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a b s t r a c t

We study the effects of long-range electrostatic interactions
on the thermal fluctuations of free-standing crystalline mem-
branes exhibiting spontaneous electric polarization directed at
each point along the local normal to the surface. We show
that the leading effect of dipole–dipole interactions in the long-
wavelength limit consists in renormalizations of the bending
rigidity and the elastic coefficients. A completely different re-
sult was obtained in the case of scalar two-point interactions
decaying as |R|

−3, where |R| is the distance. In the latter case,
which was addressed in previous theoretical research, the en-
ergy of long-wavelength bending fluctuations is controlled by
power-law interactions and it scales with the wavevector q as
|q|3, leading to a modified large-distance behaviour of correla-
tion functions. By contrast, in the case of dipole interactions,
the |q|3 dependence of the bending energy vanishes. Non-local
terms generated by the expansion of the electrostatic energy
are suppressed in the limit of small wavevectors. This suggests
that the universal scaling behaviour of elastic membranes holds
even in presence of dipole interactions. At the same time, the
shift of the Lamé coefficients and the bending rigidity induced
by electrostatic interactions can be quantitatively important for
two-dimensional materials with a permanent out-of-plane polar-
ization.
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1. Introduction

The thermodynamic properties and the elastic response of two-dimensional (2D) crystalline
membranes subject to small or vanishing external tension are crucially determined by the thermal
fluctuations of their shape. The statistical mechanics of fluctuating elastic membranes has been
the subject of extensive research effort [1–19]. The problem is particularly complex because of
low dimensionality and the softness of the dispersion relation of bending modes, which leads
to strong fluctuations and the breakdown of the harmonic approximation. The energy and the
nature of fluctuations depend essentially on the degree of internal order of the membrane [1].
In the case of fluid membranes, the shear modulus vanishes. It was demonstrated that bending
fluctuations then lead to a crumpled state at any finite temperature [1]. By contrast, membranes
with an internal crystalline order and, therefore, a finite shear modulus present a low-temperature
flat phase, characterized by a planar average configuration. The stability of the flat phase long-range
order to thermal bending fluctuations is made possible by the anharmonic coupling of out-of-plane
and in-plane modes [4]. The statistical mechanical properties of the flat phase are controlled by
long-wavelength fluctuations of out-of-plane (bending) and in-plane (stretching) modes. In absence
of long-range interactions, spontaneous curvature and anisotropies in the elastic coefficients, the
most general effective Hamiltonian for slowly varying deformations is [1,4–7]

Hel =

∫
d2x

[
1
2
κ
(
∇

2h
)2

+
λ

2
ũ2

αα + µ ũαβ ũαβ

]
, (1)

where h(x) and u(x) are out-of-plane and in-plane displacements and

ũαβ =
1
2
(∂αuβ + ∂βuα + ∂αh∂βh) (2)

is the strain tensor. λ and µ are Lamé coefficients and κ is the bending rigidity. Terms including
higher powers of ∂αh or ∂αuβ or higher-order gradients can be neglected, because they are
irrelevant at long wavelengths1 [4–6]. The field h(x) plays the role of the Goldstone mode related
to broken rotational symmetry [3,6,8] and it exhibits a particularly soft dispersion relation. In
the harmonic approximation, the energy of bending fluctuations scales as κq4, where q is the
wavevector. The anharmonic coupling between in-plane and out-of-plane modes constitutes a
strongly relevant perturbation to the Gaussian fixed point, making the statistical mechanics very
non-trivial [1]. Correlation functions of h and u fields can be calculated perturbatively in the
anharmonic coupling strength for wavevectors larger than the ‘Ginzburg scale’ q∗ ≈

√
3Y/16πκ2,

with Y = 4µ(λ + µ)/(λ + 2µ). For q ≪ q∗, instead, perturbation theory breaks down [2,4,16].
The long-wavelength behaviour of correlation functions is determined by a non-trivial fixed point
Hamiltonian, characterized by anomalous scaling exponents [1,3–6,10]. In the small-q regime, the
bending rigidity diverges as q−η and the elastic Lamé coefficients both vanish as q2−2η , where η is
an universal critical exponent. The determination of η has been addressed through several field-
theoretic methods [1,5–10]. The self-consistent screening approximation [7,8] and the functional
renormalization group [10] lead to η ≃ 0.821 and η ≃ 0.849, respectively.

The anomalous scaling of the elastic and bending coefficients has crucial consequences in the
physical properties of crystalline membranes. The very stability of the flat phase and the existence
of long-range order in the orientation of the normal to the membrane rely on the power-law
stiffening of the bending rigidity and would be impossible if anharmonic effects were neglected [4].
In addition, the renormalization of elastic coefficients determines the macroscopic mechanical
properties of crystalline membranes in an essential way, leading to anomalous strain and size
dependent elastic response [11,12,15–19].

The statistical mechanics of anharmonic thermal fluctuations of 2D crystals in the flat phase
has fundamental importance in the theory of thermodynamic and mechanical properties of free-
standing graphene or suspended samples of other atomically-thin materials [2,16,17]. The Ginzburg

1 In Eq. (1), in particular, quartic coupling between the in-plane u fields is neglected. This leads to the replacement of
the exact strain tensor uαβ = ũαβ + 1/2 ∂αuγ ∂βuγ with the approximate strain tensor ũαβ , Eq. (2). This replacement is
not always possible. The exact form of the strain tensor must be kept in the quantum case [13].
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wavelength λ∗ = 2π/q∗ for these materials at room temperature is of the order of 10 Å,
which makes the anomalous scaling behaviour important already at short length scales [8]. The
elasticity of graphene is currently under extensive investigation, both theoretically [12,17,18] and
experimentally [20,21].

It has been understood long time ago that the scaling behaviour of crystalline membranes
can be modified in presence of long-range interactions which decay sufficiently slowly with the
distance. The effects of power-law interactions of the form V (R) = C |R|

−σ on D-dimensional
membranes fluctuating in a d-dimensional embedding space were studied in Refs. [22–25]. In
Ref. [22], in particular, the author focused on effects of long-range interactions in the flat phase and
addressed the scaling behaviour for generic D, d and σ . It was shown that, for small fluctuations
around the flat configuration, the dominant effect of long-range interactions is to modify the long-
wavelength behaviour of the quadratic part of the bending energy, which acquires a wavevector
dependence |q|σ+2−D. When σ + 2−D < 4− η, where η is the short-range critical exponent, long-
range interactions dominate the long-wavelength behaviour and the universal anomalous elasticity
predicted by conventional membrane theory does not hold [22]. If σ is decreased further, σ < 3D/2,
the bending stiffness becomes larger and the exponents approach the Gaussian ones. The case of
scalar interactions decaying as |R|

−3 in two dimensions, lies precisely at the boundary of the domain
of validity of the Gaussian approximation. The renormalized in-plane elastic coefficients λ(q) and
µ(q) then vanish as 1

/
ln (1/q) [22].

