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a b s t r a c t

By considering the fifth order graviton term in massive gravity
theory, we study the P–V critical behaviors of AdS black hole
in d ≥ 7 dimensional space–time, and find the solid/liquid/gas
phase transition with the ‘‘common’’ tricritical point, which does
not exist in absence of higher graviton terms. Moreover, we also
find the number of positive real roots of critical radius equation
plays a key role in classifying different kinds of phase transitions.
If there is only one positive root of equation, the first order
Van der Waals-like phase transition emerges. For two roots, the
system could experience a zero-order reentrant phase transition.
Notably, for three roots, the solid/liquid/gas phase transition can
occur. In addition, because the critical radius equation is a (n−2)-
order polynomial equation associated with the graviton terms,
the critical phenomena of black holes in extended phase space
depend crucially on the number n of the graviton terms in high
dimensional massive gravity.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Thermodynamics of black hole revealing the relationship between the gravity and thermody-
namics has always been one of the hot topics in theoretical physics since the Hawking radiation

∗ Corresponding author.
E-mail address: rhyue@yzu.edu.cn (R.-H. Yue).

https://doi.org/10.1016/j.aop.2019.168023
0003-4916/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.aop.2019.168023
http://www.elsevier.com/locate/aop
http://www.elsevier.com/locate/aop
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aop.2019.168023&domain=pdf
mailto:rhyue@yzu.edu.cn
https://doi.org/10.1016/j.aop.2019.168023


2 B. Liu, Z.-Y. Yang and R.-H. Yue / Annals of Physics 412 (2020) 168023

was discovered in 1975 [1]. In recent two decades, more and more attentions are paid on the
thermodynamics of black hole in anti-de Sitter (AdS) space. One of the reason is that the AdS
black hole can be in thermodynamical stable equilibrium with a positive specific heat, and has
Hawking–Page (HP) phase transition between thermal gas and black hole in AdS space [2], which
is absent in asymptotically flat or de Sitter space. Another reason is that the AdS/CFT correspon-
dence [3–6], connecting gravity theory in bulk with a conformal field theory on the boundary of
AdS space, is regarded as a powerful tool for understanding the strongly correlated system by
investigating the classical gravity theory. In this view, HP phase transition could correspond to the
confinement/deconfinement phase transition in gauge field theory [7].

In 2012, treating the cosmological constant as the thermodynamical pressure, a first-order
phase transition between large and small black hole (LBH/SBH) was discovered [8], whose critical
behaviors and exponents are precisely identical with the Van der Waals (VDW) liquid–gas system.
In this extended phase space, the black hole mass M should be treated as enthalpy rather than the
internal energy [9], and the thermodynamical volume conjugate with the pressure of black hole
can be calculated by using the standard thermodynamic identities [10–15]. Then this P–V behavior
was generalized into the Born–Infeld AdS black hole [16]. There exists a zero-order reentrant
phase transition between intermediate black hole and small black hole along with LBH/SBH phase
transition, which is a phase transition from large black holes to small ones and then back to large
one again with increasing the temperature, a phenomenon also seen for the singly spinning rotating
higher-dimensional rotating AdS black hole [17]. Moreover, in multi-spinning higher-dimensional
AdS black hole [18], the system has a small/intermediate/large black hole (S/I/L BH) phase transition
with one tricritical (or triple critical) point reminiscent of the ‘‘water-like’’ solid/liquid/gas phase
transition. Then, more P–V behaviors for other kinds of AdS black holes were discussed in [19–40].

Among previous studies on these P–V critical behaviors of AdS black holes, to the best of our
knowledge, they paid more attention on the existence of different kinds of phase transitions. But
it is still unclear for an easy and effective classification of different kinds of phase transitions in
extended phase space of AdS black holes, which is still an open and interesting issue. This is one of
motivations to our paper.

On the other hand, from the perspective of modern particle physics, the Einstein’s general
relativity (GR) can be treated as a unique theory of a massless spin-2 graviton [41,42]. Despite
many successes agreement with observations, GR might be searched for alternatives due to the
open questions, such as the old cosmological constant problem [43] and the origin of acceler-
ation of our universe indicated from the supernova data [44,45], and so on. Massive gravity is
a straightforward and natural modification by simply giving a mass to the graviton, which can
date back to 1939 when Fierz and Pauli (FP) [46] constructed a linear theory of massive gravity.
Then it was generalized in non-linear level to solve the vDVZ discontinuity [47,48], which means
that the FP theory could not go back to GR by Einstein in the massless limit. But this non-linear
theory still has an elementary problem, so-called the Boulware–Deser ghost [49,50], due to the
absence of a Hamiltonian constraint in the Arnowitt–Deser–Misner language [51]. Fortunately,a
ghost-free massive theory in four dimension was proposed in [52,53] known as dGRT massive
gravity. This theory provides a reference metric where the graviton propagates, and introduces a
set of possible interaction terms associated with graviton up to the fourth order. Because it is still
ghost-free with an arbitrary reference metric [54], this theory can be extended to bi-gravities [55], a
more general scenario with a dynamical reference metric. More details about dGRT massive gravity
can be found in review papers [56,57]. Inspired of AdS/CFT correspondence and string theory,
the higher dimensional extension of the massive (bi)gravity has been discussed in Ref [58,59],
which eliminates ghost fields using the Cayley–Hamilton theorem. And it has also shown that
the additional higher dimensional graviton terms, e.g., Ui≥5 should not been neglected. Especially
in Ref [60], five-dimensional massive (bi-)gravity has been constructed and a class of physical
metrics have been found, such as the Friedmann–Lemaitre–Robertson–Walker, Bianchi type I, and
Schwarzschild–Tangherlini metrics, for which the fifth order graviton term U5 also behaves as an
effective cosmological constant. Then in Ref [61], Cayley–Hamilton theorem is shown to be an
effective method to construct any d ≥ 4-dimensional graviton terms and it is proved the existence
of the solutions of Schwarzschild–Tangherlini black holes. Hence, studying the dRGT theory and
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its extensions with specific higher dimensional graviton terms in higher dimensions is physically
important.

