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a b s t r a c t

We review recent progress in the theory of electromagnetic
response of dirty superconductors subject to microwave radia-
tion. The theory originally developed by Eliashberg in 1970 and
soon after that elaborated in a number of publications addressed
the effect of superconductivity enhancement in the vicinity of
the transition temperature. This effect originates from nonequi-
librium redistribution of quasiparticles and requires a minimal
microwave frequency depending on the inelastic relaxation rate
and temperature. In a recent series of papers we generalized
the Eliashberg theory to arbitrary temperatures T , microwave
frequencies ω, dc supercurrent, and inelastic relaxation rates,
assuming that the microwave power is weak enough and can
be treated perturbatively. In the phase diagram (ω, T ) the re-
gion of superconductivity enhancement occupies a finite area
located near Tc . At sufficiently high frequencies and low temper-
atures, the effect of direct depairing prevails over quasiparticle
redistribution, always leading to superconductivity suppression.
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1. Introduction

Theoretical study of the depairing effect of a dc current and dc magnetic field started soon
after the creation of the microscopic theory of superconductivity by Bardeen, Cooper and Schrieffer
(BCS) [1]. It was shown [2] that a dc current modifies the ground state of a superconductor, with
the Cooper pairs acquiring a non-zero momentum. That results in the modification of the spectral
properties: the value of superconducting order parameter is decreased, and the BCS singularity near
the gap is smeared. The equivalence of depairing action of a dc current and dc magnetic field to that
of paramagnetic impurities [3] was demonstrated theoretically [4] and proven experimentally [5].
For dirty superconductors, i.e. with the elastic mean free path much shorter than the BCS coherence
length, the theory of depairing by a dc current and dc field was elaborated in Ref. [6] and
experimentally verified in Refs. [5,7].

In the vicinity of the critical temperature, the effect of a microwave field is mainly related to
redistribution of quasiparticles. Remarkably, irradiation may lead not only to suppression but to
enhancement [8,9] of superconductivity under certain conditions. The alteration of the supercon-
ducting gap due to a non-equilibrium distribution of quasiparticles created by a microwave field
was theoretically explained by Eliashberg [10,11] in the framework of Gor’kov equations [12]. Early
results in the field were summarized in the review [13].

At the same time, the effect of a microwave field on the spectral properties of a supercon-
ductor, i.e. the modification of its ground state, was up to a recent time in a shadow. Under
experimental conditions available in 70s, either the effects related to quasiparticles were dominant,
or the modification of the spectral functions by the embedded microwave was too small to be
observable. Theoretical description of the modification of the ground state by a microwave field
was developed just recently [14–17]. It has been stimulated by a growing applied interest to the
interaction between superconductors and microwave field at very low temperatures, when the
number of thermal quasiparticles is vanishingly small and the microwave response is governed
by the modification of spectral properties. This is the conditions of operation of many prospective
low-temperature devices, including superconducting micro-resonators [18,19], parametric ampli-
fiers [20], and kinetic-inductance microwave detectors [21]. The fundamental side of the problem
is related to the search for the Higgs mode in superconductors [22–25].

In this paper, we present a review of our recent results on extending the Eliashberg theory to the
case of arbitrary temperatures and frequencies of the microwave field. We allow for an arbitrary
dc supercurrent and model the inelastic relaxation by escape to a reservoir. Accounting for the
effects of microwaves on both the spectral properties (direct depairing) and on the distribution of
quasiparticles, we calculate the full phase diagram of a dirty superconductor and determine the
regions of suppression/enhancement of the order parameter and of the critical current.

As we demonstrated in Ref. [14], the spectral properties of a superconductor in a microwave
field differ qualitatively from those of a superconductor with no current, with a dc current or with
a low-frequency current. This is illustrated by Fig. 1 for the density of states (DOS). The BCS peak is
smeared, and additional features at ‘photon points’ ∆±nh̄ω emerge. The latter can be understood in
terms of the Floquet or quasienergy states [26,27]. In a microwave field, the eigenstates of electrons
are not stationary states with definite energies, but the Floquet states with definite quasienergies.
Being expanded in the energy basis, each Floquet state is a sum of components with energies
differing by h̄ω. If h̄ω is large compared to the relevant classical energy scale of the field α [see
Eq. (2) for the definition], this gives replicas of the BCS peak shifted to the ‘photon points’. It was
also shown that there appears an exponential-like tail of the DOS in the sub-gap region. All these
predictions are in strong contrast with (i) the well-studied case of a dc current [5–7], where the
BCS peak is smeared without emergence of any additional peculiarities and a true gap in the DOS
survives, and with (ii) the case of a low-frequency supercurrent (h̄ω ≪ α), where the DOS can be
calculated as a time-average of DOS corresponding to the instant value of the current [28].

