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ABSTRACT 

Evaluating Long-Term Land Cover Changes for Malheur Lake, Oregon 
Using ENVI and ArcGIS 

 
Ryan Joseph Woods 

Department of Civil and Environmental Engineering, BYU 
Master of Science 

 
Land cover change over time can be a useful indicator of variations in a watershed, such 

as the patterns of drought in an area. I present a case study using remotely sensed images from 
Landsat satellites for over a 30-year period to generate classifications representing land cover 
categories, which I use to quantify land cover change in the watershed areas that contribute to 
Malheur, Mud, and Harney Lakes. I selected images, about every 4 to 6 years from late June to 
late July, in an attempt to capture the peak vegetation growth and to avoid cloud cover. Complete 
coverage of the watershed required that I selected an image that included the lakes, an image to 
the North, and an image to the West of the lakes to capture the watershed areas for each chosen 
year. I used the watershed areas defined by the HUC-8 shapefiles. The relevant watersheds are 
called: Harney-Malheur Lakes, Donner und Blitzen, Silver, and Silvies watershed. To summarize 
the land cover classes that could be discriminated from the Landsat images in the area, I used an 
unsupervised classification algorithm called Iterative Self-Organizing Data Analysis Technique 
(ISODATA) to identify different classes from the pixels. I then used the ISODATA results and 
visual inspection of calibrated Landsat images and Google Earth imagery, to create Regions of 
Interest (ROI) with the following land cover classes: Water, Shallow Water, Vegetation, Dark 
Vegetation, Salty Area, and Bare Earth. The ROIs were used in the following supervised 
classification algorithms: maximum likelihood, minimum distance, and Mahalanobis distance, to 
classify land cover for the area. Using ArcGIS, I removed most of the misclassified area from the 
classified images by the use of the Landsat CDR, combined the main, north, and west images 
and then extracted the watersheds from the combined image. The area in acres for each land 
cover class and watershed was computed and stored in graphs and tables. 

 
After comparing the three supervised classifications using the amount of area classified 

into each category, normalized area in each category, and the raster datasets, I determined that 
the minimum distance classification algorithm produced the most accurate land cover 
classification. I investigated the correlation of the land cover classes with the average 
precipitation, average discharge, average summer high temperature, and drought indicators. For 
the most part, the land cover changes correlate with the weather. However, land use changes, 
groundwater, and error in the land cover classes may have accounted for the instances of 
discrepancy. The correlation of land cover classes, except Dark Vegetation and Bare Earth, are 
statistically significant with weather data. This study shows that Landsat imagery has the 
necessary components to create and track land cover changes over time. These results can be 
useful in hydrological studies and can be applied to models. 

 
 
Keywords: watershed, land cover, Landsat, remote sensing, GIS, ISODATA, maximum 
likelihood, minimum distance, Mahalanobis distance, Malheur Lake 
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1 INTRODUCTION 

Land cover is described as the physical and biological cover of the earth, which includes 

vegetation, water, earth, rock, and man-made structures (Zhou, 2008). Land cover is affected by 

the environment, animals, and people. However, when people become involved with the 

landscape, then the term is usually changed to land use. Land use also deals with the reasons why 

the land is developed and maintained or reverted back to a natural state. As land cover is a 

description of the type of surface presented rather than the reasons why man changed the 

landscape, this study will focus on land cover.  

Land cover influences how a watershed transports water, how the water infiltrates, 

evaporates or flows overland towards the outlet. Land cover maps for the conterminous United 

States have been created on a national scale and are coarser in the West because of the large 

counties (Brown, Johnson, Loveland, & Theobald, 2005). However, land cover map series have 

not been created for the watersheds that track changes over long periods of time. Watersheds 

play a huge role in the development and sustaining of natural lakes, water bodies, and 

groundwater. As such, tracking the change of the watersheds over time can be of supreme 

interest to those who manage the associated streams, lakes, and reservoirs. 

Determining land cover can be done with remote sensing, field surveys, and statistical 

surveys (USGS, 2015a). Field and statistical surveys require samples, and can be time 

consuming and expensive. Satellite images provide complete coverage for a watershed, and 
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because of the extent of historical data, support the study of changes over time. Since the study 

site is distant and there is a requisite for land cover change over time, I used satellite remote 

sensing methods for this study. Land cover types can be estimated by using remote sensing 

techniques, as each type of land cover exhibits a specific spectral signature. 

There are many different types of satellites used for earth studies. Landsat (Land 

Satellite), Satellite Pour l’Observation de la Terre which translates to Satellite for observation of 

the Earth (SPOT), and Moderate Resolution Imaging Spectroradiometer (MODIS) are all 

suitable for determining land cover changes over a long period of time. In the comparative study 

by Lu, SPOT provided the best accuracy for land cover classification with a 10 meter spatial 

resolution. However, no sensor data or image processing routine is best for all land cover types 

(Lu, 2005). For this study, SPOT was not chosen because of the high cost of the images and 

MODIS was not chosen because of the low spatial resolution. MODIS’ best spatial resolution is 

250 meters. The Landsat satellite offers a spatial resolution of 30 meters with repetitive and 

synoptic observations of earth that have been archived for decades making these images ideal for 

land cover studies (Adjei, 2015). This long term archive is an additional benefit from using 

Landsat data as there are data, along with other spatial resolutions, dating back over 40 years. 

The first Landsat satellite was launched on July 23, 1972 from Vandenberg Air Force 

Base, CA. In early 1975, the second Landsat satellite was launched and since that time, there 

have been at least two satellites in orbit taking imagery. Although Landsat satellites have been 

orbiting the earth since 1972, it was not until Landsat 4 in 1982, when 30-meter resolution 

became available, that there were data with a consistent resolution. The data archive for a 30-

meter resolution spans from that period, 1982, until today. Because of the difficulties with using 

different spatial resolutions in the same study, this study starts with Landsat 5 images and goes 
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through Landsat 8 images. These images have the advantage of newer technology with a 30-

meter resolution. Landsat 5 data began in 1984 and provided a continuous record until 2013. 

Landsat 7 began in 1999 and Landsat 8 began in 2013, both of which provide continuous data 

until today. USGS plans on launching Landsat 9 in 2023, which should have better sensors that 

what we currently have today. Landsat 5, 7, and 8 satellites all collect data in different 

wavelengths bands ranging from 0.43 to 2.35 µm and from 10.60 to 12.51 µm. The visible 

spectrum which our eyes can see is between 0.38 and 0.70 µm. Landsat records data in a broader 

spectrum providing more available data to work with. The wavelengths and their typical 

applications are shown in Table 1-1 and Table 1-2. 

 

Table: 1-1 Landsat 5 TM and 7 ETM Band Distribution and Applications (Adjei, 2015) 

  

Band Number Description Wavelength (µm) Example Use

Band 1 Blue 0.45-0.52
Bathymetry, soil/vegetation 

distinction

Band 2 Green 0.52-0.60 Peak vegetation, plant vigor

Band 3 Red 0.63-0.69 Discriminates vegetation slopes

Band 4 Near Infrared 0.77-0.90
Emphasizes biomass content, 

distinguishing shorelines

Band 5
Short-wave 

Infrared
1.55-1.75

Discriminates moisture content, 
penetrates thin clouds

Band 6 Thermal Infrared 10.40-12.50
Observation of the effects of 

temperature and soil moisture

Band 7
Short-wave 

Infrared
2.08-2.35

Hydrothermally altered rocks, 
mineral deposits

Band 8 (Landsat 7 only) Panchromatic 0.52-0.90 15 meter resolution
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Table 1-2: Landsat 8 OLI and TIRS Band Distribution and Applications 

  

Band Number Description Wavelength (µm) Example Use

Band 1 Coastal aerosol 0.43-0.45 Coastal and aerosol studies

Band 2 Blue 0.45-0.51
Bathymetry, soil/vegetation 

distinction

Band 3 Green 0.53-0.59 Peak vegetation, plant vigor

Band 4 Red 0.64-0.67 Discriminates vegetation slopes

Band 5
Near Infrared 

(NIR)
0.85-0.88

Emphasizes biomass content, 
distinguishing shorelines

Band 6
Short-wave 
Infrared 1

1.57-1.65
Discriminates moisture content, 

penetrates thin clouds

Band 7
Short-wave 
Infrared 2

2.11-2.29
Improved moisture content, 

penetrates thin clouds

Band 8 Panchromatic 0.50-0.68 15 meter resolution

Band 9 Cirrus 1.36-1.38
Cirrus cloud contamination 

detection

Band 10
Thermal Infrared 

(TIRS) 1
10.60-11.19

100 meter resolution, 
Observation of the effects of 

temperature and soil moisture

Band 11
Thermal Infrared 

(TIRS) 2
11.50-12.51

100 meter resolution, Improved 
observation of the effects of 

temperature and soil moisture
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There are various methods to infer land cover type from remote sensing data. Most of 

these techniques use a form of image classification where areas with similar spectral 

characteristics are grouped together or “classified” into separate classes. Some of the image 

classification techniques currently used with satellite imagery include unsupervised 

classifications, supervised classifications, and decision trees. The resulting remote sensing 

imagery, which is separated into different classes, can be used with geographic information 

system (GIS) to more accurately and easily quantify and map land cover change (Treitz, 

Howarth, & Gong, 1992; Weng, 2002). In this approach, the remote sensing software works with 

the image data which is processed to identify the different classes and the GIS system is used to 

analyze these images. 

In this study, I will first evaluate the remotely sensed images using an unsupervised 

classification to determine the number of land classes that can be effectively differentiated from 

an image and then use different supervised classification methods to assign physical meaning to 

these classes to determine the land cover over a 30-year period. I will then analyze the resulting 

classified images using watershed shapefiles to create land cover maps for each watershed that 

drains into Malheur Lake using GIS software. I detail the steps I used to implement the 

classification method and map creation process. The study site is Malheur Lake, Oregon. From 

this site, I produce land cover maps of the watersheds that feed into Malheur Lake and evaluate 

the changes over a 30-year period. I chose images from late June to late July when the peak 

vegetation growth occurs to facilitate better image classification. 
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1.1 Study Site 

This study will focus on the four watersheds that feed into the Malheur, Mud, and Harney 

Lakes which are displayed in Figure 1-1. The Harney-Malheur Lakes, Donner und Blitzen, 

Silver, and Silvies watersheds comprise an area of 3,356,406 acres (5,244.4 sq. miles) with the 

primary inflow from the Donner und Blitzen River, the Silvies River, direct precipitation, and 

Sodhouse Spring. Malheur Lake is a fresh water marsh, one of the largest in the United States. 

