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This paper presents the study of Jeffrey fluid flow by a rotating disk with variable thickness. Energy equa-
tion is constructed by using Cattaneo-Christov heat flux model with variable thermal conductivity. A sys-
tem of equations governing the model is obtained by applying boundary layer approximation. Resulting
nonlinear partial differential system is transformed to ordinary differential system. Homotopy concept
leads to the convergent solutions development. Graphical analysis for velocities and temperature is made
to examine the influence of different involved parameters. Thermal relaxation time parameter signifies
that temperature for Fourier’s heat law is more than Cattaneo-Christov heat flux. A constitutional analysis
is made for skin friction coefficient and heat transfer rate. Effects of Prandtl number on temperature dis-
tribution and heat transfer rate are scrutinized. It is observed that larger Reynolds number gives illustri-
ous temperature distribution.
� 2017 The Author. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Non-Newtonian fluids have emerging applications in numerous
fields. There is no linear relation between deformation and stress
tensor in such materials. Examples of such fluids are custard,
toothpaste, blood, petroleum and slurry etc. The flow of non-
Newtonian fluids cannot be simulated by the Navier Stokes equa-
tions. Plastic extrusion is a one example of such embarrassing defi-
ciency. The constitutive equations of non-Newtonian fluids are
usually too complex to solve because of high nonlinearity than
Navier-Stokes equations. Non-Newtonian fluids have three classes
namely rate, integral and differential. Considered model of Jeffrey
fluid is a sub-class of rate type fluids which deal with retardation
time and ratio of relaxation to retardation times. Several scientists
have worked with different flow models of non-Newtonian fluids
[1–12].

Flow by rotating disk is quite popular in present. It is due to its
demand in various scientific application related to engineering
such as turbines and motor rotor system etc. Different fields like
fluid dynamics of cosmology, geophysics and astrophysics are
employing the auspicious applications of rotating flows. Full
governing equations of such kind of flows were initially
transformed to accessible form by Von Karman [13]. Cochran
[14] worked numerically for these equations. Solution of energy
equation for rotating flow problem was found by Pohlhausen and
Millsaps [15]. Turkyilmazoglu [16] analyzed heat transfer in flow
by two stretchable rotating disks. Axisymmetric MHD flow of
Jeffrey fluid by a rotating disk is explored by Hayat et al. [17]. Ming
et al. [18] discussed heat transfer with double diffusion in rotating
flow of power law fluid. Guha and Sengupta [19] investigated non-
linear interaction of mixed convection with Von Karman swirling
flow of a heated rotating disk. Srinivas [20] explored MHD viscous
fluid flow induced by contracting and expanding rotating disk with
viscous dissipation. Radiative flow of carbon nanotubes generated
by two stretchable rotating disks with convective boundary
condition is studied by Imtiaz et al. [21].

It is known that heat transfer process occurs when temperature
of body or different parts of body is not same. This process has vast
applications in nuclear fusion, power generation and various engi-
neering fields. Fourier [22] proposed the conduction law of heat
which is mostly used in the past. However this law corresponds
to instantaneous change of heat. It yields parabolic heat equation.
This law is modified by Cattaneo [23] by adding the thermal relax-
ation time factor. Paradox of heat conduction is overcomed by this
term. This theory is further modified by Christov [24] by replacing
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time derivative with Oldroyd upper convected derivative. Hayat
et al. [25] made a comparative study for flow of viscoelastic
nanofluids using Cattaneo-Christov double diffusion model. Liu
et al. [26] derived an improved heat conduction model with Riesz
fractional Cattaneo–Christov flux. Meraj et al. [27] reported how
Darcy-Forchheimer flow of variable conductivity influence the Jef-
frey fluid through Cattaneo-Christov heat flux model. Reddy et al.
[28] investigated the cross diffusion effects by considering the
energy equation using Cattaneo-Christov heat flux. Ramesh et al.
[29] gave an analysis of heat transfer in Magnetohydrodynamic
Casson fluid flow using Cattaneo-Christov heat diffusion theory.
Hadad [30] employed heat flux model to analyze thermal instabil-
ity in porous medium. Hayat et al. [31] studied flow bounded by a
surface of variable thickness using Cattaneo-Christov expression.
Abbasi and Shehzad [32] showed how heat transfer for three
dimensional Maxwell fluid with variable thermal conductivity by
employing Cattaneo-Christov heat flux model. Abbasi et al. [33]
made analytical study of Cattaneo-Christov heat flux model of a
non-Newtonian fluid for a boundary layer flow. Cattaneo-
Christov heat flux model for Darcy-Forchheimer flow with variable
conductivity of an Oldroyd-B fluid was considered by Shehzad et al.
[34].