The Eliashberg theory explains the microwave-induced enhancement of superconductivity by
redistribution of quasiparticles away from the superconducting gap due to absorption of h̄ω quanta.
That effectively cools electrons near the gap, which are responsible for pairing, leading to the
increase of the order parameter and the spectral gap. An important ingredient of this mechanism is
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Fig. 1. Time-averaged density of states in a dirty superconductor at low temperature (T ≪ Tc ) under different biasing:
(1) zero current (BCS), (2) dc current, (3) low frequency current (h̄ω ≪ α), and (4) microwave current (α ≪ h̄ω). In all
non-BCS cases, the value of the current or its amplitude is 0.25 Ic . Dashed lines mark the energies ∆ ± h̄ω.

Fig. 2. Phase diagram of a dirty superconductor subject to a microwave radiation with vanishing power (α → 0). The
gap is enhanced inside the region marked by the curve C. The critical current is enhanced inside the region marked by
the curve C′ . The inelastic relaxation is modeled by tunneling to a normal reservoir with the rate γin/kBTc = 0.02. Inset:
zoom of the gap enhancement region near Tc , showing the minimal frequency ωmin,min ≈ 3.23 γin/h̄.

energy relaxation, which competes with the energy lift-up of quasiparticles and makes the nonequi-
librium stationary. This competition sets a natural lower bound on microwave frequency, ωmin(T ),
at which the enhancement does exist [10]. Dependence of ωmin(T ) on the inelastic relaxation rate
can be used for experimental determination of the latter [29]. Similar ideas have been discussed
theoretically for superconducting weak links [30,31] and SNS junctions [32–34], and studied in
recent experiments [35,36].

Our results for enhancement and suppression of superconductivity by a weak microwave field
(α → 0) are summarized by the phase diagram in the (ω, T ) plane shown in Fig. 2. In the absence
of a dc supercurrent, the region where the superconducting order parameter ∆(T ) is enhanced
compared to its zero-field value ∆0(T ) is located inside the contour C. The upper bound ωmax(T )
is set up by heating and the lower bound ωmin(T ) is determined by inelastic relaxation. The bound
from the side of low temperatures emerges due to the direct depairing by the induced microwave
supercurrent.

One can also ask about the enhancement of superconductivity in terms of the critical current.
The region where the critical current density is greater than the corresponding equilibrium value
at a given temperature, is encircled by the contour C′ in Fig. 2. It is narrower than the region of the
order parameter enhancement. Indeed, it is harder to enhance superconductivity in the presence



4 K.S. Tikhonov, A.V. Semenov, I.A. Devyatov et al. / Annals of Physics 417 (2020) 168101

of a dc supercurrent: the latter smears the BCS singularity in the DOS [4,5] and the corresponding
singularity in the nonequilibrium distribution function produced by the absorbed microwave field.

2. Phase diagram of a superconductor in a microwave field

2.1. Model

We consider a quasi-one-dimensional superconducting wire when both the dc (supercurrent)
and ac (microwave field) components of the vector potential are parallel to the wire. Assuming
the modulus of the order parameter be uniform along the wire [10,11,29,31,37–39], we can gauge
out the spatial dependence of the phase and work with a real order parameter subject to a
time-dependent vector potential

A(t) = A0 + A1 cosωt, (1)

where the static part A0 accounts for the dc supercurrent, and A1∥A0. Both components of the vector
potential act as pair breakers, and their effect can be characterizes by the energy scales [4]

Γ =
2e2DA2

0

h̄c2
, α =

2e2DA2
1

h̄c2
, (2)

where D is the normal-state diffusion coefficient in the superconductor [40]. The depairing rate Γ

of a static supercurrent plays the role of the spin–flip rate in the theory of magnetic impurities [4].
It smears the BCS coherence peak, shifting the gap to Eg = ∆[1 − (Γ /∆)2/3]3/2 [3].

