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a b s t r a c t

Metallic nanoclusters and aromatic molecules are nano systems
which display pair correlation similar to that in usual super-
conductors. Metallic clusters contain delocalized electrons whose
states form energy shells similar to those in atoms or nuclei.
Under special but perfectly realistic conditions, superconducting
pairing in metallic nanoclusters is very strong. For realistic sets of
parameters one can expect a high value of Tc ( 150 K); in princi-
ple, it is possible to raise Tc up to room temperature. Electrons in
aromatic molecules form a two-dimensional finite Fermi system
and also can display phenomena caused by pair correlation.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

We are delighted to contribute this paper to the Special Issue celebrating G. M. Eliashberg’s 90th
birthday. We are especially pleased by the fact that the famous Eliashberg equation [1] is the key
tool which enabled us to carry out the studies described below.

This paper is concerned with the superconducting state in nano systems. It is a mini-review of
previous work and additionally contains some new results. We begin by describing the properties
of small metallic nanoclusters, which contain ∼hundreds of delocalized electrons. The study of
nanoclusters has attracted a lot of attention after the discovery of shell structure in their electronic
spectra [2]. Because of this shell structure certain clusters display very high critical tempera-
tures. Potentially, their Tc can reach the room temperature. In the second part we focus on two
dimensional nano systems, more specifically on the so-called aromatic molecules.
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Fig. 1. (a) Cluster; (b) abundance in mass spectra. Vertical axis: number of electrons per cluster (counting; the peaks in
stability correspond to ‘‘magic’’ clusters).

2. Metallic nanoclusters

Energy Shells. Clusters are aggregates of atoms with a composition Ak, where k is the number of
atoms A (e.g., Nak, Gak, etc.), see Fig. 1a. Metal clusters, like any metallic system, contain delocalized
electrons; this subsystem derives from the valence electrons of the atoms. The number of valence
electrons, N, is the main parameter, with N = νk where ν is the number of valence electrons per
atom. For example, for Al45 clusters N = 135 since each Al atom contains three valence electrons.
With the use of mass spectrometry one can focus on clusters of specific masses. It is important to
note that because of finite size, the electronic energy spectrum of an isolated cluster is discrete. A
milestone discovery made in 1984 in Berkeley [2] demonstrated that the electronic spectra in many
metal clusters form energy shells similar to those in atoms or atomic nuclei. For this reason clusters
are sometimes called ‘‘artificial atoms’’. The existence of energy shells means that the levels can be
classified by their angular momenta L (i.e., s, p, d, f, . . . shells) with the well-known degeneracy of
g = 2(2L+1). Shell structure is the key feature of nanoclusters (see, e.g., the review [3]), Fig. 1b.

So-called ‘‘magic number’’ clusters are most stable. Similarly to inert atoms, they have fully
occupied electronic energy shells. Examples of magic numbers include Nm = 2, 8, 20, 40, 132, . . .
The highest occupied shell (HOS) and the lowest unoccupied shell (LUS) are analogous to the HOMO
and LUMO orbitals in molecular spectroscopy. Importantly, ‘‘magic’’ clusters are, to a good accuracy,
spherically symmetric. Their electronic states can be classified by the angular momentum L and
radial n quantum numbers.

If the energy shell is incompletely filled, the cluster undergoes a Jahn–Teller distortion and its
shape is non-spherical. This splits energy levels with specific values of L, so that the electronic states
of deformed clusters are classified not by L, but by the projection of the angular momentum m. The
scale of splitting depends on the individual cluster. Since the change in shape affects the electronic
energy spectrum, one finds a unique correlation between the number of electrons and the energy
spectrum. This feature makes metallic clusters quite remarkable.

2.1. Superconducting state and critical temperature. High Tc

Cooper pairs in bulk superconductors are formed by electrons with opposite momenta and spins.
For nanoclusters momentum is not a good quantum number, and pairs are formed by electrons with
opposite projections of the angular momentum (m, −m).
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In many aspects metal nanoclusters are analogous to atomic nuclei. Both cases involve finite
Fermi systems and the presence of shell structure. The pairing picture is also similar (see, e.g., [4,5]),
and the pairing states are labeled by similar quantum numbers (m, −m). However, for clusters one
can develop a fully microscopic approach. This is the case because the forces are known precisely
(Coulomb interaction) and in addition one can employ the adiabatic approximation and introduce
the effects of non-adiabaticity, that is to say, the electron–vibrational interaction. Moreover, one
can increase the size of the cluster continuously and trace its evolution all the way to a bulk solid.
As a result, one is able to make use of some bulk parameters (of course, with proper scaling). This
is important for the analysis of the superconducting state in nanoclusters.