No doubt variable thickness of different surfaces has incredible
role for the analysis of various attributes in engineering particu-
larly mechanical, architectural and aeronautical processes. This
concept yields reduction in structural weight of elements. Efte-
khari and Jafari [35] adopted accurate variational approach for free
vibration of variable thickness thin and thick plates with edges
elastically restrained against translation and rotation. Fang et al.
[36] inspected the boundary layer flow bounded by a variable
thicked stretching sheet.

This article presents the flow of Jeffrey fluid by a rotating disk
with variable thickness. Heat transfer analysis is made by con-
structing the energy equation with Cattaneo-Christov heat flux
model. This discussion is useful in different engineering fields,
chemistry, polymer industry and astrophysics because variable
thermal conductivity is adopted to analyze the flow. This prop-
erty makes the model quite flexible as this is significant to con-
trol the temperature of the system. Convergent solutions of
interest are developed. Such solutions are derived using homo-
topy analysis method (HAM) [37–40]. Physical quantities
describing the worth of present attempt are displayed and
analyzed.

Formulation

Let us consider steady laminar flow of Jeffrey fluid with variable
thermal conductivity. The flow is generated by a rotating disk of

variable thickness at z ¼ a r
R0
þ 1

� ��m
. Disk rotates along z-axis with

prescribed angular velocity X. The disk is maintained at constant
temperature Tw whereas T1 is the ambient fluid temperature.
The velocity field V ¼ uðr; h; zÞ;vðr; h; zÞ;wðr; h; zÞ½ � and temperature
field T ¼ Tðr; h; zÞ with assumptions @p

@r ¼ @p
@z ¼ 0 are taken into con-

sideration. Equations governing present consideration are
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where u, v andw are the velocity components along r, h and z direc-
tions respectively, m is the kinematic viscosity, q is the density of
fluid, r is electrical conductivity, k1 is the ratio of relaxation to
retardation time, k2 is retardation time, T is temperature of fluid,
Cp is specific heat and q is the heat flux satisfying

qþ k
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where k is the thermal relaxation time and K Tð Þ is the variable ther-
mal conductivity. For incompressible fluid case one has
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Elimination of q yields
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Boundary conditions of present problem are

u ¼ 0; v ¼ rX; w ¼ 0; T ¼ Tw as z ¼ a
r
R0

þ 1
� ��m

; ð8Þ

u ! 0; v ! 0; T ! T1 as z�!1: ð9Þ

Invoking the transformations

u¼ r�R0XFðgÞ; v ¼ r�R0XGðgÞ; w¼R0X 1þ r�ð Þ�m XR2
0q
l

 ! �1
nþ1

JðgÞ;

H gð Þ¼ T�T1
Tw�T1

; K ¼ k1 1þ�Hð Þ; g¼ z
R0

XR2
0q
l

 ! 1
nþ1

1þ r�ð Þm: ð10Þ

Eqs. (1)–(3) and (7)–(9) become

2F þm�gF 0 þ J0 ¼ 0; ð11Þ

Reð Þ1�n
1þn 1þ r�ð Þ2mF 00 þ b Reð Þ1�n

1þn 1þ r�ð Þ2m 2FF 00 þ 4mwFF 00�
þ 2mwgFF 000 þ 2F 000J þ F 02 þmwF 02 þmwgF 0F 00 þ J0F 00

i
� 1þ k1ð Þ F2 þmwgFF 0 � G2 þ JF 0

h i
¼ 0; ð12Þ
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1þn 1þ r�ð Þ2mG00 þ b Reð Þ1�n

1þn 1þ r�ð Þ2m 2FG00 þ 4mwFG00�
þ 2mwgFG000 þ F 0G0 þmwF 0G0 þmwgF 0G00 þ 2G000H þ J0G00	
� 1þ k1ð Þ 2FGþmwgFG0 þ JG0� 	 ¼ 0; ð13Þ
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with boundary conditions