Below we discuss how to treat the problem of electromagnetic response in the lowest order in
the microwave power α and arbitrary T , ω, Γ , and inelastic width γin [41], which will be modeled
by quasiparticle tunneling to a reservoir.

2.2. General scheme

The response of a superconductor to microwave irradiation belongs to the class of most com-
plicated problems in the theory of nonequilibrium superconductivity. Provided the material is far
from the insulator transition, its theoretical description is based on dynamic equations for the
quasiclassical Green’s functions in the Keldysh representation. In the dirty limit, those are the
Usadel equation for the Green’s functions ǧ , with the Keldysh component containing the kinetic
equation for the distribution function [42,43]. While the Green’s function at equilibrium is diagonal
in the energy space, ǧϵ,ϵ′ = 2πδ(ϵ − ϵ)ǧϵ , the main difficulty associated with the nonequilibrium
situation is the dependence of ǧϵ,ϵ′ on both energy arguments, that is a mathematical manifestation
of transitions between the states at energies ϵ and ϵ ± ω induced by the microwave field.

Since the nonlinear Usadel equation should be additionally supplemented by the self-consistency
equation for the time-dependent order parameter, the resulting theory becomes too complicated to
be treated analytically. It can be attacked either numerically (see e.g. Ref. [44]) or by perturbative
analysis, assuming that the ac component of the vector potential A1(t) is small and can be treated
as a perturbation on top of the steady state in the presence of a static A0. This is essentially the
approximation utilized by Eliashberg [10] and in subsequent studies [13] based on the Ginzburg–
Landau (GL) expansion. Going beyond the GL region one has to work with the full set of the Usadel
equations and to linearize the solution in the amplitude of the microwave radiation [14,16,17].
However even in that case calculations are quite lengthy due to a nonlinear and nonlocal-in-time
constraint imposed on ǧ . In Ref. [15] we used a technically more convenient approach of the
nonlinear Keldysh σ model for superconducting systems [45] to make a perturbative expansion
in A1(t). Both approaches are fully equivalent since the Usadel equation is nothing but the saddle
point of the σ model, but working with the latter gave us access to the standard machinery for
expanding in terms of soft modes (diffusons and cooperons).

The Usadel equation is written for Green’s function ǧtt ′ which bares two time (or energy)
arguments and acts in the tensor product of the Nambu and Keldysh spaces, with the Pauli matrices
τi and σi, respectively. In what follows we will consider time (or energy) arguments as usual matrix
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indices, with matrix multiplication implying convolution in the time (or energy) domain. The ǧ
matrix satisfies the nonlinear constraint ǧ2

= 1. In the zero-dimensional case (spatially uniform
configurations), it obeys the Usadel equation

[iϵτ3 − ∆τ1 − h̄Daτ3ǧaτ3 + Σin, ǧ] = 0, (3)

where a(t) = eA(t)/h̄c , and the order parameter ∆(t) should be determined from the self-
consistency equation

∆ = −
iπλ

4
Tr

(
τ1ǧK )

, (4)

where λ is the dimensionless Cooper coupling.
The matrix Σin describes inelastic relaxation, which can be due to electron–phonon inter-

action [46], electron–electron interaction [47], and escape to reservoirs. Qualitatively all three
mechanisms have the same influence on the properties of the system. To simplify the analysis we
will assume that inelastic relaxation is dominated by tunneling to a reservoir, in which case

Σin = −
γin

2
ǧres, (5)

where the escape rate γin is proportional to the tunnel conductance of the interface. The matrix
ǧres refers to the Green’s function in the reservoir, which can be either normal or superconducting.
Both cases were considered by the authors [15,48], leading to very similar results for the microwave
response. Therefore we focus here only on the case of a normal reservoir [15]. At equilibrium with
the temperature T , its Green’s function has the form

ǧres =

(
1 2F0
0 −1

)
K

⊗ τ3, (6)

where F0 is diagonal in the energy representation, with F0(ϵ) = 1 − 2f0(ϵ) = tanh(ϵ/2T ) being the
thermal distribution function.