Let us begin by discussing pairing in isolated clusters [6]. The equation for the pairing order
parameter ∆(ωn) has the following form:

∆ (ωn) Z = η
T
2V

∑
ωn′

∑
s

D (ωn − ωn′) F+

s (ωn′ ) (1)

Here ωn = (2n + 1) πT ; n = 0,±1,±2, . . .;

D
(
ωn − ωn′ , Ω̃

)
= Ω̃2 [

(ωn − ωn′)2 + Ω̃2]−1
;

F+

s (ωn′) = ∆ (ωn′)
[
ω2

n′ + ξ 2s +∆2 (ωn′)
]−1

(1′)

are the vibrational propagator and the Gor’kov pairing function [7], respectively, ξs = Es − µ is
the energy of the sth electronic state referred to the chemical potential µ, Ω̃ is the characteristic
vibrational frequency, V is the cluster volume, η = ⟨I⟩2 /MΩ̃2 is the so-called Hopfield parameter
(see, e.g., [8]), and Z is the renormalization function. We employ the thermodynamic Green’s
function method (see, e.g., [9]).

Electron-vibrational interaction is considered as the major mechanism of pairing. The general
equation (1) explicitly contains the vibrational propagator. This equation is used because we wish
to go beyond the restriction Tc ≪ Ω̃ (weak coupling approximation).

Eq. (1) is similar to the Eliashberg equation [1]. Since it is applied to a nanoscale system, it
involves a summation over the discrete energy levels ES . Another important aspect in dealing with
a finite Fermi system is that the number of electrons N is fixed. Consequently the position of the
chemical potential differs from the Fermi level EF and is determined by the values of N and T.
Specifically, one can write

N =

∑
ωn;s

∑
s

Gs (ωn) e
iωnτ
|τ→0 =

∑
s

(u2
sϕ

−

s + ν2s ϕ
+

s ) (2)

Here Gs (ωn) is the thermodynamic Green’s function,

u2
s , v

2
s = 0.5

(
1 ∓

ξs

εs

)
;ϕ∓

s =

[
1 + exp

(
∓
εs

T

)]−1
;

εs =
(
ξ 2s + ε20;s

) 1
2 (2′)

ε0;s is the pairing gap parameter for the sth level; and ε0;s is the root of the equation ε0;s = ∆(−iεs).
Since ξs = Es − µ, Eq. (2) determines the position of the chemical potential for a given electron
number N, as well as the dependence µ(T). These dependences are important for the study of pairing
in clusters.

Eqs. (1) and (2) are the main equations of the theory, allowing to evaluate the critical tem-
perature and the energy spectrum. At T = TC∆ should be set to zero in the denominator of the
expression (1′). One can show that η = λb/νb, where λb and νb are the bulk values of the coupling
constant and the density of states [6]. It is essential that these equations involve experimentally
measured parameters: N (the number of delocalized electrons), EF , Ω̃ , the degeneracy gi, λb, and
the energy spectrum (ξi). This makes it possible to calculate the critical temperatures for various
clusters.

This calculation can be performed by means of a matrix method [10,11]. It reveals that a high
value of Tc can be obtained for perfectly realistic parameter values. For example, if we consider a
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‘‘magic’’ cluster with the following parameters: ∆E = EH−EL = 65 meV, Ω̃ = 25 meV, m∗
= me,

kF = 1.5 × 108 cm−1, λb = 0.4, the radius R = 7.5 Å, and gH + gL = 48 (e.g., LH = 7, LL = 4), we
arrive at TC ∼= 102 K (!). Note that the large degeneracy of LUS and HOS plays a key role.