Interestingly, a class of charged black holes were found in [62] and their corresponding ther-
modynamics [63] in AdS space–time were investigated in massive gravity. It is shown that the
coefficients for the third and/or fourth potential term in higher dimension play the key role in
the phase space. The other black hole solutions and their thermodynamic properties have been
investigated in dGRT massive gravity [64–67]. Particularly in the extended phase space, the VDW-
like phase transition was found in the charged AdS black hole in massive gravity [68], which was
also found in Refs [69–74]. In the higher dimensional (d ≥ 6) space–time, the reentrant phase
transitions [75] could appear in this P–V process in massive gravity. Moreover, investigating in the
extensions of massive gravity, more interesting and richer P–V critical phenomena were found [76],
including the solid/liquid/gas phase transitions. Recently, the holographic and thermodynamic
aspects of black holes in massive gravity are also investigated in Refs [77,78]. In addition, the
references [79,80] show that massive gravity parameters modify the efficiency of heat engine on a
significant level.

Up to now, there are still few studies on the aspects of black holes in higher dimensional (bi-)
massive gravity with higher order graviton terms. Most of researches in higher dimensional space–
time focus only on five or/and six dimensions [69–76], where the higher order graviton terms Ui≥5
vanish due to the constraint condition [57], which indicates that the terms of Ud−1 and Ud associated
with reference metric will vanish in d-dimensional space–time. This may be one reason why the
higher order graviton terms are paid less attention. To the best of our knowledge, there has been
a paper [81] discussing the critical behavior and phase transitions of AdS black hole solutions in
the Lovelock massive gravity with higher order graviton terms. However, the fifth graviton term is
considered as the high order small quantity which is ignored in the following calculations.

Taking these considerations seriously, in this paper we will concentrate on the critical behaviors
of d ≥ 7-dimensional AdS black hole in dRGT theory with higher-order graviton terms. The
organization of this paper is as follows. In Section 2, considering only the fifth order graviton
term of massive gravity in d ≥ 7 dimensional space–time, we present the thermodynamics in
extended phase space of higher-dimensional AdS black hole. In Section 3, we study the behaviors
of d ≥ 7 dimensional AdS black hole, and reveal the richer critical phenomena in the context of
P–V criticality and phase diagrams. Finally, a brief discussion is presented in Section 4.

2. Extended phase space thermodynamics of higher-dimensional AdS black hole in massive
gravity

Let us start with the action for d-dimensional massive gravity in the geometric units GN = h̄ =

c = k = 1 [56,57]

I =
1

16π

∫
ddx

√
−g

[
R + Λ + m2

n∑
i=1

ciUi(g, f )
]
, (1)

where the last term denotes general form of the interaction potential with graviton mass m, and
n ≤ d − 2 the number of dimensionless coupling coefficients ci. Moreover, f is a fixed rank-
2 symmetric tensor, and Ui are symmetric polynomials of the eigenvalues of the d × d matrix
Kµ

ν =
√
gµα fαν , and satisfying the following recursion relation

Ui = −

i∑
j=1

(−1)j
(i − 1)!
(i − j)!

[K j
]Ui−j. (2)

Obviously, the first few terms can be read as

U1 = [K ],

U2 = [K ]
2
− [K 2

],

U3 = [K ]
3
− 3[K ][K 2

] + 2[K 3
], (3)
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U4 = [K ]
4
− 6[K 2

][K ]
2
+ 8[K 3

][K ] + 3[K 2
]
2
− 6[K 4

],

U5 = [K ]
5
− 10[K 2

][K ]
3
+ 15[K ][K 2

]
2
+ 20[K ]

2
[K 3

] − 20[K 2
][K 3

] − 30[K ][K 4
] + 24[K 5

],

. . .

where the square brackets denote traces, i.e. [K ] = Kµ
µ .

A static black hole solution of d-dimensional space–time is given as

ds2 = −f (r)dt2 + f −1(r)dr2 + r2hijdxidxj, (4)

in which hijdxidxj is the line element for an Einstein space with constant curvature (d − 2)(d − 3)k,
and k = 1, 0, −1 correspond respectively to a spherical, Ricci flat, and hyperbolic topology subspace.
Considering the following reference metric

fµν = diag(0, 0, c20hij), (5)

the interaction potential Eq. (3) changes into

Uj =

( j+1∏
k=2

dk
)
c j0r

−j (6)

with positive constant c0 and the notation dk = (d− k). It is worth to note that the c5m2 term only
appears in the action for d ≥ 7, so we just consider the d ≥ 7 dimensional black hole and n = 5 in
this paper.