When Malheur Lake is at its highest, the lake has an average surface area of 35,000 to 50,000 

acres with an approximate volume of 85,000 acre-feet, an average depth of  2 feet, and a 

maximum of 6 feet (Hubbard, 1975; Johnson, 1985). Harney Lake has a surface area of 26,400 

acres, is eutrophic, and has a very high salinity, but is historically dry. In geologic time when 

these lakes are high enough, they spill over to the Malheur River and eventually into the Pacific 

Ocean. However because of a geologically recent lava flow, the lakes no longer flow into 

Malheur River (Johnson, 1985) and act as terminal lakes. 

The scientists at the Malheur Lake National Refuge have a primary mission to conserve 

the habitat for the birds and mammals. Understanding changes in the watershed, which can have 

an impact on the habitat for these species, is critical. The area undergoes periods of wet and dry 

years and because of these periods and other factors, the land cover changes. This study starts out 

in a very wet season and ends in a wet season, but includes three wet-dry cycles in the process of 

about 30 years. 
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Figure 1-1: The Harney-Malheur, Donner und 
Blitzen, Silver, and Silvies Watersheds that Flow 
into the Lakes of the Malheur Lake National Refuge 
in Harney County, Oregon (USDA, 2015) 

 

1.2 Background 

The objective of this study is to use 30-meter Landsat images from Landsat-5 Thematic 

Mapper (TM), Landsat-7 Enhanced Thematic Mapper (ETM), and Landsat 8 Operational Land 

Imager (OLI) to determine the land cover types over time of the watersheds that impact Malheur 

Lake, Mud Lake, and Harney Lake. I accomplished this by assuming that vegetation is at its peak 

during late June through late July and using images from this time period as input to 

classification algorithms. 

Nevada California 

Oregon 
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1.2.1 Unsupervised Classification 

To determine the number of land cover types that could be inferred from an image, I used 

an unsupervised classification method called Iterative Self-Organizing Data Analysis Technique 

(ISODATA) classification. The A in ISODATA was added for aesthetic reasons. ISODATA 

assigns each pixel in an image to different classes based on spectral features. The unsupervised 

ISODATA results indicate how many separate classes can be effectively differentiated from the 

data.  I used these classes along with a visual analysis of the satellite images to choose the areas 

to assign as training data for the land cover classes in the supervised training algorithms (Mather 

& Koch, 2011) . The ISODATA classification algorithm assigns pixels in the image to different 

classes by calculating class means using spectral bands. The class means are moved into 

different classes by distributing the data evenly among the classes then iteratively clusters the 

remaining pixels into the selected classes using the minimum distance technique. The minimum 

distance technique takes the mean of the vectors for each endmember and calculates the 

Euclidean distance, a multi-dimensional straight line distance between two points, for each of the 

remaining or unknown pixels to the mean vector for each class in multi-dimensional space (the 

spectral bands for Landsat) (Excelis, 2015). The pixel is assigned to the class that is closest – 

e.g., one with the shortest distance. 

Once the pixels are assigned to a class, the ISODATA algorithm checks the standard 

deviation. If the cluster has a large standard deviation, then the cluster is split in half along a line 

perpendicular to the feature axis. This is shown for cluster B in Figure 1-2 since the standard 

deviation, sx, is larger than the specified value. If the clusters are closer together and have a small 

standard deviation, then the clusters are merged together. I selected this method to statistically 

determine the number of land cover types that could be differentiated using the spectral data in 
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the images. Since I do not have access to ground truth data to identify what the resulting land 

cover types are, and because ISODATA identifies spectral clusters which can represent land 

cover types (Mather & Koch, 2011), I used the resulting ISODATA categories along with visual 

analysis to determine regions in an image that could be used to train classifiers for supervised 

classification methods. This approach uses the ISODATA routine to determine areas in the 

image that are statistically similar, then I used visual analysis to determine a few areas where 

these categories seem to coincide with a known land cover type. Using the ISODATA 

classification, I created Regions of Interest (ROI) to map the different land cover classes. Based 

on the appearance of the remotely sensed images and the locations of the classifications from the 

ISODATA algorithm, I assigned the following land cover classes: Bare Earth, Water, Shallow 

Water, Vegetation, Dark Vegetation, and Salty Area. However, there are actually 13 land cover 

classes in this study area. I have matched my land cover classes with those from the National 

Land Cover Database (NLCD) as follows: Bare Earth corresponds with Shrub/scrub and 

Herbaceous land cover classes, Water corresponds with Open Water land cover class, Shallow 

Water corresponds with Emergent Herbaceous Wetlands land cover class, Vegetation 

corresponds with Cultivated Crops and Hay/Pasture land cover classes, Dark Vegetation 

corresponds with Evergreen Forest land cover class, and Salty Area corresponds with the land 

cover class, Barren Land. There were a few land cover classes, which I am not sure how they 

correlate. These are Developed (low intensity), Developed (medium intensity), Developed (high 

intensity), Developed (open space), and Woody Wetland land cover classes (USGS, 2011). 

These land cover classes were not meant to be exact, but to give a general indication of the land 

cover and how it has changed over time. 
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Figure 1-2: ISODATA Clustering (Mather & 
Koch, 2011) 

 

1.2.2 Supervised Classification 

Supervised classification algorithms are used when there is external knowledge of the 

area to select regions that are similar and can be classified together. This is usually based on 

ground truth or measurements in the field. Since I did not have any ground truth data or field 

measurements for the Malheur Lake watersheds, I used an unsupervised classification to 

determine the number of different land cover types that could be differentiated using Landsat 

imagery. Using the pseudo color images, colors that match what the eye sees, and the ISODATA 

classification, I defined classes with different names through the use of ROIs. These ROIs were 

used to train the supervised classification algorithms. I evaluated three different supervised 

classifications which I discuss below.  
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The maximum likelihood classification assumes that each class is normally distributed 

and determines the probability that a given pixel belongs to a specific class using the highest 

probability (Excelis, 2015; Mather & Koch, 2011). The maximum likelihood classification is 

calculated as follows: 

( ) ( )[ ] ( ) ( )∑∑ −
−−−−=

1

2
1ln2

1ln
i i

T
iiii mxmxpxg ω    (1-1) 

where i is class, x is the n-dimensional data where n is the number of bands, ( )ip ω  is the 

probability that class iω  occurs in the image and is assumed to be the same for all classes, ∑i

is the determinant of the covariance matrix of the data in class iω , ∑−1

i
is the inverse matrix, 

and im  is the mean vector (Excelis, 2015). 

The minimum distance classification is the same as the minimum distance technique, 

which takes the mean of the vectors for each endmember and calculates the Euclidean distance, 

straight line distance between two points in multidimensional space (the spectral bands for the 

Landsat data). The classification then assigns  each of the remaining or unknown pixels to the 

closest mean vector for each class (Excelis, 2015). 

The Mahalanobis distance classification is a direction-sensitive distance classifier that is 

similar to the maximum likelihood classification except it assumes all class covariances are equal 

(Excelis, 2015). The Mahalanobis distance squared is defined as: 

( ) ( )xxSxxD mm −′−= −12        (1-2) 

where m is the index of the elements, mx  is the mth sample value (pixel vector), x  is the mean 

vector, and S is the sample variance or covariance matrix. (Mather & Koch, 2011). 
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I selected these three supervised classification algorithms because of their ability to 

classify all areas of the imagery with the chosen classes from the ROIs. I did not choose a 

probability threshold for the supervised classifications such that all the pixels in the image would 

be classified through the selected ROIs allowing areas with larger uncertainty to be placed in a 

land cover class. 

 

1.2.3 Extracting the Watershed from the Supervised Classifications 

Researchers and scientists use land cover to characterize the overall watershed and 

determine how the surface will influence water flow. If the land cover changes significantly, the 

effect on the watershed can be considerable (Hernandez, 2000; Javed, Khanday, & Rais, 2011). 

For this study, I classified the images using the algorithms described above and used ArcGIS to 

analyze the change over time in each class in each watershed.  

There have been similar studies on the topic. Javed et al (2011) categorized the Jaggar 

watershed in eastern Rajasthan for land cover using tone, texture, size, shape, pattern, 

association, and field knowledge. This was done for only the year 1998 (Javed et al., 2011). 

Huang (2012) categorized the land cover and land use for a subtropical coastal watershed in 

China to predict downstream water quality. This was done for an 11 year time period (Huang, 

2012). In 2006, the United States Geological Survey (USGS) completed the first national land 

cover database using remote sensing data (Fry et al., 2011). The study by the USGS was for the 

entire conterminous United States for only the year 2006 without an emphasis on watersheds. 

My study is focused on the pixels and visual comparisons using visual remote sensing data on 

Google Earth to determine the land cover and then extract the data associated with each 
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watershed. My study is exclusive in that the study covers over a 30-year period and evaluates 

land cover change over an extended period of over time. 

 

1.2.4 Problems 

While there are 33 years of Landsat data with 30-meter pixels not all of these images are 

ideal for land cover studies because of the different issues that Landsat imagery has. Issues that 

can affect the images include cloud cover, atmospheric effects, scan lines (due to sensor 

hardware failures), mixed pixels, and satellite misreads. I minimized the effects of cloud cover 

by selecting images without clouds in the watershed areas to the extent possible. This is why the 

selected images are between the months of late June to late July and yearly spacing varies 

between 4 and 6 years instead of every 5 years. There is also some variability in the days because 

of when the Landsat satellite produced the images. Atmospheric effects were addressed through 

atmospheric calibration of the images using an ENVI function (Excelis, 2015). Scan lines started 

to become an issue for Landsat 7 after May 2003 due to a scan line correction failure, which is a 

mechanical failure on the satellite. To the extent possible, I removed scan lines failures by the 

use of the Landsat Climate Data Record (CDR) Surface Reflectance, but in most cases the area 

covered by the scan line failure was still lost because no data were available for those pixels. 