The value of Tc is very sensitive to the cluster parameters. The most favorable case corresponds
to a cluster with

(1) high orbital momenta L for the highest occupied and lowest unoccupied shells, and hence
with large degeneracies gHUS and gLOS (qualitatively, this corresponds to a large effective density of
states);

and
(2) relatively small energy spacing between these shells.
Tc can be increased by changing the parameters (∆E, Ω̃ , etc.) in the desired direction. For

example, for ∆E ∼= 0.2 eV, λb = 0.5, m∗ ∼= 0.5me, R ∼= 5.5 A, Ω̃ = 50 meV, gH + gL = 60, we
obtain Tc ∼= 240 K (!). In principle, Tc can be increased to room temperatures.

Based on Eqs. (1), (2) one can calculate Tc for specific clusters. The results vary noticeably
depending on their parameters. For example, consider Al56. It contains N = 168 electrons. This is
a ‘‘magic’’ cluster with the highest occupied shell (HOS) corresponding to L = 7. Indeed, according
to [12], for N = 168 one observes a sharp drop in the ionization potential. The next ‘‘magic’’ cluster
contain N = 198 electrons and corresponds to hybridization of three shells with L = 4, n = 2; L
= 2, n = 2; and L = 0, n = 4; as a result gH + gL = 60. The spacing between HOS and LUS is
∆E ≈ 0.1 eV. Using the parameters for Al56 clusters (R ≈ 6.5 Å, Ω̃ = 350K , λb = 0.4, m∗

= 1.4
me, kF = 1.7×108 cm−1), we obtain for these clusters Tc ∼= 90 K (!). Similarly, one can expect the
critical temperature (Tc ≃ 100−−120 K) for the ‘‘magic’’ cluster Al66 as well to greatly exceed that
for bulk samples (Tc;Bulk ∼= 1.1 K).

Therefore, the value of Tc is high. Qualitatively, this can be understood as follows. Consider the
case when the highest occupied shell is highly degenerate, i.e., 2(2L+1) is large. This can be viewed as
a sharp peak in the density of states at the Fermi level. The situation is similar to that studied in [13]
for bulk materials: the presence of a peak in the density of states (van Hove singularity) results in
a noticeable increase in Tc. It is essential that the density of states in the clusters of interest has a
strong peak at the Fermi level.

2.2. Finite systems and coherence length

The study of superconducting nanoparticles has attracted a lot of interest. Experiments per-
formed by Tinkham et al. [14] (see the review [15]) with the use of tunneling spectrometry have
revealed many interesting features. However, the nanoparticles in that work were large (50–100 Å
diameter, containing ∼104–105 electrons). In contrast, here we are concerned with much smaller
particles: nanoclusters containing ∼102 electrons. This is the scale at which shell structure, which is
the key ingredient of our analysis, has been observed. It is important to emphasize that our analysis
is based on Eq. (1) which allows us to go beyond the weak coupling approximation and to obtain
solutions corresponding to high values of Tc. For this reason the Richardson model [16] (see the
review [17]) based on the Bardeen Hamiltonian with a four-fermion interaction is not applicable
here: such Hamiltonian corresponds to the weak coupling limit. Note also that the treatment [18]
was based on the assumption that the energy levels are approximately equidistant. With shell
structure this assumption is invalid, since here we deal with highly degenerate levels or with
groups of very close levels. Because of the high value of Tc, the coherence length is short (this
is similar to the situation with high Tc cuprates) and comparable with the cluster size. As a result,
broadening due to fluctuations is relatively small [6], on the order of (δTC/TC) ≈ 5%. The study of
the parity parameter [19] is concerned with large nanoparticles investigated in [14] and the impact
of fluctuations on it. The presence of the shell structure in small nanoclusters leads to a different
picture.

Note also that although we talk about a phase transition into the superconducting state, rigor-
ously speaking such a transition can be defined only for infinite systems, since it is for such systems
that a singularity in the thermodynamic potential or ins derivative can be defined. Nevertheless, one
can consider regions with pair correlation, and a transition to the macroscopic scale allows one to
define the critical temperature exactly.
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Fig. 2. Cluster-based tunneling network.

2.3. Nano-based tunneling networks

Josephson tunneling between nanoclusters can set up a macroscopic supercurrent [20], Fig. 2.
Such Josephson tunneling between clusters needs to be analyzed with considerable care due to
the fact that clusters possess discrete energy spectra as opposed to usual bulk superconductors. It
cannot be treated with the use of the tunneling Hamiltonian. It is important to take into account
the shell degeneracies. As demonstrated in [20], tunneling charge transfer indeed is realistic and in
fact provides a drastic increase in the current amplitude relative to the usual bulk case. Note also
that although the phase of an isolated cluster does not have a specific value, because of the fixed
number of electrons, a phase difference can be defined [21].