FðaÞ ¼ 0; GðaÞ ¼ 1; J að Þ ¼ 0; HðaÞ ¼ 1; ð15Þ

Fð1Þ ¼ 0; Gð1Þ ¼ 0; H 1ð Þ ¼ 0: ð16Þ
where r� ¼ r

R0
is the dimensionless radius, w ¼ r�

1þr� is the dimension-

less constant, k1 is the thermal conductivity of ambient fluid, � is a
scaler parameter and H is dimensionless temperature. Employing
another set of transformations

F ¼ f g� að Þ ¼ f nð Þ; G ¼ g g� að Þ ¼ g nð Þ;
J ¼ j g� að Þ ¼ j nð Þ; H ¼ h g� að Þ ¼ h nð Þ; ð17Þ

Eqs. (11)–(16) are converted to
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f ð0Þ ¼ 0; gð0Þ ¼ 1; j 0ð Þ ¼ 0; hð0Þ ¼ 1; ð22Þ

f ð1Þ ¼ 0; gð1Þ ¼ 0; h 1ð Þ ¼ 0; ð23Þ
where m is the thickness index of disk, n is power law exponent of
fluid, a is dimensionless coefficient of thickness index, Pr is Prandtl
number, c is thermal relaxation time, Re is Reynolds number and b
is Deborah number. These parameters are interpreted as
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Skin friction coefficients in radial and azimuthal directions Cf

and Cg are
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where srz and shz are shear stresses in radial and azimuthal direc-
tions given by
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The dimensionless forms of skin friction coefficients are
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n

nþ1Cf ¼ r� 1þ r�ð Þm
1þ k1ð Þ f 0ð0Þ þ b f 0ð Þf 0ð0Þ þmwf 0ð Þf 0ð0Þ
�

þmw nþ að Þf 0ð Þf 00ð0Þ þ j 0ð Þf 00 0ð Þ�	; ð29Þ

Re
n

nþ1Cg ¼ r� 1þ r�ð Þm
1þ k1ð Þ g0ð0Þ þ b f 0ð Þg0ð0Þ þmwf 0ð Þg0ð0Þð½

þmw nþ að Þf 0ð Þg00ð0Þ þ j 0ð Þg00 0ð ÞÞ�; ð30Þ
Nusselt number for the disk is
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where qw is the heat flux defined as
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Thus dimensionless form of heat transfer is given by
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Homotopic solutions

Zeroth-order deformation equations

The system of Eqs. (18)–(21) can be solved with above men-
tioned boundary conditions (22)–(23). The initial guesses are

j0ðnÞ ¼ 0; f 0ðnÞ ¼ 0; g0ðnÞ ¼ expð�nÞ; h0ðnÞ ¼ expð�nÞ; ð34Þ
and the linear operators are
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with the properties
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Lg a3en þ a4e�n
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Lh a5en þ a6e�n
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in which ai ði ¼ 0—6Þ are the constants.
Let q 2 ½0;1� represents the embedding parameter then the gen-

eralized homotopic solutions with non-zero auxiliary parameters
�hj, �hf , �hg and �hh are
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with boundary conditions

J 0; qð Þ ¼ 0; Fð0; qÞ ¼ 0; Fð1; qÞ ¼ 0; ð41Þ

Gð0; qÞ ¼ 1; Gð1; qÞ ¼ 0; ð42Þ

hð0; qÞ ¼ 1; hð1; qÞ ¼ 0; ð43Þ
where N j, N f , N g and N h particularize the non-linear differential
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mth order deformation equations

The mth order deformation problems are
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vm ¼ 0; m 6 1
1; m > 1


: ð56Þ



Fig. 1. �h-curve for j0 nð Þ when n ¼ Re ¼ m ¼ 1, w ¼ � ¼ c ¼ 0:40, a ¼ 0:15, r� ¼ 0:2,
Pr ¼ 1:5, k1 ¼ 0:5 and b ¼ 0:25. Fig. 4. �h-curve for h0ðnÞ when n ¼ Re ¼ m ¼ 1, w ¼ � ¼ c ¼ 0:40, a ¼ 0:15, r� ¼ 0:2,

Pr ¼ 1:5, k1 ¼ 0:5 and b ¼ 0:25.