Mixed pixels are pixels that include land, water, and vegetation areas and can confuse 

classification algorithms. Mixed pixels were not directly addressed and I allowed the algorithms 

to classify any mixed pixels. This is valid because classifications that map one-pixel-to-one-class 

do not usually deal with mixed pixels (Mohd, 2012). Additionally, ground truth data were not 

available to help in addressing any mixed pixels that occurred. While most pixels are mixed to 

some extent, the mixed pixels that affect classification are minimal and generally occur at the 
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boundaries of the land cover types. Some of the satellite images have pixels that have visually 

anomalous values, colorful pixels, indicating noise in the collection. I did not try to perform any 

sort of noise reduction so these add to the error of the image processing but affect a very minimal 

number of pixels in the watersheds. 

There are a number of practical issues with implementing the various classification 

schemes. For example, the ISODATA classification can spiral out of control when there are only 

three or fewer available classes leaving only one unclassified class. This is fixed by having more 

initial classes available. The maximum likelihood classification algorithm has an issue when an 

ROI, used to train the algorithm, only includes pixels that have the same value in one band. 

Essentially, this band has no variation and becomes an almost perfect linear combination of other 

bands thus creating a singularity (Excelis, 2015). To avoid this error, I selected a large number of 

pixels for training for each land cover class based off of the ISODATA classification and visual 

inspection. Another issue is with adding more area to the ROI files. By adding more area to a 

ROI, the output for the supervised classification will usually be slightly different than the 

previous supervised classification. In an attempt at the best possible classification, I compared 

the ISODATA classification and visual inspection of the imagery. Also, there had to be a certain 

number of land cover classes for the supervised classification algorithms to classify the areas 

correctly. For example, the Vegetation class alone did not pick up all of the vegetation in the area 

even with the ROIs in the same place. Another class called Dark Vegetation was needed to 

produce a more accurate land cover classification. Thus, the output split vegetation cover into 

two classes.  

After classification, I imported the data into ArcGIS to clip the data in each watershed 

and run an analysis on the area of each watershed. When using ArcGIS to clip the watersheds 
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from the classified image, the number of pixels may be promoted (meaning more pixels are 

produced than are actually there) (Esri, 2015). This is true for both the Extract by Mask and Clip 

(Data Management) tool. From these tools, I observed that the edges of the watershed after 

clipping were jagged leaving small pieces of the watershed unclassified and other parts of the 

watershed overclassified. In other words, the watershed after clipping the 30-meter pixels, results 

in a stair-stepped boundary, thus promoting the number of pixels. This error would not occur if 

partial pixels were included after clipping. I evaluated a number of different methods for clipping 

the raster dataset (pixels) and used the method that created the least amount of pixels that crossed 

the boundary.  

The watersheds that flow into Malheur Lake occupy an area larger than a single Landsat 

image and extend into two adjacent images, three images total. Therefore, I downloaded and 

classified these adjacent images and merged the resulting data into one image with the Mosaic to 

New Raster tool. This tool works great, except when the tool is run a second time. The raster 

dataset name needs to be changed each time the tool is run, in order to avoid error, and is 

advantageous to saving the data. The last problem deals with saving the raster datasets as layer 

files. Output raster datasets, when run from the tools in ArcGIS, are saved in a file geodatabase 

and are linked to the raster dataset. Choosing the same output name for each tool run results in 

the previous version being deleted, even though the user saves the raster dataset as a layer file. 

This can be avoided by having different output names from the tool and then saving the raster 

datasets as layer files.  
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2 METHODS 

2.1 Remotely Sensed Data 

I used images from the USGS Earth Explorer website from Landsat 5 TM, 7 ETM, and 8 

OLI satellites from June 1984 to July 2014 in the form of GeoTIFF files. The Landsat images are 

from these areas of the Landsat satellite orbit: path 43 and row 30, path 43 and row 29, and path 

44 and row 30. Path 43 and row 30 is the main image which includes Malheur Lake and 

surrounding areas. Path 43 and row 29 is for the image North of Malheur Lake and Path 44 and 

row 30 is for the image to the West of Malheur Lake. The two extra areas for images were 

needed to capture the areas of the watershed that were not included in the main image for 

Malheur Lake. Since three images were needed to determine the land cover of the watersheds, 

the dates of the images were between 0 and 25 days apart, but land cover change over this short 

interval should be minimal. This should not pose too much error since land cover does not 

change rapidly except with urbanization (Xiao et al., 2006). Despite the ability for land cover to 

change rapidly with urbanization, the changes would not be on the order of 25 days. Also, the 

study area is a national refuge and should have a slower rate of change compared to an urban 

area. 

Images after May 2003 using Landsat 7 have scan line issues. Scan lines are usually 

black lines that show up in the image and are unusable pixels. Cloud coverage can also be an 

issue as the ground is hidden from view. This is a problem with getting good land cover data for 
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watersheds when there are scan lines throughout the image and possibly clouds. Landsat CDR 

Surface Reflectance provides Essential Climate Variables that can compensate for an image that 

has scan lines by removing them from the image (USGS, 2015c). Clouds were avoided mostly 

by obtaining images that did not have cloud cover. Unfortunately, this was not the case in all 

images and therefore, some of the images have clouds. Landsat CDR can compensate for clouds. 

However, there are a few areas that are classified as clouds that are not clouds thus taking away 

accuracy. Therefore, Landsat CDR was not used to remove cloud cover. In this way, scan lines 

will not be given a land classification and the clouds will not have much area to be given a land 

classification, thus increasing the accuracy of this study. However, this also means that there are 

areas of the images that are removed and not used due to these defects.  

Landsat imagery has atmospheric effects or haze since the image is taken from far away 

distances. I corrected for these issues by calibrating the images using a standard routine in ENVI 

(Excelis, 2015). Sometimes, the images have pixels that have unusual coloration and are 

obviously discolored meaning that there is noise in the image. These pixels add to the error of the 

classifications for land cover, but have minimal effect due to their limited numbers. An example 

of discolored pixels is shown in Figure 2-1. 

 

2.1.1 Calibration and Processing 

 I calibrated the Landsat images to remove atmospheric effects and to standardize the 

images using the same method used by Adjei to result in images representing the top of the 

atmosphere reflectance. The calibration requires satellite gains and offsets, solar irradiance, sun 

elevation, and time, which are found in the metadata for the images. However, dark subtraction 
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was not used (Adjei, 2015). Equation 2-1 was used to calibrate the Landsat images to a range of 

reflectance of 0-1: 

θ
π

ρ
λ

λ
λ sin

2

S
dL

=          (2-1) 

where λρ  is the reflectance, λL  is the radiance in units of W / (m2 * sr * µm), d is the distance 

from the earth to the sun, λS  is the solar irradiance with units of W / (m2 * µm), and θ is the 

elevation of the sun in degrees (Excelis, 2015). 

 

 

Figure 2-1: Calibrated Landsat Image West of Malheur Lake 
with Discolored Pixels for July 27, 1989 
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Another part of the classification is making sure that the bands match between the 

different satellites and the resolution is the same. Using the previous equation, Landsat 5 and 7 

images are given a six band multispectral image. The bands are bands 1-5 and 7. Landsat 8 

images are given a seven band multispectral image. Therefore, I selected bands 2-7 from the 

seven available bands because of their similarity to the bands from Landsat 5 and 7. Tables 1-1 

and 1-2 have the specific wavelengths of the bands. Examples of calibrated Landsat images are 

shown in Figures 2-2 through 2-4. 

 

 

Figure 2-2: Calibrated Landsat Image of 
Malheur Lake and Surrounding Areas for 
June 28, 1984 
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Figure 2-3: Calibrated Landsat Image North 
of Malheur Lake for June 28, 1984 

 

 

Figure 2-4: Calibrated Landsat Image West 
of Malheur Lake for July 5, 1984 
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2.2 Iterative Self-Organizing Data Analysis Technique (ISODATA) Unsupervised 

Classification 

Initially, I classified the images using the ISODATA unsupervised classification. I 

parametrized the classification with the following values: the number of classes 10, maximum 

iterations 100, and minimum number of pixels in a class 1,000. The number of iterations were 

usually less than 10. All other parameters were standard. An ISODATA classified image is 

shown in Figure 2-5. When an image is classified with an unsupervised classification, the classes 

are not identified but pixels that have similar spectral features are grouped together. To identify 

land cover types, where areas existed that I could infer were a specific land cover type, I visually 

examined the calibrated Landsat images, along with Google Earth imagery and the ISODATA 

classifications to select ROIs to train the supervised classification methods. 

 

 

 

Figure 2-5: ISODATA Unsupervised Classification of Malheur Lake 
for June 28, 1984 
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I manually drew the ROIs on the calibrated Landsat image by comparing the ISODATA 

classification, the calibrated Landsat image, and Google Earth imagery. From these comparisons, 

I created ROIs for six identified classes: Water, Shallow Water, Vegetation, Dark Vegetation, 

Bare Earth, and Salty Area. More classes could be identified; however, this study was looking 

for the general land cover change that could affect the amount of water flowing into Malheur 

Lake, not how many classes can be identified. Also, these land cover classes were chosen to 

make sure that the areas that are vegetation are actually identified as vegetation. There is little 

value to divide the image into additional categories, which may be potentially less useful.  

Land cover changes over time and there were noticeable differences among the images. 

This meant that the ROIs used for training in one image, may not include the same land cover in 

later images. This was especially true for areas that were classified as water, dark vegetation, and 

vegetation as the amount of precipitation in the watersheds fluctuated annually. This meant that 

for each year, I needed to identify ROIs for each class for each image and draw them on the 

image to select the pixels used to train the supervised classification algorithms. I did this by 

using the previous ROI file and making changes as needed by visually comparing the calibrated 

Landsat images, along with Google Earth imagery, and the ISODATA classification to 

accurately define any changes in the land cover area. Figure 2-6 shows a calibrated Landsat 

image with ROIs. 
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Figure 2-6: Calibrated Landsat Image of Malheur Lake with Regions 
of Interest (ROI) for June 28, 1984 

 

2.3 Supervised Classification 

Supervised classifications are similar to unsupervised classifications except they are 

based on training data selected by the user. The user identifies the training data using ROIs or 

ENVI Vector Files (EVF). EVF was not used because of the difficulty I had with getting the 

vector files to produce accurate results with the supervised classification algorithm. The software 

program ENVI has 12 supervised classifications available. Out of these classifications, three of 

them rely on other supervised classifications and therefore, I did not consider them for this study. 

