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a b s t r a c t

We study the interaction of magnetic quadrupole moment of
neutral particle systems (such as atoms or molecules) with a
radial electric field for non-relativistic particles in a rotating
frame that tends to a uniform effective magnetic field per-
pendicular to the plane of motion of the neutral particle. We
solve the corresponding Schrödinger equation and obtain the
eigenfunctions, in terms of Heun polynomials, and the energy
levels of the field for that system.
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1. Introduction

It is well known that in general relativity, topological defects, such as monopoles, domain walls
or cosmic strings, produce a curved space–time which leads to a shift of the energy levels and a
change in the wave function of the physical system. Some quantum field theories may comprise
stable field configurations with linear defects. An example of such defect lines is the so-called
‘cosmic strings’ [1–3]. The cosmic strings are spatial lines with trapped energy density, analogous
to vortex lines in superfluids and superconductors, as well as line defects in crystals [4]. In fact,
it is an interesting outcome of theoretical physics that relativistic constructs of cosmology and
general relativity, such as cosmic strings, can be applied in condensed matter physics, for instance,
in the description of defects in solids or the application of relativistic equations to various aspects of
graphene. Let us mention some examples. The authors of Ref. [5] discuss the Aharonov–Bohm effect
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which persists in the ray-optics limit, and the possibilities for producing different homogeneous
effective fields by exploiting the conical shape. In Ref. [6] the geometry of topological defects is
utilized to describe a disclination in a graphene layer and the massless Dirac equation in this curved
background describes the electrons therein. A geometric approach helped the study of geometric
phases in graphitic cones in Ref. [7]. In Ref. [8], the conical geometry of some topological insulators
was seen to induce electric polarization determined by the cone’s aperture angle. It was concluded
in Ref. [9] that the geometry associated to topological defects has a role on the electronic properties
of graphene which is central for future investigations of quantum computation in such systems.
In Ref. [10], the Kaluza–Klein approach was used to describe topological defects in a graphene
layer, and a geometrical model was proposed to discuss the quantum flux in K-spin subspace. The
authors of Ref. [11] used a geometric theory to describe a rotating fullerene molecule as a two-
dimensional spherical space in a rotating frame with topological defects submitted to a non-Abelian
gauge field. The influence of defects was investigated from many perspectives, such as the scattering
of particles [12–14], or the interaction of the harmonic oscillator with topological defects [15,16].
We note also that examples of calculation of Landau levels in the presence of topological defects
are described in Refs. [17–19]. An example of the effects of a non-trivial topology of space–time,
in the gravitation context, is that the energy levels of an atom placed in a gravitational field will
be shifted as a result of the interaction of the atom with space–time curvature Ref. [20]. Therefore,
we have to consider the topology of the space–time in order to completely describe the physics of
system.

In this paper, we examine the interaction between the magnetic quadrupole moment of a neutral
particle system (such as atoms or molecules) with a radial electric field for non-relativistic particles
by solving the corresponding Schrödinger equation. Investigations of the interaction between
quantum fields and curved space–time include, for instance, one-electron atoms [20–22], similar-
ities between topological defects in space–time with defects in solid continua called distortions,
which can be classified as dislocations and disclinations [23], the description of dislocations and
disclinations of solids in the framework of three-dimensional gravity [24] and the bound states
of electrons and holes to such disclinations [25], and studies in crystals and condensed matter
physics [26–32]. The authors of Ref. [33] showed that in a chiral conical space–time, the wave
functions, energy spectra, and scattering amplitudes associated with a quantum scalar particle
depend on the global features of this space–time. Ref. [34] considers the Landau levels in the
non-relativistic dynamics of a neutral particle with a permanent magnetic dipole moment which
interacts with an external electric field in the curved space–time background with or without a
torsion field. The quantum scattering of an electron by a topological defect called dispiration, with
an externally applied magnetic field along its axis, was examined in Ref. [35]. For an investigation of
the Landau levels within the relativistic dynamics of a neutral particle with a permanent magnetic
dipole moment interacting with an external electric field in the curved space–time background with
a torsion field, see Ref. [36].