Fig. 2. �h-curve for f 0ðnÞ when n ¼ Re ¼ m ¼ 1, w ¼ � ¼ c ¼ 0:40, a ¼ 0:15, r� ¼ 0:2,
Pr ¼ 1:5, k1 ¼ 0:5 and b ¼ 0:25.

Fig. 3. �h-curve for g0 nð Þ when n ¼ Re ¼ m ¼ 1, w ¼ � ¼ c ¼ 0:40, a ¼ 0:15, r� ¼ 0:2,
Pr ¼ 1:5, k1 ¼ 0:5 and b ¼ 0:25.

T. Hayat et al. / Results in Physics 8 (2018) 341–351 345
The general solutions (jm; f m; gm; hmÞ are obtained by solving the
system of Eqs. (11)–(16)with the help of corresponding deforma-
tions equations and summing up these special solutions
ðj�m; f �m; g�

m; h
�
mÞ as

jmðnÞ ¼ j�mðnÞ þ a0; ð57Þ
f mðnÞ ¼ f �mðnÞ þ a1en þ a2e�n; ð58Þ

gmðnÞ ¼ g�
mðnÞ þ a3en þ a4e�n; ð59Þ

hmðnÞ ¼ h�mðnÞ þ a5en þ a6e�n: ð60Þ
Convergence of the series solution

The technique of homotopy analysis plays significant role in
order to obtain and analyze the convergent series solution.
Convergence of the series solutions is controlled by introducing
the auxiliary parameters. We have used here �hj, �hf , �hg and �hh, used
as the auxiliary parameter to settle the convergence region. The
region of convergence is plotted (see Figs. 1–4) to get ranges of
convergent solution. Appropriate ranges for these parameters
are �1:2 6 �hj 6 �0:6, �1 6 �hf 6 �0:6, �0:9 6 �hg 6 �0:6 and
�0:9 6 �hh 6 �0:6. These solutions are convergent in the full range
of n for �hj ¼ �hh ¼ �0:8, �hf ¼ �0:9 and �hg ¼ �0:7.

Convergence for velocities j0 nð Þ, f 0ðnÞ, g00ðnÞ and temperature
h0ðnÞ is shown in Table 1. The above table is indicating that for
the convergence of axial, radial and tangential velocities 36th,
42nd and 28th order of approximations are sufficient respectively.
However 47th order of approximation is appropriate for the con-
vergence of h0ðnÞ.
Graphical results

Physical impact of all parameters involved in velocities and
temperature is scrutinized in this portion. A concise discussion is
made to see how these parameters are influencing the velocities
and temperature Beside this an interesting note is added to give
a better perception about heat transfer rate of the system under
consideration.

Figs. 5–8 show the influence of n;w;a andm on j nð Þ. Here power
law index causes an increase in the velocity j nð Þ as shown in Fig. 5.
Since the increasing values of n show a decay in the exponent of
radius R0 and hence the velocity profile increases.For higher values
of fluid physical power law exponent n the axial velocity
approaches to its asymptotic limit �hð1Þ. Fig. 6 depicts the impact
of small parameter w on axial velocity. It shows that magnitude of
axial velocity decreases for increasing values of w. Impact of
dimensionless coefficient of disk thickness a is portrayed in
Fig. 7. Increasing values of a have inverse relation with radius R0.



Table 1
Convergence of series solutions when n ¼ Re ¼ m ¼ 1, w ¼ � ¼ c ¼ 0:40, a ¼ 0:15,
r� ¼ 0:2, Pr ¼ 1:5, k1 ¼ 0:5 and b ¼ 0:25.

Order of approximation �j0 nð Þ f 0ðnÞ g00ðnÞ �h0ðnÞ
1 0 0.338 �0.008 0.411
10 0.0315 0.524 0.108 0.254
20 0.0314 0.523 0.111 0.272
28 0.0315 0.525 0.112 0.288
36 0.0316 0.526 0.112 0.298
42 0.0316 0.527 0.112 0.302
47 0.0316 0.527 0.112 0.303
50 0.0316 0.527 0.112 0.303
55 0.0316 0.527 0.112 0.303
60 0.0316 0.527 0.112 0.303

Fig. 5. Influence of n on j nð Þ.

Fig. 6. Influence of w on j nð Þ.

Fig. 7. Influence of a on j nð Þ.

