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a b s t r a c t

We investigate the low density limit of the Homogeneous Elec-
tron system, often called the Strictly Correlated regime. We begin
with a systematic presentation of the expansion around infinite
rS , based on the first quantized treatments suggested in the
existing literature. We show that the expansion is asymptotic in
the parameter r1/4S and that the leading order result contains ex-
ponential corrections that are significant even for rS ∼ 100. Thus,
the systematic expansion is of limited utility. As a byproduct of
this analysis, we find that there is no Wigner Crystal (WC) in one
spatial dimension. This is an example of the Mermin–Wagner
theorem, but was not appreciated in some earlier literature.
More modern work (Schulz, 1993 [1]) has come to conclusions
identical to ours. Note that the long range Coulomb potential
modifies the dispersion relation of phonons in one dimension,
but still leads to the instability of the crystal, due to a very weak
infrared divergence. We then propose a new approximation
scheme based on renormalization group ideas. We show that
the Wegner–Houghton–Wilson–Polchinski exact renormalization
group equation reduces, in the low density limit, to a classical
equation for scale dependent electron and plasmon fields. In
principle, this should allow us to lower the wave number cutoff
of the model to a point where Wigner’s intuitive argument for
dominance of the classical Coulomb forces becomes rigorously
correct.
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1. Introduction

The system of non-relativistic electrons with a uniform positive background charge density,
interacting only via Coulomb interactions, is the basic object of Density Functional Theory. If
we use the Rydberg energy and the Bohr radius to introduce dimensionless time/energy and
space/momentum coordinates, the first quantized Hamiltonian for this system is

H =

∑
i

P2
i

2
+

∫
ddxddy : (N(x) − n0)(N(y) − n0) :

1
|x − y|

, (1)

where N(x) =
∑

i δ
3(x − Xi),∫

ddx (N(x) − n0) = 0, (2)

and the normal ordering symbol means that we leave out the self interaction. If we rescale all the
coordinates by a then the first term scales like a−2, while the second scales like a−1. The absolute
scale of the coordinates is set by the total volume V . We will use periodic boundary conditions,
though everything we say could be done for any other choice. Thus, the large a limit is equivalent
to a large V limit. The other parameter in this system is the conserved electron number K = n0V ,
and the large V limit is taken with n0 fixed. One defines n0 =

Ad
rds
, where Ad is the area of the

unit sphere in d space dimensions. Consequently, the large a limit, where the Coulomb interactions
dominate the electron kinetic energy, is equivalent to the limit of large rS . The electrons also have
spin degrees of freedom, which do not appear in the Hamiltonian. It is believed that, as a function
of n0, the system develops spin polarized phases in the thermodynamic limit. For the purposes of
this paper, we will ignore the spin. Henceforth, our electrons are spinless.

Wigner argued that at large rS , the electrons would form a crystal, whose properties are
calculated by minimizing the classical Coulomb energy of point electrons. The lattice spacing is
of order rS , and the preferred minimum energy crystal is BCC in d = 3, triangular or hexagonal in
d = 2 and equal spaced in d = 1. Of course, the electron kinetic energy is singular in these delta
function wave functions. The textbook treatment of this issue is to mimic what is done in the Born–
Oppenheimer approximation: expand the multi-body potential around the crystalline minimum,
and solve the resulting coupled oscillator problem exactly. The scaling arguments then suggest that
the width of electron wave functions scales like r3/4S , which means that in the large rS limit, the
electrons are localized on scales much smaller than the lattice spacing.

Our interest in the low density limit was sparked by the realization that the large N approxi-
mation (with N the number of electron spin components) misses the WC phase entirely [2]. The
reason for this is that in the conventional limit where N goes to infinity, the coupling goes to
zero, and everything else is held fixed, the operator N(x) has a continuous spectrum. Thus, the WC
exists only at densities of order 1/N , outside the range of validity of naive large N methods. The
Hartree approximation becomes exact at large N , because anti-symmetrization can be performed
solely on the spin components of the wave function. The exchange corrections captured by the
Hartree–Fock approximation do not resolve this problem. Indeed, if the scaling predictions are
correct, then, as we will see, the exchange terms should be exponentially small at large rS . In fact,
the HF approximation predicts a ground state that violates translation invariance, but is not a crystal.
In the HF approximation, the width of electron wave functions at large rS scales like the putative
lattice spacing.

We therefore searched the literature for, but have not yet found, a systematic presentation
of the large rS expansion, based on the idea of expanding the multi-electron potential about its
WC minimum. We were particularly worried about the fact that oscillator wave functions have
widths that scale like the inverse square root of the frequency. In the large volume limit, the
long wavelength oscillations have frequencies that scale like V−1/d since these are the phonon
modes of spontaneously broken translation invariance. If the localized density expectation value
gets significant contributions from these long wavelength modes, then the electrons are not truly
localized on the lattice, and the entire approximation scheme is inconsistent. We note that Quantum
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Monte Carlo schemes that work with only a finite number of electrons, are apt to miss the effects of
long wavelength phonons, because the effective volume of the QMC system is not large in rS units.

In the next section, we will outline the systematic large rS expansion and find that it is self
consistent, though of limited validity, in d = 2, 3, but that the one dimensional WC phase does not
exist. We show that the large rS expansion is only asymptotic, with even the leading order result
having corrections of order e−Cr1/2S where the constant C involves a complicated sum over phonon
modes of the crystal. Furthermore, the corrections to the leading order result give wave functions
with complicated multi-body correlations, and Fermi statistics adds to the inherent complication of
the expansion around the minimum. Thus, even for rS ∼ 100 one must be skeptical of the accuracy
of the leading order result, and one is unlikely to be able to systematize the corrections to it.

