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a b s t r a c t

We have obtained explicit integral expressions for the sums
of inverse powers of the eigenvalues of the Laplacian on a
unit sphere, in presence of an arbitrary variable density. The
exact expressions for the sum rules are obtained by properly
‘‘renormalizing’’ the series, excluding the divergent contribution
of the vanishing lowest eigenvalue. For a non–trivial example of
a variable density we have applied our formulas to calculate the
exact sum rules of order two and three, and we have verified
these results calculating the sum rules numerically using the
eigenvalues obtained with the Rayleigh–Ritz method.
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1. Introduction

In this paper we study the sum rules obtained summing the inverse powers of the eigenvalues
of the Helmholtz equation on a heterogeneous sphere. For the special case of constant density (to
which we can arbitrarily assign the value Σ = 1), one obtains that the eigenfunctions are the
spherical harmonics, Ylm(θ, φ), with |m| ≤ l and l = 0, 1, 2, . . . , and the corresponding eigenvalues,
l(l + 1), are 2l + 1 degenerate.

The sum rule of order p is thus defined in terms of the eigenvalues as1

Zp =

∞∑
l=1

2l + 1
(l(l + 1))p

(1)

with p > 1.

E-mail address: paolo@ucol.mx.
1 Note that to obtain a finite result, the zero mode, corresponding to l = 0, has to be excluded from the series.

https://doi.org/10.1016/j.aop.2019.168041
0003-4916/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.aop.2019.168041
http://www.elsevier.com/locate/aop
http://www.elsevier.com/locate/aop
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aop.2019.168041&domain=pdf
mailto:paolo@ucol.mx
https://doi.org/10.1016/j.aop.2019.168041


2 P. Amore / Annals of Physics 412 (2020) 168041

For the case of an arbitrary density, Σ(θ, φ) > 0 over the sphere, however, the approach
outlined above cannot be adopted, since it requires to calculate exactly each of the eigenvalues of
the Helmholtz equation. A similar situation occurs in the calculation of the sum rules for quantum
billiards on finite domains in the plane, since the eigenvalues are known exactly only for a limited
number of shapes (rectangle, circle, ellipse and symmetric circular annulus, among others). In
particular, Itzykson, Moussa and Luck [1] were able to obtain explicit integral expressions for the
sum rules of inverse powers of the Dirichlet eigenvalues of the Laplacian on arbitrary domains in
two dimensions using a conformal transformation from the domain to the unit disk, without having
to know the eigenvalues exactly.

Steiner [2] discussed the sum rule for Aharonov–Bohm quantum billiard of circular shape,
extending an approach previously developed in [3] for confinement potentials. Berry [4] also applied
the method of Ref. [1] to Aharonov–Bohm quantum billiards, obtaining explicit expressions for
different shapes.

More recently Kvitsinky has considered the spectral sum rules for nearly circular domains,
particularly N-sided regular polygons [5]; Dittmar [6] has obtained the sum rules for fixed and
free membrane problems for simply connected domains of the plane, conformally transforming the
domain into the unit disk. Sum rules for specific domains are obtained in Ref. [7]. Dostanić [8] has
obtained the regularized trace of the inverse Dirichlet Laplacian on a bounded convex domain.

In a series of papers, Refs. [9–12], we have derived general integral expressions for the spectral
sum rules of inhomogeneous strings and membranes, for different boundary conditions; the case
of Neumann or periodic boundary conditions, discussed in Ref. [11], requires a careful handling of
the traces, which are in principle ill defined due to the singular contribution stemming from the
zero mode. Ref. [12], finally, introduces a ‘‘regularized’’ sum rule, which is obtained exploiting the
symmetries of a problem or different boundary conditions. The purpose of this paper is to extend
the approach outlined in Ref. [11] to the case of the heterogeneous sphere.

The paper is organized as follows: in Section 2 we describe the general approach and define the
sum rules in terms of the appropriate traces; in Section 3 we obtain the perturbative corrections to
the energy of the lowest mode (‘‘zero-mode’’); in Section 4 we derive the general integral expres-
sions for the sum rules of order two and three, explicitly proving that all divergent contributions
cancel out, and we apply these results to a non-trivial example. Finally, in Section 5, we draw our
conclusions and discuss future work. The expressions for the perturbative corrections to the energy
of the fundamental mode and for the integrals appearing in the sum rules of order two and tree for
an arbitrary density are reported in Appendices A and B respectively.