Fig. 8. Influence of m on j nð Þ.
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Hence an increase in disk thickness coefficient reduces the radius.
This shows that less fluid particles interact to surface of disk which
results increment in velocity. Fig. 8 illustrates the impact of power
law exponent of disk thickness m on the axial velocity. It is
observed that larger m increase the thickness of the disk and
decays magnitude of j0 nð Þ.
Behavior of significant parameters involved in radial velocity
field is plotted in Figs. 9–14. Physical impacts of n, Re, a, r�, w
and k1 on radial velocity is discussed here. Fig. 9 shows the power
law index n of fluid effecting the radial velocity. Obviously it can be
seen from Fig. 9 that magnitude of velocity enhances for increasing
values of n. Fig. 10 depicts the influence of rising values of Re on
f nð Þ. It is noticed that radial velocity profile has a good increasing
behavior for rising values of Re. Since Re is ratio of inertial to vis-
cous forces therefore as we increase the Reynolds number Re the
inertial forces dominant and viscous forces produce less resistance
to the motion of fluid. Ultimately there is an increase in radial
velocity. Fig. 11 demonstrates the effect of a(i.e. dimensionless
coefficient of disk thickness) on f nð Þ. Here velocity is an increasing
function of a. Effect of enhancing values of r� is portrayed in Fig. 12.
Again increment in the values of r� has inverse relation with radius
R0. Because of minimized radius the radial velocity profile is
increasing for r�. Fig. 13 characterizes that how the radial velocity
profile f nð Þ is being influenced by increasing w. Radial velocity has
direct relation to w. Hence magnitude of f nð Þ increases for larger w.
Influence of k1 on radial velocity is illustrated in Fig. 14. Here k1 is a
ratio of relaxation to retardation times and an increment in this
parameter shows that retardation time is decreased. Therefore
motion of fluid particle is faster and hence relevant velocity profile
increases.



Fig. 9. Influence of n on f nð Þ.

Fig. 10. Influence of Re on f nð Þ.

Fig. 11. Influence of a on f nð Þ.

Fig. 12. Influence of r� on f nð Þ.

Fig. 13. Influence of w on f nð Þ.

Fig. 14. Influence of k1 on f nð Þ.
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Influence of w, Re, r�, m, k1 and b on azimuthal velocity profile
g nð Þ is examined in Figs. 15–20. Fig. 15 exhibits that g nð Þ is an
increasing function of small parameter w. Increasing values of w
imply reduction in radius R0 and thus velocity field is increased.
Effect of Re on azimuthal velocity is displayed in Fig. 16. Azimuthal
velocity g nð Þ rises for larger Re. This is because of the dominance of
inertial forces to viscous forces. Thus in view of less viscosity
velocity enhances. Fig. 17 indicates the impact of dimensionless
radius r� on azimuthal velocity. This velocity field has a direct rela-
tion with r�. Influence of disk thickness power law exponent m on
g nð Þ is shown in Fig. 18. Azimuthal velocity field has direct relation
withm. An increase in azimuthal velocity is observed for larger val-
ues of m. Impact of k1 on g nð Þ is observed in Fig. 19. It is noticed
that the magnitude of azimuthal velocity is less for larger values
of k1. The reason of this behavior is that enlarging values of k1 yield
intensifying relaxation time for which the fluid particles require



Fig. 15. Influence of w on g nð Þ.

Fig. 16. Influence of Re on g nð Þ.

Fig. 17. Influence of r� on g nð Þ.

Fig. 18. Influence of m on g nð Þ.

Fig. 19. Influence of k1 on g nð Þ.

Fig. 20. Influence of b on g nð Þ.
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additional time to settle down in equilibrium state from the per-
turbed one. Fig. 20 is designed to show how the azimuthal velocity
field is being influenced by Deborah number b. The velocity profile
under discussion and corresponding boundary layer thickness are
increasing for rising values of b.

Impact of rising values of Reynolds number Re, disk thickness
power law exponent m, Deborah number b, Prandtl number Pr, a
constant parameter � and thermal relaxation time c on the temper-
ature field is indicated in Figs. 21–26. Influence of varying values of
Reynolds number Re on h nð Þ is shown in Fig. 21. This distribution
profile and its thermal boundary layer thickness increase for higher
Re. Fig. 22 indicates how disk thickness exponent of power law
varies the temperature field. The temperature distribution
increases for this parameter which physically depicts that heat
transfer efficiency is decreased. Fig. 23 depicts that both the ther-
mal boundary layer thickness and temperature field are decreasing
when b increases. Physically Deborah number b and relaxation
time are directly proportional to each other. Increase in Deborah



Fig. 21. Influence of Re on h nð Þ.