We have therefore begun searching for a more robust calculational scheme in the WC regime,
which might be able to capture the phase transition that ends this regime. Following [3] we
speculated in [2] that the transition leads to a colloidal phase. The essential ‘‘flaw’’ in Wigner’s
classic argument for the WC is a confusion between infrared physics, dominated by the long range
Coulomb potential, and ultraviolet physics dominated by the electron kinetic energy. In quantum
field theory this sort of issue is usually simplified by use of the renormalization group. We therefore
implement the Wegner–Houghton–Wilson–Polchinski (WHWP) renormalization group equation for
the homogeneous electron system. The WHWP equation is an exact equation for the scale variation
of the non-quadratic part of the effective action for the quantum fields. Starting from a simple
action φψ̄ψ at a spatial cutoff scale δ ≪ 1 in Bohr units it tells us how to find an action with
cutoff length elδ, which will have the same correlation functions as the original action for all
wavenumbers < e−lδ−1. Expressed in terms of Feynman diagrams, the WHWP equation has only
tree and one loop contributions. We will argue that for elδ ≪ rS the one loop terms are negligible.
The tree approximation to the WHWP equations can be solved in terms of a scale dependent field
configuration satisfying a "classical equation of motion".

If we consider the original bare action with a cutoff elδ, then at the wave function that minimizes
the Coulomb term, the expectation value of the kinetic energy is of order (elδ)−2 while the Coulomb
energy is of order 1/rS . Thus we need rS < e2lδ2 in order to treat the kinetic energy as a perturbation,
while our approximate RG calculation requires elδ ≪ rS . The consistency of the two approximations
requires only that elδ ≫ 1, which of course implies that rS is large. We will show that the higher
order interactions induced by the RG calculation are also smaller than the bare Coulomb term for
a range of l. Thus, the combination of an approximate solution of the WHWP equation combined
with perturbation theory around the Coulomb interaction in the cutoff theory gives us a systematic
tool for calculating the properties of the WC.

2. Large rS expansion

Wigner’s argument treats electrons as classical particles. Indeed, the most straightforward
quantummechanical interpretation of the argument is that the scaling equations tell us that the first
quantized Hamiltonian has the parametric dependence on rS that one associates with semi-classical
physics. The ground state is determined by expanding the variables around a classical solution. The
first quantized Hamiltonian for K electrons has an SK symmetry. Fermi statistics is the statement
that this is a gauge symmetry: the only allowed states must lie in a particular one dimensional
representation of the permutation group.

The classical minima of the multi-body Coulomb potential are NOT invariant under SK . The
minimum positions sit on a crystal lattice. At any particular minimum of the potential, a particular
electron sits on a particular lattice site. There are K ! minima of the multibody potential, differing by
the choice of which electron sits at which site. Fermi statistics tells us that the actual state of the
system is the anti-symmetric superposition of the ground states for each of these minima. If, in the
true quantum ground state of the distinguishable electron problem, the probability of finding the
electron closest to lattice point i is concentrated within a distance of i that is much less than the
lattice spacing, then the overlap between different permutations of the electrons is exponentially
small.
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On the other hand, for a fixed choice of minimum of the multi-electron potential, the ground
state wave function is

ψ(x1 . . . xK) =

∏
J

√
1/2πωJ (q)e−ωJ (qJ )2 , (3)

where the qJ are the normal modes of oscillation and ωJ is the frequency of the Jth normal mode.
There is always a zero mode, corresponding to a slow uniform translation of the whole lattice. The
corresponding coordinate is the center of mass K−1 ∑

Xi. In volume V the time-scale for motion of
this coordinate goes like K 1/2 so a Gaussian wave packet fixed at any value will not spread on the
scale of internal motions of the non-zero modes. We can simply freeze it at a fixed value.

However, as V → ∞ there are modes of frequency V−1/d whose wave functions have a width
of order r3/4S V 1/d. For V 1/d > r1/4S , which is always true in the thermodynamic limit, the long
wavelength modes have widths much larger than the lattice spacing of the WC. The width of the
marginal density distribution

ρ(x) =

∫
dd(K−1)y |ψ |

2(x, y1 . . . yK−1) (4)

will be dominated by that of the low frequency modes, unless the probability of a low q mode to be
concentrated at a particular point goes to zero with q. For 1d, ω(q) ∼ |q|

√
|log q|, the width square

of the density distribution will behave like∫
dq

|q|
√

|log q|
(5)

This integral is divergent, so the density distribution does not have a crystalline structure. N.
Andrei [4] pointed out to us that this result should be viewed as an example of the Mermin–
Wagner theorem that there is no long range order in one dimension. It is destroyed by quantum
fluctuations of the Goldstone excitations, here the phonons. This remains true even though the
Goldstone dispersion relation is modified by the long range Coulomb interaction, although the
divergence is weakened to a square root of the logarithm of the volume. This would make it hard
to see in a QMC calculation with a modest number of electrons.