Then, the metric function is calculated as

f (r) =k +
16πP
d1d2

r2 −
16πM

d2Vd−2rd−3 +
c0c1m2

d2
r + c20c2m

2

+
d3c30c3m

2

r
+

d3d4c40c4m
2

r2
+

d3d4d5c50c5m
2

r3
, (7)

here Vd−2 is the volume of subspace spanned by coordinates xi, M is the mass of black hole, and
P =

d1d2
16π l2

is the pressure.
According to the relation f (rh) = 0 which determines the horizon of black hole, the mass of black

hole can be expressed in terms of rh as

M =
d2Vd−2rd−3

h

16π

[
k +

16πP
d1d2

r2h +
c0c1m2

d2
rh + c20c2m

2
+

d3c30c3m
2

rh

+
d3d4c40c4m

2

r2h
+

d3d4d5c50c5m
2

r3h

]
. (8)

And the Hawking temperature T and the entropy S of black hole can be obtained as

T =
1

4πrh

[
d3k +

16πP
d2

r2h + c0c1m2rh + d3c20c2m
2
+

d3d4c30c3m
2

rh

+
d3d4d5c40c4m

2

r2h
+

d3d4d5d6c50c5m
2

r3h

]
S =

Vd−2

4
rd−2
h . (9)

Due to the mass of black hole corresponding to the enthalpy of an AdS gravitational system, we
can get the Smarr relation as follows using the scaling method

(d − 3)M = (d − 2)TS − 2PV −
c0c1m2Vd−2rd−2

h

16π
+

d2d3c30c3m
2Vd−2rd−4

h

16π

+
d2d3d4c40c4m

2Vd−2rd−5
h

8π
+

3d2d3d4d5c50c5m
2Vd−2rd−6

h

16π
, (10)
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where V =
Vd−2
d−1 r

d−1
h denotes the thermodynamic volume conjugate with the pressure P = −

Λ
8π =

(d−1)(d−2)
16π l2

, and l is the radius of d-dimensional AdS space–time. Moreover, the first law of black hole
thermodynamics can be written as the following differential relation

dM = TdS + VdP +
c0m2Vd−2rd−2

h

16π
dc1 +

d2c20m
2Vd−2rd−3

h

16π
dc2 +

d2d3c30m
2Vd−2rd−4

h

16π
dc3

+
d2d3d4c40m

2Vd−2rd−5
h

16π
dc4 +

d2d3d4d5c50m
2Vd−2rd−6

h

16π
dc5. (11)

Obeying the thermodynamical formulas, the Gibbs free energy can be written as

G = M − TS

= −
Vd−2rd−3

h

2

[
2Pr2h
d1d2

−
k + c20c2m

2

8π
−

d3c30c3m
2

4πrh
−

3d3d4c40c4m
2

8πr2h
−

d3d4d5c50c5m
2

2πr3h

]
. (12)

3. Critical behaviors of higher-dimensional black hole

3.1. Equation of state

With the help of Eq. (9), the equation of state of black hole P(V , T ) can be written as

P =
d2
4rh

[
T −

d3k
4πrh

−
c0c1m2

4π
−

d3c20c2m
2

4πrh
−

d3d4c30c3m
2

4πr2h

−
d3d4d5c40c4m

2

4πr3h
−

d3d4d5d6c50c5m
2

4πr4h

]
. (13)

Comparing Eq. (13) to the equation of state of the Van der Waals fluid, we can identify the special
volume of the black hole as

v =
4rh

d − 2
∝ rh (14)

For the further convenience, we introduce the following denotations

T̂ = T −
c0c1m2

4π
; ω2 = −

k + c20c2m
2

8π
;

ω3 = −
c30c3m

2

8π
; ω4 = −

c40c4m
2

8π
; ω5 = −

c50c5m
2

8π
(15)

where T̂ is called shifted temperature and could be negative value.
Using the condition of inflection point in Van der Walls system

∂P
∂rh

⏐⏐⏐⏐
T̂=T̂c ,rh=rc

=
∂2P
∂r2h

⏐⏐⏐⏐
T̂=T̂c ,rh=rc

= 0, (16)

we can receive the critical shifted temperature and the equation of critical radius of black hole as

T̂c = −
2d3
rc

[
2ω2 +

3d4ω3

rc
+

4d4d5ω4

r2c
+

5d4d5d6ω5

r3c

]
(17)

ω2r3c + 3d4ω3r2c + 6d4d5ω4rc + 10d4d5d6ω5 = 0 (18)

In the case of ω2 = 0, or ω5 = 0, one can easily find that Eq. (18) has at most two positive
real roots corresponding to the critical radii of black hole, the critical behaviors are similar to the
ones in reference [75]. We neglected it and focus only on the case of ω2 ̸= 0, ω5 ̸= 0, where exists
probably three critical radii.

For the simplicity, denoting

α = 3d4ω3/ω2, β = 6d4d5ω4/ω2, γ = 10d4d5d6ω5/ω2, (19)
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Table 1
The behaviors of the critical radii for different values of β and γ with γ± =

2−9β±2(1−3β)3/2

27 .