Fig. 22. Influence of m on h nð Þ.

Fig. 23. Influence of b on h nð Þ.

Fig. 24. Influence of Pr on h nð Þ.

Fig. 25. Influence of � on h nð Þ.

Fig. 26. Influence of c on h nð Þ.
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number corresponds to higher relaxation time which creates a
reduction in temperature. Effect of Prandtl number on thermal
boundary layer thickness is displayed in Fig. 24. Rising values of
Pr cause a reduction in temperature. It is because that thermal
diffusivity becomes smaller for larger Prandtl number which mean
fluid particles travel from hot to cold side slowly and hence
the temperature reduces. Fig. 25 shows the behavior of a small
parameter � on the temperature distribution h nð Þ. Temperature is
an increasing function of �. Finally impact of thermal relaxation
time parameter on temperature is represented in Fig. 26. Increase
in thermal relaxation time implies particles need more time to
transfer heat to neighboring particles and hence the temperature
of the system falls. Therefore c causes reduction in temperature
distribution.



Fig. 32. Influence of c on heat transfer rate.

Fig. 27. Influence of m on skin friction coefficient.

Fig. 28. Influence of r� on skin friction coefficient.

Fig. 29. Influence of w on skin friction coefficient.

Fig. 30. Influence of b on skin friction coefficient.

Fig. 31. Influence of Pr on heat transfer rate.
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Skin friction coefficient and Nusselt number

Graphical interpretations of surface drag force in radial and azi-
muthal directions are given in Figs. 27–30 respectively. Radial skin
friction coefficient is analyzed to see the impact of dimensionless
radius r� and power law exponentm of the disk. However it is seen
in Fig. 29 that how a constant parameter w effects the surface drag
force. Also rising values of Deborah number enhances the tangen-
tial skin friction coefficient.
Discussion of heat transfer rate is always an interesting task.
Figs. 31,32 are designed to show how heat transfer rate is changing
for growing values of Prandtl number and thermal relaxation time.

Conclusions

Here we studied the flow of Jeffrey fluid with Cattaneo-Christov
heat flux model and variable thermal conductivity. The main
points are.
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� Both radial and tangential velocities have decreasing behavior
for larger values of ratio of relaxation to retardation times.

� Magnitude of axial and radial velocities rises via power law
index of the fluid.

� A constant parameter due to variable thermal conductivity
causes an increase in temperature while Deborah number yields
opposite reaction.

� Fourier’s law gives higher temperature distribution than
Cattaneo-Christov heat flux model.

� Surface drag force in tangential direction diminishes for Debo-
rah number while in radial direction it decreases for m and r�.

� Heat transfer rate decays for larger thermal relaxation time
whereas it increases for higher Prandtl number.

References

[1] Rashaida AA, Bergstrom DJ, Sumner RJ. Mass transfer from a rotating disk to a
Bingham fluid. ASME J Appl Mech 2005;73(1):108–11.

[2] Sheikholeslamia M, Ellahi R. Three dimensional mesoscopic simulation of
magnetic field effect on natural convection of nanofluid. Int J Heat Mass
Transfer 2015;89:799–808.

[3] Wenchang T, Mingyu X. Plane surface suddenly set in motion in a viscoelastic
fluid with fractional Maxwell model. Acta Mech Sin 2002;18(4):342–9.

[4] Vieru D, Fetecau C, Fetecau C. Flow of a viscoelastic fluid with fractional
Maxwell model between two side walls perpendicular to a plate. Appl Math
Comput 2008;200(1):459–64.

[5] Fetecau C, Fetecau C. Starting solutions for the motion of a second grade fluid
due to longitudinal and torsional oscillations of a circular cylinder. Int J Eng Sci
2006;44(11–12):788–96.

[6] Hayat T, Awais M. Three-dimensional flow of upper-convected Maxwell (UCM)
fluid. Int J Numer Methods Fluids 2011;66:875–84.

[7] Ellahi R, Riaz A. Analytical solutions for MHD flow in a third-grade fluid with
variable viscosity. Math Comput Modell 2010;52(9–10):1783–93.