For d ≥ 2, the width of the density distribution is smaller by a factor of r−1/4
s than the lattice

spacing, so the WC phase indeed exists. So far, our discussion of it has neglected Fermi statistics. To
get the true ground state wave function, one must sum over the oscillator wave functions for each
classical minimum, with an exchange of which electron sits at which lattice site, multiplying by a
minus sign whenever the permutation from the original electron configuration is odd. Corrections
to expectation values of permutation symmetric operators will come from integrals of products of
wave functions differing by a permutation. For d ≥ 2 these overlaps have the form∫

ψ∗ψperm =

∑
e−Cir

1/2
s . (6)

The computation of the coefficients Ci involves complicated sums over collective coordinates.
Higher order corrections to the harmonic approximation are extremely complicated. There are

an infinite number of anharmonic corrections to the Coulomb potential, and more and more of
them must be taken into account in each order of the rS expansion around a given minimum. It is
highly unlikely that even the series around a given minimum is convergent, because the asymptotic
behaviors of the harmonic and Coulomb potentials are infinitely different at large separation. In the
fermionic problem, the contributions to the ground state energy coming from overlaps between the
wave functions at different minima clearly have essential singularities at rS = ∞. The expansion
around the classical Wigner crystal, which gives the large rS asymptotics of the ground state energy
of the HEG is thus both extremely complicated to compute1 and merely asymptotic. Furthermore,

1 It is unclear to us whether the leading approximation, including exponentially small corrections, has ever been
computed exactly. The literature we have found [5] does not give enough detail to determine whether the formulae
quoted are exact or approximate.
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the parameter r−1/4
S , which controls the size of corrections to the leading order, is not small even

for rS ∼ 100 where the melting transition of the WC is claimed to occur based on Quantum Monte
Carlo (QMC) results. This means that the expansion is unlikely to be a useful guide to physics near
that transition.

2.1. Harmonic oscillator analysis of low density HEG

Here we record the computations whose results we have discussed in the previous subsection.

2.1.1. 1d
For simplicity, consider 2N + 1 electrons on a line with length L, and identify the two ends

of the line. There is also uniform positive background charge distributed on the line to make the
energy extensive. However, since the background potential is everywhere constant, we can neglect
the background in the following analysis.

The Lagrangian is

L =

∑
i

ẋi2

2
−

1
2

∑
i̸=j

1
|xi − xj|

(7)

where i runs over all electrons. Notice that the distance is defined in a periodic system, so |xi − xj|
is actually |xi − xj mod L|, and it must be no larger than L

2 .
Suppose the electrons have a small deviation yi from their equilibrium position Li, we expand

the Lagrangian to second order

L =

∑
i

ẏi2

2
−

1
2

∑
i̸=j

1
|Lij + yi − yj|

≈

∑
i

ẏi2

2
−

1
2

∑
i̸=j

1
|Lij|3

(yi − yj)2 (8)

where Lij = |Li − Lj| is the distance between i and j when yi = yj = 0. Fourier transform it to
momentum space yj =

√
1

2N+1

∑
k βkeikj, where k = −

2πN
2N+1 ,−

2π (N−1)
2N+1 , . . . ,

2π (N−1)
2N+1 , 2πN

2N+1

L =

∑
k

1
2
β̇k

2
−

1
2(2N + 1)

∑
kq

∑
j

N∑
m=−N,m̸=0

1
|Lm|

3 (2βkβ−q − 2βkβ−qeikm)eij(k−q)

=

∑
k

1
2
β̇k

2
−

1
2

∑
k

N∑
m̸=0,m=−N

1
|Lm|

3 2(1 − eikm)βkβ−k

(9)

Ak=̇
∑N

m̸=0,m=−N
2(1−eikm)

|Lm|3
=

∑N
m̸=0,m=−N

2(1−cos km)
|Lm|3

is real. |Lm| = |mrS |. βk is complex, β∗

k = β−k.

Write βk = (ak + ibk)/
√
2. Choose a frame such that the center of mass does not move, the zero

mode is β0 = 0.

L =
1
2

∑
k>0

(ȧk2 + ḃk
2
) −

1
2

∑
k>0

Ak(a2k + b2k) (10)

After quantization, this is a collection of 2N independent harmonic oscillators. The ground state
wave function is

φ =

∏
k>0

(
1

2πσ 2
k
)1/2e

−
a2k+b2k
4σ2k (11)

where σ 2
k =

√
1

4Ak
. And the probability distribution is Gaussian. Since ak, bk are independent random

variables, their linear combinations also obey Gaussian distributions. From yj =

√
2

2N+1

∑
k>0
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[ak cos(kj) − bk sin(kj)], we know

σ (yj)2 =
2

2N + 1

∑
k>0

σ 2
k =

1
(2N + 1)

∑
k>0

1
√
Ak

(12)

For small momentum modes 0 < k < ks ≪ 1, the dispersion can be simplified

ω2
k = Ak =

N∑
m=1

4(1 − cos km)
(mrS)3

≈

f /k∑
m=1

2k2

mr3S
≈ −

2
r3S

k2 log k (13)

where 0 < f < 1 is a cutoff. Terms with m > f /k are suppressed by 1/m3, and can be neglected.

σ (yj)2 =
1

(2N + 1)

2πN
2N+1∑

k= 2π
2N+1

1
√
Ak
>

1
(2N + 1)

ks∑
k= 2π

2N+1

1
√
Ak

≈

∫ ks

2π
2N+1

dk
1

2πk

√
r3S

−2 log k
≈

√
r3S logN
2π2 (14)

So if we fix the density, and send the electron number to infinity, the packet width of single
electron probability distribution will diverge. The lattice configuration breaks down before the
thermodynamic limit is achieved.

We did not antisymmetrize the wave function in the above calculation. Under the crystal

assumption, σ (yi) scales as r
3
4
S , so the overlap between different permutations is exponentially

suppressed at large lattice spacing. The conclusion (14) does not change even if we consider
antisymmetrization.