2. Exact sum rules: general expressions

Our starting point is the Helmholtz equation on a unit 2-sphere, in presence of a variable
density

−∆ψn(θ, φ) = EnΣ(θ, φ)ψn(θ, φ) (2)

where

∆ ≡
1

sin θ
∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂φ2

is the angular part of the spherical Laplacian operator.
As discussed in Ref. [13], one can define Φn =

√
Σψn and cast this equation into the equivalent

form
1

√
Σ

(−∆)
1

√
Σ
Φn(θ, φ) = EnΦn(θ, φ) (3)

in terms of the hermitian operator Ô ≡
1

√
Σ
(−∆) 1

√
Σ
.

Since the lowest eigenvalue of Ô vanishes, it is convenient to introduce the modified operator,
following Ref. [11],

Ôγ ≡
1

√
Σ

(−∆+ γ )
1

√
Σ

(4)
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where γ is a constant parameter which will be eventually sent to zero.
Our ultimate goal is to obtain the Green’s function associated with Ôγ on the unit sphere; the

first step in this direction is to write the Green’s function associated with the operator (−∆ + γ )
on the unit sphere, which obeys the spectral decomposition

Gγ (θ, φ, θ ′, φ′) =
1

4πγ
+

∞∑
l=1

l∑
m=−l

Ylm(θ, φ)Y ⋆lm(θ
′, φ′)

l(l + 1) + γ
(5)

In particular, for γ → 0 one can write

Gγ (θ, φ, θ ′, φ′) =
1

4πγ
+

∞∑
q=0

(−γ )qG(q)(θ, φ, θ ′, φ′) (6)

where

G(q)(θ, φ, θ ′, φ′) ≡

∞∑
l=1

l∑
m=−l

Ylm(θ, φ)Y ⋆lm(θ
′, φ′)

(l(l + 1))q+1 (7)

These functions obey the properties:

−∆G(0)(θ, φ, θ ′, φ′) =
δ(φ − φ′)δ(θ − θ ′)

sin θ
−

1
4π

−∆G(q)(θ, φ, θ ′, φ′) = G(q−1)
γ (θ, φ, θ ′, φ′) , q = 1, 2, . . .

and

G(q+1)(θ, φ, θ ′, φ′) =

∫
dΩ ′′G(0)(θ, φ, θ ′′, φ′′)G(q)(θ ′′, φ′′, θ ′, φ′)

Notice that G(q)(θ, φ, θ ′, φ′) (q = 0, 1, . . . ) are finite since they do not contain contributions from
the mode l = 0 (in Refs. [9–11] we actually referred to G(0)(θ, φ, θ ′, φ′) as to a ‘‘regularized’’ Green’s
function).

Using the property
l∑

m=−l

Ylm(θ, φ)Y ⋆lm(θ
′, φ′) =

2l + 1
4π

Pl(x(θ, φ, θ ′, φ′)) (8)

where x(θ, φ, θ ′, φ′) ≡ ê(θ, φ) · ê(θ ′, φ′) and ê(θ, φ) ≡ sin θ cosφ î + sin θ sinφ ĵ + cos θ k̂, we can
cast the Green’s functions in the form

G(q)(θ, φ, θ ′, φ′) =
1
4π

∞∑
l=1

2l + 1
(l(l + 1))q+1 Pl(x(θ, φ, θ

′, φ′)) (9)

It is worth noticing that the Green’s function G(0)(Ω,Ω ′) is a special case of the generalized
Green’s function discussed in Ref. [14]:

ḠL(Ω,Ω ′) ≡

∑
l=0
l̸=L

l∑
m=−l

Ylm(Ω)Y ⋆lm(Ω
′)

L(L + 1) − l(l + 1)
(10)

and

G(0)(Ω,Ω ′) = −Ḡ0(Ω,Ω ′) (11)

The explicit expression for G(0)(Ω,Ω ′) is well-known and it can be found in Refs. [14–17]

G(0)(x) =
1
4π

[log 2 − 1 − log(1 − x)]
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The formulas for the Green’s functions of order one and two can be found in Refs. [16,17]

G(1)(x) =
1
4π

[
log
(
1 − x
1 + x

)
log
(

2
1 + x

)
−

1
2
log2

(
2

1 + x

)
+ Li2

(
−

1 − x
1 + x

)
+ 1

]
G(2)(x) =

1
4π

[
π2

6
− 2 + 2ζ (3) + log

(
1 − x
2

)
Li2

(
1 − x
2

)
− Li2

(
1 + x
2

)
− 2Li3

(
1 − x
2

)]
where Liν(z) ≡

z
Γ (ν)

∫
∞

0
tν−1

(et−z)
dt is the polylogarithm of order ν (ν > 0).