A new type of 3D crystals (‘‘cluster metals’’) can be created by using metal nanoclusters as build-
ing blocks. Such solids would be analogous to molecular crystals. The presence of pair correlation in
an isolated cluster will lead to Josephson charge transfer between neighboring clusters; as a result,
such a cluster-based 3D crystal will display macroscopic superconductivity. The concept of such a
superconducting crystal was introduced in [22].

2.4. How to observe the phenomenon?

Pairing results in a strong temperature dependence of the excitation spectrum. Below Tc and
especially at low temperatures close to T = 0 K, the excitation energy becomes strongly modified
by pairing so as to noticeably exceed its value for T > Tc. In addition, pairing produces an
increase in the electronic density of states near the energy gap. A change in the excitation energy
and a redistribution of levels should be experimentally observable and would provide strong
manifestation of pair correlation. Such an effect has been observed experimentally in [23,24] for
Al66. This is not an accident, because Al66 is a ‘‘magic’’ cluster with a large angular momentum
(hence, degeneracy) of its HOS and LUS.

The transition into a pairing state is a phase transition and should be accompanied by a jump
in heat capacity. An interesting calorimetric study, based on an induced dissociation method, was
carried out in [25], finding a peak was observed for Al−45 ions. It is again important that this
additional peak is not universal and can be observed only for certain selected clusters. The peak
was observed at T ≈ 200 K(!); according to the authors [25] the result is highly reproducible. This
observation is also very informative.

3. 2D nano systems. Aromatic molecules

In this section we describe another example of small scale systems, so-called conjugated
hydrocarbons, or, more specifically, aromatic molecules. The molecules are planar but otherwise
are similar to metal clusters. They contain so-called π-electrons which are delocalized and moving
in the field created by the σ -core; the σ -core is formed by the ionic system and the other electrons.
Each carbon atom supplies one such delocalized π-electron. As an example, the coronene molecule
C24H12 (Fig. 3a) contains 24 π-electrons. As noted, the π-electrons have similarities to conduction
electrons in metals; only in this case we are again dealing with a finite Fermi-system.

The benzene molecule (see the Appendix) is the major building block of these structures. Below
we focus on the π-electrons states of the coronene molecule and their spectrum.
π-electrons can form Cooper pairs, bringing the molecules into the superconducting state. This

concept was introduced in [26,27]. Here we describe the picture and present some new results.
Of course, since an isolated aromatic molecule is a small system it is meaningless to talk about its
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Fig. 3. (a) Coronene molecule (the hydrogen ions are omitted for clarity); (b) location of the selected ions.

Fig. 4. (a) Benzene molecule; (b) in-plane atomic orbitals; (c) pz atomic orbitals.

conductivity and zero resistance. But pair correlation similar to that in the usual superconductors
does exist and manifests itself in various phenomena.

We begin by evaluating the electronic energy spectrum of the molecule (in the absence of pair
correlation). The method takes advantage of the symmetry of the molecule (D6h) and its periodicity
with respect to rotation with period ϕ̃ = π/3. More specifically, let us select the set of four carbon
ions marked in Fig. 3b. By consecutive π/3 rotations of this set relative to the axis we cover the
full structure of the molecule. This allows us to seek the total electronic wave function as a sum
(cf. Eq. (A.1)):

Ψ (r) =

∑
s

eimϕ
s
{αΨ (1)

+ βΨ (2)eiϕ2 + γΨ (3)eiϕ3 + µΨ (4)eiϕ4}s (3)

Here; s = 1, 2, . . . , ψ (i) corresponds to the ith ion in the set, and ϕ2, ϕ3, ϕ4, are the relative phase
factors. Substituting expression (3) into the Schrödinger equation, we obtain the secular equation

∥Sik∥ = 0, i, k = 1, 2, . . . , 4 (4)

Here S11 = E − 2Tz cosmϕ̃, Sii = E, S12 = S∗

21 = −Tz exp(iϕ2); S2k = S∗

k2 = −Tz exp [i (ϕk − ϕ2)];
S34 = S43 = −Tz exp[imϕ̃ + ϕ4 − ϕ3], S13 = S31 = S14 = S41 = 0; we have set ε0 = 0.