2.1.2. Higher dimensions
Generalization to 2d is straightforward. In this case the preferred WC is a triangular lattice.

Pick two directions as coordinate axes, and suppose the lattice size is (2N + 1)(2M + 1). The
Fourier transformation reads y⃗j⃗ =

1
√
(2N+1)(2M+1)

∑
k⃗ Ck⃗ · β⃗k⃗e

ik⃗·⃗j, where k⃗ = (k1, k2) is momentum,
k1 = −

2πN
2N+1 ,−

2π (N−1)
2N+1 , . . . , 2πN

2N+1 k2 = −
2πM
2M+1 , . . . ,

2πM
2M+1 , Ck⃗ is a 2 × 2 matrix. When N and M are

large, we can replace 1
(2N+1)(2M+1)

∑
k⃗ =

∫ d2 k⃗
4π2 . Using the same method as in the one dimensional

case, one can show that the single electron distribution function is also Gaussian, and the square of
its packet width is

σ 2
∼

∫
d2k⃗

1√∑
m̸⃗=0

1−cos(k⃗·m⃗)
(|rS m⃗|

3)

<

∫
d2k⃗

1√
2−cos(k1)−cos(k2)

r3S

≈

∫
small k

d2k⃗

√
2r3/2S

|k⃗|
(15)

which is finite. In 3d it is σ 2 <
∫
d3k⃗ r3/2S

|k⃗|
, also finite. So there is no divergence in higher dimensions.

This implies that the WC exists above one dimension, for sufficiently large rS .
As we have noticed, the actual wave function is the antisymmetrized sum of products of

harmonic oscillator ground states for the normal mode coordinates of the lattice, with different
electrons assigned to different sites. If we look at an individual electron coordinate, its wave
function is concentrated around one lattice point for one assignment and another one for a different
assignment. Thus, overlaps between different wave functions in the anti-symmetrized sum will give
a series of terms of the form Aie−cir

1/2
S . The computation of the coefficients Ai and ci is quite arduous

and we have not performed it. Thus, even the leading large rS contribution to the ground state
energy is not analytic around rS = ∞ and the expansion is only asymptotic.

Computation of the next order term in the expansion of the ground state energy requires one
to compute the expectation value of the general fourth order symmetric polynomial in electron
coordinates in the complicated leading order sum of Gaussian wave functions that we have just
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described. Higher orders require expectation values of higher order symmetric polynomials, as
well as matrix elements of symmetric polynomials between different energy levels of the normal
mode oscillators, again in anti-symmetrized sums. In the thermodynamic limit we also have to
worry about the contributions in higher orders of phonon modes nearly degenerate with the zeroth
order ground state. Even if these do not give rise to infrared divergences, they can easily make
nominally higher order terms in the expansion comparable in size to lower order terms, and are
apt to introduce dependences on ln rS in the expansion.

In summary, the large rS expansion establishes the existence of the WC phase in two and
three dimensions, but it is an extremely messy asymptotic expansion whose nominal expansion
parameter is r−1/4

S . That parameter is ∼ 1/3 even for rS ∼ 100. It seems very unlikely that this
expansion will be of utility for studying the phase structure of the model at finite values of rS .

2.2. Quantum Monte Carlo calculations

The most widely accepted description of the physics of the HEG in the strongly coupled low
density regime is based on some form of QMC calculation [6]. There are a number of well known
issues with this method. It requires that one works separately in regions of coordinate space where
the wave function has a fixed sign, where the boundaries of those regions are determined by
an initial Jastrow wave function from which the Monte Carlo relaxation begins. Phase transitions
are determined by comparing the variational energies of wave functions with different symmetry
properties. QMC methods reproduce the physics of the weakly coupled high density phase in a
satisfactory manner. At strong coupling they have no clear competitor so it is hard to determine
their accuracy.

Our concern about the reliability of QMC methods stems from two sources. The first has to do
with the fact that, the total linear size of the system one is able to study, in Wigner lattice units,
is rather small. Thus, the method is likely to miss physical effects associated with long wavelength
phonons, or the long wavelength fluctuations near any second order phase transition. Secondly,
in [2] we provided evidence for the claim of [3] that the HEG has a colloidal phase. The analysis
of [2] used the bubble nucleation description of first order phase transitions, as well as notions of
continuum elasticity theory, applicable to collective behavior of large numbers of electrons. It is
not at all clear how one would model such a phase in a QMC calculation with a small number of
electrons. Furthermore, the colloidal picture provided an intuitive picture for the gapless excitation
at non-zero wave number that has been found in two different methods of resumming Feynman
diagrams [7] , at a density far above that at which the WC disappears in the QMC calculations.
We argued that the colloid makes a smooth transition from a gel regime, consisting of a crystal
with bubbles of fluid trapped inside it, to a sol regime, consisting of chunks of crystal immersed in
fluid. We showed that if the surface tension of the crystal chunks was negative, as expected from
the repulsion of the surface electrons and screening of charge in the bulk of the crystal, that these
chunks were stable and had lower energy than an equivalent volume of fluid.

Using this picture, we argued that the second order transition occurs roughly at a place where the
negative surface tension vanishes. The size of the chunks goes to zero in this limit and their classical
energy goes to zero. We conjectured that these semi-classical crystalline excitations become gapless
Bose quasi-particles in the zero tension limit. The transition from the fluid phase to the sol-colloid is
Bose condensation of these particles and the fact that the gapless excitation occurs at non-zero wave
number is the residual signature of the fact that these excitations can be viewed as classical chunks
of crystal away from the phase transition. QMC calculations could not reveal such a phase and
the associated transition, without an ansatz for the initial wave function that incorporates colloidal
physics. We do not know how to construct such an ansatz, and it would seem to involve much larger
numbers of electrons than one can deal with, given current computational resources. For example,
if there is a sol phase at a value of rS where the typical number of electrons in a crystalline chunk is
of order the number of electrons in the QMC simulation, then it is possible that QMC would mistake
this regime for a crystalline phase.