The Green’s function associated with Ôγ can be now expressed as

GÔγ (θ, φ, θ
′, φ′) =

√
Σ(θ, φ)Gγ (θ, φ, θ ′, φ′)

√
Σ(θ ′, φ′) (12)

since

ÔγGÔγ =
1

√
Σ(θ, φ)

(−∆+ γ )Gγ (θ, φ, θ ′, φ′)
√
Σ(θ ′, φ′)

=
1

√
Σ(θ, φ)

δ(θ − θ ′)δ(φ − φ′)
sin θ

√
Σ(θ ′, φ′)

=δ(Ω −Ω ′)

Exploiting the invariance of the trace with respect to unitary transformations and using the
completeness of the basis of the homogeneous problem we can write the sum rule [9–11]

Zp(γ ) ≡

∞∑
n=0

1
En(γ )p

(13)

as

Zp(γ ) =

∫
GÔγ (Ω1,Ω2) . . . GÔγ (Ωp,Ω1) dΩ1 . . . dΩp (14)

Unfortunately, Eq. (14) is not very useful since it diverges as γ → 0, due to the singular behavior
of GÔγ in this limit. For this reason it is then convenient to introduce the regularized sum rule

Z̃p(γ ) =

∞∑
n=1

1
Ep
n (γ )

= Zp(γ ) −
1

E0(γ )p
(15)

by taking out the contributions stemming from the zero mode (we will discuss soon the calculation
of E0(γ ) using perturbation theory for |γ | ≪ 1).

Since Z̃p(γ ) is now well behaved for γ → 0, we conclude that
∞∑
n=1

1
Ep
n

= lim
γ→0

[
Zp(γ ) −

1
E0(γ )p

]
(16)

Some remarks:

• For γ → 0, Zp(γ ) and 1/E0(γ )p can be Laurent expanded around γ = 0:

Zp(γ ) = z−pγ
−p

+ z−p+1γ
−p+1

+ · · · + z0 + z1γ + · · ·

1
E0(γ )p

= ϵ−pγ
−p

+ ϵ−p+1γ
−p+1

+ · · · + ϵ0 + ϵ1γ + · · ·

• The finiteness of limγ→0 Z̃p(γ ) requires that

z−p = ϵ−p , z−p+1 = ϵ−p+1 , . . . , z−1 = ϵ−1

• The singular (for γ → 0) part of the heterogeneous Green’s functions appearing in Eq. (15)
may contribute to z0 as long as it combines with suitable contributions from the remaining
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Green’s functions, that are vanishing with the appropriate strength (of course this is not the
case if the spectrum does not contain a zero mode). It is easy to check that Zp(γ ) contains at
most Green’s functions of order p + 1, G(p+1);

• The calculation of Z̃p requires calculating the lowest eigenvalue using perturbation theory up
to order p + 1:

E0 = E(1)
0 γ + E(2)

0 γ
2
+ . . .

from which

1
E0(γ )p

=
1

γ p(E(1)
0 )p

− p
E(2)
0

γ p−1(E(1)
0 )p+1

+
p
2

1

γ p−2(E(1)
0 )p+2

(
(p + 1)(E(2)

0 )2 − 2E(1)
0 E(3)

0

)
+ · · ·

Specifically, for p = 2 and p = 3 one has

1
E0(γ )2

=
1

γ 2
[
E(1)
0

]2 −
2E(2)

0

γ

[
E(1)
0

]3 +

3
[
E(2)
0

]2
− 2E(1)

0 E(3)
0[

E(1)
0

]4 + O(γ )

1
E0(γ )3

=
1

γ 3
[
E(1)
0

]3 −
3E(2)

0

γ 2
[
E(1)
0

]4 −

3
(

−2
[
E(2)
0

]2
+ E(1)

0 E(3)
0

)
γ

[
E(1)
0

]5
+

−10
[
E(2)
0

]3
+ 12E(1)

0 E(2)
0 E(3)

0 − 3
[
E(1)
0

]2
E(4)
0[

E(1)
0

]6 + O(γ )

• The explicit expressions for the exact sum rules of order 2 and 3 are

Z̃2 =

∫
G(0)(Ω1,Ω2)Σ(Ω2)G(0)(Ω2,Ω1)Σ(Ω1)dΩ1dΩ2

−
1
2π

∫
Σ(Ω1)G(1)(Ω1,Ω2)Σ(Ω2)dΩ1dΩ2

−

3
[
E(2)
0

]2
− 2E(1)