Based on the initial runs, the binary encoding classification seemed to have great discrepancies 

with the ISODATA unsupervised classification and therefore, I did not use the classification. 

The parallelepiped, spectral angle mapper, and spectral information divergence classification did 

not classify some areas making the classification not viable for a land cover study. The neural net 

classification did not follow the ROI, making the area covered by the ROI a different 
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classification. The Support Vector Machine Classification was not used in this study because of 

complexity. After a preliminary evaluation, I selected three classification methods for this study 

which were based on their ability to classify all areas of the image, which was done by not 

having to select probability thresholds, and to closely honor the selected ROIs for training data. 

The supervised classifications I selected are maximum likelihood, minimum distance, and 

Mahalanobis distance classification. 

 

2.3.1 Maximum Likelihood Classification 

The maximum likelihood classification is based on the assumption that each class is 

normally distributed and determines the probability that a given pixel belongs to a specific class 

using the highest probability (Excelis, 2015; Mather & Koch, 2011). Figure 2-7 shows the 

maximum likelihood classification after it was trimmed in ArcGIS. 

 

 

 

Figure 2-7: Maximum Likelihood Classification of Malheur Lake for 
June 28, 1984 
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2.3.2 Minimum Distance Classification 

The minimum distance classification uses the mean of the vectors for each endmember 

and calculates the Euclidean distance, straight line distance between two points in multi-

dimensional space, for each of the remaining or unknown pixels the distance to the mean vector 

for each class is computed, and assigned to the closest class (Excelis, 2015). Figure 2-8 shows 

the minimum distance classification after it was trimmed in ArcGIS. 

 

 

 

Figure 2-8: Minimum Distance Classification of Malheur Lake for June 
28, 1984 

 

2.3.3 Mahalanobis Distance Classification 

The Mahalanobis distance classification is a direction-sensitive distance classifier that is 

similar to maximum likelihood classification except it assumes all class covariances are equal 

(Excelis, 2015). Figure 2-9 shows the Mahalanobis distance classification after it was trimmed in 

ArcGIS. 
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Figure 2-9: Mahalanobis Distance Classification of Malheur Lake for 
June 28, 1984 

 

2.3.4 Extracting Watersheds with ArcGIS (Geographic Information System) 

Once the images were classified, they were brought into ArcGIS through ENVI. To 

determine the best method for extracting the watersheds from the image, I used classifications 

from the main image with all of the watersheds that intersected that image. To define the 

watersheds, I used watershed shapefiles called HUC-8 (Hydrologic Unit Code) which were 

downloaded from the USDA website (USDA, 2015). I evaluated a number of different methods 

to extract the pixels in each watershed. These included the Extract by Mask tool, Clip (Data 

Management) tool using input features for clipping geometry and maintaining clipping extent 

with no data value, and Clip (Data Management) tool using input features for clipping geometry 

without a no data value. After reviewing each technique, I selected the Clip (Data Management) 

tool using input features for clipping geometry without a no data value since the tool created the 

least amount of pixels from the original image. However, the Clip (Data Management) tool using 
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input features for clipping geometry and maintaining clipping extent with no data value produced 

more accurate results than what I used for these watersheds only. Therefore, the tool used to 

extract the watersheds should be examined more closely with the watershed shapefiles. Table 2-1 

shows the results of the extraction process. However, there should not be any extra pixels created 

or removed. This can be explained by the watershed boundaries and the pixels. Watershed 

boundaries generally curve to contour the earth’s surface, but pixels are square meaning that the 

software has to choose whether the pixel that intersects a watershed boundary should be included 

in the extraction process or not.  

 
Table 2-1: Comparison of Extraction Methods in ArcGIS 

  

 

I developed a model in ArcGIS using the classified images, Fill QA image, and 

watershed shapefiles, to quickly process the images. This model is displayed in Figures 2-10 and 

2-11.  Figure 2-10 represents the process for New Raster dataset’s 1-3. A Fill QA image is an 

image provided in the Landsat CDR files that contains an area that surrounds the original image 

and removes areas on the sides of the image that are low in quality. The Fill QA image also 

Extra Pixels Created 
(Watersheds Only)

-1,409,058

-1,403,444

-1,408,774

Clip (Data Management) Input 
Features for Clipping 

Geometry; Maintain Clipping 
Extent; Without a NoData 

Value

Clip (Data Management) Input 
Features for Clipping 

Geometry; Without a NoData 
Value

Extract by Mask

Method
Extra Pixels Created 

(All Watersheds)

1,772

10,145

59
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removes scan lines from an image. The Fill QA image pixels are marked as fill from the 

reflectance bands (USGS, 2015c).  

 

 

Figure 2-10: ArcGIS Model for Trimming the Classified Images 

 

As can be seen in the model, there are a variety of tools. The Project Raster tool is used 

to change the current map projection of the Fill QA file to the same as the classified image. For 

the main image and the north image, this is UTM 11 (Universal Transverse Mercator), but for the 

west image, this is UTM 10. The Raster to Polygon tool is used to change a raster dataset to 

polygon features. This is useful as the Erase tool only uses features. The Extract by Mask tool 

extracts the cells of a raster dataset that match the area of the raster dataset mask. In this case, the 

calibrated Landsat image area is extracted from the classified image. This extraction process is 

needed because the Raster to Polygon tool will not recognize the classified image as a raster 

dataset until the raster dataset is extracted. The calibrated Landsat image does remove all of the 

excess from the classified image, but generally leaves a strip of misclassified area (Esri, 2015). 

This can be seen in Figure 2-12. 
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Figure 2-11: ArcGIS Model for Combining the Classified Images and Clipping Out the 
Watersheds 

 

 

 

Figure 2-12: Maximum Likelihood Classification of Malheur Lake 
for June 28, 1984 After Extraction 
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The Erase tool removes a feature set area from the feature set. This is used to remove the 

strip of misclassified area along the edges of the images and scan lines, if the image has scan 

lines, using the Fill QA image. The Polygon to Raster tool is the same as the Raster to Polygon 

tool just in the opposite direction. Figures 2-7 through 2-9 show classified images after the 

Raster to Polygon tool has been run. The Mosaic to New Raster tool is used by taking multiple 

raster datasets and combining them into one raster dataset. The cell size and the number of bands 

were kept the same as the original classified images and the mosaic operator along with the 

mosaic color map were chosen as first to give precedence to the main image of Malheur Lake 

because of the overlap of the images. Figure 2-13 shows a combined image. Also, the Mosaic to 

New Raster tool creates a raster dataset and a folder with the same name as the raster dataset. 

When the model is run another time for other classifications, the model will stop at the Mosaic to 

New Raster tool. This is because the tool is trying to create a new folder for the new raster 

dataset, but the folder has the same name as the previous folder and raster dataset. To combat 

this issue, the user needs to change the raster dataset name in the model each time. The Clip 

(Data Management) tool extracts a portion of a raster dataset and has the option of using the 

input features of the watersheds as the clipping geometry thus extracting out the watersheds 

(Esri, 2015). Using the model gives the same results as using the Clip (Data Management) tool 

for the Donner und Blitzen and Harney-Malheur Lakes watersheds on the main image of 

Malheur Lake. On the other hand, the other two watersheds would have areas missing, thus 

making the full model necessary. Figure 2-14 shows the four watershed raster datasets. The 

watershed raster datasets for each classification over the 30-year study period are displayed in 

Appendix A. 
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Figure 2-13: Maximum Likelihood Classification of Malheur Lake 
Combined Image for Midsummer 1984 

 

 

 

Figure 2-14: Maximum Likelihood Classification of the 
Watersheds that Contribute to the Malheur Lake Area for 
Midsummer 1984 
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3 RESULTS AND DISCUSSION 

3.1 Supervised Classification Trends 

In this section, I look at each of the supervised classifications and determine which of the 

algorithms are best for defining land cover. Also, I present the trends over time for the different 

land cover classes with respect to the different supervised classification algorithms. Figures 3-1 

through 3-6 show the total watershed area for the different supervised classification algorithms 

for each of the land cover classes. Graphs of each of the total and individual watersheds along 

with the individual land cover classes are shown in Appendix B and are not examined separately 

in this report.  

One good way to determine which supervised classification should be used to define land 

cover is through an analysis of the area of each of the land cover classes. As can be seen from 

Figures 3-1 through 3-6, the classifications for Water and Bare Earth between the supervised 

classification algorithms have little variation between them. The other land cover classes do not 

have such uniformity. Part of this can be explained by the size of the various land cover types. 

For example a 150,000 acre change in Bare Earth classification among the methods is a minimal 

difference, while this change for the Vegetation class is larger than the total classified area. The 

total area for Salty Area is similar between the minimum distance and Mahalanobis distance 

classifications, but the maximum likelihood classification has a much larger area. The total 

watershed area for Dark Vegetation varies between the classifications. The total watershed area 



33 

for Vegetation and Shallow Water seem to be somewhat uniform except for in 1998 when the 

maximum likelihood classification spikes and 2004 when the Mahalanobis distance classification 

spikes respectfully. The classification that seems to be the most uniform throughout is the 

minimum distance classification.  

Additionally, the land cover areas can be examined through Min-Max normalization. 

Min-Max normalization takes data measurements and changes them into a value between 0 and 1 

by subtracting the minimum value and then dividing by the difference of the maximum and 

minimum data measurements. Equation 3-1 was used to normalize the land cover areas to a 

range of 0-1:  

( )
minmax

min

XX
XX

XMM ij
ij −

−
=        (3-1) 

where ( )ijXMM  is the data point normalized between 0 and 1, ijX  is each data point, minX  is the 

minimum among the data points, and maxX is the maximum among the data points. This process 

will create a minimum value of 0 and a maximum value of 1 for each data set. Using the Min-

Max normalization technique is a great way to compare values that are on different scales or 

different units (Mohamad, 2013). 