In general, the interest of particle systems with multipole moments stems from quantum
effects such as geometric quantum phases [37]. Of particular interest are recent investigations of
atoms with magnetic quadrupole moment; for instance, many quantum effects such as the scalar
Aharonov–Bohm effect, the dual of the Aharonov–Bohm effect, the Aharonov–Casher effect, or
the He–McKellar–Wilkens effect are associated with systems of particles that possess multipole
moments [38]. In Ref. [39], the effects of rotation on a neutral particles system where Landau-
type quantization stems from the interaction of the magnetic quadrupole moment of a neutral
atom or molecule with external fields, are such that rotating effects can modify the cyclotron
frequency and breaks the degeneracy of the analogue of the Landau levels. The same authors also
observed that the energy spectrum of an atom with magnetic quadrupole moment is modified,
in contrast to the Landau-type levels, and there is a restriction on the possible values of the
cyclotron frequency determined by the rotation and scalar potential proportional to the inverse
of the radial distance [40]; that analysis of an atom with a magnetic quadrupole moment in the
presence of a time-dependent magnetic field shows that the time-dependent magnetic field induces
an electric field that interacts with the atom’s magnetic quadrupole moment and gives rise to
a Landau-type quantization and that a time-independent Schrödinger equation can be obtained
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(without the interaction between the magnetic quadrupole moment of the atom and the time-
dependent magnetic field) and can be solved exactly [41]; and the interaction between the magnetic
quadrupole moment and an electric field is similar to the Coulomb potential and, by confining this
atom to harmonic and linear confining potentials, a quantum effect characterized by the dependence
of the angular frequency on the quantum numbers of the system is obtained, and it is shown that
the possible values of the angular frequency associated with the ground state of the system are
determined by a third-degree algebraic equation [42].

In the present work, we consider a non-relativistic neutral particle with a magnetic quadrupole
moment in a region that possesses a uniform effective magnetic field. We analyse the effects of
rotation and a static scalar potential with the Schrödinger equation. Recent investigations of the
Schrödinger equation in a curved space–time include Refs. [43–49]. We analyse the influence of
the topological defect on the equation of motion, the energy spectrum and the wave-function.
In Section 2, we analyse the effects of rotation and a scalar potential on the system and study
the interaction of magnetic quadrupole moment with electric field. We present our conclusions in
Section 3.

2. Schrödinger equation

Hereafter, we establish and solve the Schrödinger which describes a non-relativistic scalar
field which interacts with a magnetic quadrupole. In the geometric approach, the medium with
a disclination has the line element in cylindrical coordinates (in units such that c = 1) [1,50,51],
given by

ds2 = −dt2 + dρ2
+ α2ρ2dϕ2

+ dz2, (1)

where −∞ < z < ∞, −∞ < t < ∞, ρ ≥ 0 and 0 ≤ ϕ ≤ 2π . It is related to the
Lorentz metric ds2 = −dT 2

+ dX2
+ dY 2

+ dZ2, by the change of coordinates X = ρ cos (αϕ),
Y = ρ sin (αϕ), Z = z and T = t [52]. This metric is equivalent to the boundary condition with
periodicity of 2πα instead of 2π around the z-axis. In the Volterra process [53] of disclination
creation, this corresponds to remove (α < 1) or insert (α > 1) a wedge of material of dihedral
angle λ = 2π (α − 1). This metric corresponds to a locally flat medium with a conical singularity at
the origin. The only nonzero components of the Riemann curvature tensor and the Ricci tensor [54]
are given by R12