0 E(3)
0[

E(1)
0

]4
Z̃3 =

∫
G(0)(Ω1,Ω2)Σ(Ω2)G(0)(Ω2,Ω3)Σ(Ω3)G(0)(Ω3,Ω1)Σ(Ω1)dΩ1dΩ2dΩ3

−
3
2π

∫
Σ(Ω1)G(1)(Ω1,Ω2)Σ(Ω2)G(0)(Ω2,Ω3)Σ(Ω3)dΩ1dΩ2dΩ3

+
3

(4π )2

(∫
Σ(Ω1)G(2)(Ω1,Ω2)Σ(Ω2)dΩ1dΩ2

) (∫
Σ(Ω3)dΩ3

)

−

−10
[
E(2)
0

]3
+ 12E(1)

0 E(2)
0 E(3)

0 − 3
[
E(1)
0

]2
E(4)
0[

E(1)
0

]6
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The expressions for higher order sum rules can be worked out in a completely similar way.
Before being able to cast Z̃2 and Z̃3 into a simpler form, we need to apply perturbation theory
to derive the explicit expression for E0(γ ) up to a given order. This is done in the next section.

3. Perturbation theory for the zero mode

Consider the eigenvalue equation for the lowest mode

(−∆+ γ )ψ0(Ω) = E0Σ(Ω)ψ0(Ω) (17)

and assume γ → 0 and

E0 =

∞∑
k=1

E(k)
0 γ

k (18a)

ψ0(Ω) =Y00(Ω) +

∞∑
k=1

ψ
(k)
0 (Ω)γ k (18b)

By inserting these expressions inside the Helmholtz equation (17) one obtains a system of
equations, one for each order in γ .

Starting to zero order, one has the equation

−∆ψ
(0)
0 = 0 (19)

from which we obtain the leading contributions to the eigenvalue and to the wave function
(normalized over the total solid angle)

E(0)
0 = 0 (20a)

ψ
(0)
0 (Ω) = Y00(Ω) (20b)

To first order one needs to solve the equation

−∆ψ
(1)
0 + ψ

(0)
0 = E(1)

0 Σψ
(0)
0 (21)

Using Eq. (19), we can project equation (21) over the zero mode, obtaining

E(1)
0 =

4π∫
Σ(θ, φ)dΩ

. (22)

We now write the first order correction to the wave function as

ψ
(1)
0 (θ, φ) =

∞∑
l=1

l∑
m=−l

c(1)lm Ylm(θ, φ) (23)

and substitute inside Eq. (21).
With straightforward algebra we obtain

ψ
(1)
0 (θ, φ) =

E(1)
0

√
4π

∫
G(0)(Ω,Ω ′)Σ(Ω ′)dΩ ′ (24)

where G(0) is the regularized Green’s function introduced earlier.
To order k (k ≥ 2) one obtains the equation

(−∆)ψ (k)
0 (θ, φ) + ψ

(k−1)
0 (θ, φ) = Σ(θ, φ)

k−1∑
j=1

E(j)
0 ψ

(k−j)
0 (θ, φ) (25)
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The corrections of order k to the eigenvalue and to the eigenfunction are obtained as done to
order 1 and they read

E(k)
0 = −

∑k−1
j=1 E(j)

0 ⟨ψ
(0)
0 |Σ |ψ

(k−j)
0 ⟩

⟨ψ
(0)
0 |Σ |ψ

(0)
0 ⟩

(26a)

ψ
(k)
0 (Ω) =

k∑
j=1

E(j)
0

∫
dΩ ′G(0)(Ω,Ω ′)Σ(Ω ′)ψ (k−j)

0 (Ω ′)

−

∫
dΩ ′G(0)(Ω,Ω ′)ψ (k−1)

0 (Ω ′) (26b)

The expressions for the perturbative corrections to the energy of the zero mode up to fourth
order, obtained solving recursively Eqs. (26a) and (26b), are reported in Appendix A.

4. Exact sum rules of given order

The final expressions for the sum rules can now be worked out, using the explicit expressions
for the perturbative corrections to E0 obtained in the previous section. We will concentrate only on
the sum rules of order two and three, although similar expressions can be obtained also for sum
rules of higher order.