Eq. (4) can be written in the following form:

Z4
− 2Z3 cosmϕ̃ − 4Z2

− 4Z cosmϕ̃ + (1 + 4 cos 2mϕ̃) = 0 (4′)

where Z = E/Tz.
The energy spectrum (in units of Tz) is described by Eq. (4). It is interesting that the spectrum is

symmetric relative to the chemical potential (ε0 = 0). The energy distribution of all 24 π-electrons
can be also shown. The value of the parameter Tz can be taken from experimental data on the
benzene molecule (≃350 meV). The excitation energy, referred to chemical potential placed in
the middle of the HOMO-LUMO interval, works out to be on order of ≃175 meV. This value is
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noticeably lower than the vibration energy of the hydrogen ion (∼200–250 meV). The presence of
high frequency hydrogen modes is the key factor that makes π-electrons pairing perfectly realistic.
The situation is similar to pairing in the hydrides [28] caused by the interaction of conduction
electrons with high frequency hydrogen phonon modes [29–31].

Let us discuss the manifestations of pairing. That is, we summarize experimental observations
which lead one to the conclusion that the π-electrons in the coronene molecule indeed form Cooper
pairs.

To recap, the energy spectrum plotted in Fig. 4 is evaluated directly from the Schrodinger
equation without accounting for any pair correlations. One can see that the quantities ωo−o′ and
ωo′−o′′ , which correspond to excitations of the first and second levels, are of the same order of
magnitude. However, the experimental data presents a different picture. For the coronene molecule
ωo−o′ ≃ 22.5 × 103 cm−1, whereas ωo′−o′′ ≃ 5.5 × 103 cm−1 [32] . This very significant difference
can be explained if pair correlation is present and gives rise to the corresponding pairing energy
gap, which affects the energy spectrum and drastically increases the lowest excited level.

It is interesting that for the ion C24H−

13, which contains an odd number of electrons, a large
reduction of the 0 − 0′ separation is observed [33]. This is natural in the above picture, since this
ion contains an unpaired electron (the odd–even effect).

As is known, in ordinary metals the paramagnetic χP and diamagnetic χD terms nearly cancel
each other, leaving only the small residual Landau diamagnetism. In superconductors, on the other
hand, the presence of the gap parameter suppresses the paramagnetic term and leads to the well-
known anomalous diamagnetism (Meissner effect). In molecular systems both χP and χD must
be evaluated, since they are of the same order of magnitude. However, the aromatic molecules
of interest display strong diamagnetic response (for example, for coronene χ ≡ χD ≃ −2.4 ×

10−4 cm3/mol). This implies that the paramagnetic term is small due to the pairing order parameter
∆.

The manifestation of pairing in aromatic molecules is similar to that for nucleons (protons and
neutrons) in atomic nuclei which is a well-established concept in nuclear physics (see, e.g., [4,5]).
This is not surprising, because in both cases we deal with a finite Fermi system. Both systems
(nuclei and aromatic molecules) interact with radiation in an analogous way. As is known, the
spectroscopy of usual bulk superconductors is greatly affected by the opening of the energy gap
at T = Tc . For the systems discussed here, their finite size makes their spectra discrete even in the
absence of pair correlation. However, as elucidated above, because of pairing the energy spacing
between the ground state and the first excited state (the so-called 0-0′ transition) greatly exceeds
that between the first and second excited states (the 0′-0′′ transition). In addition, the odd–even
effect can be observed: the light absorption threshold is much lower for a system with an odd
number of electrons because of the presence of one unpaired particle.

Pair correlation of nucleons results in a decrease of nuclear moments of inertia relative to
the rigid body configuration. This phenomenon is similar to anomalous diamagnetism, because
transition to a rotating coordinate system is equivalent to the appearance of an external magnetic
field (see, e.g., [34]).