Parameters α = −1

β 1/4 < β < 1/3 0 < β ≤ 1/4 β ≤ 0

γ γ− < γ < γ+ γ− < γ < 0 0 < γ < γ+ 0 < γ < γ+ γ− < γ < 0

Number of rc 3 3 2 2 1

the critical temperature and pressure become

T̂c = −
2d3ω2

rc

[
2 +

α

rc
+

2β
3r2c

+
γ

2r3c

]
P̂c = −

2d2d3ω2

r2c

[
2 +

5α
3rc

+
β

r2c
+

4γ
5r3c

]
, (20)

which just depends on the dimension of space–time by a factor d2d3 (d3) for given parameters (ω2,
α, β , γ ).

It is easy to find that Eq. (18) has at most two positive roots in the case α ≥ 0, whereas there
would exist three real roots if α < 0. Since the value of α could be set to be one by re-scaling rc ,
we will assume α = −1 in following discussion. Based on the requirement of three real roots of
Eq. (18), we can obtain the relation between the parameters and the number of positive real roots
in Table 1.

Due to the positive pressures, when all of the pressures Pc1,2,3 corresponding to the critical radii
above are positive, we can obtain three critical points in the P–V process, and when two of Pc1,2,3 are
positive, we will get two critical points, and so on. For example, taking d = 7 and letting ω2 = ±1
we will get three positive corresponding pressures while ω2 = −1, 2/9 < β < 1/4, γp < γ < 0,
or ω2 = −1, 1/4 < β < 1/3, γp < γ < 0, where γp must be determined numerically.

According to the Gibbs free energy Eq. (12) and the equation of state Eq. (13), let us now study
the possible phase transitions of this system.

3.2. Van der Waals-like phase transition

In the case of one critical radius of Eq. (18) in Table 1, the critical behaviors of black hole are
analogous to that of the standard Van der Waals-like system as displayed in Fig. 1.

In Fig. 1(a), there is only one critical isotherm (red dashed line) when T̂ = T̂c ≈ 5.51733, and
exits an inflection point in the isotherm (the green solid line) when T̂ < T̂c . Moreover, Fig. 1(b)
depicts the behaviors of G with a critical isobar (red dashed line) when P = Pc ≈ 1.48178, the isobar
corresponding to P < Pc is depicted with a ‘‘swallowtail’’, which implies a first-order LBH/SBH phase
transition.

3.3. Reentrant phase transition

There are two ranges of parameters for two critical radii in Table 1, both of which display
the similar thermodynamical processes with a reentrant phase transition, analogous to that in
references [16,17,75]. In one case, by setting β = 0.245 and γ = 0.0001, the critical behaviors
are investigated as follows.

In the P–rh processes indicated in Fig. 2(a), there exist two critical isotherms, T̂ = T̂c1 ≈ 10.50671
and T̂ = T̂c2 ≈ 10.38895, corresponding respectively to the red and black dashed lines. Moreover,
there are two inflection points located in each isotherm of the branch corresponding to T̂c2 < T̂ <

T̂c1 as displayed by the blue solid isotherm.
The behaviors of Gibbs free energy G are displayed in Fig. 2(b), where the radius of black hole

increases from right to left along each isobar, and two critical isobars, the red and black dashed
lines, correspond respectively to the critical pressures P = Pc1 ≈ 6.39165 and P = Pc2 ≈ 6.09163.
The magenta solid isobar corresponds to the tricritical point, (T̂tr ≈ 10.44195, Ptr ≈ 6.25396), while
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Fig. 1. The P–rh and G–T diagrams in d = 7 with ω2 = −1, α = −1, β = −1, γ = −0.1.

Fig. 2. The P–rh and G–T̂ diagrams in d = 7 with ω2 = −1, α = −1, β = 0.245, γ = 0.0001.

the blue one to (T̂z ≈ 10.44797, Pz ≈ 6.27301). As the temperature decreases from right to left, in
the range P ∈ (Pz, Pc1) and T̂ ∈ (T̂z, T̂c1), there is a ‘‘swallowtail’’ indicated by the green solid isobar
signifying a Van der Waals-like phase transition. In the range P ∈ (Pc2, Ptr ) and T̂ ∈ (T̂c2, T̂tr ), a
‘‘swallowtail’’ displayed by the purple isobar, does not correspond to the Van der Waals-like phase
transition, because it is not a ‘‘physical’’ process due to the global minimum of the Gibbs free energy
as shown in Fig. 3(a), so that (T̂c2, Pc2) is not a ‘‘really and physically’’ critical point.

Especially in the ranges P ∈ (Ptr , Pz) and T̂ ∈ (T̂tr , T̂z), the global minimum of G is discontinuous
as the temperature increases. As displayed in Fig. 3(b), the value of G experiences a finite jump at
T̂ = T̂0 ≈ 10.44382 ∈ (T̂tr , T̂z) due to the global minimum of the Gibbs free energy, which signifies
the zero-order reentrant phase transition between small and intermediate black holes.

It is obviously found in P–T̂ phase diagram in Fig. 4(a), that the red line in the inset, initiating
from the triple critical point (T̂tr , Ptr ) and terminating at (T̂z , Pz), corresponds to the coexistence line
between IBH and SBH, while the blue one, initiating from (T̂tr , Ptr ) and terminating at (T̂c1, Pc1), to
the coexistence line of SBH and LBH. It is worth to state that, in the range P < Ptr and T̂ < T̂tr , there
is no phase transition between SBH (or IBH) and LBH so that the (T̂tr , Ptr ) is unlike the common one
of water.

