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We define the entropic bounds, i.e. minimal uncertainty for pairs
of unitary testers in distinguishing between unitary transforma-
tions not unlike the well known entropic bounds for observables.
We show that in the case of specific sets of testers which
pairwise saturate the trivial zero bound, the testers are all
equivalent in the sense their statistics are the same. On the
other hand, when maximal bounds are saturated by such sets of
testers, the unitary operators would form unitary bases which
are mutually unbiased. This resembles very much the role of
mutually unbiased bases in maximising the entropic bounds for
observables. We show how such a bound can be useful in certain
quantum cryptographic protocols.
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1. Introduction

Measurements of observables in classical physics is aimed at an objective result regarding an
inherent property of a system and in principle the various observables can be measured with
arbitrary precision. In the case of physics on the other hand, there are bounds on the amount of
information one can have when measuring two incompatible observables. Originally denoted as
‘Heisenberg’s Uncertainty Principle’ and later made rigorous by Robertson, a desirable formulation,
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in the context of entropic bounds was first given by Deutsch [1] and later refined by Maassen
and Uffink [2]. The entropic bounds for a pair of incompatible measurements, in the context of
‘preparation uncertainty’ reflects the impossibility of predicting both outcomes when making such
measurements [3]. For a review on the subject, we refer to [3,4].

While such a bound has received a fair amount of treatment, issues related to determining
unknown quantum processes is another matter entirely. Determining an unknown quantum trans-
formation requires not so much observables, but procedures or strategies that would provide us
with information regarding the nature of the transformation. It involves the preparation of some
state, which is subjected to the unknown transformation and finally measured to determine how it
has evolved. Such strategies can be formalised in the context of ‘process positive-operator-valued
measure’ (PPOVM) or ‘quantum testers’ [5,6]. Quantum testers can be understood as a generalisation
of positive-operator-valued measures (POVM). While the latter is a set of operators (positive and
summing to the identity) used to determine the probability for selected outcomes of measurements
in relation to quantum states, the former is a set of operators used to determine the probability for
outcomes of process determination.

Moving from uncertainties in measuring observables for quantum states, in the case of pairs of
testers, we ask if there would be some bounds on the uncertainty in the results of two differing
testing of some transformation. This can be seen almost as the direct consequence of lower
bounding entropies in the case of observables to one involving quantum testers.

More precisely, we will frame the problem within the context of guessing games inline with
the notion of preparation uncertainty [4]. In short, preparation uncertainty for observables can be
understood as follows: a party, would prepare and distribute quantum states to another who would
measure in either one of two bases. Informed of the bases chosen, the party who prepared the
state would have to guess the result of the measurement. Incompatibility of measurement bases
would imply that the results cannot be predicted with certainty. Hence, analogously for our study,
we propose the incompatibility of testers to reflect the inability of predicting the outcomes when
testing some transformation. We should note that our take on incompatibility here is different from
that in [6]; which discusses the issue of ‘joint testing’ i.e. testers are incompatible if the statistics of
their outcomes cannot be reproduced when taking the marginals of the probability distribution of
the outcomes for a third joint tester. This can be seen as the analogy to the issue of ‘measurement
uncertainty’.

In this work, we shall consider testing procedures which use bipartite quantum states (com-
prising of two d-dimensional quantum states that may be entangled) as input to test unitary
transformations and measurements thereafter of the transformed states. The measurements made,
as commonly in practice, are projective measurements. Unitary transformations are, in principle,
how ideal (closed) quantum systems actually evolve and thus represent a fundamental interest.
Despite its simplicity, we discuss some interesting implications. In particular we show the possibility
of singling out features of the unitary operators tested by looking at pairs of testers which
saturates minimal or maximal entropic bound. This has applications in more fields like quantum

cryptography [7].
2. Prelude: Mutually unbiased basis

Before starting, it is instructive to briefly surf on a related matter; i.e. mutually unbiased basis

(MUB) [8]. Consider two orthonormal bases, {|ag), ..., |ag—1)} and {|Bo), ..., |Ba—1)} for Hy. The
two bases are called MUB if
el )l = 1/d,¥i,j,=0,...,d =1 (1)

thus reflecting the equiprobable transition between states in one basis to another. The notion
of MUB plays an important role in establishing strong uncertainty relations [3,4]. As a matter
of fact, when measurements of any quantum system is made in the basis V = ({|V;)(V;|} and
W = {|W;)(W;|}, the well known uncertainty relation

H(V) + H(W) > — log max | (V;|W;)|? (2)
1]
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holds true, with H(-) the Shannon entropy of the outcomes. The bound is saturated if and only if
{IVo), ..., [V4_1)} and {|Wq), ..., |[W4_1)} are MUB.