As pointed out above, the key ingredient enabling the pairing of π-electrons in the molecules
of interest is the presence of hydrogen ions with high-frequency vibrational modes. Since pairing
is caused by electron coupling to these hydrogen modes, the gap parameter and, consequently, the
structure of the electronic spectrum must be sensitive to the H → D isotope substitution. The
observation of such an isotope effect would reveal the presence of the pairing phenomenon in their
π-electron systems and validate our prediction.
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Appendix. Methods: Benzene molecule

The benzene molecule C6H6 (Fig. 4a) is a basic hydrocarbon molecule, of key importance among
organic systems. Because of its simple structure and symmetry, this molecule plays a role similar
to that of hydrogen in atomic physics. In addition to the carbon and hydrogen ions, it contains 30
valence electrons which are not bound to the ions and can move in the field formed by the ionic
system and other electrons. It is also well known that these valence electrons are separated into
two groups:

(1) π-electrons, which are delocalized and move along the ring and (2) σ -electrons. The ionic
system and these σ -electrons form the so-called σ - core which creates the background potential
for the delocalized motion of the π-electrons. While this separation into π and σ groups works
well in molecular spectroscopy, it must be proven rigorously.

Studies of aromatic molecules with structures analogous to benzene focus mainly on the
properties of π-electrons. Based on the symmetry of the molecule, one can evaluate rigorously the
full energy spectrum of the entire valence electron population of the molecule. One can show (see
below) that it contains several groups (branches) of level. Some of them are fully occupied (σ− and
µ− branches), whereas the group corresponding to the so-called π-states is only partially occupied.
The structure of the spectrum and its treatment are similar to that in solids with their valence and
conducting bands.

Below we show how the system of valence electrons in the benzene molecule can be analyzed
without any a priori separation into groups. As will be seen, the analogy with the energy band
picture in solids is of key importance.

Let us start from an isolated C atom. It has four valence electrons with the structure (1s2)(2s)(2px)
(2py)(2pz) (see, e.g., [35]). As usual, it is convenient to introduce linear combinations of the atomic
wave functions, resulting in four orthogonal wave functions (atomic orbitals), see Fig. 4b.

The full C6H6 molecule has D6h symmetry. It is invariant with respect to rotations by π /3 relative
to the Z-axis (the Z-axis passes through the center of the molecule and is normal to the molecular
plane). In total, we are dealing with 30 valence electrons (24 electrons from the six carbon atoms
and 6 electrons from the H atoms). Each of these electrons is delocalized in the field formed by the
ionic core made up of six C4+ ions, six protons (H+), and the other electrons.

Now one can employ the tight-binding approximation. As is known, translational symmetry in
solids allows the electronic wave function to be written in the Bloch form that depends on the
quasi-momentum quantum number. For the benzene molecule with its electronic states periodic
with respect to π /3 rotations, it is reasonable to introduce a ‘‘quasi-projection of the angular
momentum’’. This quantity is similar to the quasi-momentum in crystals and reflect the rotational
periodicity. Correspondingly, the electronic wave function can be sought in the form:

Ψ
(−→r )

=

∑
s

eimϕs [αmψ
s
L + βmψ

s
R + µmψ

s
_|_ + ηmψ

s
H + γmψ

s
Z ] (A.1)

Here, s corresponds to isolated C ions, and i ≡ {L, R,⊥,H, Z} denotes the orbitals (see Fig. 4b,
c).

Eq. (A.1) is analogous to the form used in solid state theory for the case of degenerate energy
levels (see, e.g., [36] and also [37]). A similar equation has been used in the theory of manganites [38]
developed by Gor’kov and one of the authors, where the band structure is described in the
tight-binding approximation and reflects the degeneracy of the Mn ions.

Substituting expression (A.1) into the Schrodinger equation ĤΨ = EΨ , multiplying it by Ψ (L)
i

and integrating, we obtain the general secular equation

|Sik| = 0. (A.2)

Here S11 = S22 = E−εo, εo is the energy of the upper occupied electronic term of an isolated carbon
atom (we set εo = 0), ϕ̃ = π/3, m = 0, . . . , 3,

Tp ≡ T 1;2
RL ≡ T 1;6

LR =

∫
ψ
(1)
R Ṽψ (2)

L dr,
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Fig. 5. Energy spectrum of the C6H6 molecule. Black dots and gray areas denote the occupied energy levels.