Figures 3-7 through 3-12 display the normalized values for each land cover class. These 

figures seem to follow the trend of the total watershed area graphs from Figures 3-1 through 3-6, 

only on a more inflated scale. The Water class seems to be mostly uniform. Originally, the Bare 

Earth class seemed to have uniformity as shown in Figure 3-3, but now has more variation 

between the classes as shown in Figure 3-8. This is because the scale was drastically reduced, 

thus exposing the variations in the land cover classes. The Salty Area and Vegetation class have 
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some similarities between the minimum distance and Mahalanobis distance classifications, but 

the maximum likelihood classification is more variant. There seems to continue to be variation in 

the Dark Vegetation class. The Shallow Water class has some variation with the maximum 

likelihood classification, but the minimum distance and Mahalanobis distance seem to be mostly 

uniform except in 2004 when the Mahalanobis distance classification spikes. From the Min-Max 

normalization technique, the minimum distance classification seems to be the most uniform. 

 

 

Figure 3-1: Total Watershed Area for Water Classification 
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Figure 3-2: Total Watershed Area for Bare Earth Classification 

 

 

Figure 3-3: Total Watershed Area for Salty Area Classification 
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Figure 3-4: Total Watershed Area for Dark Vegetation Classification 

 

 

Figure 3-5: Total Watershed Area for Vegetation Classification 
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Figure 3-6: Total Watershed Area for Shallow Water Classifications 

 

 

Figure 3-7: Normalization of the Total Watershed for Water Classification 
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Figure 3-8: Normalization of the Total Watershed for Bare Earth 
Classification 

 

 

Figure 3-9: Normalization of the Total Watershed for Salty Area 
Classification 
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Figure 3-10: Normalization of the Total Watershed for Dark Vegetation 
Classification 

 

 

Figure 3-11: Normalization of the Total Watershed for Vegetation 
Classification 
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Figure 3-12: Normalization of the Total Watershed for Shallow Water 
Classification 

 

Another qualitative way to determine which supervised classification to use is through 

visual inspection of the classified images. Figures 3-13 through 3-15 show the combined images 

for midsummer, 1989. The maximum likelihood classification has an area in the upper part of the 

image that appears to have more Salty Areas which does not seem to match with the rest of the 

image. This happened to be the case for all of the classifications except for midsummer 1984. 

The minimum distance classification has more Bare Earth classifications. The Mahalanobis 

distance classification seems to have a lot of different areas with water that are actually not 

water. Judging from the imagery and the uniformity in the graphs, I recommend the minimum 

distance classification be used for image processing in this study. One of the reasons that the 

minimum distance classification algorithm gave good results may be because the ISODATA 

classification also used minimum distance techniques. 
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Figure 3-13: Maximum Likelihood Classification of Malheur Lake 
Combined Image for Midsummer 1989 

 

 

 

Figure 3-14: Minimum Distance Classification of Malheur Lake 
Combined Image for Midsummer 1989 
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Figure 3-15: Mahalanobis Distance Classification of Malheur Lake 
Combined Image for Midsummer 1989 

 

Figures 3-16 through 3-18 gives a sense of how the classifications and land cover types 

changed compared to each other over time. Table 3-1 shows the values for the total area of the 

watersheds for each classification and land cover class. Tables with a breakdown of the 

individual watersheds for each classification and land cover class are displayed in Appendix C 

and are not discussed in the body of this report. For the majority of the time from Table 3-1, the 

maximum likelihood classification had the largest area for Vegetation and Salty Area classes, the 

minimum distance classification had the largest area for the Bare Earth class, and the 

Mahalanobis distance classification had the largest area for Water, Shallow Water, and Dark 

Vegetation classes. One of the advantages of these graphs and tables is that a user can look at 

any year, in the extents, and determine what the amount of each area is for each class in the 

midsummer. However, since the images for the years 2004 and 2008 had scan lines, those areas 

were not included in the totals thus producing smaller areas during those years. Therefore, 
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interpreting between 1998 and 2014 may give lower areas than what is actually there because of 

the scan lines. 

Figure 3-19 shows the statistics for the correlation of the logarithmic transform of the 

land cover variables against the year. This shows that all land cover variables were statistically 

significant with a 99% Confidence Interval except Dark Vegetation and Bare Earth. This may be 

because Bare Earth does not change much and Dark Vegetation is more of a forested area, which 

usually does not change much. This correlation indicates a general trend in the data. 

 

 

Figure 3-16: Total Watershed Area for Maximum Likelihood Classification 
with Land Cover Classes 
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Figure 3-17: Total Watershed Area for Minimum Distance Classification 
with Land Cover Classes 

 

 

Figure 3-18: Total Watershed Area for Mahalanobis Distance Classification 
with Land Cover Classes 
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Table 3-1: Total Watershed Area with Classes and Classifications Specified 

 

 

 

Figure 3-19: Statistical 
Significance of Logarithmic 
Transform of Land Cover 

Year Classification Water Shallow Water Vegetation Dark Vegetation Salty Area Bare Earth
Maximum 136,629 32,791 34,798 483,070 49,129 2,619,817
Minimum 149,519 41,666 30,961 379,582 17,007 2,737,497

Mahalanobis 157,588 47,823 26,150 738,028 3,157 2,383,487
Maximum 90,188 30,986 113,150 668,533 64,040 2,389,337
Minimum 98,294 32,108 76,903 420,491 76,564 2,651,871

Mahalanobis 101,999 32,449 48,422 714,939 24,937 2,433,487
Maximum 29,653 27,971 31,073 657,412 94,096 2,516,029
Minimum 38,052 26,691 22,674 402,280 108,520 2,758,014

Mahalanobis 35,862 29,504 16,284 912,109 26,002 2,336,472
Maximum 106,119 8,666 241,757 380,448 274,791 2,344,434
Minimum 86,643 16,444 64,469 426,019 25,355 2,737,286

Mahalanobis 94,409 21,951 48,507 633,126 12,696 2,545,526
Maximum 14,551 2,980 39,691 519,206 160,010 2,306,664
Minimum 19,647 8,835 46,003 430,407 65,153 2,473,056

Mahalanobis 20,574 43,941 29,848 607,579 19,259 2,321,902
Maximum 25,520 4,508 107,670 462,249 92,503 2,364,998
Minimum 31,369 2,099 41,612 485,370 53,012 2,443,986

Mahalanobis 32,124 5,019 30,953 687,201 26,385 2,275,765
Maximum 28,817 1,387 99,328 612,382 229,052 2,385,267
Minimum 69,401 1,310 110,941 587,647 49,978 2,536,954

Mahalanobis 50,147 2,657 66,950 455,546 35,903 2,745,029

Classes (Acres)

1984

1989

1994

1998

2014

2008

2004
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3.2 Correlation of Watersheds with Climate Conditions 

In this section, I present how the land cover types correlate with various measures of 

climate conditions over time. Figures 3-20 through 3-23 display the Palmer Drought Severity 

Index (PDSI) for the month of the main images used in the study until the year 2000. PDSI was 

created in 1965 by Wayne Palmer to determine the complete moisture status of an area and is 

calculated using temperature, precipitation, and soil moisture (NOAA, 2015). The PDSI does not 

take into account snow melt, frozen ground, or runoff, therefore making the index not a 

comprehensive view of a drought (NDMC, 2015a). Palmer states that his index does not look at 

all of the causes of drought (Palmer, 1965). Figures 3-24 through 3-26 give a good sense of the 

types of classifications I analyzed and their correlation with the land cover types; namely, water, 

vegetation, and earth classifications which are the combinations of Water and Shallow Water, 

Dark Vegetation and Vegetation, and Bare Earth and Salty Area land cover classes respectfully. 

Looking at Figure 3-20 and Figure 2-2 for the year 1984, the area appears to be moist. 

Figure 3-24 confirms this with the highest amount of visible water in this study. Figure 3-26 has 

the highest amount of visible earth which may mean that the area is receiving much needed 

moisture. For July 1989, I noticed in Figure 3-21 that the area had a PDSI in the normal range. 

This seemed strange because Figure 3-24 had a drastically smaller amount of water visible. After 

some research, I found out that, from 1987 to 1989, the area suffered through the North 

American Drought. Figure 3-27 shows the height of the drought for the Malheur Lake area in 

1988. Because the drought proceeded the 1989 image, the water levels drastically decreased, 

though the year itself was wet. Figure 3-28 shows that the level of discharge for the Donner und 

Blitzen and Silvies Rivers drastically decreased during this time frame. The data for this figure 

were downloaded from the USGS National Water Information System with the assistance of the 
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HydroDesktop program (Ames, 2012; USGS, 2015b). Figure 3-29 shows that the precipitation 

decreased by an average of 7 inches per year and the average high temperature in the summer 

decreased by about 7°F. The average precipitation was measured in tenths of millimeters per day 

and was converted to inches which were averaged for each year. The average high temperature in 

the summer was averaged from the high temperatures for the months of June, July, and August, 

if available. The average high temperature was interpolated for the year 2007 because the 

temperature was not available. Appendix D provides a table of the average precipitation, average 

summer high temperature, and average discharge. Figure 3-25 shows that the vegetation 

increased to the highest level recorded in this study. This may be because of many different 

factors. Some of these factors may include the farming activities in the area, the plant uptake of 

groundwater, a lower high temperature and possible error in the land cover classes. 

For July 1994, Figure 3-22 indicates that the area had a PDSI in the severe drought range. 