In a complete analogy to MUB for Hilbert spaces, Ref. [9] studied the notion of mutually unbiased
unitary basis (MUUB) for M(d, C). Two distinct orthogonal basis, {Py, ..., Pp_1} and {Qo, ..., Qp_1}
comprising of unitary transformations for some D-dimensional subspace of the vector space M(d, C)
are sets of MUUB if

2
‘Tr(PiTQj)‘ =k, Vij,=0,....D—1 (3)
for some constant, x, which takes on value 1 and d for a d*> and d dimensional subspace of M(d, C)
respectively [9,10]. The definition for MUUB was motivated by the fidelity definition of Ref. [11],
which can be written as |Tr(uTug)|2 /d?; which describes how well one unitary operator u compares
to a guess u, for it, given a single use of the operation.

3. Testers

Consider an unknown process, &, that acts on a d-dimensional quantum system. To gain any in-
formation regarding the nature of the process, one can submit a d-dimensional quantum system, as a
probe, (possibly entangled with some ancilla) to be acted upon by that process. A measurement can
subsequently be made thereafter on the whole (including ancilla) quantum system. Mathematically,
such a setting can be captured in the context of quantum testers. The following quick description of
quantum testers is very much derived from Ref. [6] and is referred to for a more detailed treatment.

Let the process £ be a completely positive trace-nonincreasing linear map that maps operators
on the Hilbert space #® to that of % (superscripts are used as labels so as not to confuse
with subscripts denoting dimensionality). The above setting can rigorously be noted as a pair,
T = (p, {P;}), where p is the probe-ancilla initial density operator on the Hilbert space #@ @ 7o)
with #(®) as the Hilbert space for the ancilla and {P;} is a POVM on #® ® #(®), the output-ancilla
space. The probability, py, for an outcome k is thus given by

pr = Tr[Pu(€ ® 1) p)]. (4)

With |¥) = Zf’;olh)li) e 19 ® #@ as an unnormalised maximally entangled state and E :=
(€ ® Z)(|w)(¥]) the Choi operator for &, Eq. (4) can be written as

prx = Tr[TyE], (5)
with
Tk = Tranc[(Pk @ I)I® ® Sp'S)]. (6)

Here S is the SWAP operator and p!, the partial transpose of p on #, A quantum tester (or
PPOVM) is then defined as the set {T;} with the conditions being the positivity of T; as well as
Z,‘ T, = I(b) ® [Tranc(p)]t-1

However, for our intent and purposes in what follows, we will not make explicit use of the
operator structure in the definition above. Rather we will refer to the main ingredients of the
quantum testers; namely the input as well as the measurement operators. To avoid confusion in
nomenclature, we will just use the term tester as opposed to quantum tester or PPOVM. We will
further restrict our work to unitary testers, i.e. testers that are used to test unitary transformations
with pure states for input (written as ket states) and projective measurements at the end. Let us
thus provide the formal definition of testers.

Definition 1. Consider a unitary operator, u € U(d), to be determined (tested), where ¢/(d) is the
unitary group acting on #q4. A tester, 7 = (|¥), {|xi){xil}), is a setup consisting of a pure state
[y € Hqg ® Hq as an input to undergo the tested unitary transformation, u € ¢/(d), and a set of
orthogonal measurement projectors ({|x:) (x|} where > |xi){xi| = Is ® Is) to subsequently measure
the transformed state.

1 It is worth noting that the quantum tester is referred more specifically as a quantum 2-tester in [12].
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We note that in our definition, the ancilla for the input state is also a d-dimensional quantum
system and the unitary to be tested would be acting on only on one half of a bipartite input state (not
necessarily separable). It would make sense to consider testers designed to allow one to distinguish
between unitary operators in a certain set, S = {u; ® I, .. ., up ® Iy}, where D = d, d*> depending
on the number of projection measurement operators summing up to the identity I; ® I5. The case
for d can be understood as having completely separable bipartite states for input (ancilla-free [5])
and the measurement operators would only project onto states defining a d-dimensional subspace
of Hg @ Hg.