In another case, by setting β = −1 and γ = 0.85, the critical behaviors are analogous to
those in preceding case (β = 0.245 and γ = 0.0001), since the P–T̂ phase diagram in Fig. 4(b) is
obviously similar to the one in Fig. 4(a). In Fig. 4(b), the ‘‘physical’’ critical point is (T̂c1 ≈ 6.34216,
Pc1 ≈ 2.05297), the tricritical point is (T̂tr ≈ 5.75374, Ptr ≈ 1.57488), and the termination point
of reentrant phase transition is (T̂z ≈ 5.76867, Pz ≈ 1.60544). The blue line corresponds to the
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Fig. 3. Diagrams with d = 7, ω2 = −1, α = −1, β = 0.245, γ = 0.0001. (a) For a fixing temperature, a stable ‘‘physical’’
system should be in the state with the global minimum of Gibbs free energy. So, the red line stands for the real and
stable state of black hole corresponding to each temperature. (b) Black arrows indicate the real process of the system
with temperature increasing due to the global minimum of Gibbs free energy.

Fig. 4. P–T̂ diagrams with d = 7, ω2 = −1 and α = −1.

coexistence line between SBH and LBH, while the red one in the inset to the one between SBH and
IBH.

3.4. Triple critical point and solid/liquid/gas phase transition

In the case of three critical radii in Table 1, there are also two cases for different parameters, both
of which display the analogous thermodynamical processes as a solid/liquid/gas phase transition
with a tricritical (triple critical) point. Therefore, we just focus on one of them by setting β = 0.3,
γ = −0.027.

In Fig. 5(a), the temperature of isotherm increases from lower left to upper right in the P–rh
diagram. Obviously, the P–rh diagram, which is more complex than that of the standard Van der
Waals system, has three critical isotherms, T̂c1 ≈ 13.65904, T̂c2 ≈ 11.08718, T̂c3 ≈ 10.37037,
corresponding respectively to purple, black, cyan dashed lines. Particularly, there are three inflection
points of each isotherm of the branch in the range (T̂c3 < T̂ < T̂c2), as indicated by the blue one,
which may suggest the existence of the more complex phase structures.

The behaviors of Gibbs free energy G of black hole are depicted in Fig. 5(b), where the three
critical isobars, Pc1 ≈ 24.39363, Pc2 ≈ 7.24789, Pc3 ≈ 4.938276, are labeled by the purple,
black, and cyan dashed lines respectively. The pressure of isobar increases from left to right, and
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Fig. 5. P–rh and G–T̂ diagrams with d = 7, ω2 = −1, α = −1, β = 0.3, γ = −0.027.

Fig. 6. Physical process in G–T̂ diagrams. The black arrows show the real and physical process of the system both in (a),
(b) and (c), due to the global minimum of Gibbs free energy.

the black hole radius rh also increases along each isobar from left to right. As the temperature
decreases from right to left, for P > Pc1, there is no critical behavior as shown by the green isobar.
For Pc2 < P < Pc1 and T̂c2 < T̂ < T̂c1, the pink isobar has one swallowtail, implying a first-
order Van der Waals-like phase transition. For Ptr < P < Pc2 and T̂tr < T̂ < T̂c2, the behaviors
are displayed by the red isobar in Fig. 6(a), which shows two swallowtails, corresponding to the
coexistence of two first-order phase transitions—SBH/IBH and IBH/LBH phase transitions. Until at
P = Ptr ≈ 6.64714 and T̂ = T̂tr ≈ 10.80263 in blue isobar in Fig. 6(b), the two swallowtails merge
with each other, corresponding to the tricritical point of the small, intermediate and large black
holes. As the temperature continuously decreases, for Pc3 < P < Ptr and T̂c3 < T̂ < T̂tr , the magenta
isobar describing the behaviors is also with two swallowtails, but the ‘‘small’’ swallowtail on the
upper-right side is not a ‘‘really and physical’’ critical process because of the global minimization
of the Gibbs free energy G in Fig. 6(c), similar to the situation of the reentrant phase transition in
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Fig. 7. The P–T̂ diagrams in d = 7 with ω2 = −1, α = −1, β = 0.3, γ = −0.027.

SubSection 3.3. So only the ‘‘big’’ one left corresponds to the first-order phase transition. Finally,
there is also only one swallowtail occurring in the case P < Ptr , so that the critical point (Pc3, T̂c3) is
not a physically critical one. Therefore, there exist two physically critical points (Pc1, T̂c1) and (Pc2,
T̂c2) and one tricritical point (Ptr , T̂tr ).

This tricritical behavior of S/I/L BH phase transition is obviously depicted by P–T̂ phase diagrams
in Fig. 7. These diagrams are analogous to that of the water-like solid/liquid/gas phase transition
with a triple critical point. The SBH/LBH coexistence line, denoted in green color and terminating
at the tricritical point (T̂tr , Ptr ), corresponds to the solid/gas coexistence line of water. The LBH/IBH
and IBH/SBH coexistence lines, depicted respectively by the red and blue ones, do not extend to
infinity and terminate respectively at the critical points 1 (T̂c1, Pc1) and 2 (T̂c2, Pc2), corresponding
respectively to the solid/liquid and liquid/gas coexistence ones of water. Moreover, the join point
(or the tricritical point) of the three coexistence lines corresponds to the state of coexistence of
small/intermediate/large black holes with a special critical value of temperature and pressure. It is
necessary to note that this triple critical point is a more ‘‘common’’ one than that in reentrant phase
transition, because there still exists a coexistence line between SBH and LBH when 0 < T̂ < T̂tr and
0 < Pc1 < Ptr , which is not seen in the reentrant phase transition in Figs. 4(a) and 4(b).