[8] Si-Ning Li, Hong-Na Zhang, Xiao-Bin Li, Qian Li. Sang Woo Joo. Numerical study
on the heat transfer performance of non-Newtonian fluid flow in a manifold
microchannel heat sink. Appl Therm Eng 2017;115:1213–25.

[9] Hakeem AKA, Saranya S, Ganga B. Comparative study on Newtonian/non-
Newtonian base fluids with magnetic/non-magnetic nanoparticles over a flat
plate with uniform heat flux. J Mol Liq 2017;230:445–52.

[10] Sheikholeslami M, Rashidi MM, Ganji DD. Effect of non-uniform magnetic field
on forced convection heat transfer of Fe3O4-water nanofluid. Comput Methods
Appl Mech Eng 2015;294:299–312.

[11] Attia HA. Rotating disk flow and heat transfer through a porous medium of a
non-Newtonian fluid with suction and injection. Commun Nonlinear Sci
Numer Simul 2008;13(8):1571–80.

[12] Sahoo B. Effects of partial slip, viscous dissipation and Joule heating on Von
Kármán flow and heat transfer of an electrically conducting non-Newtonian
fluid. Commun Nonlinear Sci Numer Simul 2009;14(7):2982–98.

[13] Von Karman T. Uber laminare and turbulente Reibung. J Appl Math Mech
1921;1(4):233–52.

[14] Cochran WG. The flow due to a rotating disk. Math Proc Cambridge Philos Soc
1934;30(3):365–75.

[15] Millsaps K, Pohlhausen K. Heat transfer by laminar flow from a rotating plate. J
Aeronautical Sci 1952;19(2):120–6.

[16] Turkyilmazoglu M. Flow and heat simultaneously induced by two stretchable
rotating disks. Phys Fluids 2016;28. 043601.

[17] Hayat T, Nawaz M, Awais M, Obaidat S. Axisymmetric magnetohydrodynamic
flow of Jeffrey fluid over a rotating disk. Int J Numer Methods Fluids 2012;70
(6):764–74.
[18] Ming C, Zheng L, Zhang X, Liu F, Anh Vo. Flow and heat transfer of power-law
fluid over a rotating disk with generalized diffusion. Int Commun Heat Mass
Transfer 2016;79:81–8.

[19] Guha A, Sengupta S. Non-linear interaction of buoyancy with von Kármán’s
swirling flow in mixed convection above a heated rotating disc. Int J Heat Mass
Transfer 2017;108:402–16.

[20] Srinivas S, Reddy AS, Ramamohan TR, Shukla AK. Thermal-diffusion and
diffusion-thermo effects on MHD flow of viscous fluid between expanding or
contracting rotating porous disks with viscous dissipation. J Egypt Math Soc
2016;24(1):100–7.

[21] Imtiaz M, Hayat T, Alsaedi A, Ahmad B. Convective flow of carbon nanotubes
between rotating stretchable disks with thermal radiation effects. Int J Heat
Mass Transfer 2016;101:948–57.

[22] Fourier JBJ. Théorie Analytique De La Chaleur. Paris; 1822.
[23] Cattaneo C. Sulla conduzione del calore. Atti Semin Mat Fis Univ Modena

Reggio Emilia 1948;3:83–101.
[24] Christov CI. On frame indifferent formulation of the Maxwell-Cattaneo model

of finite-speed heat conduction. Mech Res Commun 2009;36:481–6.
[25] Hayat T, Aziz A, Muhammad T, Alsaedi A. Model and comparative study for

flow of viscoelastic nanofluids with Cattaneo-Christov Double Diffusion. PLoS
One 2017;12(1). 0168824.

[26] Liu L, Zheng L, Liu F, Zhang X. An improved heat conduction model with Riesz
fractional Cattaneo-Christov flux. Int J Heat Mass Transfer 2016;103:1191–7.

[27] Meraj MA, Shehzad SA, Hayat T, Abbasi FM, Alsaedi A. Darcy-Forchheimer flow
of variable conductivity Jeffrey liquid with Cattaneo-Christov heat flux theory.
Appl Math Mech 2017;38(4):557–66.

[28] Reddy JVR, Sugunamma V, Sandeep N. Cross diffusion effects on MHD flow
over three different geometries with Cattaneo-Christov heat flux. J Mol Liq
2016;223:1234–41.