4. Uncertainties and entropic bounds

It is instructive to define properly what we mean when we wish to identify entropic bounds for
a pair of testers. Motivated by the guessing game, inline with the notion of preparation uncertainty
(mentioned earlier) reflecting the uncertainty principle for pairs of observables, we define similarly.
Let a party, Ailin, prepare a large number of identical unitary transformations, u from some subset
acting on the Hilbert space 4 and submit to another, Boris, for testing. Boris may choose either
one of two testers, 71 = (|¥), {|xi)(xil}) and & = (|p), {|£i){¢i|}) and thereafter informs Ailin of the
choice of testers.

Let the results of a tester T be described by a sample space of {t; | i = 1, ..., n} with assigned
probabilities p;, . . ., p, respectively. The entropic bound for the pair of testers 7; and 7> when testing
the transformation u, is the smallest value for a number c, such that

H(n,u)+H(%,u) > c, Yu e u(d) (7)

with the Shanon entropy H(7) = — ), p?’) logp?).
The entropic bound informs us of Ailin’s uncertainty in guessing Boris’s testers’ outcome.
‘Incompatibility’ of testers here mean that Ailin cannot predict both Boris’s outcome with certainty.
The similarity with the inequality (2) is obvious. In the following, we shall consider very
specific cases of testers; one where we consider sets of testers with each one having members with
orthonormal states as inputs. Let us thus define, towards this end, a complete set of testers as follows.

Definition 2. A set ¥ = {7,%,..., 7} with the inputs |y;) for each tester 7 and common
measurements, is complete if () = §; and Z?W,-)(w,-l = Iyyd.

The use of a set of orthonormal states as above in testers is actually quite the standard in
quantum process tomography [13-15], and therefore represents a very practical scenario. We shall
see how pairs of testers, each taken from a complete set, which saturate the minimal as well as
maximal entropic bounds reveal certain interesting features of the unitary operators tested. This
would be a reminiscence of the matter of entropic bounds of observables in distinguishing between
quantum states.

4.1. Trivial bound for a pair of testers

Let us consider the case for the minimal bound; i.e. being equal to 0, which we shall refer to
as the ‘trivial bound'’. As the trivial bound implies that one can precisely predict the outcome of
the testers, we can say that such testers are compatible. Trivial entropic bounds together with
distinguishability of transformations for a common set of unitaries tested provide an interesting
picture of compatibility of testers which can be further expanded to the equivalence notion.

Definition 3. Two testers 71 = (|¥), {|xi)(xil}) and % = (|¢), {1£) (1)) are defined as equivalent
for a unitary u if their probabilities distribution for the outcomes are equal; i.e. Vi, |{x;|U|v1)]> =

|(¢j|U|¢1)|? for some j with U = u ® I.

It is easy to show that the relation defined above is indeed an equivalence relation. In what
follows, we demonstrate how, given complete sets of testers like the above, testers derived from
differing sets saturating the minimal entropic bounds can be equivalent. Let us first determine the
condition of distinguishability of transformation by testers.
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Proposition 4. Consider a tester 7 = (|v), {|xi){(xil}) and H(T, u1) = H(7, uy) = 0 for some u, and
up. Let UZJr =w Il and Uy = uy ® 1. UZTUl is an eigenoperator for |v), if and only if T cannot
distinguish between Uy and U,.

Proof. Let || = |m21| = 1 be some global phase factors. H(7, u;) = 0 implies that U;|y) = 71| xm)
for some m. If U, U, is an eigenoperator for [y), then

USULIY) = moaa )

Uilyr) = Uama|¥r) = 71l Xm)
Or

Ualyr) = 73 701 Xm)

i.e. both Uy and U, map |¢) to |xm) (except for some global phase factor) and 7 cannot distinguish
between them.