By setting β = 0.245, γ = −0.009 in another case of three critical radii, the ‘‘P–V’’ processes
and critical behaviors of G of BH indicated in Fig. 8 are respectively similar to those in Figs. 5 and 6.
In Fig. 8(a), the black, magenta, and purple dashed isotherms correspond respectively to the critical
temperatures T̂c1 ≈ 1967.34429, T̂c2 ≈ 10.23876, and T̂c3 ≈ 8.31659. Because T̂c1 ≫ T̂c2, T̂c3, the
pressures of the solid pink, dashed black, and solid green lines are reduced by 2500 times, while the
radii enlarged by 9 times, so that all the isotherms can be displayed in one diagram. In Fig. 8(b), the
magenta and purple dashed isobars correspond respectively to Pc2 ≈ 5.94913, Pc3 ≈ 0.29619. The
blue isobar has two swallowtails (big one displayed partially in Fig. 8(b)), which implies existence of
SBH/IBH and IBH/LBH phase transitions. The red isobar denotes the tricritical point (Ttr ≈ 10.07367,
Ptr ≈ 5.64492 ). Due to Pc1 ≈ 35484.97609 ≫ Pc2, Pc3, the isobars for P ≥ Pc1 are not displayed in
this diagram. It is more obvious that the magnification of P–T̂ phase diagram near tricritical point
in Fig. 9(b) is analogous to the one in Fig. 7(b).

4. Discussion

In this paper, introducing the fifth order graviton term c5U5 of interaction potential in massive
gravity, we have shown that the solid/liquid/gas phase transition with a ‘‘common’’ tricritical point
could appear in the P–V process in the extended phase space of the higher-dimensional AdS black
holes. At first, we obtained a class of solutions of AdS black holes in massive gravity theory with
fifth term c5U5 of interaction potential in the higher dimensional (d ≥ 7) space–time. Also treating
the cosmological constant as pressure and interpreting the corresponding conjugate quantity as
thermodynamic volume, we constructed the thermodynamics of black hole in the extend phase
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Fig. 8. The P–rh and G–T̂ diagrams in d = 7 with ω2 = −1, α = −1, β = 0.245, γ = −0.009.

Fig. 9. The P–T̂ diagrams in d = 7 with ω2 = −1, α = −1, β = 0.245, γ = −0.009.

space. Then, according to the conditions of the inflection point, we got the equations of critical
temperature and radius basing on the state equation of this system. Meanwhile, we paid more
attention on the case of three real roots of the equation of the critical radius because of the
more complex phase construction, and obtained the conditions of parameters corresponding to the
number of positive roots or critical radii. Finally, we studied the critical behaviors of the Gibbs free
energy of black hole, and found that in the case of three critical radii, there is a SBH/IBH/LBH phase
transition similar to water-like solid/liquid/gas one with a ‘‘common’’ triple critical point, where
three phase of black hole can coexist with the same values of temperature, pressure and the Gibbs
free energy.

Moreover, we find that the number of critical radii of Eq. (18) plays a key role in classification
of different kinds of phase transition of AdS black holes in massive gravity. If there is at most one
critical radius, it has only first order Van der Waals-like phase transition. For two real critical radii,
the system will experience a zero-order reentrant phase transition. Especially for three critical radii,
the solid/liquid/gas phase transition can occur with a common triple critical point. In fact, due
to more graviton terms appearing in the action in high dimensional massive gravity, the critical
radius equation becomes a (n − 2)-order polynomial equation by choosing the special reference
metric. Therefore, the number of roots depends crudely on the number of the graviton terms
appearing in the action of the massive gravity. If introducing the higher order graviton terms ciUi
(i ≥ 6) in high dimensional massive gravity, the black hole will have richer and more fruitful
thermodynamical structures and critical behaviors, which are valued to be investigated in future. In
addition, the higher order graviton terms should not be ignored, and are important to the studies
in high dimensional massive gravity.



12 B. Liu, Z.-Y. Yang and R.-H. Yue / Annals of Physics 412 (2020) 168023

Acknowledgments

We would like to thank Dr. Decheng Zou and Dr. Ming Zhang for many discussions. This work
was supported by the National Natural Science Foundation of China under Grant No. 11675139, No.
11435006 and No. 11875220.

References

[1] S.W. Hawking, Commun. Math. Phys. 43 (1975) 199.
[2] S. Hawking, D.N. Page, Comm. Math. Phys. 87 (1983) 577.
[3] S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Phys. Lett. B 428 (1998) 105.
[4] J.M. Maldacena, Adv. Theor. Math. Phys. 2 (1998) 231.
[5] J.M. Maldacena, Internat. J. Theoret. Phys. 38 (1999) 1113.
[6] E. Witten, Adv. Theor. Math. Phys. 2 (1998) 253.
[7] E. Witten, Adv. Theor. Math. Phys. 2 (1998) 505.
[8] D. Kubizňák, R.B. Mann, J. High Energy Phys. 2012 (2012) 33.
[9] D. Kastor, S. Ray, J. Traschen, Classical Quantum Gravity 26 (2009) 195011.