12 = R2
1 = R2

2 = 2π 1−α
α
δ2 (ρ), where δ2 (ρ) is the two-dimensional delta function in

flat space. From expression above, it follows that if 0 < α < 1 (−2π < λ < 0) the defect carries
positive curvature and if 1 < α < ∞ (0 < λ < ∞) the defect carries negative curvature. This fact is
very important in the curved space theory of amorphous solids [55] where geometrical frustration,
the incompatibility between a given local order and the geometry of Euclidean space, is relieved
by propagation of the local order in a space of constant curvature. Disclinations carrying curvature
of sign opposite that of the curvature of the background space must be introduced [56] in order to
reduce the mean curvature of the model to zero, yielding a distorted(locally curved) structure with
the desired local order, perforated by disclination lines: a sensible structural model for amorphous
solids. For early papers that discussed the coupling in Eq. (1) that describes the rotating reference
frame for mesoscopic systems, see Ref. [57] where the authors discuss a new quantum interference
effect between the split paths of a coherent particle beam in a uniformly rotating frame and they
demonstrated that the effect should be observable even in a slow-rotating frame, and Ref. [58] in
which the authors studied the effects caused by the rotation of an electron (or hole) in the presence
of a screw, and the influence of the dislocation and the rotation on both the persistent current and
magnetization.

From the geometrical point of view, the metric in Eq. (1) describes a Minkowski space–time with
a conical singularity. The covariant metric tensor which corresponds to the spatial part of Eq. (1) is

gµν =

⎛⎝1 0 0
0 α2ρ2 0
0 0 1

⎞⎠ , gµν =

⎛⎝1 0 0
0 1

α2ρ2
0

0 0 1

⎞⎠ , (2)
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where we order the coordinates as ρ, ϕ, z, and where gµν are the contravariant components of the
inverse metric tensor of the tensor gµν .

In non-relativistic systems, the non-inertial effects of rotation on quantum systems with a
magnetic quadrupole moment in a rotating frame are described by means of the Schrödinger
equation,(

π⃗2

2m
− ω⃗ · L⃗ + V (ρ)

)
Ψ (r) = ih̄∂tΨ (r), (3)

for which we consider the effect of rotation on the non-relativistic quantum particle with a constant
angular velocity by ω⃗ = ωẑ and π⃗ = p⃗ − eA⃗ [39,46,57–59]. In Eq. (3) we shall need the Laplacian

∇
2

=
1

√
g
∂i
(√

gg ij∂j
)
, (4)

so that from Eq. (3), we obtain π⃗2ψ (r) as follows:

π⃗2Ψ (r) = p2Ψ (r)− ep · AΨ (r)− eA · pΨ (r)+ e2A2Ψ (r) . (5)

Thus, by replacing p⃗ = −i∇⃗ into Eq. (5), we obtain

π⃗2Ψ (r) = −∇
2Ψ (r)+ 2ieA · ∇Ψ (r)+ e2A2Ψ (r) . (6)

In terms of the spatial part of the metric in Eq. (2), and using g = det
(
gµν
)

= α2ρ2 we find that,
in Eq. (6),

∇⃗Ψ (r) =
∂Ψ (r)
∂ρ

ρ̂ +
1
αρ

∂Ψ (r)
∂ϕ

ϕ̂ +
∂Ψ (r)
∂z

ẑ. (7)

Hereafter, we consider Aρ = 0 and Az = 0, and we have ∇ · A = 0, Thereby, Eq. (6) turns into

π⃗2Ψ (r) = −
∂2Ψ (r)
∂ρ2 −

1
ρ

∂Ψ (r)
∂ρ

−
1

α2ρ2

∂2Ψ (r)
∂φ2 −

∂2Ψ (r)
∂z2

+
2ieAϕ
αρ

∂Ψ (r)
∂φ

+ e2A2
ϕΨ (r) (8)

If we consider ∂ϕ = iℓ, ∂z = ik and Aϕ =
1
2λMρ and we replace into Eq. (8), we get

π⃗2Ψ (r) = −
∂2Ψ (r)
∂ρ2 −

1
ρ

∂Ψ (r)
∂ρ

+
ℓ2

α2ρ2Ψ (r)+k2Ψ (r)−
eℓλM
α

Ψ (r)+
e2λ2M2ρ2

4
Ψ (r) . (9)

The angular momentum operator L⃗ in Eq. (3) is given by

L⃗ = r⃗ × π⃗ , (10)

where π⃗ is the generalized momentum,

π⃗ = −i∇⃗α − M⃗ × E⃗, (11)

where E⃗ is the electric field in the laboratory frame, and M⃗ is a vector with components(
M⃗
)
i ≡