On the other hand, if 7 cannot distinguish between U; and U,, then both U; and U, map |¢) to
|xm) (except for some global phase factor, || = |72 = 1). Hence

Uily) = w1l xm) 5 U2l¥) = 72l xm) (8)
and

75 1) = Ujlm)
thus

U Ui Iy) = mmy 1Y) ; (9)
ie., U2TU1 is an eigenoperator for |). O

The contrapositive of this proposition simply tells us that for H(7, uy) = H(7, u;) = 0 as above,
7 can distinguish between U; and U, if and only if U2T U; is an not eigenoperator for |i).

The distinguishability by 7 above also implies (\MUZT Ui|y) = 0. It is worth noting that despite
the use of U; and U,, the issue of distinguishability here is obviously really between u; and u;.

Proposition 5. Consider the complete set of testers T and T, and let { = {Uy, ..., Up} where
vm, n, ULU, is neither an eigenoperator for any inputs from T nor <. Iffim = (|¥i), {Ixa) (xal}) € T4
and fg(z) = (1), {IZv) (¢s]}) € =, saturate the trivial entropic bound for any unitary operators in &,
then the following statements follow;

S1 il is a basis for some D dimensional subspace of the set of operators M(d, C)

S2 &, and fz;(]) and fg(z) are equivalent for any unitary in the subspace defined by span(4l)

Proof. Consider two unitaries Uy, = uy, @ Iy, Uy = u, Iy € L. If
Vi j, H(7 Y ) + H(ZP, ) = 0, (10)

with x = m, n, then we obviously have H(fri(”, Uy) = H(‘Ii(”, u,) = 0. Proposition 4 tells us that as
U,LUH is neither an eigenoperator for all inputs in ¥; nor ¥,, thus Uy, and U, can be distinguished
by all testers in both ¥; and ¥,. Writing {|v;)} as inputs for testers from ¥, (wilU,i,Unlw,-) =0 and
Zi(l/de;lUnhp,‘) = Tr[U,EUn] = 0.2 Thus all elements in £( are orthogonal to one another and S1

follows.>

2 We could have chosen the case for T, with no loss of generality.

3 1t is worth noting that S1 can be established strictly based on the distinguishability of transformation by a single
complete set of testers.
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Any unitary operator defined in the subspace of the basis 4l can be written as ), axUx. Such
a unitary acting on the input |v;) or |¢;) gives Y, axUelvi) — Y, aklxu) and Y, axUslgy) —
> ¢ AklSw) respectively. We have used |x) and |¢y)) to denote the action of Uy on |;) and |¢;)
respectively. Thus the probability distributions, given by {|g;|?,i =1, ..., d}, are the same for both
the testers. This gives S2. O

The uncertainties in both cases when measurements are made are also identical, given by
Dk |ax|? log,(1/]a|?). Thus, such sets of testers which saturate the trivial bound can be used to
test any unitary in the subspace spanned by the basis 4.

It is worth noting that as the unitaries tested only act on half the bipartite input state,
Proposition 4 is really only relevant to ancilla-free type testers. This is easily seen as the eigenstates
for any operator of the form u®I; with u € ¢4(d) is a separable state in #4®H4. Hence, for entangled
inputs, Proposition 5 can be stated simply in terms of the saturation of the trivial bounds alone.

4.2. Maximal bounds

We have seen how trivial bounds provide a picture of compatibility of testers. A maximal
bound for a pair of testers on the other hand, gives us the notion of testers which are maximally
incompatible. This is essentially the case where predictability of the outcome for one tester when
testing a transformation implies complete uncertainty of the other. Let us assume the maximal
bound to be M. Let the set ¥; and %, each be a complete sets of testers. Consider a pair of testers,

De %7 and T 2 ¢ %, for any i, j, saturating the maximal entropic bound, M, for a common set of
umtary transformatlons As we can always find a set of unitary transformation, {u, ..., up}, which
minimises one complete set of tester say, 15”, such that H(‘Z;m, u,) = 0, then H(‘Z]‘-(z), un) =M.Itis
obvious now to note that given the number of outcomes for a tester is D, the value M is achieved
when all outcomes are equally likely, H(%, u,) = log, D

Thus, a set 4 which gives zero uncertainty for ¥; would result in maximal uncertainty for ¥,.
On the other hand, another set, say, ' resulting in zero uncertainty for T, would give maximal
uncertainty for ¥;.