The fact that long-range interactions can crucially affect the behaviour of systems with massless
modes is very general. In two-dimensional spin systems, for example, dipole–dipole interactions
lead to the breaking of the conditions of the Mermin–Wagner theorem and have dramatic effects
on thermodynamic properties [26]. Long-range dipolar interactions also play a crucial role in spin
systems at the ferromagnetic phase transitions, leading to a modified critical behaviour [27,28].

Electrostatic interactions also play an important role in charged fluid membranes immersed
in electrolyte solutions. Vast research effort was devoted to the quantitative prediction of the
renormalization of bending moduli induced by electrostatic interactions [29–35].

Several theoretical studies also addressed the curvature moduli of membranes subject to van der
Waals interactions [34–36] and the elasticity of flexoelectric membranes [37,38].

In this paper, we discuss the effect of dipole–dipole interactions on the fluctuations of free-
standing crystalline membranes. We focus, in particular, on the case of two-dimensional crystals
with a permanent polarization of fixed magnitude oriented along the local normal, which we
describe as arising from point dipole moments located at the lattice sites. We show that dipole–
dipole interactions lead to a very different result from the one obtained for scalar interactions
decreasing with distance as |R|

−3. In the quadratic part of the energy, the non-analytic wavevector
dependence proportional to |q|σ+2−D

= |q|3 of the inverse h field propagator vanishes exactly.
Expanding the electrostatic energy generates, in the leading order in the long-wavelength limit,
to a local functional of the strain tensor. Non-local terms, instead, constitute small corrections in
the limit of long wavelengths and they are not expected to modify the large-distance behaviour.
Electrostatic interactions, on the other hand, lead to a shift of the Lamé coefficients λ and µ

and to the bending rigidity κ , which can be quantitatively important in realistic two-dimensional
materials.

Our study is relevant for 2D materials which lack symmetry under inversion and under reflection
with respect to the crystal plane and which can exhibit, therefore, a finite out-of-plane polarization.
Important examples are the graphene derivatives C2F (fluorinated on one side), C2HF (fluorinated
on one side and hydrogenated on the opposite side) and C2LiF [39]. In these materials, polarization
arises from the charge transfer between carbon and halogen and alkali atoms. Other examples of
two-dimensional materials exhibiting spontaneous out-of-plane polarization are MoSSe monolayer
and multilayers [40]. Recently, out-of-plane spontaneous polarization and ferroelectric phenomena
were observed in bi- and trilayer WTe2, which were identified as rare examples of 2D ferroelectric
metals [41].

Thermal fluctuations of membranes with a spontaneous polarization directed along the normal
to the surface were investigated in the previous work [37]. However, in Ref. [37], the expansion
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of the electrostatic energy up to second order in h(x) was calculated only approximately. This lead
to the prediction of a |q|3 wavevector dependence of the bending energy, which contrasts with
our results. Fluctuations of nearly-planar dipole layers were also investigated in Ref. [42], which
reports the calculation of the electrostatic energy up to second order in the out-of-plane fluctuation
amplitude and to order q2 for a dipole layer at the interface between media with two different
dielectric constants ϵa and ϵb. In our work we determined, in the case ϵa = ϵb, the fluctuation
energy to higher orders in q and in the fluctuation amplitudes, which is crucial for addressing the
statistical mechanical properties of the system.

A comparison between our calculations and the results in Refs. [29–36] is not direct because of
the differences of the systems under examination. In the case of charged membranes immersed in
solutions with added salt, Coulomb interactions are Debye-screened and become effectively short-
ranged. In this case, effects of electrostatic interactions can a priori be encoded in a renormalization
of local elastic coefficients, in the limit of long wavelengths [29,31–33]. On the other hand, electro-
static interactions are unscreened in the case of membranes immersed in solutions without added
salt, in which the only mobile ions are counterions which ensure an overall charge neutrality [30,31].
In Refs. [30,31], bending fluctuations of two charged membranes with the same charge and with
intervening counterions were addressed. It was found that, for in-phase fluctuation modes of the
two layers, the wavevector dependence of the energy is regular at q → 0 despite the long-range
nature of the interactions. This finding is similar to our results for the quadratic part of the energy of
out-of-plane fluctuations in a membrane with dipole–dipole interactions, although the two systems
and the methods to describe them are very different.

2. Model

Within the scope of our analysis, the spontaneous curvature of two dimensional crystals with-
out inversion and mirror symmetry [37] is neglected. Fluctuating configurations of a crystalline
membrane in the flat phase are described by specifying the displacement of all points from their
position in the minimal energy configuration. In the rest minimum energy state, the membrane lies
in a plane, which we can choose as the xy plane. Displacements in the membrane plane are denoted
as u (x) and displacements in the orthogonal z direction are denoted as h (x). The position of points
in the three-dimensional embedding space is denoted as r(x) = x+u(x)+ h(x)ez . When the crystal
lattice is sufficiently isotropic and interactions are short-ranged, long-wavelength fluctuations can
be described through the coarse-grained Hamiltonian [1,4–6,14]:

Hsr =

∫
d2x
[
1
2
κ
(
∇

2r
)2

+
λ

2
u2

αα + µ uαβuαβ + τuαα

]
, (3)

where κ is the bending rigidity, λ is the first Lamé coefficient and µ the shear modulus. The strain
tensor uαβ is defined as:

uαβ =
1
2

(
∂αr · ∂βr − δαβ

)
=

1
2

(
∂αuβ + ∂βuα + ∂αh ∂βh + ∂αuγ ∂βuγ

)
. (4)

The linear term
∫
d2x τ uαα (x) represents an elastic tension. If only the short-range forces described

by Eq. (3) were present, τ should vanish because u(x) = h(x) = 0 was defined as the state of
minimum energy. However, dipole–dipole interactions will be included. These tend to stretch the
membrane. Therefore, a finite value of τ must be taken into account in order to ensure that the
reference configuration will correspond to the state of minimum energy of the total Hamiltonian.
The appearance of a finite elastic tension will be important in the following. As shown in Section 3.1
(see Eq. (17)), electrostatic interactions lead in the bending energy to a negative, quadratic-in-q
term, proportional to −

∑
q q

2
⏐⏐hq
⏐⏐2 . This term will be exactly cancelled by the positive tension τ ,

as it was already noticed in Ref. [22]. The exact cancellation is ensured by rotational symmetry and
is related to the ‘Goldstone’ nature of the out-of-plane mode h(x).