∑
j

Mij∂j, (12)

(see, for instance, Ref. [60]) with Mij a symmetric and traceless tensor known as the ‘magnetic
quadrupole moment tensor’ (analogous to the vector Qi =

∑
j Qij∂j of Ref. [61] where Qij is the

electric quadrupole moment tensor).
In Eq. (3), we will utilize a static scalar potential V (ρ) [62],

V (ρ) = a1ρ + a2ρ2
−

a3
ρ

+
a4
ρ2 . (13)

This potential has many applications in particle physics, quantum field theory, molecular and solid
state physics. The potential is a model of central potential consisting of radial oscillator harmonics
potential, linear and Kratzer potential [49]. The Kratzer potential has two terms the first is the
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Coulomb potential and the other is the inverse square term potential that remove the degeneracy.
Also the linear term and Coulomb terms are named as Cornell potential [63].

Hereafter, we shall consider magnetic quadrupole moment tensors with only two non-null
components [64,65]:

Mρz = Mzρ = M, (14)

where M is a constant (M > 0). This magnetic quadrupole moment interacts with a radial electric
field chosen such that an analytical solution is possible (similar to Eq. (2) of Ref. [66]):

E⃗ =
1
2
λρ2ρ̂, (15)

with λ being a constant associated with a non-uniform distribution of electric charges inside a non-
conducting cylinder. The interaction between this magnetic quadrupole moment and this radial
electric field gives rise to a uniform effective magnetic field defined as B⃗ = ∇⃗ × M⃗ × E⃗ = λMẑ,
where the unit vector ẑ points in the +z direction, so that B⃗ is perpendicular to the plane of motion
of the particle. For a moving neutral particle with a magnetic quadrupole moment. This magnetic
quadrupole moment interacts with a radial electric field Eρ =

1
2λρ

2 with λ being a constant
associated with a non-uniform distribution of electric charges inside a non-conductor cylinder.

We can write the angular momentum operator as

L⃗ = r⃗ × (−i∇⃗α − M⃗ × E⃗). (16)

We use the angular momentum operator in Eq. (10) with Eqs. (14) and (15) so that M⃗ × E⃗ =
1
2λMρϕ̂.

The interaction is time-independent so that one can write Ψ (t, r, ϕ, z) = e−i(Et−ℓϕ−kz)ψ(ρ),
where E is the energy of the scalar boson, ℓ = 0, 1, 2, . . . , and k is a real number. If we consider
only the radial component, the non-minimal substitution leads to[

d2

dρ2 +
1
ρ

d
dρ

−
1
ρ2

(
ℓ2

α2 + 2ma4

)
+

2ma3
ρ

− 2ma1ρ − ρ2η2 + κ2
]
ψ(ρ) = 0 (17)

where

κ2
=

M
2
λ
ℓ

α
− k2 +

2mωℓ
α

+ 2Em, (18a)

η2 =
M2

4
λ2 + mMωλ+ 2ma2, (18b)

with M as in Eq. (14).
Let us introduce a change of variables given by r =

√
η ρ so that the radial equation (17) becomes

[
d2

dr2
+

1
r

d
dr

−
1
r2

(
l2

α2 + 2ma4

)
+

1
r

(
2ma3

√
η

η

)
−

2ma1
η
√
η

− r2 +
κ2

η

]
ψ (r) = 0. (19)

If we write the radial wave function as

ψ (r) = e−
r2
2 −

Cr
2 r

(
ℓ2

α2
+D
)
h (r) , (20)

where the constants C and D are determined as

C =
2ma1

η
3
2
, D = −

ℓ2

α2 ± α
√
ℓ2 + 2ma4α2, (21)
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where the positive sign is physically acceptable. Therefore Eq. (19) can be written as (see
Refs. [67–70])

h′′ (r)+

(
−C +

1 + 2D +
2ℓ2

α2

r
− 2r

)
h′ (r)+

{
C2

4
− 2

(
1 + D +

ℓ2

α2

)
+
κ2

η

+

[
−

C
2

(
1 + 2D + 2

ℓ2

α2

)
+

2ma3
√
η

]
1
r

}
h (r) = 0.