Proposition 6. Consider a pair of testers as above saturating the maximal entropic bound for the sets
stand . If both 4 and U’ are bases for a common subspace for M(d, C), these bases would be mutually
unbiased to one another.

Proof. Let us consider a pair of unitary transformations, U, = u,®I; € Y and U;, = u;®I; € ' both

operating on H,. Let tester ‘2‘ ) be its input state as |¢;) and the measurement operators {| xx) (xx|}-
We write thus,

Unl¥i) = lxm) » Uplt) = [anxk, (11)

with |my,| = 1 and

1
(1#,-|anU,/1|w,-) = Eﬂmi
If we consider the set of testers ¥, then the inputs are elements of the orthonormal basis {|v;)}, a
similar treatment like the above gives

> WnlULU ) = an,

I
or
2

D WilULU )| = [TeUf Up, P =

I
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Using the triangular inequality (and ‘”m,‘ =1 for any I),

2 2
§ :”mz = (2 :|7Tml|) =
! [

and we have

0 < [Tr(Ui Ul < D. (12)

We now consider, separately the case for D = d? and D = d.
4.2.1. The case for D = d?
We set D = d? and we have
7\12 / 2
ITr (UL U = [Tr(ufu )Tr(ld)l (13)
= [Tr(utu))
Egs. (12) and (13) give
0 < |Tr(ulul))’ < 1 (14)

We now make use of the well known isomorphism between unitary operators, u on Hy4 and
(unnormalised) maximally entangled states, |u)) in Hq®H4 along with the notation of Refs. [16-18],

w= YN Gluli)i)li) = Ju) € Ha ® Ha as)
i

’ and let |f)) = |uq))/~/d be a

for some basis vectors i), |j) of Hq. With |{({ug|up))|?> = ‘Tr(uZub)
n)lz cannot be lesser than 1.

normalised maximally entangled state; we now show that |Tr(ufﬂu
If [Tr(uhuy)|? = |((un|up))|* < 1, then

(i) > < 1/d* = Z {(inli))* < 1 (16)
However, Y, |{{iin|il ) =1 (as Z|u (ii{|= 1;2), we can conclude that the two unitary bases of
M(d,C), {uy, ..., up} and {u}, . d2} are such that,

ITe(uf ) =1

fulfilling the definition of MUUBs of Eq. (3).

4.2.2. The case for D = d

The essential features for this part are the same as the previous; though there are few matters
worth mentioning. The first is that, given the input state is d dimensional and the projective
measurements project onto Hg, the testers can only discern between d unitary operations. The other
is that, we shall consider only the case where the sets of unitary operators (bases) tested form a
common subspace. The requirement of bases of a common subspace was implicit in the previous
as any unitary operator belongs to some orthonormal basis of the same vector space M(d, C), a
scenario where the bases should span a common subspace.

Starting from Eq. (12), we consider the case for the unitary operators v, € V and v;, € V'

0 < |Tr(v} v))* < d

it is not difficult to show that |Tr(vm )|2 cannot be less that d. Using the same isomorphism as in
the previous section, if |Tr(vp, ! ’)|2 < d then

(Tm N2 < 1/d = Y {(Tmlo)E < 1. (17)
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However, Y. |((m|!)}|* = 1 thus |Tr(v,T,,v;1)|2 = d. It is instructive to note that {|v;), ..., |04)} and

{197), ..., |v})} are orthonormal bases (of MES) which span a common d dimensional subspace of
Hq ® Hq. Referring to [10], these two bases are therefore mutually unbiased to one another. O

5. Simple examples

Ideally expressing the entropic bounds in terms of either the observables or input states
(or both) independently of the unitary tested is ultimately a challenge. In this section we consider
some simple cases.

Consider the case where the inputs for 7; and % are identical; 77 = (|¥), {Ixi){x;|}) and

7 = (1Y), {1i)(Zil})- Then,
H(7, u) + H(%, u) = Z | (xml) 1 10g | (xm | 9) 12

+ D 1l * log | (v

= H({lx) Ol}s 1v)) + HUI GGl 1Y) (18)

where |{,) = u® Ig|y). Thus we see that for a given u, the entropic bound reduces to the entropic
bound for observables in estimating a state |y,). Hence for any u, we have

H(7, u) + H(B, u) > — log, ml,;'flx|()(i|§j>|2 (19)

which reduces to the entropic bounds for the observables. In such a scenario, the maximal value for
the entropic bound would be the case where eigenstates of the observables are from two MUBs.