At equilibrium the Green’s function ǧ is diagonal in the energy space, ǧϵϵ′ = 2πδ(ϵ − ϵ′)ǧ(ϵ),
where

ǧ(ϵ) =

(
ĝR(ϵ) [ĝR(ϵ) − ĝA(ϵ)]F0(ϵ)
0 ĝA(ϵ)

)
K
, (7)

with

ĝR(ϵ) =

(
cos θR(ϵ) sin θR(ϵ)
sin θR(ϵ) − cos θR(ϵ)

)
N

, (8a)

ĝA(ϵ) = −

(
cos θA(ϵ) sin θA(ϵ)
sin θA(ϵ) − cos θA(ϵ)

)
N

. (8b)

The spectral angles obey the symmetry relations θA(ϵ) = −θR(−ϵ) = −[θR(ϵ)]∗ and can be found
from Eq. (5), whose only energy-diagonal component reads

∆ cos θR(ϵ) + iϵR sin θR(ϵ) − Γ sin θR(ϵ) cos θR(ϵ) = 0. (9)

Here ϵR,A
= ϵ ± iγin/2 and the depairing energy Γ is defined in Eq. (2). The spectral angle obtained

from Eq. (9) for a given ∆ should be substituted into the self-consistency equation (4), which can
be cast in the form

Feq(∆, Γ , T , γin) = 0, (10)

where Feq is defined as

Feq =
1
2∆

∫
dϵ F0(ϵ) Im sin θR

ϵ −
1
λ

. (11)

In the presence of a monochromatic radiation described by the vector potential (1), the Green’s
function ǧϵ,ϵ′ acquires off-diagonal components in the energy space. For weak radiation power α,
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linear-in-α corrections to the equilibrium Green’s function (7) can be obtained perturbatively. In
Ref. [15] this procedure was done at the level of the σ model, where all possible sources of such a
dependence were taken into account. The corresponding modification of the time-averaged spectral
angles in the limit of a vanishing dc current (Γ = 0) and small temperatures (T ≪ Tc) was discussed
in Refs. [14,17], where solution of the Usadel equation was treated in the first order in α.

In order to develop a perturbative approach in the microwave power valid at arbitrary tem-
peratures, one has to take into account that the critical temperature is shifted due to irradiation.
As a result, in the vicinity of Tc modification of the spectral angles becomes large and cannot be
treated perturbatively. To overcome that obstacle, in Ref. [15] we suggested to use a scheme when
the perturbative-in-α correction to the spectral function is calculated at a given order parameter ∆

(different from the equilibrium value ∆0). The obtained correction is substituted then into the self-
consistency equation (4), where the first-order in α terms should be retained. Such an approach
is in line with the GL derivation when quasiparticle degrees of freedom are integrated out to
get the effective free energy of the order parameter field, but extends it to the case of arbitrary
temperatures.

The resulting equation for the time-averaged order parameter that generalizes Eq. (11) to the
nonequilibrium case can then be written in the form

Feq(∆, Γ , T , γin) + αFneq(∆, Γ , T , ω, γin) = 0, (12)

where the last term is just the first perturbative correction in α obtained as discussed above.
Eq. (12) should be used in order to determine the regions of enhancement/suppression of the order
parameter by microwaves. The analytic expression for Fneq is very lengthy and will be presented
below only in some limiting cases. In general, Fneq(∆, Γ , T , ω, γin) should be calculated numerically.

2.3. Zero-current case

A peculiarity of the situation in the absence of a dc supercurrent (Γ = 0), is that the non-
equilibrium correction Fneq(∆, Γ , T , ω, γin) in Eq. (12) can be naturally split into two — spectral
and kinetic — contributions:

Fneq = F sp
neq + Fkin

neq, (13)

where

F sp
neq = −

1
4∆

∫
dϵ F0(ϵ) Im

{
CR

ϵϵ cos θR
ϵ sin[θR

ϵ + θR
ϵ−ω]

}
, (14a)

and

Fkin
neq =

1
8∆

∫
dϵ Dϵϵ[F0(ϵ) − F0(ϵ − ω)] Im

{
sin θR

ϵ−ω − sin[θR
ϵ−ω + θR

ϵ + θA
ϵ ]

}
. (14b)

Here Cϵϵ and Dϵϵ are the zero-dimensional cooperon and diffuson defined as

Cα
ϵϵ =

1
2Eα

ϵ + 2Γ cos 2θα
ϵ

, (15a)

Dϵϵ =
1

ER
ϵ + EA

ϵ − Γ [1 + cos(θR
ϵ − θA

ϵ )] cos(θR
ϵ + θA

ϵ )
, (15b)

where α = R, A, and we use the notation ER,A
ϵ = ±(−iϵR,A cos θR,A

ϵ + ∆ sin θR,A
ϵ ).