In particular, for γ → 0, we find that

Z2(γ ) ≈

(∫
Σ(Ω)dΩ
4π

)2 1
γ 2 +

∫
Σ(Ω)G(0)(Ω,Ω ′)Σ(Ω ′)dΩdΩ ′

2π
1
γ

+

[∫
G(0)(Ω,Ω ′)Σ(Ω ′)G(0)(Ω ′,Ω)Σ(Ω)dΩdΩ ′

−

∫
Σ(Ω)G(1)(Ω,Ω ′)Σ(Ω ′)dΩdΩ ′

2π

]
+ O(γ )

and

1
E2
0 (γ )

≈

(∫
Σ(Ω)dΩ
4π

)2 1
γ 2 +

∫
Σ(Ω)G(0)(Ω,Ω ′)Σ(Ω ′)dΩdΩ ′

2π
1
γ

+

[
2

∫
Σ(Ω)G(0)(Ω,Ω ′)Σ(Ω ′)G(0)(Ω ′,Ω ′′)Σ(Ω ′′)dΩdΩ ′dΩ ′′∫

Σ(Ω)dΩ

−

(∫
Σ(Ω)G(0)(Ω,Ω ′)Σ(Ω ′)dΩdΩ ′∫

Σ(Ω)dΩ

)2

−

∫
Σ(Ω)G(1)(Ω,Ω ′)Σ(Ω ′)dΩdΩ ′

2π

]
+O(γ )

As a result, we see that the singularities in Z̃2(γ ) cancel identically for γ → 0, as anticipated,
and the sum rule of order two is therefore

∞∑
n=1

1
E2
n

=

∫
G(0)(Ω,Ω ′)Σ(Ω ′)G(0)(Ω ′,Ω)Σ(Ω)dΩdΩ ′

−2

∫
Σ(Ω)G(0)(Ω,Ω ′)Σ(Ω ′)G(0)(Ω ′,Ω ′′)Σ(Ω ′′)dΩdΩ ′dΩ ′′∫

Σ(Ω)dΩ

+

(∫
Σ(Ω)G(0)(Ω,Ω ′)Σ(Ω ′)dΩdΩ ′∫

Σ(Ω)dΩ

)2



8 P. Amore / Annals of Physics 412 (2020) 168041

In the case of the sum rule of order three we also obtain that the singularities for γ → 0 cancel
out identically inside Z̃3(γ ) and the sum rule reads

∞∑
n=1

1
E3
n

=

∫
G(0)(Ω,Ω ′)Σ(Ω ′)G(0)(Ω ′,Ω)Σ(Ω)G(0)(Ω ′,Ω ′′)Σ(Ω ′′)dΩdΩ ′dΩ ′′

−3

∫
Σ(Ω)G(0)(Ω,Ω ′)Σ(Ω ′)G(0)(Ω ′,Ω ′′)Σ(Ω ′′)G(0)(Ω ′′,Ω ′′′)Σ(Ω ′′′)dΩdΩ ′dΩ ′′dΩ ′′′∫

Σ(Ω)dΩ

+3

(∫
Σ(Ω)G(0)(Ω,Ω ′)Σ(Ω ′)dΩdΩ ′

)(∫
Σ(Ω)dΩ

)2
·

(∫
Σ(Ω)G(0)(Ω,Ω ′)Σ(Ω ′)G(0)(Ω ′,Ω ′′)Σ(Ω ′′)dΩdΩ ′dΩ ′′

)
−

(∫
Σ(Ω)G(0)(Ω,Ω ′)Σ(Ω ′)dΩdΩ ′∫

Σ(Ω)dΩ

)3

Using the definitions in Appendix B one has

∞∑
n=1

1
E2
n

= J (0,0)
1 −

1
2π

I(0,0)
2 +

(
I(0)
1

4π

)2

∞∑
n=1

1
E3
n

= J (0,0,0)
2 −

3
4π

I(0,0,0)
3 +

3
16π2 I

(0)
1 I(0,0)

2 −

(
I(0)
1

4π

)3 (27)

As an application we consider the density

Σ(θ, φ) = 1 + κ Y10(θ, φ) = 1 +
1
2

√
3
π
κ cos(θ )

where the requirement Σ(Ω) > 0 on the sphere implies the condition |κ| < 2
√
π/3 ≈ 2.04665.

We have calculated explicitly the integrals appearing in the sum rules of order two and three:

I(0)
1 =

κ2

2

I(0,0)
2 =

κ2

4

I(0,0,0)
3 =

κ2

8
+

κ4

120π

J (0,0)
1 = 1 +

κ2

8π

J (0,0,0)
2 = 2(ζ (3) − 1) +

3κ2

32π
The explicit expressions for the sum rules (27) are

∞∑
n=1

1
E2
n

= 1 +
κ4

64π2

∞∑
n=1

1
E3
n

= 2(ζ (3) − 1) +
11κ4

640π2 −
κ6

512π3

(28)

In Fig. 1 we have compared the exact result for
⏐⏐⏐∑∞

n=1
1
E2n

− 1
⏐⏐⏐ =

κ4

64π2 , with the approximate
sum rule obtained calculating the eigenvalues numerically with the Rayleigh–Ritz method, using
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Fig. 1.
⏐⏐⏐∑∞

n=1
1
E2n

− 1
⏐⏐⏐ as a function of κ . The solid line is the exact result κ4

64π2 , while the dotted, dashed and dot-dashed
lines are the numerical results obtained approximating the eigenvalues with the Rayleigh–Ritz method with lmax = 30,
60 and 90 respectively.