An immediate example would be the testers with qubit inputs 75; = (|0), Z) and Ty = (|0), X),
where X and Z are the measurement bases corresponding to the Pauli observables. This pair actually
saturate the entropic bound when testing the unitaries I, and H = (I, — ioy)/ /2 (essentially the
Hadamard operator where oy is the Pauli operator), which are from differing MUUBs. We shall see
in the next section, how this can be used (see also [19]) in constructing a bidirectional QKD protocol.

While the reduction to entropic bound for observables is true for identical inputs, cases for
nonidentical inputs can be very different. Consider the case ; = (|0),Z) and T,x = (|x4), X).
Despite the different observables, these testers saturate the trivial bound when distinguishing
between the unitaries I, and oy. Alternatively, consider the case 7p; = (|0), Z) and 7,7 = (|xy), Z).
Despite identical observables, this pair never saturate the trivial bound.

6. Application to QKD

Prepare and measure QKD schemes like that of BB84 make use of measurement of observables
in decoding. Thus, in a nutshell, the uncertainty principle guarantees the security of the shared
secret between the legitimate parties. However, bidirectional QKD schemes (also referred to as two-
way QKD) see encoding as a unitary operation and thus the use of testers becomes of immediate
interest. While earlier studies suggest that the security of such protocols to be based on the use
of nonorthogonal states, later versions suggest it should be based on the inability to distinguish
between the unitaries used [19-21].

Let us review very quickly the bidirectional protocols and understand it in the context of testers.
Referring to standard cryptographic communicating parties, Alice and Bob, the protocol begins with
Bob sending to Alice a qubit selected from 2 MUBs. Alice would then select a unitary transformation,
either the identity operator or one that would flip the qubit to an orthogonal state before returning
to Bob. Bob who measures the returned qubit in the same basis he prepared in would be able to
infer Alice’s operation by observing the evolution of his qubit. We see here the obvious fact that
Bob actually, in every run of the protocol, is using a tester randomly picked from either one of
two complete tester sets; T, = {7z = (|0),Z), iz = (|1),Z)} or T = {T.x = (|x+),X), Tx =
(|x_), X)}. These testers saturate the trivial bound for the unitary operators used in the protocol, i.e.

H(,u)=H(%,u) =0, 7, € T, % € Ty (20)
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with u = I, io}. They are all equivalent to one another for the subspace of unitary operators spanned
by the basis {I,, ioy}. While this ensures Bob’s decoding is perfect; it also means that Eve could use
the same tester as Bob (or one equivalent to it) in his place before she replicates the transformation
for Bob’s tester. In the literature, this would be known as the Quantum Man in the Middle (QMM)
attack where Eve hijacks Bob’s qubit, sends her own to Alice and determine her encoding perfectly
before acting on Bob’s qubit with her new gained knowledge. Thus, a control mode (CM) where
Alice randomly chooses to measure the received qubit in a basis (X or Z) instead and comparing
the results with Bob to alert them of Eve’s presence becomes necessary. Unfortunately, this has
effectively led to an execution of a ‘prepare-and-measure’ protocol on the side-lines.

In designing such a bidirectional protocol, it is instructive to consider the use of the entropic
bound. Motivated by the role of the uncertainty principle (entropic bounds for observables) in
prepare and measure schemes [22,23], we propose that Bob should use testers which saturate the
maximal entropic bound of pairs of unitary testers of Eq. (19). For the sake of clarity, we shall
begin with qubit based protocols. Using only 7; = (]|0), Z) and 7x(|0), X) to distinguish between
I and H, we come to a scenario where the state in the forward path is known to all, and privacy
lies only in the inability to distinguish between two possible states from two differing MUBs in
the backward path. This is effectively a B92 like protocol. Even if Bob uses the complete set of
testers, T, = {’TOZ = (|O>sZ)s Tiz = (|1>7Z)} and anOtherv say, {{ZbX = (|O>5X)7 Tix = (|1>’X)}v
there is no real difference to the protocol’s security as the states in the forward path is completely
distinguishable. It is worth noting that as the testers of ¥, and ¥, are equivalent for the unitary
operators in span({l,, ioy}), the bound