The results (14) allow for a natural interpretation in terms of the microwave-generated cor-
rection to the stationary (time-averaged) component of the spectral angle and the stationary
(time-averaged) component of the distribution function, correspondingly. Indeed, extracting the
linear in α corrections to θR

ϵ and δF (ϵ), we get

δθR
ϵ = −

α

4
CR

ϵϵ sin
(
θR
ϵ + θR

ϵ−ω

)
+ {ω → −ω} (16a)
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Fig. 3. Microwave enhancement of superconductivity at T/Tc = 0.98. Modification of the (time-averaged) (a) quasiparticle
distribution function f (ϵ) = [1 − F (ϵ)]/2 and (b) density of states. Black to red: α/kBTc = 0, 0.005, and 0.01. Other
parameters: h̄ω = 20γin , γin/kBTc = 0.02. Dashed lines mark the energies ∆ ± h̄ω. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

and

δF (ϵ) = −
αDϵϵ[F (ϵ) − F (ϵ − ω)]
8 cos[(θR

ϵ − θA
ϵ )/2]

[
cos

(
θR
ϵ−ω +

θR
ϵ + θA

ϵ

2

)
+ cos

(
θA
ϵ−ω +

θR
ϵ + θA

ϵ

2

)]
+ {ω → −ω}. (16b)

Substituting now Eqs. (16) into the equilibrium Eq. (11), we recover the nonequilibrium contributions
(14).

In Fig. 3, we illustrate the influence of microwave radiation on the (time-averaged) distribution
function f (E) = [1 − F (E)]/2 and the (time-averaged) DOS ν(ϵ)/ν = Re cos θR

ϵ in the GL limit
T → Tc . Other parameters are chosen such that microwaves enhance superconductivity (see Fig. 2).
With increasing the radiation power, the smeared peak in the DOS moves towards larger energies,
indicating the growth of ∆.

On the contrary, in Fig. 4 we plot the (time-averaged) DOS in the low-temperature regime. Here
the increase of the microwave power suppresses the spectral gap, in accordance with the phase
diagram of Fig. 2.

2.4. Vicinity of Tc and Eliashberg theory

Another situation, where the effect of microwaves can be treated analytically, is the vicinity of
the critical temperature, T ≈ Tc . In the presence of a dc supercurrent, Eq. (12) becomes:

7ζ (3)
8π2

(
∆

kBTc

)2

−
Tc − T

Tc
+

πΓ

4kBTc
= αFneq, (17)

where the left-hand side is the usual expansion in the absence of radiation (with the last term
describing depairing due to a dc supercurrent), while the right-hand side perturbatively accounts
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Fig. 4. Microwave-induced modification of the (time-averaged) density of states at low temperatures (T ≪ Tc ), where
the effect of nonequilibrium quasiparticles is negligible and therefore irradiation suppresses superconductivity. Black to
red: α/kBTc = 0 and 0.005. Other parameters are the same as in Fig. 3. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

for the ac component of the vector potential. Eq. (17) looks very similar to that derived in the
Eliashberg theory [10] and its earlier generalizations [29,38]. The difference is that our Fneq on the
right-hand side is a complicated function of ω, ∆, Γ and γin, whereas the Eliashberg theory assumed
inelastic relaxation to be the slowest process and implied the following set of inequalities:

γin ≪ (h̄ω, ∆) ≪ kBT . (18)

Under these conditions the function Fneq in the right-hand side of Eq. (17) acquires the form

Fneq = −
π

8kBTc
+

h̄ω
16γinkBTc

G
(

∆

h̄ω
,
Γ

∆

)
, (19)

where the first term is due to the modification of the static spectral functions (depairing), while the
second term has a kinetic origin (quasiparticle redistribution).