Fig. 2.
⏐⏐⏐∑∞

n=1
1
E3n

− 2(ζ (3) − 1)
⏐⏐⏐ as a function of κ . The solid line is the exact result 11κ4

640π2 −
κ6

512π3 , while the dotted,
dashed and dot-dashed lines are the numerical results obtained approximating the eigenvalues with the Rayleigh–Ritz
method with lmax = 30, 60 and 90 respectively.

the states with 1 ≤ l ≤ lmax and |m| ≤ l, respectively with lmax = 30 (dotted curve), lmax = 60

(dashed curve) and lmax = 90 (dot-dashed curve).

The numerical sum rule is calculated using the lowest N numerical eigenvalues (N = 320,

1240 and 2760, respectively) and completing the series using the asymptotic behavior predicted
by Weyl’s law, E(Weyl)

n ≈ n, for n → ∞:

∞∑
n=1

1
E2
n

≈

N∑
n=1

1(
E(RR)
n

)2 +

∞∑
n=N+1

1(
E(Weyl)
n

)2 (29)

A similar result for the case of the sum rule of order three is displayed in Fig. 2.
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5. Conclusions

We have used the method of Ref. [11] to derive general integral formulas for the sums of inverse
powers of the eigenvalues of the Laplacian on a heterogeneous sphere with arbitrary density. Due to
the presence of a zero mode, i.e. of a mode with vanishing eigenvalue, the spectral sum rules need to
be ‘‘renormalized’’, by taking out the singular contribution of the fundamental mode: this is achieved
by performing an infinitesimal shift γ on the Laplacian, thus rendering all the eigenvalues finite and
then subtracting the contributions stemming from the lowest eigenvalue, for a finite infinitesimal
shift (calculated using perturbation theory). The resulting sum rule is now analytical at γ = 0 and
it corresponds to the sum over the non-vanishing eigenvalues.

We have applied our general formulas to a non–trivial problem, corresponding to the variable
density Σ(θ, φ) = 1 +

1
2

√
3
π
κ cos θ , with |κ| < 2

√
π
3 , obtaining the exact expressions for the sum

rules of order two and three as functions of κ . These results have been verified numerically using
the Rayleigh–Ritz method to calculate numerically the eigenvalues.
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Appendix A. Corrections to the lowest eigenvalue

We report in the following the explicit expression for the corrections to the lowest eigenvalue
of a heterogeneous sphere calculated using perturbation theory:

E(0)
0 = 0

E(1)
0 =

4π∫
Σ(Ω)dΩ

E(2)
0 = −(4π )2

∫
Σ(Ω)G(0)(Ω,Ω ′)Σ(Ω ′)dΩdΩ ′(∫

Σ(Ω)dΩ
)3

E(3)
0 = (4π )2

∫
Σ(Ω)G(1)(Ω,Ω ′)Σ(Ω ′)dΩdΩ ′(∫

Σ(Ω)dΩ
)3

− (4π )3
∫
Σ(Ω)G(0)(Ω,Ω ′)Σ(Ω ′)G(0)(Ω ′,Ω ′′)Σ(Ω ′′)dΩdΩ ′dΩ ′′(∫

Σ(Ω)dΩ
)4

+ 2(4π )3
(∫
Σ(Ω)G(0)(Ω,Ω ′)Σ(Ω ′)dΩdΩ ′

)2(∫
Σ(Ω)dΩ

)5
E(4)
0 = −(4π )2

∫
Σ(Ω)G(2)(Ω,Ω ′)Σ(Ω ′)dΩdΩ ′(∫

Σ(Ω)dΩ
)3

+ 2(4π )3
∫
Σ(Ω)G(1)(Ω,Ω ′)Σ(Ω ′)G(0)(Ω ′,Ω ′′)Σ(Ω ′′)dΩdΩ ′dΩ ′′(∫

Σ(Ω)dΩ
)4

−
(4π )3(∫
Σ(Ω)dΩ

)5 [∫ Σ(Ω)G(1)(Ω,Ω ′)Σ(Ω ′)dΩdΩ ′

∫
Σ(Ω)G(0)(Ω,Ω ′)Σ(Ω ′)dΩdΩ ′

+ 4π
∫
Σ(Ω)G(0)(Ω,Ω ′)Σ(Ω ′)G(0)(Ω ′,Ω ′′)Σ(Ω ′′)G(0)(Ω ′′,Ω ′′′)Σ(Ω ′′′)dΩdΩ ′dΩ ′′dΩ ′′′

]
+ 5(4π )4

(∫
Σ(Ω)G(0)(Ω,Ω ′)Σ(Ω ′)dΩdΩ ′

) (∫
Σ(Ω)G(0)(Ω,Ω ′)Σ(Ω ′)G(0)(Ω ′,Ω ′′)Σ(Ω ′′)dΩdΩ ′dΩ ′′

)(∫
Σ(Ω)dΩ

)6
− 5(4π )4

(∫
Σ(Ω)G(0)(Ω,Ω ′)Σ(Ω ′)dΩdΩ ′

)3(∫
Σ(Ω)dΩ

)7
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Appendix B. Some integrals

We consider the density of the general form

Σ(Ω) = 1 +

∞∑
l=1

l∑
m=−l

clmYlm(Ω) (B.1)

where clm are arbitrary coefficients such that Σ(Ω) > 0 over the sphere.
The total mass is simply given by∫

Σ(Ω)dΩ = 4π

Let us define the integrals:

I(q)
1 ≡

∫
Σ(Ω)G(q)(Ω,Ω ′)Σ(Ω ′)dΩdΩ ′

I(q,p)
2 ≡

∫
Σ(Ω)G(q)(Ω,Ω ′)Σ(Ω ′)G(p)(Ω,Ω ′)Σ(Ω ′′)dΩdΩ ′dΩ ′′

I(q,p,r)
3 ≡

∫
Σ(Ω)G(q)(Ω,Ω ′)Σ(Ω ′)G(p)(Ω ′,Ω ′′)Σ(Ω ′′)G(r)(Ω ′′,Ω ′′′)Σ(Ω ′′′)dΩdΩ ′dΩ ′′dΩ ′′′

J (q,p)
1 ≡

∫
Σ(Ω)G(q)(Ω,Ω ′)Σ(Ω ′)G(p)(Ω ′,Ω)dΩdΩ ′

J (q,p,r)
2 ≡

∫
Σ(Ω)G(q)(Ω,Ω ′)Σ(Ω ′)G(p)(Ω ′,Ω ′′)Σ(Ω ′′)G(r)(Ω ′′,Ω)dΩdΩ ′dΩ ′′

We have

I(q)
1 ≡

∫
Σ(Ω)G(q)(Ω,Ω ′)Σ(Ω ′)dΩdΩ ′

=

′∑
l,m

∫
Ylm(Ω)Y ⋆lm(Ω

′)
(l(l + 1))q+1

⎛⎝1 +

′∑
l1,m1

cl1m1Yl1m1 (Ω)

⎞⎠
·

⎛⎝1 +

′∑
l2,m2

cl2m2Yl2m2 (Ω)

⎞⎠ dΩdΩ ′

=

′∑
l,m

|clm|
2

(l(l + 1))q+1 (B.3a)

where we have defined
∑

′

l,m flm ≡
∑

∞

l=1
∑l

m=−l flm.
Similarly we can calculate the remaining integrals:

I(q,p)
2 =

′∑
l,m

′∑
l′,m′

∫
Ylm(Ω)Y ⋆lm(Ω

′)Yl′m′ (Ω ′)Y ⋆l′m′ (Ω ′′)
(l(l + 1))q+1(l′(l′ + 1))p+1⎛⎝1 +

′∑
l1,m1

c⋆l1m1
Y ⋆l1m1

(Ω)

⎞⎠⎛⎝1 +

′∑
l2,m2

cl2m2Yl2m2 (Ω
′)

⎞⎠
⎛⎝1 +

′∑
l3,m3

cl3m3Yl3m3 (Ω
′′)

⎞⎠ dΩdΩ ′dΩ ′′
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=

′∑
l,m

|clm|
2

(l(l + 1))p+q+2

+

′∑
l,m

′∑
l′,m′

′∑
l2,m2

c⋆lmcl′m′cl2m2

(l(l + 1))q+1(l′(l′ + 1))p+1Wl,m,l′,m′,l2,m2 (B.4a)

where

Wl1,m1,l2,m2,l3,m3 ≡

∫
Y ⋆l1,m1

(Ω)Yl2,m2 (Ω)Yl3,m3 (Ω)dΩ

=(−1)m1

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3
0 0 0

)
·

(
l1 l2 l3

−m1 m2 m3

)
and

I(q,p,r)
3 =

′∑
l,m

′∑
l′,m′

′∑
l′′,m′′

∫
Ylm(Ω)Y ⋆lm(Ω

′)Yl′m′ (Ω ′)Y ⋆l′m′ (Ω ′′)Yl′′m′′ (Ω ′′)Y ⋆l′′m′′ (Ω ′′′)
(l(l + 1))q+1(l′(l′ + 1))p+1(l′′(l′′ + 1))r+1⎛⎝1 +