[10] M.K. Parikh, Phys. Rev. D 73 (2006) 124021.
[11] M. Cvetič, G.W. Gibbons, D. Kubizňák, C.N. Pope, Phys. Rev. D 84 (2011) 024037.
[12] B.P. Dolan, Classical Quantum Gravity 28 (2011) 125020.
[13] B.P. Dolan, Classical Quantum Gravity 28 (2011) 235017.
[14] B.P. Dolan, Phys. Rev. D 84 (2011) 127503.
[15] W. Ballik, K. Lake, Phys. Rev. D 88 (2013) 104038.
[16] S. Gunasekaran, D. Kubizňák, R.B. Mann, J. High Energy Phys. 2012 (2012) 110.
[17] N. Altamirano, D. Kubizňák, R.B. Mann, Phys. Rev. D 88 (2013) 101502.
[18] N. Altamirano, D. Kubizňák, R.B. Mann, Z. Sherkatghanad, Classical Quantum Gravity 31 (2014) 042001.
[19] S.H. Hendi, M.H. Vahidinia, Phys. Rev. D 88 (2013) 084045.
[20] D. Hansen, Kubizňák, R.B. Mann, J. High Energy Phys. 2017 (2017) 47.
[21] R.G. Cai, L.M. Cao, L. Li, R.Q. Yang, J. High Energy Phys. 1309 (2013) 005.
[22] S. Dutta, A. Jain, R. Soni, J. High Energy Phys. 2013 (2013) 60.
[23] W. Xu, H. Xu, L. Zhao, Eur. Phys. J. C 74 (2014) 2970.
[24] D.C. Zou, S.J. Zhang, B. Wang, Phys. Rev. D 89 (2014) 044002.
[25] H.H. Zhao, L.C. Zhang, M.S. Ma, R. Zhao, Phys. Rev. D 90 (2014) 064018.
[26] N. Altamirano, D. Kubiznak, R.B. Mann, Z. Sherkatghanad, Galaxies 2 (2014) 89.
[27] J.X. Mo, W.B. Liu, Eur. Phys. J. C 74 (2014) 2836.
[28] D.C. Zou, Y. Liu, B. Wang, Phys. Rev. D 90 (2014) 044063.
[29] H. Xu, W. Xu, L. Zhao, Eur. Phys. J. C 74 (2014) 3074.
[30] W. Xu, L. Zhao, Phys. Lett. B 736 (2014) 214.
[31] M.H. Dehghani, S. Kamrani, A. Sheykhi, Phys. Rev. D 90 (2014) 104020.
[32] C.O. Lee, Phys. Lett. B 738 (2014) 294.
[33] J.L. Zhang, R.G. Cai, H. Yu, J. High Energy Phys. 1502 (2015) 143.
[34] M. Zhang, Z.Y. Yang, D.C. Zou, W. Xu, R.H. Yue, Gen. Relativity Gravitation 47 (2015) 14.
[35] J.L. Zhang, R.G. Cai, H. Yu, Phys. Rev. D 91 (2015) 044028.
[36] S.H. Hendi, S. Panahiyan, B. Eslam Panah, M. Faizal, M. Momennia, Phys. Rev. D 94 (2016) 024028.
[37] D. Kubiznak, R.B. Mann, M. Teo, Classical Quantum Gravity 34 (2017) 063001.
[38] X.M. Kuang, O. Miskovic, Phys. Rev. D 95 (2017) 046009.
[39] Y.G. Miao, Y.M. Wu, Adv. High Energy Phys. 2017 (2017) 1095217.
[40] M. Zhang, D.C. Zou, R.H. Yue, Adv. High Energy Phys. 2017 (2017).
[41] S. Weinberg, Phys. Rev. B 138 (1965) 988.
[42] D.G. Boulware, S. Deser, Ann. Physics 89 (1975) 193.
[43] S. Weinberg, Rev. Modern Phys. 61 (1989) 1.
[44] A.G. Riess, et al., (Supernova Search Team), Astron. J 116 (1998) 1009.
[45] Perlmutter, et al., (Surpernova Cosmoly Project), Astrophys. J 517 (1999) 565.
[46] M. Fierz, W. Pauli, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 173 (1939) 211.
[47] H. van Dam, M. Veltman, Nuclear Phys. B 22 (2) (1970) 397.
[48] V. Zakharov, JETP Lett. 12 (1970) 312.
[49] D.G. Boulware, S. Desser, Phys. Lett. B 40 (1972) 227.
[50] D.G. Boulware, S. Deser, Phys. Rev. D 6 (1972) 3368.
[51] R.L. Arnowitt, S. Deser, C.W. Misner, Gen. Relativity Gravitation 40 (2008) 1997.
[52] C. de Rham, G. Gabadadze, Phys. Rev. D 82 (2010) 044020.
[53] C. de Rham, G. Gabadadze, A.J. Tolley, Phys. Rev. Lett. 106 (2011) 231101.
[54] S.F. Hassan, R.A. Rosen, A. SchmidtMay, J. High Energy Phys. 02 (2012) 026.
[55] S.F. Hassan, R.A. Rosen, J. High Energy Phys. 02 (2012) 126.
[56] C. de Rham, Living Rev. Relativ. 17 (2014) 7.
[57] K. Hinterbichler, Rev. Modern Phys. 84 (2012) 671.