Eq. (3) can be simplified by neglecting in-plane anharmonicity and the term
(
∇

2u
)2, which can

be shown to be irrelevant for the long-wavelength behaviour [1,4–6,14]. If these terms are ignored,
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Hsr becomes:

Hsr =

∫
d2x
[
1
2
κ
(
∇

2h
)2

+
λ

2
ũ2

αα + µ ũαβ ũαβ + τuαα

]
, (5)

where the approximate strain tensor ũαβ is defined as in Eq. (2).
In presence of dipolar interactions, the Hamiltonian for displacement fields is:

H = Hsr + Hlr ,

Hlr =
1
2
P2
∫

d2x
∫

d2x′

[
n(x) · n(x′)

|r(x) − r(x′)|3
−

3 (n(x) · ν)
(
n(x′) · ν

)
|r(x) − r(x′)|3

]
.

(6)

Here n(x) is the normal to the membrane surface at the point x and ν is the unit vector:

ν ≡
r(x) − r(x′)
|r(x) − r(x′)|

. (7)

P is the two-dimensional polarization density, defined as the dipole moment per unit area. The
electrostatic energy defined in Eq. (6) is actually divergent when x′ approaches x and a short-
distance cutoff must be introduced. Motivated by the study of ordered crystals such as CF, C2HF
or C2LiF we take care of the divergence of the energy by the following procedure. We consider the
polarization to arise from finite dipole moments located at the sites of a perfect lattice. The energy
becomes:

Hlr =
1
2

∑
i

∑
j̸=i

pipj

[
ni · nj⏐⏐r i − r j

⏐⏐3 −
3 (ni · ν)

(
nj · ν

)⏐⏐r i − r j
⏐⏐3

]
. (8)

The discrete indices i and j label the lattice sites at which dipole moments are located, pi denotes
the magnitude of the dipole moment at the site i. pi is assumed to have the periodicity of the
lattice, so that the dipole moment distribution is identical in all unit cells. For simplicity, despite
the discretization of the problem, we still describe configurations through functions u(x) and h(x)
defined on the continuum two-dimensional space. For consistency, the functions u(x) and h(x)
must be slowly varying, with finite Fourier components only for wavevectors well within the first
Brillouin zone. In Eq. (8), we identify r i and ni with r(xi) and n(xi). This corresponds to picturing the
membrane as a 2D continuum elastic medium in which dipole moments are embedded at discrete
lattice positions [43,44]. If the displacement fields vary slowly with respect to the atomic scale,
the approximate character of the continuum description is inessential. It allows however a simpler
definition of the unit vector n normal to the surface and it avoids the necessity to derive a discretized
version of the short-range elastic Hamiltonian in Eq. (5).

To study how electrostatic interactions perturb the properties of membranes which lie deep in
the flat phase and far from the crumpling transition point, it is legitimate to expand Eq. (8) in
powers of the displacement fields h(x), u(x). According to the conventional statistical mechanics
of membranes, if only the elastic energy, Eq. (5), is considered, the fluctuating field correlation
functions scale at large distances according to:

⟨
(
h (x) − h

(
x′
))2

⟩ ≈
⏐⏐x − x′

⏐⏐2−η

⟨
(
u (x) − u

(
x′
))2

⟩ ≈
⏐⏐x − x′

⏐⏐2−2η
,

(9)

with η ≃ 0.8. Therefore, distances fluctuate much less than their average value. In addition, the
mean square fluctuation of the normal around the average z-axis is finite and small if T ≪ κ ≈ Tcr.
This is the case for graphene and most two-dimensional materials at room temperature.
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3. Expansion of the electrostatic energy

3.1. Harmonic approximation

Expanding Eq. (8) up to second order in the fields gives the long-range contribution to the
Gaussian fluctuation theory. It is convenient to rewrite the expression for the energy as:

Hlr =
1
2

∑
i

∑
j̸=i

pipj
1⏐⏐r i − r j
⏐⏐3 −

1
2

∑
i

∑
j̸=i

pipj

[ 1
2

(
ni − nj

)2
+ 3 (ni · ν)

(
nj · ν

)⏐⏐r i − r j
⏐⏐3

]
≡ Hlr,1 + Hlr,2 .

(10)

The second line in Eq. (10), denoted Hlr,2, is now regular when xi approaches xj and the lattice sums
can be safely transformed into integrals. To first order in the displacement fields, the normal n(x)
can be written as:

n(x) = ez − ∇h(x) . (11)

Keeping only terms of second order in Hlr,2 yields:

Hlr,2 ≃ H (2,0)
lr,2 = −

1
2
P2
∫

d2x
∫

d2x′

[ 1
2

(
∇h(x) − ∇h(x′)

)2
|x − x′|

3

+
3
(
h(x) − h(x′) − ∇h(x) ·

(
x − x′

)) (
h(x) − h(x′) − ∇h(x′) ·

(
x − x′

))
|x − x′|

5

]
.

(12)

We will denote as H (n,m) the term of order hn um in the expansion of the energy. Introducing the
Fourier transform:

h(x) =
1

√
A

∑
q

hq eiq·x , (13)

gives:

H (2,0)
lr,2 = −

π

3
P2
∑
q

|q|3
⏐⏐hq
⏐⏐2 . (14)

An explicit calculation of the discrete lattice sum, based on the Ewald method (see the Appendix),
actually gives:

H (2,0)
lr,2 = P2

∑
q

[
−

π

3
|q|3 +

1
a3

f2 (aq)
] ⏐⏐hq

⏐⏐2 , (15)

where a is the lattice constant and f2 is a regular function of the components of q for q → 0,
vanishing as (aq)4 for small wavevectors. The function f2 depends on the geometrical details of the
lattice. It is in general anisotropic, although it must be invariant under the symmetry operations
of the crystal. We will assume that the lattice structure is symmetric enough to ensure that the
only invariant quadratic and quartic functions of q are q2 and

(
q2
)2. Also, we will suppose that the

lattice has some inversion or reflection symmetry so that all invariant functions of q must be even
for q → −q. These are actually the same requirements which underlie the isotropy of the elastic
and bending coefficients in Eq. (5).
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We now turn to the expansion for small fluctuations of Hlr,1. Expanding up to second order
yields:

Hlr,1 ≃ H (0,0)
lr,1 + H (2,0)

lr,1 + H (0,1)
lr,1 + H (0,2)

lr,1

=
1
2

∑
i

∑
j̸=i

pipj

[
1⏐⏐xi − xj
⏐⏐3 −

3
2

(
hi − hj

)2⏐⏐xi − xj
⏐⏐5

−
3
2

2
(
ui − uj

)
·
(
xi − xj

)
+
(
ui − uj

)2⏐⏐xi − xj
⏐⏐5 +

15
2

((
ui − uj

)
·
(
xi − xj

))2⏐⏐xi − xj
⏐⏐7

]
.