The Governor of Oregon declared that the area was in a drought from 1991 to May 19, 1993 

(Governor, 1991-2015). The discrepancy from the Governor of Oregon and the PDSI may be due 

to the amount of runoff and snow melt the area was receiving, which are not taken into account 

in the PDSI. The water level and the discharge decreased drastically as shown in Figures 3-24 

and 3-28 respectively, which provide support that the area was in a drought before 2004 and had 

not yet fully recovered. The average precipitation and average summer high temperature had a 

gradual increase in these years, which means that the precipitation was most likely taken by 

evapotranspiration, infiltration, and percolation. The level of vegetation slightly decreased in 

Figure 3-25 but this is hard to judge from the graph. This is most likely due to the farming 

activities in the area and plant uptake of groundwater maintaining most of the vegetative area 

and possible error in the land cover classes. 
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For July 1998, Figure 3-23 indicates that the area had a PDSI in the extremely moist 

range. The area was not considered in a drought by the Governor of Oregon and there was not a 

drought since the last image of July 1994 (Governor, 1991-2015). Since the drought was over 

and the precipitation continued to increase, the level of water increased and the discharge in the 

Donner und Blitzen River increased. However, the Silvies River did not have any flow because 

of the previous drought and did not yet recover at this point in time. With the increase of the 

average summer temperature to over 78°F, the possible decline in farming activities, and 

potential error in the land cover classes may have decreased the level of vegetation. 

 

 

Figure 3-20: Palmer Drought Severity Index for June 1984 (NOAA, 2015) 
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Figure 3-21: Palmer Drought Severity Index for July 1989 (NOAA, 2015) 

 

 

Figure 3-22: Palmer Drought Severity Index for July 1994 (NOAA, 2015) 
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Figure 3-23: Palmer Drought Severity Index for July 1998 (NOAA, 2015) 

 

 

Figure 3-24: Total Watershed Area for Water and Shallow Water 
Classifications 
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Figure 3-25: Total Watershed Area for Dark Vegetation and Vegetation 
Classifications 

 

 

Figure 3-26: Total Watershed Area for Bare Earth and Salty Area 
Classifications 
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Figure 3-27: PDSI 
Reconstruction for 
the North American 
Drought in 1988 
(NOAA, 2015) 

 

 

Figure 3-28: Average Discharge of Rivers that Flow into Malheur Lake 
(Ames, 2012; USGS, 2015b) 
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Figure 3-29: Average Precipitation and Summer High Temperature for 
Malheur Lake Note: There is Missing Temperature Data for 2007 

 

Starting in the year 2000, the NDMC created a more effective rating system called the 

Drought Severity Classification that includes the PDSI, but also includes the Climate Prediction 

Center (CPC) Soil Moisture Model, USGS weekly streamflow, Standardized Precipitation Index 

(SPI), and objective drought indicator blends. This classification system can work on large and 

small areas, including an area as small as a HUC area. Using the HUC-8 shapefiles, I found that 

the area for July 13, 2004 was in a Moderate to Extreme Drought (NDMC, 2015b). The 

Moderate to Extreme Drought rating is shown in Table 3-2. However, I decided to include the 

PDSI maps, to have a comparison point to years that did not have the Drought Severity 

Classification, and the Drought Severity Classification table which are displayed in Appendix D. 

The Governor of Oregon declared that the area was in a drought from 2001 through 2003 

(Governor, 1991-2015). The discrepancy from the Governor of Oregon and the Drought Severity 

Classification may be due to the fact that the area did not fully recover from the latest drought. 
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Because of the previous drought, the water level was even lower and the discharge decreased. 

During this time, the area noticed a drastic decrease in the average summer high temperature to 

about 60°F and a drastic decrease in precipitation of over 5 inches per year. The level of 

vegetation decreased most likely because of the drought. 

For July 22, 2008, the area was rated as an Abnormally Dry period shown in Table 3-2. 

The Governor of Oregon declared that the area was in a drought for the year 2007 (Governor, 

1991-2015). The drought rating of Abnormally Dry seems accurate since the area finished 

having a drought the previous year. The area decreased in precipitation by over 3 inches per year, 

the average discharge increased, and the average summer high temperature stayed about the 

same. Because of these factors, the level of vegetation increased and the level of water 

decreased. 

For July 1, 2014, the area was rated as a Severe Drought shown in Table 3-2. The 

Governor of Oregon declared that the area was in a drought at this time and the drought 

continues until today (Governor, 1991-2015). Precipitation increased by over 4 inches per year 

and the average discharge in this period increased drastically (partly because the Silvies River 

had flow from 2010 to 2012), but the average summer high temperature increased drastically as 

well to an average of 77.26°F. Because of these factors, the level of water increased and the level 

of vegetation decreased. The level of vegetation most likely decreased because of the ensuing 

drought. 
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Table 3-2: Drought Level Averages for Watershed Area using Drought Severity 
Classification 

 

 

I compared the land cover variables with climate conditions using statistics. Figure 3-30 

shows the statistics for the discharge, precipitation, and max summer high temperature. This 

shows that all of these variables were correlated at a statistically significant level with a 99% 

confidence interval. However, I could not compare the data, because the data had different time 

intervals. The precipitation, summer high temperature, and discharge have daily values and the 

land cover that I computed had values about once every 4 to 6 years. Therefore, I took the 

averages of precipitation, summer high temperature, and discharge about every 4 to 6 years to 

match up with the land cover years. After doing this, I noticed in Figure 3-31, which is the same 

as Figure 3-30 except the values are averaged, that the correlations of precipitation and max 

summer temperature were no longer statistically significant. This may change results. Figure 3-

32 shows the logarithmic transform of the land cover variables and the average precipitation, 

summer high temperature, and discharge variables against the year. The same land cover classes 

were correlated at a statistically significant level with a 95% confidence interval, but the other 

variables were not statistically significant. The drought indicator was not included as there was 

not enough data to run the statistics. 

Watershed Week None
Abnormally 

Dry
Moderate 
Drought

Severe 
Drought

Extreme 
Drought

Exceptional 
Drought

Intensity

Average 7/13/2004 0% 19.17% 34.12% 20.24% 26.46% 0% Moderate to Extreme
Average 7/22/2008 0% 88.05% 11.87% 0.09% 0% 0% Abnormally Dry
Average 7/1/2014 0% 0% 1.19% 98.80% 0.01% 0% Severe

Drought Level
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Figure 3-30: Statistical Significance of 
Discharge, Precipitation, and Max 
Summer High Temperature 

 

 

Figure 3-31: Statistical Significance of the 
Average of Discharge, Precipitation, and Max 
Summer High Temperature 
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Figure 3-32: Statistical Significance of the Logarithmic 
Transform of Land Cover with Average of Discharge, 
Precipitation, and Max Summer High Temperature 

 

3.3 Discussion 

Figure 3-24 shows that the water goes through 3 wet-dry cycles but ends on a wet cycle. 

After running the analysis on the watersheds over a 30-year period, I determined that the area has 

gone through 3 wet-dry cycles and is currently in a dry cycle. Although the amount of water 

increased since 2008, because of increased precipitation and discharge, signs of a drought started 

in 2012. The Drought Severity Classification seems to be accurate for the three instances that I 

used the classification. However, more studies should be done to determine the actual 

effectiveness of the classification. The PDSI seemed to underestimate the severity of the drought 

when compared to the Drought Severity Classification. However, I did not observe how the 

PDSI did compared to the Drought Severity Classification during moist conditions. Therefore, I 
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cannot make any inferences when the area is wet. A more detailed study of vegetation patterns 

using remote sensing data could be undertaken to better correlate the effects of the drought on 

the local ecosystem and evaluate which index provides a better indication on drought impacts.  

The watershed raster datasets provide good representations of the land cover in the 

Malheur Lake area. Each classification method has shortcomings. The minimum distance 

classification algorithm provided the best land cover classification out of the three studied. Thirty 

years of land cover data are useful in analyzing the trends that occur in the natural landscape and 

how these changes can affect the watershed. However, land cover does not tell the whole story 

about what is going on in the area. The use of other parameters including precipitation, 

discharge, temperature, drought, groundwater, along with land use help to show the bigger 

picture. Overall, the land cover classifications seem to follow the patterns established by the 

other parameters in how the water levels fluctuate and the onset of droughts effect the area. Also, 

the land cover classification correlations are statistically significant, except Dark Vegetation and 

Bare Earth, which is what would be expected of the land cover change. 

Currently, creating land cover maps from Landsat imagery is not cost effective because 

of the amount of time needed to create the land cover maps for model analysis. This is because 

each time a user creates a land cover map for a new area or a new date in time, the user has to 

verify that the ROIs are accurate with the Landsat imagery and the ISODATA classification thus 

producing some error. A possible improvement would be producing an algorithm that can create 

an ROI type file that can capture the pixels of a land cover class, which can be loaded in many 

different types of images, and can run supervised classifications, thus making the supervised 

classifications more accurate and more like an unsupervised classification. 
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This research may prove useful in hydrological models. Generally, a user can download 

land cover shapefiles and run a watershed model. However, the shapefile that is usually 

downloaded is for one particular year and may not be good for the same year or years as the 

precipitation data. Users do not usually mind if the land cover data is not in sync with the 

precipitation or soil data unless there is a need to have a more accurate model. The user can 

download land use/land cover shapefiles online, but not back to 1982. Therefore, the methods of 

this study can be used to create the desired land cover maps to run more accurate models. To use 

the watershed raster datasets in a hydrological study, the user converts the watershed raster 

datasets into polygon shapefiles. 
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4 FUTURE WORK  

4.1 Recommendations 

This research evaluated the practicality of using Landsat imagery to create land cover 

maps in Malheur Lake, Oregon and used those data to analyze how the land cover changed over 

time. Remote sensing is a viable conduit for land cover mapping and is well established, using 

historical remote sensing data, especially Landsat images, to generate and analyze time series 

data. However, remote sensing is not as widely used. The use of the historical data to generate 

and analyze changes over time provides a demonstration of an important tool that is readily 

available to managers today. 

As part of this research, I visually determined land cover classes using Landsat imagery, 

Google Earth imagery, and ISODATA classifications. I used these classes to create supervised 

classifications and clip out the watersheds for about 30 years of imagery. I used these watersheds 

to determine the area for each land cover class and noted how they changed over time. These 

results were then compared to time series data of precipitation, runoff, temperature, and drought 

indicators using statistics to determine if these changes were driven by environmental changes or 

other issues. The results indicate that the main drivers for land cover change in the Malheur lake 

watersheds are environmental, with changes tied most closely to precipitation and temperature 

patterns.  

This work can be expanded in other aspects. 
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• Using ENVI, Landsat images can be made to have 72 bands to achieve more land 

cover classes making a better classification.  