Gap enhancement. In the Eliashberg limit (18), the dynamic response of a superconductor in the
absence of a dc supercurrent (Γ = 0) was calculated in Ref. [38], where the following expression
for the function G0(∆/h̄ω) = G(∆/h̄ω, 0) was obtained:

G0(u) =

{
2πu

(
1 − u2

)−1/2
, u < 1/2,

4[K + 4u2(Π − K )]/(2u + 1), u > 1/2,
(20)

where K = K (k) and Π = Π (a, k) denote complete elliptic integrals of the first and the third
kinds [49], and a = 1/(2u+1)2, k = (2u−1)2/(2u+1)2. Solving Eqs. (17) and (19) with Γ = 0 and
G = G0(∆/h̄ω) one can find the value of ∆(T ). Comparing it with the equilibrium value of ∆0(T ) in
the absence of the microwave field (in the GL region given by ∆0(T ) = πkB[8Tc(Tc − T )/7ζ (3)]1/2),
one can determine the regions of superconductivity suppression and enhancement. The Eliashberg
theory predicts a minimal frequency, ωmin(T ), for superconductivity enhancement, which can be
obtained from the equation G0(∆0(T )/h̄ω) = 2πγin/h̄ω. With G0(u) given by Eq. (20), this equation
has the only solution [no upper limit for superconductivity enhancement, ωmax(T ), see below] given
by [10,13]

h̄ωmin(T ) ≈

√
2πγin∆0(T )
ln[∆0(T )/γin]

. (21)

The minimal frequency is bounded from below by the inelastic relaxation rate: h̄ωmin,min ∼

γin. The precise coefficient here cannot be determined within the Eliashberg theory due to the
breakdown of the condition (18). Nevertheless if we formally apply Eqs. (19) and (20) at the
border of their applicability, we obtain h̄ωmin,min =

√
3γin, that corresponds to the cusp of G0 at
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h̄ωmin,min/∆ = 2 [13]. The exact value of ωmin,min can be determined with the help of our theory,
which does not rely on the smallness of γin. In terms of the function G0(u), a finite value of γin
leads to the rounding of the cusp at u = 1/2 and the overall suppression of the function. As a
result, the enhancement effect becomes less pronounced and hence requires a larger frequency to
be observable:

h̄ωmin,min = 3.23 γin, (22)

corresponding to h̄ωmin,min/∆ ≈ 1.38. This minimal frequency can be seen in the inset in Fig. 2.
The numerical factor in Eq. (22) is almost 2 times larger than in the above naive estimate from the
Eliashberg theory.

In the approximation of Eq. (19), there is no upper frequency limit for the superconductivity
enhancement. Indeed, the second (kinetic) term in Eq. (19) is always positive and according to
Eq. (20) saturates at the level Fkin

neq = π∆/8γinkBTc at h̄ω ≫ ∆. Therefore it always wins over
the negative F sp

neq = −π/8kBTc in the limit (18), indicating the absence of the upper bound ωmax(T ).
In fact, ωmax(T ) is determined by the heating effect, not accounted for in the approximation of

Eq. (19), which is obtained from Eqs. (13) and (14) in the lowest order in h̄ω/kBT . Including also
the quadratic in ω/kBT term, we find an additional negative contribution to Fkin

neq of purely normal
origin, such that Eq. (19) in the limit h̄ω ≫ ∆ is replaced by

Fneq = −
π

8kBTc
+

π

8γin

[
∆

kBTc
−

7ζ (3)(h̄ω)2

π3(kBT )2

]
. (23)

The new contribution establishes an upper bound ωmax for the enhancement effect, which remains
finite in the limit γin → 0:

h̄ωmax(T ) = 1.92
√

∆(T )kBT ∝ (1 − T/Tc)1/4. (24)

Note that in the vicinity of Tc , h̄ωmax(T ) parametrically exceeds the energy scale 2∆(T ), indicating
that superconductivity may be enhanced even in the absence of an obvious gap protection.