One piece of evidence for the existence of a phase of the HEG which is neither a crystal, nor
a translation invariant fluid, is the negative compressibility found in QMC calculations [6,8,9] at
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densities far above that at which the WC melts. Negative compressibility is accompanied by a
negative static dielectric function, which is impossible in a translationally invariant phase [10]. In
fact, the Feynman diagram resummations of [7] all show that the negative compressibility/dielectric
function sets in at precisely the point at which a gapless mode with non-vanishing wave number
occurs. QMC calculations seem to be a very good guide to the physics at very high and very low
densities, and it is plausible that they remain reliable at densities of order the melting transition
point. The negative compressibility found by these calculations, at densities somewhat above the
melting point suggests the existence of a non-crystalline phase, which is not invariant under
translations, in agreement with the diagram resummation methods.

3. Renormalization group analysis

3.1. Introduction to the RG analysis

In our opinion, what is missing in the analysis of the HEG is a systematic treatment of the
strongly coupled low and medium density regime of the system. The straightforward low density
expansion, which we reviewed in the first section of this paper, is extremely complicated and
non-convergent. In addition, internal evidence from the leading term leads one to expect that
it is unreliable even in the vicinity of the melting transition. In this section, we will propose
a new method, which is completely unbiased by symmetry patterns of variational ansatze, and
is in principle amenable to systematic improvements. The basic problem with Wigner’s intuitive
argument for the dominance of the Coulomb interaction is that the expectation value of the kinetic
term in the Hamiltonian is infinite in the eigenstates of the Coulomb piece of the Hamiltonian,
and so is manifestly not a small perturbation. The systematic low density expansion resolves this
problem by the classic method of Born and Oppenheimer — expansion of the many body potential
around its minimum. Instead we will view the problem as a classic example of the necessity of
disentangling ultra-violet and infrared physics. This is the problem for which the Renormalization
Group was invented.

Our basic idea is very simple. We will argue that at sufficiently low density, the physics of
the short wavelength modes of the electron and plasmon fields becomes soluble, so that one can
‘‘integrate out these modes’’ and obtain an action with a relatively long ultraviolet wavelength
cutoff, much longer than the Bohr radius, though much shorter than rS . With this cutoff, the kinetic
term really is a small perturbation of the Coulomb interaction. The method thus combines two
approximations; an approximate solution of the RG equations determining the effective action
for the long wavelength modes, followed by a perturbative determination of the long wavelength
ground state, around the WC. Obviously, the approximations can only be reliable if rS is large enough
that the system is in a phase where the WC is at least metastable. They also involve a choice of the
cutoff length scale 1 ≪ L ≪ rS (in Bohr units), and the reliability of finite order truncations might
depend on the choice of L, or on the precise form of the cutoff at the microscopic scale l.

The intuitive reason that the RG equations are easy to solve at low density is that in the UV
physics, only the short range part of the Coulomb potential is taken into account, but electrons
are far apart from each other. Thus, the short range physics has interactions that can be treated
perturbatively at low density. In order for this intuition to work we must introduce the cutoff in a
way that remains fairly local in position space, so that a sharp wavenumber cutoff is inappropriate.
We will discuss a non-relativistic version of the Wegner–Houghton–Wilson–Polchinski [11](WHWP)
non-perturbative RG equations, which lead to transparent analytical formulae. In the conclusions we
will suggest that a Kadanoff style lattice block spin approach might be more amenable to numerical
calculations.

Before proceeding to the technical discussion of the RG, we should mention another popular
approach to the strongly coupled regime. This is the Strictly Correlated Electron problem, which
gives an upper bound on the density functional or the Born–Oppenheimer potential. The bound on
the DF is the sum of the minimum values of the kinetic and Coulomb terms in the Hamiltonian, at
fixed expectation value of the density operator N(x). Since it takes the Coulomb energy into account
exactly, one expects this upper bound to be close to the true value for rS in the WC regime. Note
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that it does not suffer from UV divergences because the expectation value of the kinetic term is
part of the density functional that one tries to minimize. We will review this approximation and its
suitability for finding a colloidal phase in an Appendix .

3.2. The WHWP equation for the HEG

The derivation of the WHWP equation starts by replacing the photon and fermion propagators
in Feynman diagrams with the following substitutions

1
p2

→
1
p2

f (p2δ2), (16)

1
iω − k2/2 + µ

→
1

iω − δ−2c(δ)
F (k2δ2). (17)

We are working in imaginary time. The wavelength cutoff δ is ≪ 1. The coefficient c is tuned as a
function of δ so that the energy per electron is a finite function of µ, the chemical potential.2 The
smooth functions f and F approach 1 at small wavenumbers and go to zero faster than any power of
wavenumber at large values of their argument. The choice of these functions changes the detailed
solution of the WHWP equations, but not their qualitative nature. In high energy physics this is an
example of a choice of renormalization scheme. It is possible that numerical implementation of our
procedure might be more accurate for a particular choice of scheme, but we are not yet able to say
anything useful about this point. We will see that the analysis of the equations is simplest if we
choose the first derivative of both functions to vanish.