H[ 7z = (In), Z)] + H[Zmx = (Im), X)] = 1 (21)

where m, n are either both from {|0), |1)} or both from {|x ), |x_)} holds when testing the unitaries
I, and H. A proper modification can be to add more testers. Namely the sets ¥, and {7, =
(1x4+), Z), 77 = (|x—), Z)}. The additional testers with inputs coming from differing MUBs would
force some uncertainty upon Eve when attacking in the forward path. This is essentially the protocol
discussed in Ref. [19].# An alternative would be to also increase the number of transformations that
Alice can use. We shall describe this without limiting ourselves to the qubit scenario.

Let us consider Bob using the set of testers ¥ and ¥, which saturates the maximal entropic
bound. Thus, Alice may use a set of unitary encoding, iz = {uﬁ)B), ceey ug)ﬂ} for which its elements
can be distinguished perfectly by ¥p but maximises the uncertainty of ¥,. Another set, 4, =

{ug’), ., u%’)ﬂ} would on the other hand maximise ¥ but can be distinguished by %,. The unitary

operators ugh), ugb) encode the value i for a D-ary key. To ensure that Eve would not be able to
distinguish between the states used as the input of the tester (forward path), the tester sets should
include equivalent testers with nonorthogonal states for input in each respective sets.

The protocol thus goes as follows: Bob selects a tester at random from either ¥z or ¥, and
sends the tester’s input to Alice. Alice would select an element from either set g or 4, to encode
a D-ary digit. This is repeated for a large number of times and at the end of the protocol, Alice
would declare publicly which sets were used (but not the specific unitary used). Bob would then
discard the cases where his tester’s uncertainty would have been maximised. Note that the protocol
of [21] is the case for D = 2. Proposition 6 ensures the protocol makes use of MUUBs, iz and

p and |Tr(u§b)4ruj(‘3))|2 takes on the value 1 and d for D being d?> and d respectively. Given the

fidelity |Tr(u§b”uj(m )|?/d? of Ref. [11], this implies that when a unitary operator is chosen from one
set, a guess of it being any operator coming from the other is equiprobable. Hence an adversary
who would want to use an equivalent tester to Bob’s to determine the encoding would only be
able to maximise her information gain in half the time; with the other half experiencing maximal
uncertainty. Obviously, a more involved analysis is required to properly address the most generic
eavesdropping strategy in the framework of testers, thus a proper estimate of the security of such
a protocol. While this is beyond the scope of this work, we conjecture it to be promising based on
earlier works on bidirectional QKD using qubits making use of MUUBs [19,21].

4 The details of the protocol and Bob’s decoding procedure are described in the Ref. [19].
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7. Conclusion

In enlightening our understanding of nature, quantum mechanics has also prescribed limitations
on our ability to make precise measurements in distinguishing between quantum states. When
it comes to distinguishing between unitary operators using testers, understandably, given that
quantum states themselves are used as ‘test states’ or probes, such limitations are carried over for
pairs of testers.

In this work, we propose a quantitative formulation for the limits of knowledge one can have
when testing unitary operators in terms of entropic bounds for a pair of testers used. We see
how, when using a specific set of testers, namely complete set of testers, trivial and maximal
entropic bounds reflect certain special properties of the unitary tested. Coupled with the issue of
distinguishability of Proposition 4, the trivial bound implies the operators tested form an orthogonal
unitary operator basis. Maximal bounds on the other hand imply that the pair of unitary operators,
for which one maximises one tester’s uncertainty while the other minimises it (and vice versa),
comes from two MUUBs. This is a reminiscence of the role of MUB in maximising the entropic
bounds of observables. It is also interesting to note that the ‘similarities’ extend even to the issue
of application. The uncertainty principle has essentially led to the birth of quantum cryptography.
Here we see how the uncertainty between testers play a similar role in the construction of quantum
cryptographic schemes, specifically that of bidirectional QKD schemes.

It is obviously interesting to have a more comprehensive understanding of the matter to
include entropic bounds for more generalised testers with mixed states for input or POVMs for
measurements. Or one may even imagine such bounds to exist between testers which test channels
which are not necessarily unitary. We hope to address these in our future studies.
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