Critical current enhancement. In the presence of a supercurrent, the BCS singularity in the DOS gets
smeared even in the limit of vanishing γin. Using the analogy with the Abrikosov–Gor’kov theory of
paramagnetic impurities, this smearing can be estimated as w = (3/2)∆ (Γ /∆)2/3. The critical value
of the current density in the GL region described by Eq. (17) corresponds to Γc = 4kB(Tc − T )/3π .
As a result, in the limit h̄ω ≪ w ≪ ∆ the logarithmic integration for G is cut off by w instead of
h̄ω and the enhancement function G becomes [29]

G
(

∆

h̄ω
,
Γc

∆

)
=

2h̄ω
∆

ln (9.9∆/w) . (25)

The value of the current density in the GL region is determined by

js/j0 =

√
Γ

2(kBTc)3

∫
dϵ W (ϵ)F (ϵ), (26)

where

j0 = eνkBTc

√
DkBTc

h̄
, (27)

and ν is the DOS at the Fermi level per one spin projection. The weight function W (ϵ) = Im sin2 θR
ϵ

in Eq. (26) determined by the spectral angle reduces to W (ϵ) = πϵδ(|ϵ| − ∆) for negligible pair
breaking and acquires a width w in the presence of a dc supercurrent.

2.5. Full phase diagram

A typical temperature dependence of the order parameter at zero dc supercurrent is shown
in Fig. 5a. At some value of α > 0, the function ∆(T ) becomes two-valued, with the upper
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Fig. 5. (a) Temperature dependence of the (time-averaged) order parameter in the absence of a dc supercurrent.
Microwave power α/kBTc = 0 (BCS, black), 0.005 (red) and 0.01 (blue). Other parameters: h̄ω/kBTc = 1.5 and
γin/kBTc = 0.02. The stable (unstable) branches are shown by solid (dashed) lines. The sequence of the curves is changed
around 0.5 Tc , marking a crossover from gap enhancement at high temperatures to gap suppression at low temperatures.
(b) Temperature dependence of the critical current. Microwave frequency ω = 0 (BCS, black dashed), 0.1 kBTc/h̄ to
0.4 kBTc/h̄ (color lines). Other parameters: α = 0.05 kBTc and γin/kBTc = 0.02. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

(lower) branch being the stable (unstable) solution [37,38]. Termination of the stable branch
(shown by solid lines) marks the actual point of the first-order phase transition in the presence
of microwave radiation. One can see that even if superconductivity is enhanced in the vicinity
of Tc , this trend turns into superconductivity suppression at lower temperatures. To determine
the regions of enhancement/suppression of the order parameter, we consider the limit of weak
electromagnetic irradiation (α → 0), where the boundary between the these regions is determined
from the condition Fneq(∆0(T ), 0, T , ω, γin) = 0 [the order of arguments as in Eq. (12)]. For a given
value of the inelastic rate γin, the solution of this equation defines the curve C in the (ω, T ) plane
shown in Fig. 2 for γin/kBTc = 0.02. In the limit of small γin, this curve is almost insensitive to
γin, except for the vicinity of the critical temperature, where it marks the lower bound ωmin,min
for the gap enhancement, as discussed above. Starting with ωmin,min near Tc , the lower part of the
curve C describes the evolution of ωmin(T ) from the GL region, where it is given by Eq. (21), to low
temperatures.

The phase diagram in Fig. 2 demonstrates that besides the minimal frequency, ωmin(T ), there
exists a maximal frequency ωmax(T ) for gap enhancement. Thus the region of stimulated supercon-
ductivity encompassed by the curve C in Fig. 2 is bounded both at low temperatures (no states
available) and at high frequencies (heating-dominated regime). A weak microwave signal always
suppresses the superconducting order parameter if the temperature is smaller than Tmin ≈ 0.47 Tc
or the frequency is larger than ωmax ≈ 3.3 kBTc/h̄, even though the distribution function continues
to have a non-thermal structure.

