

I.3.4.3 Transverse Reinforcement Testing
— If documented by experimental tests and analysis,
it shall be permitted to reduce the amount of trans-
verse reinforcement required by Equation I.4.

I.4 Strength of Ties

I.4.1 Nominal Tie Tensile Strength — The
nominal strength of a tie, Fnt , shall be calculated us-
ing Equation I.5. Ties shall be permitted to carry less
force than they are sized.

Fnt = As fy (I.5)

I.4.2 Tie Axis — The axis of the tie shall co-
incide with the centroid of the reinforcement.

Fns/2
Fns/2

Fns/2
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ls/6

ls/3
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ls/6Fns/2
Fns/2
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Fns/2

1

2

12
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eff

Figure I.6: Representation of forces in
bottle-shaped strut

sible masonry strength values would be better served
if the limit in Equation I.4 were a function of the ma-
sonry strength. This change was intended to elimi-
nate the requirement of excessive amounts of trans-
verse reinforcement for walls with lower masonry
strength. The coefficient of 1

15 on the right side of
Equation I.4 is applicable for strut length-to-width
ratios, ls

ws
, of up to 24:1. For higher length-to-width

ratios, the correct coefficient may be determined by

1
12

*.
,
1 −

1

1 − 1
6

ls
ws

+/
-

The effective width of ties includes the grouted
masonry immediately between and around the rein-
forcement bars. The masonry around the tie is not ef-
fective in resisting the tensile forces in the tie, but the
masonry within the tie acts in transferring stresses
from the tie to the masonry. The minimum effective
width of the tie is bounded by twice the cover to the
surface of the bars plus the equivalent diameter of
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I.4.3 Horizontal Reinforcement — The di-
ameter of all horizontal reinforcement shall be lim-
ited such that the yield strength of the bar is equal or
less than the strength of the adjoining strut. The di-
ameter of horizontal reinforcement bars shall satisfy
the limit in Equation I.6.

dbh ≤ 3.5

√
f ′m
fyh

ts dbf (I.6)

I.4.4 Vertical Reinforcement — All contin-
uous reinforcement bars around which at least one
other bar is anchored shall be have a diameter, dbf ,
that equals or exceeds one-twelfth of the gross ma-
sonry thickness.

I.4.5 Tie Anchorage — The tie reinforce-
ment shall be fully anchored by bar development as
required in I.4.5.1 through I.4.5.6.

I.4.5.1 Horizontal Bar Anchorage — Hori-
zontal shear reinforcement shall be anchored around
a vertical reinforcement satisfying the requirement in
I.4.4 with a 180 degree hook.

I.4.5.2 Tie Strength Development — Nodal
zones shall develop the difference in the tie forces be-
tween one side of the nodal zone and the other side.

I.4.5.3 Tie Development Location — At
nodal zones anchoring one tie, the force shall be de-
veloped at the point where the axis of the tie leaves
the extended nodal zone.

the bars. The upper limit of the tie width is limited
by the width corresponding to the width of a nodal
zone under biaxial loading, calculated as

wt =
Fnt

fme tg

where fme is calculated using Equation I.8.

Research has observed there is a point at
which increasing the amount of horizontal rein-
forcement ceases to increase the wall shear capacity
(Nolph, 2010). Brittle failure can be induced by the
horizontal bar pulling the vertical reinforcement bar
to which it is anchored through the masonry, effec-
tively disturbing the anchorage of the bar and reduc-
ing the horizontal confinement provided by the hori-
zontal bar. The purpose of the limit in Equation I.6 is
to limit the strength of the horizontal reinforcement
area in each horizontal tie such that the tie will yield
prior to the flexural bar crushing and pulling through
the masonry.

A special requirement of strut-and-tie models
is that all reinforcement bars be fully developed be-
fore leaving the extended nodal zone. This point is
defined as the intersection of the axis of the tie and
the extension of the outline of the strut, as shown in
Figure I.7. As needed, additional anchorage may be
provided by moving the centroid of the nodal zone
away from the end of the tie, effectively increasing
the development length provided.

In cases where a strut and a tie are both an-
chored by another continuous tie, the effective bear-
ing area of the strut is limited by the equivalent di-
ameter of the bars in the continuous tie. The limit
is equal to six bar diameters from the intersection of
the two ties measured both along the axis of the con-
tinuous tie and normal to the plane of the wall. The
minimum bar size specified in I.4.4 ensures that the
thickness of the bearing area is not smaller than the
gross thickness of the wall and the limit in I.4.5.5
only needs to consider the dimension along the axis
of the continuous bar, as shown in Figure I.8.

659



I.4.5.4 Anchorage of One Tie — At nodal
zones anchoring one tie, the force shall be developed
at the point where the axis of the tie leaves the ex-
tended nodal zone.

I.4.5.5 Anchorage of Stirrups — At nodal
zones anchoring two orthogonal ties such that the
vertical tie passes through the nodal zone and is an-
chored within another nodal zone, the strut shall be
permitted to be anchored by the vertical reinforce-
ment. The effective width area may be considered to
extend up to six vertical bar diameters along the axis
of the vertical tie from the anchored horizontal bar.

I.4.5.6 Anchorage of Two Ties — At nodal
zones anchoring two orthogonal ties not satisfying
the requirements in I.4.5.5, the force in each tie shall
be developed at the point where the axis of each tie
leaves the extended nodal zone.

I.5 Strength of Nodal Zones

I.5.1 Nominal Nodal Zone Compressive
Strength — The nominal compressive strength of a
nodal zone, Fnn , shall be calculated using Equation
I.7.

Fnn = fme Anz (I.7)

lanc

Extended nodal zone Nodal zone

Figure I.7: Extended nodal zone for one ties
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Figure I.8: Anchorage to a continuous tie
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I.5.2 Nodal Zone Face Area — The effec-
tive face area of a nodal zone, Anz , on which Fu acts
shall be taken perpendicular to the axis on which Fu

acts.

I.5.3 Effective Masonry Strength — The ef-
fective strength of masonry, fme , for a face of a nodal
zone shall be calculated using Equation I.3.

fme = 0.8βn f ′m (I.8)

I.5.3.1 Nodal Efficiency Factor —
The nodal efficiency factor, βn , shall sat-
isfy the requirements in I.3.3.1 (a) through (c).

(a) For nodal zones bounded by struts, bearing
areas, other nodal zones, or combinations
thereof:
βn = 1.0

(b) For nodal zones anchoring one tie:

βn = 0.80

(c) For nodal zones anchoring two or more ties:

βn = 0.60

The nodal efficiency factor accounts for the ef-
fective masonry compressive strength that is present
within zonal zones. When a nodal zone is bounded
solely by compressive forces, the material within
the nodal zone is in a bi-directional state of stress.
Research has shown that masonry under biaxial
compression stresses demonstrates a higher effec-
tive strength than under uniaxial compression load-
ing (Liu et al., 2006). The inclusion of ties intro-
duces shear stresses within the nodal zone, which de-
creases the effective compressive strength of the ma-
sonry within the nodal zone due to incompatibilities
between the tensile strains.
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