(16)

Fourier transformation gives:

Hlr,1 ≃
1
2
b3
a
P2A −

3
2

∑
i

∑
j̸=i

pipj

(
ui − uj

)
·
(
xi − xj

)⏐⏐xi − xj
⏐⏐3

+ P2
∑
q

[
−

3
8
b3
a

q2 +
π

3
|q|3 +

1
a3

f1 (aq)
] ⏐⏐uα,q

⏐⏐2
+ P2

∑
q

[
−

3
8
b3
a

q2 +
π

3
|q|3 +

1
a3

f1 (aq)
] ⏐⏐hq

⏐⏐2
+ P2

∑
q

[
15
16

b3
a
q2
(
1
2
δαβ +

qαqβ

q2

)
− π |q|3

(1
3
δαβ +

qαqβ

q2

)
+

1
a3

gαβ

(
aq
) ]

uα,quβ,−q .

(17)

Details of the calculations are presented in the Appendix. In Eq. (17), b3 is a dimensionless
coefficient defined as:

b3 ≡
a
P2

1
A

∑
i

∑
j̸=i

pipj
1⏐⏐xi − xj
⏐⏐3 . (18)

f1 and gαβ are regular functions of the components of the wavevector at q = 0. f1 and gαβ are both
of order q4 at small q. The linear term in the first line of Eq. (17) represents the tendency of the
membrane to stretch under the repulsion between dipole moments. In the continuum limit, it can
be written as:

−
3
2

∑
i

∑
j̸=i

pipj

(
ui − uj

)
·
(
xi − xj

)⏐⏐xi − xj
⏐⏐3 ≈ −

3
4
b3
a
P2
∫

d2x ∂αuα (x) . (19)

The electrostatic energy can now be obtained by summing Eqs. (15) and (17). All terms with a
regular small momentum dependence can be represented in real space as a local functional of
∂αh(x), ∂βuα(x) and their gradients. The energy can then be cast into the form:

Hlr = Hlr,1 + Hlr,2

≃
1
2
b3
a
P2A −

3
4
b3
a
P2
∫

d2x uαα (x) +

∫
d2x

[
1
2
κ1
(
∇

2h
)2

+
λ1

2
(∂αuα)2

+
µ1

4

(
∂αuβ + ∂βuα

) (
∂αuβ + ∂βuα

) ]
− πP2

∑
q

|q| qαqβ uα,quβ,−q ,

(20)
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up to local terms containing higher gradients of the displacement fields.2 κ1, λ1 and µ1 are non-
universal constants depending on the details of the lattice geometry. Notice that the negative
tension terms

−
3
8
b3
a
P2
∑
q

q2
(⏐⏐hq

⏐⏐2 + uα,quα,−q

)
in Eq. (15) have been absorbed into the term linear in the strain tensor in Eq. (20).

While summing together the electrostatic and the elastic energy, we must set, in Eq. (5),

τ =
3
4
b3
a
P2 , (21)

so that terms linear in displacement fields disappear from the total energy. The result for the total
energy is therefore, in the harmonic approximation:

H = Hsr + Hlr

≃

∫
d2x

[
1
2
κ ′
(
∇

2h
)2

+
λ′

2
(∂αuα)2

+
µ′

4

(
∂αuβ + ∂βuα

) (
∂αuβ + ∂βuα

) ]
− πP2

∑
q

|q| qαqβuα,quβ,−q ,

(22)

with values of the elastic coefficients and bending rigidity which are shifted by electrostatic
interactions. The most striking feature of Eq. (22) is that the wavevector dependence of the energy
of out-of-plane fluctuations remains proportional to q4 and is therefore, as soft as in the purely
elastic case. The cancellation from the Hamiltonian of the tension term [22], proportional to∑

q

q2
⏐⏐hq
⏐⏐2 =

∫
d2x (∇h (x))2 ,

is a consequence of rotational invariance in the ambient space. However, a term proportional to

Oh =

∑
q

|q|3
⏐⏐hq
⏐⏐2 (23)

is not a priori excluded by rotational symmetry. This is evident from Eq. (10). Both Hlr,1 and Hlr,2 are
individually rotationally invariant interactions and they both lead to a cubic wavevector dependence
of the bending energy. This dependence cancels out only from the sum Hlr,1 + Hlr,2.

The cancellation of the non-local term Oh from the energy of bending undulations could also be
predicted by using, instead of Eq. (10), the equivalent representation of the energy:

Hlr =
1
2

∫
d3Q

(2π)3
4π
Q 2 ρQ ρ−Q , (24)

where

ρQ = i
∑

j

pjnj · Q e−iQ ·r j , (25)

2 The term −3 b3P2/(8a)
∑

q q
2
⏐⏐hq
⏐⏐2 in Eqs. (20) and (17) is equivalent to Eq. (16) of Ref. [42] in the case ϵa = ϵb for

the hexagonal lattice geometry considered in Ref. [42]. This can be seen by taking advantage of the identity∑
l,m

m2(
l2 + m2 − lm

) 5
2

=
2
3

∑
l,m

1(
l2 + m2 − lm

) 3
2

,

where the sum runs over all integer pairs with (l,m) ̸= (0, 0). This identity follows from the symmetry of the hexagonal
lattice.



A. Mauri and M.I. Katsnelson / Annals of Physics 412 (2020) 168016 9

is the Fourier transform in three-dimensional space of the charge density. This method is similar to
the approach in Ref. [37]. There, however, approximations were made which lead to the prediction
of a |q|3 dependence of the quadratic part of the bending energy, in contrast with our results.
Eq. (24) differs from Eq. (10) only because the former includes the infinite energy of self-interaction
of dipole moments. This energy, however, is independent on the configuration of the membrane
and constitutes a shift of the Hamiltonian by a global constant. Non-local terms in the expansion
of Eq. (24) up to second order in h and u can only arise from the terms:

1
2

∫
d3Q

(2π)3
4π
Q 2

[
ρ
(1,0)
Q ρ

(1,0)
−Q + ρ

(0,1)
Q ρ

(0,1)
−Q

]
≡ H̄ (2,0)

lr + H̄ (0,2)
lr , (26)

where ρ
(1,0)
Q and ρ

(0,1)
Q are the terms linear in h and u in the expansion of ρQ , respectively. Denoting

the in-plane and the out-of-plane components of Q as q and qz , we find for q well within the first
Brillouin zone:

ρ
(1,0)
Q =

√
A P Q 2hq ,

ρ
(0,1)
Q =

√
A P qz q · uq .