In the limit of small temperatures, T ≪ Tc , the effect of quasiparticle redistribution (kinetic
contribution) is negligible because of the gapped DOS, and the main impact of irradiation is
modification of the spectral functions [14]. The spectral contribution to the function F sp

neq is given by
Eq. (14a). In the quasistationary limit, ω ≪ ∆, one finds F sp

neq = −π/8∆, and using Feq = ln(∆/∆0)
from Eq. (11), we obtain for the gap suppression by microwaves: ∆ = ∆0 − πα/8. This expression
can be readily derived from the Abrikosov–Gor’kov theory [3] with the depairing rate α/2 (the
factor 1/2 is due to time averaging). In the low-temperature limit it is also possible to calculate
the suppression of the superfluid density by radiation using the theory of electromagnetic response
of a superconductor with paramagnetic impurities [50]: δns/ns = −(π/4 + 4/3π )(α/2∆), where
the first term comes the BCS contribution with the reduced ∆, and the second term is due to
modification of the spectral angle. This is equivalent to the modification of the kinetic inductance:
δLK/LK = −δns/ns, as discussed in Refs. [14,17].
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The theory developed in Ref. [15] also allows for determination of the microwave effect on the
critical current jc(T ) in a superconductor. The latter should be obtained by maximization of the
current density js with respect to the order parameter ∆. The results for jc(T ) are shown in Fig. 5b for
several frequencies at a fixed microwave power. The critical current at equilibrium [6,7] is shown by
the dashed line. One can clearly see the difference between the high- and low-temperature regions.
At high temperatures, T ∼ Tc , the critical current is enhanced by microwaves, but the frequency
required to its enhancement grows with the temperature decrease, consistent with previous studies.
However at low temperatures the trend reverses to the opposite: the larger is the frequency, the
stronger is the critical current suppression. Physically this behavior originates from freezing out of
the kinetic contribution, while the effect of irradiation on the spectral properties always leads to
superconductivity suppression via the pair-breaking mechanism.

The region on the phase diagram in Fig. 2 where the critical current is enhanced by a weak
microwave field is encompassed by the curve C′. This region is a subset of the gap enhancement
region shown by the curve C′.

3. Conclusion

We have studied behavior of a dirty superconducting wire, which may carry a dc supercurrent,
under weak ac electromagnetic driving, generalizing the Eliashberg theory [10,11] to higher driving
frequencies, lower temperatures and finite supercurrent density. The most important feature of our
theory is that the effect of quasiparticle redistribution is treated on equal footing with the modi-
fication of the spectral properties. Physically, our results are determined by the interplay between
several competing effects of the microwaves: (i) non-equilibrium redistribution of quasiparticles
with sub-thermal features responsible for stimulation of superconductivity, (ii) Joule heating, and
(iii) modification of the spectral functions due to depairing. The resulting phase diagram is shown
in Fig. 2, where the criteria for the microwave-stimulated enhancement (a) of the gap and (b) of the
critical current are presented. We reveal that the gap enhancement is observed in a finite region of
the (ω, T ) plane, roughly limited by the conditions T > 0.5 Tc and h̄ω < 3 kBTc . The absence of the
gap enhancement at low T is due to the suppression of available quasiparticle DOS switching off
the mechanism (i), whereas at large frequencies, the dominant effect is the Joule heating (ii). In the
presence of a dc supercurrent, the role of the mechanism (iii) is increased that makes the region of
the critical current enhancement narrower than the region of the gap enhancement.

Following the Eliashberg theory, our approach relies on the assumption of spatial homogeneity,
when both the absolute value and the phase gradient of the order parameter are the same at
every point in the wire. Then gauging out the phase one arrives at a zero-dimensional problem to
be solved. Spontaneous breakdown of the translational symmetry leading to inhomogeneous non-
equilibrium states was investigated in the framework of the Eliashberg theory in Ref. [38]. It remains
an open problem to study this effect for lower temperatures.

One of the most straightforward applications of the developed theory is the devices based on
superconducting microresonators, for instance, Microwave Kinetic Inductance Detectors (MKID)
which have been shown to be promising for astronomical studies [21,51,52]. In order to achieve a
sufficiently high signal-to-noise ratio, given the existing low noise amplifiers, the microwave read-
out signal is increased to a regime where a significant effect on the superconducting properties
is observed. This has recently driven the study of the microwave response of superconductors at
low temperatures [16,18,19,53]. Our theoretical predictions can be used to analyze measurements
on MKID [18,19], as well as in the experiment proposed in Ref. [17]. Apart from that, there are
many controllable ways to drive superconducting systems out-of-equilibrium: disturbing them
by a supercritical current pulse [54,55], imposing to pulsed microwave phonons [56], or directly
injecting non-equilibrium quasiparticles [57,58]. It would be interesting to study these problems
microscopically in the similar framework.
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