http://refhub.elsevier.com/S0003-4916(19)30278-7/sb1
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb2
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb3
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb4
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb5
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb6
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb7
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb8
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb9
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb10
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb11
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb12
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb13
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb14
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb15
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb16
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb17
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb18
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb19
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb20
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb21
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb22
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb23
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb24
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb25
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb26
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb27
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb28
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb29
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb30
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb31
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb32
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb33
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb34
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb35
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb36
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb37
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb38
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb39
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb40
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb41
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb42
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb43
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb44
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb45
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb46
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb47
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb48
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb49
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb50
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb51
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb52
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb53
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb54
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb55
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb56
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb57


B. Liu, Z.-Y. Yang and R.-H. Yue / Annals of Physics 412 (2020) 168023 13

[58] T.Q. Do, Phys. Rev. D 93 (2016) 104003.
[59] T.Q. Do, Phys. Rev. D 94 (2016) 044022.
[60] T.Q. Do, J. Phys. Conf. Ser. 865 (2017) 012001.
[61] T.Q. Do, EPJ Web Conf. 206 (2019) 08002.
[62] E. Babichev, A. Fabbri, J High Energy Phys. 2014 (2014) 16.
[63] R.G. Cai, Y.P. Hu, Q.Y. Pan, Y.L. Zhang, Phys. Rev. D 91 (2015) 024032.
[64] H. Kodama, I. Arraut, Prog. Theor. Exp. Phys. 2014 (2014) 023E02.
[65] S.G. Ghosh, L. Tannukij, P. Wongjun, Eur. Phys. J. C 76 (2016) 119.
[66] Y.P. Hu, X.X. Zeng, H.Q. Zhang, Phys. Lett. B 765 (2017) 120.
[67] M. Chabab, et al., Eur. Phys. J. C 79 (2019) 342.
[68] J. Xu, L.M. Cao, Y.P. Hu, Phys. Rev. D 91 (2015) 124033.
[69] B. Mirza, Z. Sherkatghanad, Phys. Rev. D 90 (2014) 084006.
[70] S.H. Hendi, B.E. Panah, S. Panahiyan, J. High Energy Phys. 2015 (2015) 157.
[71] S.H. Hendi, et al., J. High Energy Phys. 2016 (2016) 129.
[72] S.H. Hendi, G.Q. Li, J.X. Mo, S. Panahiyan, B.E. Panah, Eur. Phys. J. C 76 (2016) 571.
[73] S.H. Hendi, R.B. Mann, S. Panahiyan, B.E. Panah, Phys. Rev. D 95 (2017) 021501.
[74] S.H. Hendi, M. Momennia, Thermodynamic description of (a)dS black holes in Born–Infeld massive gravity with a

non-abelian hair, arXiv:1801.07906.
[75] D.C. Zou, R.H. Yue, M. Zhang, Eur. Phys. J. C 77 (2017) 256.
[76] M. Zhang, D. Zou, R. Yue, Adv. High Energy Phys. 2017 (2017) 3819246.
[77] X.X. Zeng, H. Zhang, L.F. Li, Phys. Lett. B 756 (2016) 170.
[78] S.H. Hendi, N. Riazi, S. Panahiyan, Ann. Phys. 530 (2018) 1700211.
[79] S.H. Hendi, et al., Phys. Lett. B 781 (2018) 40.
[80] J.-X. Mo, G.-Q. Li, J. High Energy Phys. 2018 (2018) 122.
[81] S.H. Hendi, A. Dehghani, Eur. Phys. J. C 79 (2019) 227.

http://refhub.elsevier.com/S0003-4916(19)30278-7/sb58
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb59
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb60
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb61
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb62
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb63
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb64
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb65
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb66
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb67
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb68
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb69
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb70
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb71
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb72
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb73
http://arxiv.org/abs/1801.07906
http://arxiv.org/abs/1801.07906
http://arxiv.org/abs/1801.07906
http://arxiv.org/abs/1801.07906
http://arxiv.org/abs/1801.07906
http://arxiv.org/abs/1801.07906
http://arxiv.org/abs/1801.07906
http://arxiv.org/abs/1801.07906
http://arxiv.org/abs/1801.07906
http://arxiv.org/abs/1801.07906
http://arxiv.org/abs/1801.07906
http://arxiv.org/abs/1801.07906
http://arxiv.org/abs/1801.07906
http://arxiv.org/abs/1801.07906
http://arxiv.org/abs/1801.07906
http://arxiv.org/abs/1801.07906
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb75
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb76
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb77
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb78
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb79
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb80
http://refhub.elsevier.com/S0003-4916(19)30278-7/sb81

	Tricritical point and solid/liquid/gas phase transition of higher dimensional AdS black hole in massive gravity
	Introduction
	Extended phase space thermodynamics of higher-dimensional AdS black hole in massive gravity
	Critical behaviors of higher-dimensional black hole
	Equation of state
	Van der Waals-like phase transition
	Reentrant phase transition
	Triple critical point and solid/liquid/gas phase transition

	Discussion
	Acknowledgments
	References