(27)

Plugging Eq. (27) into Eq. (26), yields:

H̄ (2,0)
lr + H̄ (0,2)

lr =
1
2
P2
∑
q

∫
dqz
2π

4π
Q 2

[
Q 4
⏐⏐hq
⏐⏐2 +

(
Q 2

− q2
) (

q · uq
) (

q · u−q
) ]

. (28)

The fluctuation energy can then be obtained by performing the integral over qz explicitly. In the
part quadratic in h, H̄ (2,0), the Coulomb interaction factor 1/Q 2 cancels against the factor Q 4. The
resulting interaction is local. The divergence of the qz integral in Eq. (28) is not problematic, because
in order to get the full expression for the energy at order h2 and u2 we still need to add the purely
local terms:

1
2

∫
d3Q

(2π)3
4π
Q 2

[
2ρ(2,0)

Q ρ
(0,0)
−Q + 2ρ(0,2)

Q ρ
(0,0)
−Q

]
,

where ρ
(0,0)
Q , ρ(2,0)

Q and ρ
(0,2)
Q are the terms of zeroth and second order in the expansion of ρQ . Since

the energy is finite order by order in the expansion in powers of u and h, divergences in the qz
integral must cancel out. The only non-local term in Eq. (28), for which the Coulomb interaction
factor 1/Q 2 does not cancel out, is

Ōu = −
1
2
P2
∑
q

∫
dqz
(2π)

4π
Q 2 q2

(
q · uq

) (
q · u−q

)
= −πP2

∑
q

|q| qαqβ uα,quβ,−q . (29)

Notice that Ōu coincides with the non-local term in Eq. (22).
The physical interpretation of the cancellation of non-local terms in the quadratic part of the

h-field energy is more transparent if the previous argument is translated from Fourier to real space.
Consider a localized out-of-plane deformation h (x), which is nonzero only within a small region
of the membrane. The electrostatic potential at a point R in three-dimensional space far from the
deformed region is given, in a continuum approximation, by:

V (R) = P
∫

d2x
n (x) · (R − r (x))

|R − r (x)|3
. (30)

The change in electrostatic potential due to the fluctuation to first order in h can be calculated by
making use of the expansion of the normal in Eq. (11). The result is:

δV (1,0) (R) = −P
∫

d2x
∂

∂xα

[
h(x) (Xα − xα)

|R − x|3

]
, (31)

where Xα are the in-plane components of R. Since the integrand is a total divergence and the
deformation h (x) is assumed to be localized, δV (1,0) vanishes. If we now consider a second localized
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wavepacket, far from the first, we can conclude that there will not be a long-range interaction
between the two, at least at the lowest order in the amplitude of the h field.

The cancellation of the non-local term Oh, Eq. (23), from the Hamiltonian has crucial physical
consequences. If it did not vanish, it would completely modify the critical behaviour, as predicted
in Ref. [22].

3.2. Expansion to higher orders

We now discuss the properties of higher-order terms in the expansion of the electrostatic energy.
For long-wavelength, slowly-varying fluctuations we can calculate the energy approximately by
replacing, in Eq. (10):

r(xj) ≃ r(xi) + ∂αr(xi)
(
xαi − xαj

)
,

nj ≃ ni .
(32)

This replacement gives the first order in an expansion in the number of gradients, which translates,
in Fourier space, in an expansion in powers of the momentum. The derivative ∂αn can be neglected,
because it is of higher order. Because the interaction is long-ranged, the gradient series is divergent
and presents infinite expansion coefficients. The first order, however, is finite. It gives, therefore,
the leading behaviour at long wavelengths of interaction vertices.

When Eq. (32) is substituted into Eq. (10), we see immediately that Hlr,2 vanishes in the first
order of the gradient expansion. This follows from the fact that ∂αr(xi) · ni = 0. Therefore:

Hlr ≃ Hlr,1 ≃
1
2

∑
i,j̸=i

pipj
[ (

xi − xj
)2

+ 2uαβ (xi)(xαi − xαj)(xβi − xβj)
]

−
3
2 . (33)

Expanding in powers of the strain tensor and summing over j leads to a finite local functional of
uαβ , which represents the leading part at small wavevectors of the electrostatic energy. Therefore,
as anticipated in Section 3.1, at long-wavelengths, dipolar interactions lead to a shift of anharmonic
coupling constants of the short-range Hamiltonian. Non-local behaviour appears as a correction,
which is suppressed by a power of the wavevector scale. The first terms of the expansion of Eq. (33)
are:

Hlr,1 ≃
1
2
b3
a
P2A +

b3
a
P2
∫

d2x
[
−

3
4
uαα +

15
32

(uαα)2 +
15
16

(
uαβ

)2]
, (34)

if the crystal structure is sufficiently symmetric to ensure the isotropy of elastic coefficients. Eq. (34)
reproduces the results obtained in Section 3.1 for the electrostatic tension τ and for the shifts of
the Lamé coefficients λ1 and µ1, as can be seen by comparison with Eqs. (17) and (20).

We now discuss the leading non-local corrections up to order h2u and h4. We show that the
correction Ōu in the harmonic part of the energy is promoted to:

Ou = −πP2
∑
q

|q| ũαα (q) ũββ (−q) , (35)

a rotationally invariant interaction, which can be interpreted as a q-dependent correction to the
Lamé coefficient λ. Up to order uh2 and h4, Ou is the only non-local interaction to be generated.