[29] Ramesh GK, Gireesha BJ, Shehzad SA, Abbasi FM. Analysis of heat transfer
phenomenon in Magnetohydrodynamic Casson fluid flow through Cattaneo-
Christov heat diffusion theory. Commun Theor Phys 2017;68(1).

[30] Haddad SAM. Thermal instability in Brinkman porous media with Cattaneo-
Christov heat flux. Int J Heat Mass Transfer 2014;68:659–68.

[31] Hayat T, Khan MI, Farooq M, Alsaedi A, Waqas M, Yasmeen T. Impact of
Cattaneo-Christov heat flux model in flow of variable thermal conductivity
fluid over a variable thicked surface. Int J Heat Mass Transfer 2016;99:702–10.

[32] Abbasi FM, Shehzad SA. Heat transfer analysis for three dimensional flow of
Maxwell fluid with temperature dependent thermal condutivity: application
of Cattaneo-Christov heat flux model. J Mol Liq 2016;220:848–54.

[33] Abbasi FM, Mustafa M, Shehzad SA, Alhuthali MS, Hayat T. Analytical study of
Cattaneo-Christov heat flux model for a boundary layer flow of Oldroyd-B
fluid. Chin Phys B 2015;25.

[34] Shehzad SA, Abbasi FM, Hayat T, Alsaedi A. Cattaneo-Christov heat flux model
for Darcy-Forchheimer flow of an Oldroyd-B fluid with variable conductivity
and non-linear convection. J Mol Liq 2016;224:274–8.

[35] Eftekhari SA, Jafari AA. Accurate variational approach for free vibration of
variable thickness thin and thick plates with edges elastically restrained
against translation and rotation. Int J Mech Sci 2013;68:35–46.

[36] Fang T, Zhang J, Zhong Y. Boundary layer flow over a stretching sheet with
variable thickness. Appl Math Comput 2012;218(13):7241–52.

[37] Hayat T, Imtiaz M, Alsaedi A. Unsteady flow of nanofluid with double
stratification and magnetohydrodynamics. Int J Heat Mass Transfer
2016;92:100–9.

[38] Rashidi MM, Ali M, Freidoonimehr N, Rostami B, Hossian A. Mixed convection
heat transfer for viscoelastic fluid flow over a porous wedge with thermal
radiation. Adv Mech Eng 2014;204:735939.

[39] Mukhopadhyay S, Ishak A. Mixed convection flow along a stretching cylinder
in a thermally stratified medium. J Appl Math 2012;2012:491695.

[40] Tian XY, Li BW, Zhang JK. The effects of radiation optical properties on the
unsteady 2D boundary layer MHD flow and heat transfer over a stretching
plate. Int J Heat Mass Transfer 2017;105:109–23.

http://refhub.elsevier.com/S2211-3797(17)31424-9/h0005
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0005
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0010
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0010
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0010
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0015
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0015
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0020
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0020
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0020
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0025
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0025
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0025
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0030
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0030
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0035
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0035
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0040
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0040
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0040
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0045
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0045
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0045
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0050
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0050
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0050
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0050
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0055
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0055
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0055
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0060
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0060
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0060
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0065
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0065
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0070
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0070
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0075
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0075
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0080
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0080
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0085
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0085
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0085
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0090
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0090
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0090
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0095
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0095
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0095
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0100
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0100
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0100
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0100
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0105
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0105
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0105
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0115
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0115
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0120
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0120
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0125
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0125
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0125
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0130
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0130
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0135
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0135
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0135
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0140
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0140
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0140
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0145
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0145
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0145
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0150
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0150
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0155
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0155
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0155
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0160
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0160
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0160
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0165
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0165
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0165
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0170
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0170
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0170
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0175
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0175
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0175
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0180
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0180
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0185
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0185
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0185
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0190
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0190
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0190
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0195
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0195
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0200
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0200
http://refhub.elsevier.com/S2211-3797(17)31424-9/h0200

	Effect of Cattaneo-Christov heat flux on Jeffrey fluid flow with variable thermal conductivity
	Introduction
	Formulation
	Homotopic solutions
	Zeroth-order deformation equations
	mth order deformation equations

	Convergence of the series solution
	Graphical results
	Skin friction coefficient and Nusselt number

	Conclusions
	References