Starting from the microscopic interaction SI (δ) = i
∫
d4x φ(x)ψ†(x)ψ(x)3 we ask the question

of whether we can rescale the cutoff in the propagator to esδ, and change SI in such a way that
correlation functions of the fields at wavenumbers < e−sδ−1 are unchanged.4

In the functional integral formalism, correlation functions of the fields in imaginary time are
calculated as the expansion coefficients of

Z[J] =

∫
[dΦ dψ dψ†

] e−[Sδ+SI+
∫

[η∗ψ+ηψ†
+JΦ]]. (18)

We omit the normalizing factor that sets Z[0] = 1 because it does not contribute to the connected
correlation functions, which are the expansion coefficients of W = ln Z . Sδ is the quadratic action
that gives rise to the cutoff propagators above. We want to replace this with Sesδ and compensate
for that by replacing SI = iΦψ†ψ by an s dependent interaction, as long as we restrict the source
functions η, η∗ and J to have support only for wave numbers below e−sδ−1.

We can write the equation for the partial derivative of the connected generating functional W as

∂sW = Z−1
∫

[dFi][
eSI

2

∫
d4p Fi(p)Fj(−p)∂sDij(p) + ∂s(eSI )]e

1
2

∫
d4pFi(p)Fj(−p)Dij(p)+Fi(p)J i(−p). (19)

Z is the generating functional with sources set to zero. In this equation, for compactness of notation,
we have introduced the three component field Fi ≡ (Φ, ψ, ψ̄). Although some of its components
are Grassmann fields, all the manipulations that we do will involve pairs of such fields and so all
the potential minus signs cancel out. The inverse propagator Dij(p) only has plasmon–plasmon and
fermion–(anti) fermion components. The WHWP observation is that if we take

∂s(eSI ) =
1
2

∫
d4p ∂sD−1

ij (p)
δ2

δFi(p)δFj(−p)
(eSI ), (20)

2 Alternatively we could normal order the interaction term in the Hamiltonian.
3 For notational convenience we relabel the imaginary time variable as x0 .
4 Actually, for the kind of cutoff function we are using, these functions are changed by amounts of order e−k2δ2 . To

leave them completely unchanged we must make the propagator a smooth function that vanishes identically above the
cutoff momentum.
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then we can integrate by parts in the functional integral and rewrite the derivative of the interaction
in terms of the action of this second order differential operator on e

1
2

∫
d4pFi(p)Fj(−p)Dij(p)+Fi(p)J i(−p).

This action gives

e
1
2

∫
d4p Fi(p)Fj(−p)Dij(p)+Fi(p)J i(−p) 1

2

∫
d4p [∂sD−1

ij (p)Dij(p) + Fi(p)Dij(p)∂s(D−1
jk (p))Dkl(p)Fl(−p)

+ Ji(p)Jj(−p)∂sD−1
ij (p)].

(21)

The first term gives a source independent contribution to W , which is a contribution to the ground
state energy of the system. Using the identity ∂sD−1

= −D−1∂sDD−1 we see that the second term
cancels the term coming from the s dependence of the kinetic term in the action. Finally, the third
term contributes only to the connected two point function and the contribution is concentrated up
near the cutoff e−[s+ln δ].

For those more comfortable with Feynman diagrams than functional integrals, the same equation
can be derived diagrammatically. The s derivative acts sequentially on each propagator in a diagram.
If the propagator connects two parts of a one particle reducible diagram then the result sums up
to the term quadratic in SI in the WHWP equation. Otherwise it is in a closed loop and gives a
contribution to the second term. The reason that only tree and one loop diagrams contribute to the
scaling derivative of the action is that the s derivative of a propagator carrying loop momentum
is non-zero only at the cutoff momentum and above, while the propagator itself vanishes rapidly
above the cutoff, so the region of integration is restricted, up to exponentially small corrections,
to a small region around the cutoff. At low density, there is a further simplification. Any diagram
containing a fermion in a closed loop has an energy integral, which restricts the electron momentum
to be less than the Fermi momentum. Mathematically this is due to the fact that we can close
the energy contour in the complex plane, and the poles of the integrand all lie below the Fermi
momentum. Since the Fermi momentum is well below the cutoff scale, whereas the internal
momenta are all at the cutoff scale, these diagrams are proportional to the cutoff derivatives of
propagators, evaluated at the Fermi momentum. They are therefore exponentially small as long as
the cutoff esδ ≪ rS , since the latter scale determines the size of the Fermi momentum. There is a
single exception to this rule. The one loop diagram with a single electron line and a single plasmon
line, the electron self energy, has an energy integral that does not converge rapidly enough to close
the integration contour in the complex plane. This diagram leads to renormalization of the chemical
potential, and we tune the coefficient c in the electron propagator (that is, make it s dependent)
in such a way that the expectation value of the density is equal to the physical value 4π

3r3S
. All other

loop corrections vanish at low density.
We can therefore re-write the WHWP RG equation at low density as

∂sSI =

∫
d4p[

δSI
δψ(p)

∂sG(p)
δSI

δψ̄(−p)
+

δSI
δΦ(p)

∂sD(p)
δSI

δΦ(−p)
]. (22)

This is the functional analog of a first order non-linear partial differential equation, and as such it
may be solved by the method of characteristics. That is, there are scale dependent field configura-
tions ψ̄(p, s), ψ(p, s),Φ(p, s) such that

SI [ψ̄(p), ψ(p),Φ(p); s] = SI [ψ̄(p, s), ψ(p, s),Φ(p, s); 0]. (23)

To see this, note that the scale derivative of the right hand side is

∂sSI [ψ̄(p, s), ψ(p, s),Φ(p, s); 0] =

∫
d4p (∂sψ̄(p, s)

δ

δ ¯ψ(p, s)
+ ∂sψ(p, s)

δ

δψ(p, s)

+ ∂sΦ(p, s)
δ

δΦ(p, s)
)

SI [ψ̄(p, s), ψ(p, s),Φ(p, s); 0].