In order to calculate the non-local part of interaction vertices, it is convenient to expand the
electrostatic energy starting from the expression in Eq. (24). Using the expansion for the normal to
second order in h and zeroth order in u:

n (x) ≃ ez
(
1 −

1
2

(∇h (x))2
)

− ∇h (x) , (36)

we can calculate ρ
(2,0)
Q , the term of order h2 in the expansion of the Fourier transform of the charge

density ρQ :

ρ
(2,0)
Q = −

i
2
P qz

∑
k

[
k · (k + q) + Q 2] hk+qh−k . (37)
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As in Eq. (27), q and qz denote the in-plane and the out-of plane components of the three-
dimensional wavevector Q . Again Eq. (37) holds under the assumption that q lies well within the
first Brillouin zone of the lattice. Let us now consider the expansion of the energy, Eq. (24), at order
uh2:

H (2,1)
lr =

1
2

∫
d3Q

(2π)3
8π
Q 2

[
ρ
(2,0)
Q ρ

(0,1)
−Q + ρ

(1,0)
Q ρ

(1,1)
−Q + ρ

(2,1)
Q ρ

(0,0)
−Q

]
. (38)

The non-local behaviour of the vertex is only generated by the first term:

H̄ (2,1)
lr =

1
2

∫
d3Q

(2π)3
8π
Q 2 ρ

(2,0)
Q ρ

(0,1)
−Q . (39)

The third term in Eq. (38) is clearly local because fields are inserted at only one of the two ρQ . In the
second term, the Coulomb interaction 1/Q 2 cancels against the factor Q 2 in ρ

(1,0)
Q , see Eq. (27). The

latter cancellation has the same origin of the cancellation of the propagator correction Oh. Similarly,
it can be seen that the non-local behaviour of the quartic vertex H (4,0) is completely encoded in the
term:

H̄ (4,0)
lr =

1
2

∫
d3Q

(2π)3
4π
Q 2 ρ

(2,0)
Q ρ

(2,0)
−Q . (40)

Eqs. (39) and (40) severely restrict the possible form of the long-range, non-analytic part of
interaction vertices. The momentum transfer q, the only on which the energy can have a singular
dependence, cannot be exchanged by a single h field, but only by pairs. In real space this can again
be visualized by recalling that the potential generated by a localized wavepacket of out-of-plane
deformation vanishes to first order in its amplitude.

Combining Eqs. (27), (37), (39) and (40) and keeping only the non-local part of vertices, the part
in which the factor 1/Q 2 does not cancel out from the calculations, we obtain:

Hlr ≈
1
2

∫
d3Q

(2π)3
4π
Q 2

(
ρ
(2,0)
Q + ρ

(0,1)
Q

)(
ρ
(2,0)
−Q + ρ

(0,1)
−Q

)
≈ −

1
2
P2
∑
q

∫
dqz
2π

4π
Q 2 q2 ũαα (q) ũββ (−q)

= −πP2
∑
q

|q| ũαα (q) ũββ (−q) = Ou .

(41)

In Eq. (41) all equivalencies are intended up to local functionals of the fields. We can now obtain
the complete expression for the long-wavelength Hamiltonian by combining Eqs. (34), (41) and
Eqs. (5), (21). The result is:

H =

∫
d2x

[
1
2
κ ′
(
∇

2h
)2

+
λ′

2
ũ2

αα + µ′ũ2
αβ

]
+ Ou . (42)

This result extends Eq. (22), which was found within the harmonic approximation.
The non-local term Ou is suppressed by the factor |q| in the long-wavelength limit. It constitutes,

therefore, an irrelevant perturbation by power counting in a neighbourhood of D = 4, which is the
upper critical dimension for crystalline membranes [5]. Non-local terms of higher order in powers
of the fields u and h have a structure which is similar to Ou. They are suppressed by a power |q|
with respect to local couplings and they also constitute irrelevant operators by power counting.

The fact that Ou is irrelevant even for physical 2D membranes is suggested by the following
considerations. In a scaling analysis, we expect that Ou is irrelevant if |λR(q)| , |µR(q)| ≫ 2πP2 |q|
at small q. This comparison relies on the assumption that Ou is not renormalized, which is
suggested by its non-locality. For D-dimensional membranes embedded in a d-dimensional space,
the renormalized elastic moduli λR (q) and µR (q) vanish as q4−D−2η for q → 0 [1,3,5]. The condition
|λR (q)| , |µR (q)| ≫ 2πP2 |q|, then, is fulfilled provided that η > (3 − D)/2. Field-theoretical
calculations [6–10] indicate that η > 1/2 in the case of clean two-dimensional membranes, thus
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giving an indication that Ou is irrelevant in the physical case D = 2, d = 3. However, scaling with
an exponent η < 1/2 was predicted to occur in 2D disordered membranes [8,14]. In this case our
considerations open a question about the possible role of non-local terms.

If, on the other hand, the statistical mechanical properties of the membrane are addressed within
the self-consistent screening approximation (SCSA) [7,8], Ou appears to be irrelevant irrespective of
the value of η. This follows immediately from the fact that Ou is equivalent to a q-dependent shift of
the first Lamé coefficient. Within the SCSA, the local Lamé coefficient λ′ and its non-local correction
−2πP2 |q| enter the self-consistent equations only through their sum. For sufficiently small q, the
non-local correction is negligible. The SCSA equations in the long-wavelength limit [7,8], therefore,
remain unchanged and the exponent η remains necessarily as in the pure short-range case.

3.3. Shift of elastic coefficients

We now discuss the shift of elastic coefficients induced by electrostatic interactions. The relations
between the shifted elastic constants λ′ and µ′ and the Lamé coefficients λ and µ which appear in
the short range Hamiltonian Hsr, Eq. (3) can be read from Eq. (17), or equivalently from Eq. (34):

λ′
= λ +

15
16

b3
a
P2 ,

µ′
= µ +

15
16

b3
a
P2 .

(43)

The shift in the bending rigidity κ ′
− κ could be determined from Eq. (15) and (17) by expanding

f2 (aq) and f1 (aq) up to fourth order in q. This would require an explicit calculation of q-dependent
lattice sum, which could be performed with the Ewald method (see the Appendix) with an explicit
choice of the Ewald cutoff function ϕ (x).3 In this work, we did not address the renormalization of
the bending rigidity explicitly.

The renormalization of in-plane elastic coefficients, instead, is determined by the simple expres-
sion in Eq. (43). We notice, however, that the ‘bare’ coefficients κ , λ and µ do not coincide exactly
with the elastic coefficients κ0, λ0 and µ0 of the membrane when dipole interactions are switched
off. The reason is that dipole–dipole repulsion induces a finite stretching of the membrane which
results in an increase of the elastic coefficients. The elastic constants κ , λ and µ, being defined
through Eq. (3), represent elastic coefficients after stretching has already occurred.

If the effects of dipole repulsion are weak and the stretching is small so that linear elasticity the-
ory applies while electrostatic interactions are turned on, we can relate the two sets of coefficients
through:

κ = ξ 2κ0 ,

λ = ξ 2λ0 ,

µ = ξ 2µ0 ,

(44)

where ξ is the stretching factor, determined by:

τ =
3
4
b3
a
P2

= (λ0 + µ0) ξ 2 (ξ 2
− 1

)
. (45)

Here a and P are the ‘final’ values of the lattice constant and the polarization density, calculated at
the equilibrium value of the stretching factor in presence of electrostatic interactions, the same a
and P which were used throughout the rest of this paper. By the previous considerations, Eq. (45)
holds under the assumption ξ − 1 ≪ 1.