(22)

Note that this has the form of the biconfluent Heun equation,

H ′′(s) +

(
−2s − b +

1 + a
s

)
H ′(s) +

[
−2 − a + c +

−b|a + 1|/2 − d/2
s

]
H(s) = 0. (23)

By comparing this with Eq. (22), we see that the parameters in Eq. (23) are related to the physical
parameters as

a = 2α
√
ℓ2 + 2ma4α2, b =

2ma1(
M2

4 λ
2 + mMωλ+ 2ma2

) 3
4
,

c =
1
η

(
M
2
λ
ℓ

α
− k2 +

2mωℓ
α

+ 2Em
)

+
m2a21(

M2

4 λ
2 + mMωλ+ 2ma2

) 3
2
,

d =
−4ma3(

M2

4 λ
2 + mMωλ+ 2ma2

) 1
4
.

(24)

In order to determine the power series solution of Eq. (23) and its energy eigenvalues, we utilize
the Frobenius method; that is, we express H(s) of Eq. (23) as

H(s) =

∑
n=0

cnsn+p, (25)

where p is to be determined, and we substitute Eq. (25) into Eq. (23), to obtain

p(p + a)c0sp−2

+

[
−bpc0 −

1
2
(b |a + 1| + d)+ (p + 1)(p + 1 + a)c1

]
sp−1

+

∑
j=0

(j + p + 2) (j + p + 2 + a) cj+2sp+j (26)

−
1
2

∑
j=0

[b |a + 1| + d + 2b (j + p + 1)] cj+1sp+j

+

∑
j=0

(c − a − 2 (j + p + 1)) cjsp+j
= 0.

From the coefficient of sp−2, we see than

p = 0 or p = −a, (27)

the coefficient of sp−1 gives

c1 =
bp +

1
2 (b|a + 1| + d)

(p + 1)(p + 1 + a)
c0, (28)

and the coefficients of sp+j, j = 0, 1, 2, . . . , lead to

cj+2 =
b(p + j + 1) +

1
2 (b|a + 1| + d)

(p + j + 2)(p + j + 2 + a)
cj+1 +

a − c + 2(p + j + 1)
(p + j + 2)(p + j + 2 + a)

cj. (29)
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For the sake of this paper, we shall consider only the solution p = 0 from Eq. (27). Then Eq. (29)
is

cj+2 =
b(j + 1) +

1
2 (b|a + 1| + d)

(j + 2)(j + 2 + a)
cj+1 +

a − c + 2j + 2
(j + 2)(j + 2 + a)

cj. (30)

For the power series in Eq. (25) to terminate and reduce to a polynomial, there has to be a value of j,
denoted n0, such that the numerator of the last term in Eq. (29) is zero, which gives two conditions:

c − a − 2 = 2n0, n0 = 1, 2, 3, . . . (31)

and

cn0+1 = 0. (32)

From Eqs. (31), (24) and (18b), the energy eigenvalues are given by

En0,ℓ =
k2

2m
−
ℓ (λM + 4mω)

4mα
+

√
8ma2 + λM (λM + 4mω)

2m[
1 + n0 −

4m2a21
[8ma2 + λM (λM + 4mω)]

3
2

+ α
√
ℓ2 + 2mα2a4

]
.

(33)

From Eq. (28), we find c1 in terms of c0,

c1 =
b |a + 1| + d
2(a + 1)

c0. (34)

If we take c0 = 1, we find, from Eqs. (30) and (34),

c2 =

[
b +

1
2 (b |a + 1| + d)

] [ 1
2 (b |a + 1| + d)

]
2 (1 + a) (2 + a)

−
n0

2 + a
, (35)

and

c3 =
1

12 (a + 3)

{
4 (1 − n0) (b |a + 1| + d)

a + 1
+
(4b + b |a + 1| + d)

2 (a + 2)
[−4n0

+
(b |a + 1| + d) (2b + b |a + 1| + d)