(24)
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This is the WHWP equation if

∂sψ̄(p, s) = ∂sG(p)
δ

δψ(p, s)
SI [ψ̄(p, s), ψ(p, s),Φ(p, s); 0], (25)

∂sψ(p, s) = ∂sG(p)
δ

δψ̄(p, s)
SI [ψ̄(p, s), ψ(p, s),Φ(p, s); 0], (26)

∂sΦ(p, s) = ∂sD(p)
δ

δΦ(p, s)
SI [ψ̄(p, s), ψ(p, s),Φ(p, s); 0]. (27)

Solving these equations by the usual method of iterated integration, we get a sequence of cor-
rections to the bare interaction SI = i

∫
d4x Φ(x) ¯ψ(x)ψ(x) when written in terms of the fields at

s = 0. It is easy to verify that the higher order terms become small if s is large, except for a term
proportional to the first derivative of f or F at zero wave number.

To see this, we recall that the bare interaction is

SI = i
∫

d4p d4q Φ(q)ψ̄(p)ψ(p + q). (28)

The characteristics of the approximate WHWP equation have the form

∂sFi(s, p) = ∂sPij(s, p)Cijk

∫
d4q Fj(s, q)Fk(s, p + q). (29)

Fi are the three independent fields, Pij the propagator connecting Fi to Fj and Cijk = 1 if all the
indices are different and vanishes otherwise. This is equivalent to the set of integral equations

Fi(s, p) = Fi(0, p) +

∫ s

0
dr ∂rPij(r, p)Cijk

∫
d4q Fj(r, q)Fk(r, p + q). (30)

These can be solved by iteration. If either of the functions f or F has a non-vanishing first derivative
at the origin, then there is a term on the RHS of the WHWP differential equation, which does not
vanish for p2δ2 = 0. That is ∂sPij(s, p) ̸= 0 at p = 0. Keeping only this term, we can Fourier transform
the equation to position space

Fi(s, x) = Fi(0, x) +

∫ s

0
dr ∂rPij(r, 0)Cijk Fj(r, x)Fk(r, x). (31)

This equation is ultralocal in position space. The new fields at a point are ordinary functions
of the old fields. This means that the correlation functions of Fi(s, x) at points separated by
distances large compared to the rescaled cutoff esδ are dominated by those of Fi(s, 0). The long
distance behavior, which determines the phase structure and transport properties of the system is
completely unaffected by these renormalizations.

This is consistent with the fact that, if we choose the first derivatives of the cutoff functions to
vanish, there are no ultra-local contributions at all. Assuming this is the case, it is easy to see that
the iterative solution to the integral form of the WHWP equations generates a series of interactions
proportional to higher and higher powers of (esδp), which is what high energy physicists call a
systematic effective field theory expansion.

For the application to the physics of the low density electron fluid, and thereby to the Born–
Oppenheimer approximation, we want to start with the bare interaction at a scale δ below e.g. the
Bohr radius of high Z atoms and choose the final value of s such that esδ ≪ rS . According to QMC
calculations, the density above which the Wigner crystal is not the ground state appears to be at
around rS = 50 in two dimensions and rS = 100 in three dimensions. Thus we probably need
the maximal value of s, smax to be around 8 − 9. The wave numbers in the theory with cutoff ∆
are of order e−smaxδ−1 or smaller so the higher order terms in the iterative solution of the WHWP
equations are smaller than the term that gives the bare Coulomb interaction.

To summarize, we can approximate the WHWP equations for the HEG by a simpler equation, up

to exponentially small corrections ∼ e−c
r2S

e2smax δ2 , whose details depend on our choice of the cutoff
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function at scale δ. For applications to atomic, molecular and condensed matter physics, it seems
reasonable to take δ ∼ 10−3. That is, we write the HEG Hamiltonian with a length scale cutoff of
one thousandth of a Bohr radius. Solving the simplified equations, we get a sequence of corrections
to the simple two body Coulomb interaction, which are suppressed by powers of e−smax .

Our proposal for the solution of the homogeneous electron model at low density is then to
show that, with cutoff esmaxδ, the effective action for the plasmon field Φ , obtained by integrating
out the electrons, has a periodic solution, corresponding to a crystal, for large enough rS . The
classical plasmon field will not be delta function localized because of our Gaussian momentum
cutoffs. Fluctuations of Φ around the classical solution will describe the phonon modes of the
crystal. The fermion wave functions in this background will have expectation values of the kinetic
energy per particle of order [esδ]−2 while the periodicity of the solution is rS and the Coulomb
energy per particle of order r−1

S . Thus, we can expect this configuration to have lower energy than
a homogeneous one when rS < e2sδ2. This is compatible with the inequality rS ≫ esδ, which
guarantees that the density profile has a distinct lattice structure, when esδ ≫ 1. Remarkably, this
crude estimate of the transition density is roughly the value given by QMC calculations.

In the extreme low density limit we have seen that the width of the peaks in the density
distribution scale like r3/4S , with a numerical coefficient that involves the coupling of a single
electron coordinate to all of the normal mode frequencies. Thus, if we choose esδ ∼ r3/4S our RG
procedure should be able to reproduce the physics of this extreme limit.