We now give an order of magnitude estimate of the effects of dipolar interactions on the
elastic parameters of the membrane. We consider, as an example, the case of graphene derivatives
involving Group IA and Group VIIA atoms [39]. In these materials alkali and halogen atoms form
partially ionic bonds with carbon atoms in the graphene layer. If alkali atoms bind on one side of

3 For widely used Ewald cutoff functions, see for example [26,27,45].
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the graphene layer and halogen atoms on the opposite side, an out-of-plane permanent polarization
results. This occurs, for example, in C2HF and C2LiF in the ‘chair’ geometry described in Ref. [39].
For these materials, we expect that the typical scale of the polarization density P is roughly 1 e/Å.
From Eq. (43), it follows that corrections to the Lamé coefficients are of the order of 1 eV/Å2. They
are, therefore, of the same order of magnitude of the ‘bare’ elastic coefficients λ and µ. The same
considerations suggest that the shift of the bending rigidity is of the order of 1 eV.

More specifically, we expect that among the class of graphene derivatives involving Group IA
and Group VIIA atoms, the largest dipole moments and the strongest polarization effects arise in
C2LiF [39]. An estimate of the shift of elastic coefficient can be done, within our model, by describing
C2LiF (in the ‘chair’ geometry) as a lattice with dipole moments qLidLi and −qFdF located at the two
sublattices of the hexagonal graphene structure. For the charge transfer to lithium and fluorine
atoms, we assume in an order of magnitude estimate, qLi = +e and qF = −e. The structural
properties of C2LiF were calculated in Ref. [39]. The bond lengths dLi and dF and the lattice constant
a are 2.16 Å, 1.44 Å and 2.59 Å, respectively. We obtain a polarization density P ≃ 0.6 e/Å. The
value of the lattice sum b3 is close to 9 [26] in the case of a square lattice and we expect that
it remains of the same order in a hexagonal lattice. Eq. (43) then leads to corrections to the Lamé
coefficients of the order of 10 eV/Å2. This result is probably an overestimation. It suggests, however,
that electrostatic effects can play an important role in the elastic properties of C2LiF.

4. Conclusions

In conclusion, we addressed the effects of dipole–dipole interactions on the long-wavelength
thermal fluctuations of membranes exhibiting a permanent out-of-plane polarization directed at
each point along the local normal. We focused on crystalline membranes in the flat phase, a case
which is particularly important for the thermodynamic properties of two-dimensional materials at
room temperature.

We found that, even in presence of long-range dipole–dipole interactions, the dispersion relation
of bending fluctuations remains as soft as in the short-range case and can be described at long
wavelengths in terms of a bending rigidity. Furthermore, the leading behaviour of the electrostatic
energy in the limit of long wavelengths can be represented through a local functional of the
strain tensor. These results have important consequences in the statistical mechanical properties
of the membrane. They imply that the effective Hamiltonian, in the leading order in the limit
of long wavelengths, has the same local form of the Hamiltonian of elasticity theory. Non-local
terms are suppressed in the long-wavelength limit and they are irrelevant by power counting. The
expected result, therefore, is that the large-distance behaviour and the scaling exponents of elastic
membranes are not modified by dipole–dipole interactions, at least in a neighbourhood of D = 4. A
scaling analysis and the self-consistent screening approximation support the expectation that the
non-local correction of smallest order in powers of the displacement fields remains irrelevant even
for D = 2, at least in the case of clean membranes, for which the exponent η is larger than 1/2. The
condition η > 1/2, however, can be violated in disordered membranes [8,14]. In this case, the role
of dipole–dipole interactions in the scaling behaviour raises a new question.

We believe that the model which we studied in this work can help to understand thermal
fluctuations of two-dimensional materials, such as the graphene derivatives CF, C2HF and C2LiF [39],
which exhibit permanent out-of-plane polarization. More and more 2D materials with finite out-
of-plane polarization have been predicted or discovered in recent years, including, for example,
MoSSe [40] and WTe2 [41].

In addition, we addressed the shift of elastic coefficients due to long-range interactions. As
a model for crystalline membranes with out-of-plane polarization, we considered a deformable
elastic sheet with an embedded lattice of point dipole moments. We derived explicit expressions
for the shift of the Lamé coefficients λ and µ induced by electrostatics and an implicit expres-
sion for the renormalization of the bending rigidity. We estimated that the renormalization of
elastic moduli can be important in graphene derivatives such as C2LiF [39], in which polarization
arises from charge transfer between carbon, alkali and halogen atoms which form partially ionic
bonds. Analytic expressions for the shift of elastic coefficients in our model could be useful, for
example, as a basis for comparison with computational results for the structural properties of 2D
materials.
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Appendix. Harmonic part of the electrostatic energy: details of the calculations

All calculations in Section 3.1 rely on Fourier transforms of power-law interactions on a lattice.
It is convenient to begin by studying the sum:

Sn (q) ≡
an−2

P2

1
A

∑
i

∑
j̸=i

pipj
eiq·(xi−xj)⏐⏐xi − xj

⏐⏐n (A.1)

for n = 3. As in the main text, A is the total area, P the polarization density and a is the lattice
constant. The interesting, long-range, character of power-law interactions results in a non-analytic
behaviour of Sn (q) as q → 0. The non-analyticity arises from the large distance part of the sum
in Eq. (A.1), where the summation can be accurately approximated with a continuum integral.
Replacing the lattice sum with an integral is however impossible at small

⏐⏐xi − xj
⏐⏐, because of the

short-distance divergence. It is convenient, therefore to make use of an Ewald method [See e.g.
26,27,45]. We decompose S3 (q) into a short-range part S<

3 (q) and a long-range part S>
3 (q):

S3 (q) = S<
3 (q) + S>

3 (q) ,

S<
3 (q) ≡

a
P2

1
A

∑
i

∑
j̸=i

pipj
eiq·(xi−xj)⏐⏐xi − xj

⏐⏐3 ϕ

(⏐⏐xi − xj
⏐⏐

a

)
,

S>
3 (q) ≡

a
P2

1
A

∑
i

∑
j̸=i

pipj
eiq·(xi−xj)⏐⏐xi − xj

⏐⏐3
[
1 − ϕ

(⏐⏐xi − xj
⏐⏐

a

)]
.