• Using the techniques of this study and applying them to other areas of the world 

that either have similar or different characteristics from Malheur Lake, Oregon to 

test the study’s versatility. New land cover classes may need to be created in these 

new areas. 

• Build a new algorithm that can create an ROI type file that can capture the pixels 

of a land cover class, which can be used in many different types of images. This 

algorithm could run the supervised classifications, thus making the supervised 

classifications perform more like an unsupervised classification producing more 

accurate results. 
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5 CONCLUSION 

This research applied unsupervised classifications to calibrated Landsat images that 

contain the watersheds draining into Malheur Lake, Oregon to determine the land cover classes 

over time. After ROIs were created for the images, supervised classifications were applied to the 

calibrated Landsat images. The watersheds were then extracted from the supervised 

classifications using the ArcGIS software. I evaluated the Malheur Lake area about every 4 to 6 

years over a 30-year period. Each Landsat image that contained Malheur Lake watersheds 

needed supporting images from the North and from the West to capture the totality of the 

watershed area as defined by the HUC-8 shapefiles. These methods provided mostly accurate 

watershed land cover maps of the area and should be able to provide such accuracy in other 

areas. Although the land cover classes are minimal, they are well correlated with environmental 

changes that would be expected to impact land cover types.  

The results of the research show that the land cover generally correlates with climate 

conditions of precipitation, discharge, summer high temperature, and drought indicators. Also, 

most of the land cover classifications were statistically significant, except for the Bare Earth and 

Dark Vegetation classes which do not fluctuate as much since these are large areas.  

This research can be expanded in a few areas. The methodology can be applied to other 

areas of the world with similar or different characteristics to Malheur Lake, Oregon. This will 

further test the validity of the method and possibly use other land cover classes. Using this 
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methodology, a new algorithm can be produced to create ROI type files to capture the pixels of a 

land cover class that can run the supervised classifications. In this way, the land cover 

classifications will be more accurate thus producing better watershed land cover maps that can be 

applied to models. ENVI’s ability to create 72 bands per image with the Landsat imagery can be 

used to make a better land cover classification. I had up to 11 bands, but only had six available 

with the multispectral image. Wherefore, more bands gives the user the ability to classify more 

land cover classes. 

In conclusion, this analysis showed how the land cover, for the watersheds that feed 

Malheur Lake, fluctuated every 4 to 6 years, which was used to better understand that the 

patterns of land cover change in this area were dependent on the climate conditions. Using these 

methods can provide land cover maps for the watersheds in hydrological studies for times that 

more closely match the time that the hydrological study is taking place. 
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APPENDIX A. WATERSHED RASTER DATASETS WITH LAND COVER 

 

 

Figure A-1: Minimum Distance Classification of 
the Watersheds that Contribute to the Malheur 
Lake Area for Midsummer 1984 
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Figure A-2: Mahalanobis Distance Classification 
of the Watersheds that Contribute to the 
Malheur Lake Area for Midsummer 1984 

 

 

 

Figure A-3: Maximum Likelihood Classification 
of the Watersheds that Contribute to the 
Malheur Lake Area for Midsummer 1989 
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Figure A-4: Minimum Distance Classification of 
the Watersheds that Contribute to the Malheur 
Lake Area for Midsummer 1989 

 

 

 

Figure A-5: Mahalanobis Distance Classification 
of the Watersheds that Contribute to the Malheur 
Lake Area for Midsummer 1989 
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Figure A-6: Maximum Likelihood Classification 
of the Watersheds that Contribute to the 
Malheur Lake Area for Midsummer 1994 

 

 

 

Figure A-7: Minimum Distance Classification of 
the Watersheds that Contribute to the Malheur 
Lake Area for Midsummer 1994 
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Figure A-8: Mahalanobis Distance Classification 
of the Watersheds that Contribute to the 
Malheur Lake Area for Midsummer 1994 

 

 

 

Figure A-9: Maximum Likelihood Classification 
of the Watersheds that Contribute to the 
Malheur Lake Area for Midsummer 1998 
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Figure A-10: Minimum Distance Classification of 
the Watersheds that Contribute to the Malheur 
Lake Area for Midsummer 1998 

 

 

 

Figure A-11: Mahalanobis Distance Classification 
of the Watersheds that Contribute to the Malheur 
Lake Area for Midsummer 1998 
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Figure A-12: Maximum Likelihood 
Classification of the Watersheds that Contribute 
to the Malheur Lake Area for Midsummer 2004 

 

 

 

Figure A-13: Minimum Distance Classification 
of the Watersheds that Contribute to the 
Malheur Lake Area for Midsummer 2004 
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Figure A-14: Mahalanobis Distance 
Classification of the Watersheds that 
Contribute to the Malheur Lake Area for 
Midsummer 2004 

 

 

 

Figure A-15: Maximum Likelihood 
Classification of the Watersheds that 
Contribute to the Malheur Lake Area for 
Midsummer 2008 



75 

 

 

Figure A-16: Minimum Distance Classification 
of the Watersheds that Contribute to the 
Malheur Lake Area for Midsummer 2008 

 

 

 

Figure A-17: Mahalanobis Distance 
Classification of the Watersheds that Contribute 
to the Malheur Lake Area for Midsummer 2008 
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Figure A-18: Maximum Likelihood 
Classification of the Watersheds that Contribute 
to the Malheur Lake Area for Midsummer 2014 

 

 

 

Figure A-19: Minimum Distance Classification 
of the Watersheds that Contribute to the 
Malheur Lake Area for Midsummer 2014 
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Figure A-20: Mahalanobis Distance 
Classification of the Watersheds that Contribute 
to the Malheur Lake Area for Midsummer 2014 
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APPENDIX B. GRAPHS OF THE DIFFERENT LAND COVER CLASSES 

 

Figure B-1: Total Harney-Malheur Lakes Watershed Area for Water 
Classification 
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Figure B-2: Total Harney-Malheur Lakes Watershed Area for Salty Area 
Classification 

 

 

Figure B-3: Total Harney-Malheur Lakes Watershed Area for Bare Earth 
Classification 
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Figure B-4: Total Harney-Malheur Lakes Watershed Area for Vegetation 
Classification 

 

 

Figure B-5: Total Harney-Malheur Lakes Watershed Area for Dark 
Vegetation Classification 
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Figure B-6: Total Harney-Malheur Lakes Watershed Area for Shallow 
Water Classification 

 

 

Figure B-7: Total Silver Watershed Area for Water Classification 
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Figure B-8: Total Silver Watershed Area for Salty Area Classification 

 

 

Figure B-9: Total Silver Watershed Area for Bare Earth Classification 
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Figure B-10: Total Silver Watershed Area for Vegetation Classification 

 

 

Figure B-11: Total Silver Watershed Area for Dark Vegetation Classification 
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Figure B-12: Total Silver Watershed Area for Shallow Water Classification 

 

 

Figure B-13: Total Silvies Watershed Area for Water Classification 
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Figure B-14: Total Silvies Watershed Area for Salty Area Classification 

 

 

Figure B-15: Total Silvies Watershed Area for Bare Earth Classification 
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Figure B-16: Total Silvies Watershed Area for Vegetation Classification 

 

 

Figure B-17: Total Silvies Watershed Area for Dark Vegetation Classification 
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Figure B-18: Total Silvies Watershed Area for Shallow Water Classification 

 

 

Figure B-19: Total Donner und Blitzen Watershed Area for Water 
Classification 
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Figure B-20: Total Donner und Blitzen Watershed Area for Salty Area 
Classification 

 

 

Figure B-21: Total Donner und Blitzen Watershed Area for Bare Earth 
Classification 
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Figure B-22: Total Donner und Blitzen Watershed Area for Vegetation 
Classification 

 

 

Figure B-23: Total Donner und Blitzen Watershed Area for Dark 
Vegetation Classification 
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Figure B-24: Total Donner und Blitzen Watershed Area for Shallow Water 
Classification 
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APPENDIX C. TABLES OF THE DIFFERENT LAND COVER CLASSES 

Table C-1: Harney-Malheur Lakes Watershed with Classes and Classifications 
Specified 

 

 

 

 

 

Year Classification Water Shallow Water Vegetation Dark Vegetation Salty Area Bare Earth
Maximum 107,682 32,394 10,110 70,570 7,792 700,816
Minimum 111,382 36,721 11,408 43,213 109 726,532

Mahalanobis 114,723 35,611 9,613 117,767 869 650,780
Maximum 83,317 30,941 20,331 85,511 9,550 699,714
Minimum 86,009 31,794 19,009 38,099 24,458 729,994

Mahalanobis 89,321 31,736 12,821 94,991 6,061 694,434
Maximum 28,584 27,810 6,394 77,387 16,081 773,108
Minimum 35,183 26,614 8,473 42,118 38,131 778,844

Mahalanobis 33,448 28,740 6,771 141,048 7,121 712,236
Maximum 89,181 8,474 47,216 38,398 77,659 668,437
Minimum 78,036 15,066 15,620 45,018 8,243 767,381

Mahalanobis 79,026 20,429 10,704 95,901 5,168 718,135
Maximum 13,626 2,934 8,463 76,908 76,715 691,743
Minimum 15,984 7,113 19,005 40,152 36,659 751,476

Mahalanobis 16,675 28,158 12,416 86,709 9,282 717,148
Maximum 24,460 3,625 40,501 56,105 46,451 711,082
Minimum 26,755 555 20,078 57,965 33,079 743,792

Mahalanobis 27,750 3,570 14,373 121,779 17,478 697,276
Maximum 28,380 459 26,588 77,003 107,207 689,726
Minimum 41,934 34 36,070 56,546 31,617 763,162

Mahalanobis 43,711 24 19,650 52,280 23,162 790,536

Classes (Acres)

1984

1989

1994

1998

2008

2014

2004
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Table C-2: Silver Watershed with Classes and Classifications Specified 

 

 

 

 

 

 

 

 

 

Year Classification Water Shallow Water Vegetation Dark Vegetation Salty Area Bare Earth
Maximum 4,696 396 5,109 76,953 17,925 972,877
Minimum 7,283 3,942 4,779 68,468 2,730 990,753