′∑
l1,m1

c⋆l1m1
Y ⋆l1m1

(Ω)

⎞⎠⎛⎝1 +

′∑
l2,m2

cl2m2Yl2m2 (Ω
′)

⎞⎠
⎛⎝1 +

′∑
l3,m3

cl3m3Yl3m3 (Ω
′′)

⎞⎠⎛⎝1 +

′∑
l4,m4

cl4m4Yl4m4 (Ω
′′′)

⎞⎠ dΩdΩ ′dΩ ′′dΩ ′′′

=

′∑
l,m

|clm|
2

(l(l + 1))p+q+r+3

+

′∑
l,m

′∑
l′,m′

′∑
l1,m1

c⋆lmcl′m′cl1m1Wl,m,l′,m′,l1,m1

·

[
1

(l(l + 1))q+1(l′(l′ + 1))p+r+2 +
1

(l(l + 1))q+p+2(l′(l′ + 1))r+1

]
+

′∑
lm

′∑
l′m′

′∑
l2m2

′∑
l3m3

c⋆lmcl2,m2cl3,m3cl′′m′′

(l(l + 1))q+1(l′(l′ + 1))p+1(l′′(l′′ + 1))r+1Wl,m,l′,m′,l2,m2Wl′,m′,l,m,l3,m3

(B.6a)

Similarly we have

J (q,p)
1 =

′∑
lm

′∑
l′m′

∫
Ylm(Ω)Y ⋆lm(Ω

′)Yl′m′ (Ω ′)Y ⋆l′m′ (Ω)
(l(l + 1))q+1(l′(l′ + 1))p+1

·

⎛⎝1 +

′∑
l1m1

cl1m1Yl1m1 (Ω
′)

⎞⎠⎛⎝1 +

′∑
l2m2

c⋆l2m2
Y ⋆l2m2

(Ω)

⎞⎠ dΩdΩ ′

=

′∑
lm

1
(l(l + 1))p+q+2 + 2

′∑
lm

′∑
l1m1

cl1,m1

(l(l + 1))p+q+2Wl,m,l,m,l1,m1
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+

′∑
lm

′∑
l′m′

′∑
l1m1

′∑
l2m2

c⋆l2,m2
cl1,m1

(l(l + 1))q+1(l′(l′ + 1))p+1

· Wl,m,l′,m′,l1,m1W
⋆
l,m,l′,m′,l2,m2

(B.7a)

and

J (q,p,r)
2 =

′∑
l,m

′∑
l′,m′

′∑
l′′,m′′

∫
Ylm(Ω)Y ⋆lm(Ω

′)Yl′m′ (Ω ′)Y ⋆l′m′ (Ω ′′)Yl′′m′′ (Ω ′′)Y ⋆l′′m′′ (Ω)
(l(l + 1))q+1(l′(l′ + 1))p+1(l′′(l′′ + 1))r+1⎛⎝1 +

′∑
l1,m1

cl1m1Yl1m1 (Ω)

⎞⎠⎛⎝1 +

′∑
l2,m2

cl2m2Yl2m2 (Ω
′)

⎞⎠
⎛⎝1 +

′∑
l3,m3

cl3m3Yl3m3 (Ω
′′)

⎞⎠ dΩdΩ ′dΩ ′′

=

′∑
lm

1
(l(l + 1))p+q+r+3 + 3

′∑
lm

′∑
l1m1

cl1m1

(l(l + 1))p+q+r+3Wl,m,l,m,l1,m1

+ 3
′∑
lm

′∑
l′m′

′∑
l1m1

′∑
l2m2

cl1,m1cl2,m2

(l(l + 1))q+1(l′(l′ + 1))p+r+2Wl′,m′,l,m,l1,m1Wl,m,l′,m′,l2,m2

+

′∑
lm

′∑
l′m′

′∑
l′′m′′

′∑
l1m1

′∑
l2m2

′∑
l3m3

cl1m1cl2m2cl3m3

(l(l + 1))q+1(l′(l′ + 1))p+1(l′′(l′′ + 1))r+1

· Wl′′,m′′,l,m,l1,m1Wl,m,l′,m′,l2,m2Wl′,m′,l′′,m′′,l3,m3 (B.8a)
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