2 (a + 1)

]} (36)

For n0 = 1, we have c2 = 0, so that the Heun polynomial is linear and the corresponding energy
eigenvalues are

E1,ℓ =
k2

2m
−
ℓ (λM + 4mω)

4mα
+

√
8ma2 + λM (λM + 4mω)

2m{
2 −

4m2a21
(8ma2 + λM (λM + 4mω))

3
2

+ α
√
ℓ2 + 2mα2a4

}
,

(37)

with the corresponding wave function given by

h1,ℓ(
√
η ρ) = c0 + c1

√
η ρ = 1 +

(
b |a + 1| + d
2(a + 1)

)
√
η ρ, (38)

so that

ψ1,ℓ(
√
η ρ) = N1,ℓe−

η ρ2
2 e−

C
√
η ρ

2
(√
ηρ
)[ ℓ2

α2
+D
] [

1 +

(
b |a + 1| + d
2(a + 1)

)
√
η ρ

]
, (39)

where N1,ℓ is a normalization constant. By setting Eq. (35) equal to zero, with n0 = 1, we find[
b +

1
2 (b |a + 1| + d)

] [ 1
2 (b |a + 1| + d)

]
2 (a + 1) (a + 2)

=
1

a + 2
. (40)
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In the above equation, we have a constraint equation including free parameters a, b, c and quantum
numbers n and ℓ. We may rewrite the constraint such that a free parameter, say a, is obtained as a
function of n and ℓ and the other free parameters can vary independently. It means that we should
consider a as an0,ℓ or equivalent a4 should be consider as a4n0,ℓ . In this way, we can write the above
equation as[

b +
1
2

(
b
⏐⏐a1,ℓ + 1

⏐⏐+ d
)] [ 1

2

(
b
⏐⏐a1,ℓ + 1

⏐⏐+ d
)]

2
(
a1,ℓ + 1

) (
a1,ℓ + 2

) =
1

a1,ℓ + 2
. (41)

Next if we choose n0 = 2, which means we interrupt the series with c3 = 0, then we find

h2,ℓ
(√
η ρ

)
=c0 + c1

√
η ρ + c2ηρ2

= 1 +

(
b |a + 1| + d
2(a + 1)

)
√
η ρ

+

((
b +

1
2 (b |a + 1| + d)

) ( 1
2 (b |a + 1| + d)

)
2 (1 + a) (2 + a)

−
2

2 + a

)
ηρ2,

(42)

so that

ψ2,ℓ(
√
η ρ) =N2,ℓe−

ηρ2
2 e−

C
√
η ρ

2 (ηρ)

[
ℓ2

α2
+D
] [

1 +

(
b |a + 1| + d
2(a + 1)

)
√
η ρ

+

((
b +

1
2 (b |a + 1| + d)

) ( 1
2 (b |a + 1| + d)

)
2 (1 + a) (2 + a)

−
2

2 + a

)
ηρ2

]
,

(43)

and the energy eigenvalue is

E2,ℓ =
k2

2m
−
ℓ (λM + 4mω)

4mα
+

√
8ma2 + λM (λM + 4mω)

2m{
3 −

4m2a21
(8ma2 + λM (λM + 4mω))

3
2

+ α
√
ℓ2 + 2mα2a4

}
.

(44)

3. Conclusion

In this contribution, we have investigated the Schrödinger equation describing the interaction
of neutral particle system (atom or molecule) with a magnetic quadrupole moment with a radial
electric field for non-relativistic particles in a rotating frame. We considered a uniform effective
magnetic field perpendicular to the plane of motion of the neutral particle. We obtained the eigen-
functions and the energy levels of the field in that background. For such non-relativistic systems,
we solved the differential equation for the radial part of the wave function by using the Frobenius
method; we observed that this part of the wave function corresponds to the biconfluent Heun
equation. In order to obtain a normalized radial wave function, we imposed that the biconfluent
Heun series terminate and we found explicit expression for lowest Heun polynomials, along with
their respective energy eigenvalues in terms of the physical system’s parameters.
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