Mahalanobis 9,450 2,131 4,223 136,118 1,523 924,510
Maximum 978 44 13,799 129,175 22,219 911,740
Minimum 2,696 297 10,061 65,423 40,750 958,729

Mahalanobis 2,315 618 6,960 127,061 17,361 923,641
Maximum 901 143 3,111 104,961 29,420 939,419
Minimum 1,446 69 3,449 51,234 49,342 972,417

Mahalanobis 823 709 2,966 162,353 17,570 893,536
Maximum 4,530 189 28,754 56,906 161,616 825,943
Minimum 2,619 1,243 7,480 76,400 14,447 975,748

Mahalanobis 5,353 1,078 5,162 120,522 7,250 938,573
Maximum 750 42 6,223 79,525 50,537 846,856
Minimum 1,727 937 4,971 84,741 22,281 869,276

Mahalanobis 1,850 9,092 3,429 105,891 9,178 854,493
Maximum 394 647 13,363 68,430 28,247 868,159
Minimum 1,245 1,137 4,835 90,330 17,178 864,515

Mahalanobis 1,073 1,191 3,465 138,290 8,338 826,883
Maximum 176 642 9,365 107,614 86,362 873,797
Minimum 3,032 854 15,145 94,681 15,819 948,424

Mahalanobis 2,894 568 9,017 68,982 11,650 984,844

Classes (Acres)

1984

1989

1994

1998

2008

2014

2004
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Table C-3: Silvies Watershed with Classes and Classifications Specified 

 

 

 

 

 

 

 

 

 

Year Classification Water Shallow Water Vegetation Dark Vegetation Salty Area Bare Earth
Maximum 21,213 0 17,875 272,231 4,584 527,713
Minimum 25,419 686 11,639 222,838 975 582,059

Mahalanobis 26,556 282 8,886 383,529 545 423,817
Maximum 5,418 0 50,360 369,582 30,833 387,422
Minimum 8,181 0 31,823 271,328 6,747 525,536

Mahalanobis 9,239 31 17,350 406,442 693 409,860
Maximum 66 0 16,683 362,677 46,966 417,225
Minimum 218 2 5,363 256,958 16,817 564,258

Mahalanobis 771 5 3,112 479,821 1,045 358,861
Maximum 6,518 0 117,192 232,327 18,923 468,655
Minimum 3,317 26 29,577 247,297 1,446 561,953

Mahalanobis 4,486 88 24,153 304,606 150 510,132
Maximum 61 2 21,381 270,868 24,771 404,163
Minimum 388 145 15,559 245,882 2,987 456,284

Mahalanobis 546 2,778 9,190 325,156 350 383,225
Maximum 109 150 37,104 246,272 15,918 422,006
Minimum 947 215 10,510 258,799 1,809 449,279

Mahalanobis 1,300 92 6,356 335,914 402 377,494
Maximum 108 18 58,833 313,719 22,735 448,202
Minimum 5,454 344 42,511 330,199 1,296 463,812

Mahalanobis 938 2,032 20,950 271,023 680 547,992

Classes (Acres)

2004

2008

2014

1984

1989

1994

1998
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Table C-4: Donner und Blitzen Watershed with Classes and Classifications Specified 

 

 

Year Classification Water Shallow Water Vegetation Dark Vegetation Salty Area Bare Earth
Maximum 3,038 0 1,705 63,316 18,828 418,411
Minimum 5,436 317 3,135 45,064 13,193 438,153

Mahalanobis 6,859 9,798 3,428 100,614 219 384,379
Maximum 475 0 28,659 84,265 1,438 390,461
Minimum 1,408 17 16,010 45,641 4,608 437,613

Mahalanobis 1,124 64 11,292 86,445 822 405,551
Maximum 102 17 4,885 112,387 1,629 386,277
Minimum 1,205 7 5,388 51,971 4,230 442,496

Mahalanobis 820 50 3,435 128,887 267 371,839
Maximum 5,891 4 48,595 52,816 16,593 381,399
Minimum 2,671 110 11,791 57,303 1,219 432,205

Mahalanobis 5,543 356 8,488 112,097 127 378,686
Maximum 114 1 3,626 91,905 7,987 363,902
Minimum 1,549 641 6,468 59,631 3,226 396,020

Mahalanobis 1,503 3,913 4,813 89,822 448 367,036
Maximum 557 87 16,703 91,443 1,887 363,750
Minimum 2,423 193 6,189 78,276 945 386,400

Mahalanobis 2,002 167 6,759 91,218 168 374,112
Maximum 152 268 4,542 114,046 12,748 373,542
Minimum 18,982 78 17,215 106,221 1,246 361,556

Mahalanobis 2,604 33 17,333 63,260 411 421,657

Classes (Acres)

1984

1989

1994

1998

2004

2008

2014



95 

APPENDIX D. INDEX OF WEATHER TABLES AND FIGURES 

Table D-1: Average Precipitation 
And Average Summer High 

Temperature for 
Malheur Lake 

 

Year
Average 
Precip 
(in/yr)

Average 
Summer 

High Temp 
(F)

1980 9.69 75.90
1981 15.05 82.73
1982 11.48 77.06
1983 17.74 77.33
1984 10.32 75.36
1985 4.75 78.28
1986 4.45 68.96
1987 5.58 68.46
1988 3.63 63.20
1989 8.83 73.23
1990 4.83 76.81
1991 7.64 61.31
1992 8.04 79.87
1993 11.76 72.94
1994 10.34 83.61
1995 12.66 78.40
1996 12.37 81.31
1997 9.11 79.54
1998 11.51 73.13
1999 6.75 59.82
2000 8.86 60.08
2001 8.67 73.01
2002 7.01 58.80
2003 4.75 59.72
2004 1.54 52.16
2005 3.23 54.88
2006 2.41 53.78
2007 1.62 63.16
2008 4.91 72.55
2009 5.33 79.43
2010 6.14 76.30
2011 7.54 69.78
2012 11.46 79.75
2013 4.80 81.04



96 

Table D-2: Average Discharge of 
Rivers that Flow into 

Malheur Lake 

 

 

Date

Donner und 
Blitzen River 

Average 
Discharge (cfs)

Silvies River 
Average 

Discharge 
(cfs)

1980 156 206
1981 132 128
1982 165 407
1983 251 595
1984 271 568
1985 123 181
1986 163 288
1987 92 95
1988 78 51
1989 165 310
1990 66 52
1991 103 83
1992 45
1993 188
1994 75
1995 171
1996 156
1997 155
1998 230
1999 165
2000 93
2001 89
2002 94
2003 98
2004 113
2005 142
2006 158
2007 94
2008 112
2009 116
2010 186 51
2011 272 502
2012 86 151
2013 80
2014 82
2015 107



97 

 

 Figure D-1: Palmer Drought Severity Index for July 2004 (NOAA, 2015) 

 

Figure D-2: Palmer Drought Severity Index for July 2008 (NOAA, 2015) 
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Figure D-3: Palmer Drought Severity Index for July 2014 (NOAA, 2015) 
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Table D-3: Drought Severity Classification (NDMC, 2015a) 

 

 

 

 

 

 

 

 

 

Category Description Possible Impacts

Palmer 
Drought 
Severity 

Index 
(PDSI)

CPC Soil 
Moisture 

Model 
(Percentiles)

USGS 
Weekly 

Streamflow 
(Percentiles)

Standardized 
Precipitation 
Index (SPI)

Going into drought: 

short-term dryness slowing planting, 
growth of crops or pastures

Coming out of drought:
some lingering water deficits

pastures or crops not fully recovered

Some damage to crops, pastures
Streams, reservoirs, or wells low, 
some water shortages developing or 
imminent
Voluntary water-use restrictions 
requested
Crops or pasture losses likely
Water shortages common
Water restrictions imposed
Major crop/pasture losses
Widespread water shortages or 
restrictions
Exceptional and widespread 
crop/pasture losses
Shortages of water in reservoirs, 
streams, and wells creating water 
emergencies

Ranges

D4
Exceptional 

Drought
 -5.0 or less 0 to 2 0 to 2  -2.0 or less

D3
Extreme 
Drought

 -4.0 to -4.9 3 to 5 3 to 5  -1.6 to -1.9

D2
Severe 

Drought
 -3.0 to -3.9 6 to 10 6 to 10  -1.3 to -1.5

 -0.5 to -0.7

D1
Moderate 
Drought

 -2.0 to -2.9 11 to 20 11 to 20  -0.8 to -1.2

Abnormally 
Dry

D0  -1.0 to -1.9 21 to 30 21 to 30
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Table D-4: Drought Level for Watershed Area using Drought Severity 
Classification for the Years 2004, 2008 and 2014 

 

 

Watershed Week None
Abnormally 

Dry
Moderate 
Drought

Severe 
Drought

Extreme 
Drought

Exceptional 
Drought

Intensity

Donner 
und Blitzen

7/13/2004 0% 0% 0% 23.97% 76.03% 0% Extreme

Silvies 7/13/2004 0% 63.34% 36.66% 0% 0% 0% Abnormally Dry
Silver 7/13/2004 0% 8.47% 55.62% 24.95% 10.95% 0% Moderate

Harney-
Malheur 

Lakes
38181 0% 4.88% 44.20% 32.05% 18.87% 0% Moderate to Severe

Donner 
und Blitzen

7/22/2008 0% 67.59% 32.41% 0% 0% 0% Abnormally Dry

Silvies 7/22/2008 0% 100% 0% 0% 0% 0% Abnormally Dry
Silver 7/22/2008 0% 84.61% 15.05% 0.34% 0% 0% Abnormally Dry

Harney-
Malheur 

Lakes
7/22/2008 0% 100% 0% 0% 0% 0% Abnormally Dry

Donner 
und Blitzen

7/1/2014 0% 0% 0% 100% 0% 0% Severe

Silvies 7/1/2014 0% 0% 4.77% 95.23% 0% 0% Severe
Silver 7/1/2014 0% 0% 0% 100% 0% 0% Severe

Harney-
Malheur 

Lakes
7/1/2014 0% 0% 0% 99.96% 0.04% 0% Severe

Drought Level
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