4. Conclusions

In this paper we have set up two approximation schemes for studying the low density regime of
the HEG. The first is the systematic large rS expansion, in which one expands the K electron Coulomb
interaction around its K ! WC minima, and solves the resulting coupled oscillator problem for each
minimum as the zeroth order approximation. The correct wave function is the antisymmetric
superposition of the normal mode ground states for these minima. This resembles, but is not the
same as the Jastrow ansatz. There are a number of important results that follow from this analysis.

• The expansion parameter is r−1/4
S , which is not small near the transitions out of the WC state

found by QMC calculations. Furthermore, even the zeroth order approximation to the ground
state energy has corrections of the form Aie−cir

1/2
S , where the constants ci and the prefactor of

the exponential are hard to calculate. The expansion is thus asymptotic and complicated and
the expansion parameter is not small even for rS ∼ 100.

• In one dimension there is no Wigner crystal. The low frequency normal mode wave functions
have widths larger than the lattice spacing and in one dimension the density expectation value
is dominated by these contributions, washing out the crystal structure. This is an example of
the Mermin–Wagner theorem about one dimensional long range order.

• The higher order corrections to the leading order calculation are extremely difficult to calcu-
late. They lead to complicated many body correlations .

These considerations make it unlikely that the large rS expansion will be a useful tool for studying
the possibility of the colloidal phases discussed in [2], or indeed any of the phase structure of the
HEG. In two and three dimensions it establishes the existence of the WC phase at large rS , and that
may be the limit of its utility.

Instead, we proposed a scheme for studying the entire low density regime using the tools of the
Wegner–Wilson–Polchinski exact renormalization group equations. We argued that these equations
simplify in the large rS regime. Starting from a length scale cutoff δ ≪ 1 in Bohr units, we
argued that there is a systematic expansion of the effective Hamiltonian for the HEG in powers and
exponentials of es, where esδ is a cutoff scale< rS but large enough that all terms in the Hamiltonian
are small perturbations of the cutoff bare Coulomb interaction. The detailed form of the corrections
depends on the choice of the smooth cutoff function introduced in the WHWP scheme. Thus there
is a complicated but systematic perturbation theory, entirely in the second quantized formalism
(unlike the large rS expansion). We suspect that this expansion might be convergent.
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We will reserve a detailed study of this approximation scheme to future work, but we want to
mention an interesting idea connected with it, which might speed up convergence of the expansion.
The WHWP formalism introduces an arbitrary smooth cutoff function f . When using the equations
to find fixed points of the RG flow, it is well known that the fixed points and their spectra of
dimensions are independent of the choice. That will not be true in the present case, where we
are only using the RG to integrate out a finite range of length scales. This suggests that using the
effective Hamiltonian of the RG as a variational ansatz might choose a form for f that optimizes
convergence to the exact answer. A particularly appealing form of this idea is to reformulate the
RG equations with a lattice cutoff and to use the Tensor Network Renormalization Group. We hope
to return to this problem.
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Appendix. Strictly correlated electrons

In the Born–Oppenheimer approximation, we are interested in finding the quantum state that
minimizes the expectation value of the operator

H = K + C +

∫
N(x)V (x), (32)

where N(x) = ψ†(x)ψ(x) is the electron density operator, K is the kinetic energy and C is the
Coulomb repulsion between the electrons. The minimum is the B–O potential. Write H as

[K +

∫
N(x)U(x)] + [C +

∫
N(x)(V (x) − U(x))] ≡ H1 + H2, (33)

where H1,2 are the two operators in square brackets. For any choice of U(x) the B–O potential
is greater than the sum of the individual minima of H1,2. It is been argued [12] that the bound
is close to being saturated at large rS , for a choice of U(x) that is determined by requiring that
the two different minimizing states give the same density expectation value. It is easy to see
that the criterion is the same as asking for the largest lower bound among those obtained in this
manner. The resulting estimate of the B–O potential is called the Strictly Correlated Electron or SCE
approximation.

This way of formulating the SCE approximation has several computational advantages, which
we just want to sketch in this appendix. Minimization of H1 is simply the problem of solving the
Schrodinger equation in an external potential. This can be done analytically in both the small and
large U limits (the latter limit is controlled by the JWKB approximation as long as the potential
does not vary too wildly). Minimization of H2 is best done by putting the system on a lattice with
spacing much smaller than the Bohr radius. It is then equivalent to finding the ground state of the
classical Ising model in the presence of a spatially varying source. This can be done efficiently in
both the limits V −U ≫ 1 and V −U ≪ 1, and is of course a completely classical physics problem.
Quantum mechanics enters it only through the discrete values of the lattice density operator.

The limit of small V − U should be useful for studying single atoms. There the minimization of
H1 is the exactly soluble Bohr atom if we take U to be equal to V and reduces to a collection of one
dimensional Schrodinger equations if U is a general spherically symmetric potential. An interesting
choice for U might be the self consistent Hartree–Fock potential, which minimizes the full atomic
Hamiltonian, restricted to the subspace of Slater determinant wave functions. V −U might then be
smaller than the electron self interaction everywhere, allowing us to use a perturbative evaluation
of the expectation value.
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More generally, if V (x) is the nuclear potential of a system with a number of high Z nuclei, we can
take U(x) to be the potential of nuclei of large charge. The minima will clearly be the Bohr atomic
ground states of those atoms (neglecting electron repulsion), up to corrections exponential in the
distance between the highly charged nuclei. The length scale in the exponentials can be calculated
from textbook single particle wave functions.

Finally, we would like to note that the SCE approximation, since it is an approximation to the
density functional, is well suited to discussing the hypothetical colloidal phases of Kivelson and
Spivak.
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