(A.2)

Here ϕ is a cutoff function, which vanishes faster than any power of |x| for |x| → ∞ and such that
1 − ϕ (|x| /a) vanishes faster than |x| at short distances. The particular choice of ϕ is unimportant
in the following discussion. S<

3 (q), due to the large-distance cutoff, is a regular function of the
components of its vector argument. The non-analytic wavevector dependence arises only from
S>
3 (q). In order to calculate S>

3 (q), it is convenient to transform the sum over the direct lattice
into a sum over reciprocal lattice vectors, by making use of the Poisson summation formula. For a
generic function, this transformation reads [26,27,45]:

a
P2A

∑
i

∑
j

pipjf
(
xi − xj

)
=

a
P2Ω

∑
xℓ

∑
i,j∈Ω0

pipjf
(
xℓ + t i − t j

)
=

a
P2Ω2

∑
gm

∑
i,j∈Ω0

pipj eigm·(t i−t j)
∫

d2x f (x) e−igm·x .

(A.3)

Here Ω is the area of the unit cell of the Bravais lattice, xℓ are primitive vectors of the direct Bravais
lattice and gm are reciprocal lattice vectors. In the second and the third line of Eq. (A.3), the sum
over i and j is restricted to the dipoles lying within the first unit cell, denoted as Ω0. The positions
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of dipoles within the cell Ω0 are the generating vectors t i. Eq. (A.3) can be directly applied to the
evaluation of S>

3 (q) by choosing:

f (x) =
eiq·x

|x|3

[
1 − ϕ

(
|x|
a

)]
. (A.4)

The transformation gives:

S>
3 (q) =

a
P2

1
Ω2

∑
gm

∑
i,j∈Ω0

pipj eigm·(t i−t j)
∫

d2x
ei(q−gm)·x

|x|3

[
1 − ϕ

(
|x|
a

)]
. (A.5)

In Eq. (A.5), all terms with a finite gm are regular functions of q for q → 0. Singular behaviour can
only occur in the gm = 0 term of the sum [27]. This term coincides precisely with the continuum
integral approximation to S>

3 (q). Therefore:

S>
3 (q) = a

∫
d2x

eiq·x

|x|3

[
1 − ϕ

(
|x|
a

)]
+ r (aq) , (A.6)

where r (aq) is a regular function.
In order to calculate the integral in Eq. (A.6), it is useful to make use of the Fourier transform:∫

d2x
e−ik·x(

x2 + ε2
) 3

2
=

2π
ε

e−ε|k| . (A.7)

The integral can be written as:

S>
3 (q) − r (aq) = a lim

ε→0

⎡⎣2π
ε

e−ε|q|
−

∫
d2x

eiq·x ϕ(|x| /a)(
x2 + ε2

) 3
2

⎤⎦ . (A.8)

The second term in the left-hand side of Eq. (A.8) is a regular function of q, due to the large-distance
cutoff. In addition, the limit ε → 0 must be finite, because the initial expression in Eq. (A.6), in which
ε = 0 is well defined. As a result:

S>
3 (q) = r ′ (aq) − 2πa |q| , (A.9)

where r ′ (aq) is a new regular function of the wavevector. Summing S<
3 (q) and S>

3 (q) finally gives:

S3 (q) = b3 − 2πa |q| + s3 (aq) . (A.10)

s3 is regular and vanishes as q2 at small q. The constant term b3 = S3(0) coincides with the
coefficient defined in Eq. (18) in the main text.

The calculations in Section 3.1 require, besides S3 (q), also the lattice sums S5 (q) and S7 (q). These
are related to S3(q) through:

−
1
a2

∂

∂qα

∂

∂qα

Sn+2 (q) = Sn (q) . (A.11)

If the functions Sn (q) were perfectly isotropic, Eq. (A.11) would be sufficient to determine the
coefficient of |q|m+2 in Sn+2 (q) from the coefficient of |q|m in Sn (q). In general, Sn (q) are anisotropic,
although they exhibit the same symmetry of the crystal. However, the non-analytic part of any
Sn (q) must be perfectly isotropic. The steps which led to the calculation of S3 (q) could be repeated
similarly for arbitrary n. The singular dependence on q arises only from a term analogue to Eq. (A.6),
a continuum isotropic integral with no traces of the crystal structure anisotropy. For the non-
singular part, we will make the assumption that the symmetry of the crystal is large enough to
forbid anisotropic functions at least up to fourth order in q. Under this assumption, using Eq. (A.11)
recursively yields:

S5 (q) = b5 −
1
4
b3a2q2 +

2
9
πa3 |q|3 + s5 (aq) ,

S7 (q) = b7 −
1
4
b5a2q2 +

1
64

b3a4q4 −
2π
225

a5 |q|5 + s7 (aq) ,

(A.12)



16 A. Mauri and M.I. Katsnelson / Annals of Physics 412 (2020) 168016

where s5 and s7 are regular and vanish as q4 and q6 respectively. Now all necessary ingredients for
the calculation of H (2)

lr,1 and H (2,0)
lr,2 have been derived. Fourier transformation of H (2,0)

lr,2 gives:

H (2,0)
lr,2 = −

1
2

∑
i

∑
j̸=i

pipj

[ 1
2

(
∇h (xi) − ∇h

(
xj
))2⏐⏐xi − xj

⏐⏐3
+

3
(
hi − hj − ∇h(xi) ·

(
xi − xj

)) (
hi − hj − ∇h(xj) ·

(
xi − xj

))⏐⏐xi − xj
⏐⏐5

]
=

1
2
P2

a

∑
q

[
q2 (S3(q) − S3(0)) +

6
a2

(S5(q) − S5(0))

−
6
a2

qα

∂

∂qα

S5(q) +
3
a2

qαqβ

∂

∂qα

∂

∂qβ

S5(q)
] ⏐⏐hq

⏐⏐2
= P2

∑
q

[
−

π

3
|q|3 +

1
a3

f2 (aq)
] ⏐⏐hq

⏐⏐2 ,

(A.13)

where f2(aq) is an analytic function at q = 0, which vanishes as q4 for q → 0. The Fourier transform
of Hlr,1 is calculated similarly. From Eq. (16) in the main text:

Hlr,1 ≃ H (0,0)
lr,1 + H (2,0)

lr,1 + H (0,1)
lr,1 + H (0,2)

lr,1

=
1
2
b3
a
P2A −

3
2

∑
i

∑
j̸=i

pipj

(
ui − uj

)
·
(
xi − xj

)⏐⏐xi − xj
⏐⏐3

+
P2

2a

∑
q

[
3
a2

(S5(q) − S5(0))
⏐⏐hq
⏐⏐2

+
3
a2

(S5(q) − S5(0)) uα,quα,−q

+
15
a4

(
∂2S7(q)
∂qα∂qβ

−
∂2S7(0)
∂qα∂qβ

)
uα,quβ,−q

]
.

(A.14)

Using Eq. (A.10) and Eq. (A.12) leads to the result in the main text, Eq. (17).
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