Ṽ = V − ν (rs), ν(rs) is the potential of an isolated C ion Further, S33 = E − ε̃0; ε̃0 = ε0 +

2T⊥ cosmϕ̃; T⊥ =
∫
ψ
(1)
⊥
ṽψ

(2)
⊥

dr⃗; S44 = E − εH , εH is the lowest electronic term of hydrogen, and
S55 = E − (ε0 + 2Tz cosmϕ̃), where

Tz =

∫
ψ (1)

z Ṽψ (2)
z dr⃗ (A.2′)

The matrix elements TZ , T P , etc., describe electron tunneling between neighboring ions. This
tunneling splits the electronic levels of an isolated C ion. We neglect overlap integrals containing
direct products of electronic wavefunctions from neighboring ions.

In the first approximation we neglect small terms such as Tp;⊥ =
∫
ψ
(1)
z Ṽψ (2)

z dr⃗ , S13,etc.
The secular equations (A.2) has five roots which means that there are five groups (branches)

of energy levels (see below). Each of these groups contains 4 levels; of which two are doubly
degenerate (m = 1,−1 and 2,−2) and can accommodate 4 electrons each. On the whole, each branch
can accommodate 12 electrons.

An essential point is that because the functions ψ (1)
z are antisymmetric with respect to reflection

in the plane of the molecule and the other orbitals and the operator T ≡ Ṽ are symmetric, all the
elements Si4 = S4i = 0, and one branch can be determined immediately (cf. [39]), it arises from the
tunneling between the electronic ψz states belonging to neighboring C ions. Therefore one group
of levels can be immediately identified:

E1 = 2Tzcosmϕ̃ (A.3)

As noted above, we assumed ε0 = 0.
Other branches can be also determined from the secular equation. It is easy to find that:

E2,3≈ ± Tp (A.4)

These groups form σ (=−Tp) and σ+ (=Tp) energy levels. If we take into account small tunneling
terms such as Tp;_|_, then this energy level will be slightly split.

Finally, the energy levels E4 and E5 are described by the following dispersion relations:

E4≈εH; E5≈0 (A.5)

These levels form groups E+
µ and E−

µ .
As a result, as mentioned above there are five energy level branches. As noted, each branch

contains four energy levels and can accommodate 12 electrons whose states differ in the value of
the quasi-projection of angular momentum m and spin.
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Fig. 5 shows the structure of the electronic energy spectrum for the benzene molecule.
The total number of valence electrons is 30. According to the Pauli principle, these electrons are

distributed among the energy levels plotted in Fig. 5. All the lowest levels (the E−
µ levels, all the

E−
σ levels, and two E−

π levels) are occupied. The upper two E+
π energy levels and all E+

σ and E+
µ levels

are vacant.
The difference between π and σ electrons is not in delocalization vs localization. Indeed, the

wave functions of all valence electrons, including the σ states, are delocalized. The point is that
the π and σ states correspond to different parts of the energy spectrum. The σ branch is totally
occupied, unlike the π branch which is only partially occupied. For the π branch, intra-branch
transitions are allowed. The σ branch is similar to the valence (fully occupied) energy bands in
solids, whereas the π electron branch is similar to the conduction bands.

References

[1] G. Eliashberg, JETP 12 (1961) 1000.
[2] W. Knight, K. Clemenger, W. de Heer, W. Saunders, M. Chou, M. Cohen, Phys. Rev. Lett. 52 (1984) 2141.
[3] W. de Heer, Rev. Modern Phys. 65 (1993) 611.
[4] P. Ring, P. Schuck, The Nuclear Many-Body Problem, Springer, NY, 1980.
[5] R. Broglia, V. Zelevinsky (Eds.), Fifty Years of Nuclear BCS, World, Singapore, 2013.
[6] V. Kresin, Y. Ovchinnikov, Phys. Rev. B 74 (2006) 024514.
[7] L. Gor’kov, JETP 7 (1958) 505.
[8] G. Grimvall, The Electron-Phonon Interaction in Metals, Amsterdam: North- Holland, 1981.
[9] A. Abrikosov, L. Gor’kov, I. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics, Dover, NY, 1975.

[10] C. Owen, D. Scalapino, Physica 55 (1971) 691.
[11] V. Kresin, H. Gutfreund, W. Little, Solid State Commun. 51 (1984) 12.
[12] K. Schriver, J. Persson, E. Honea, R. Whetten, Phys. Rev. Lett. 64 (1990) 2359.
[13] J. Labbe, S. Baristic, J. Friedel, Phys. Rev. Lett. 19 (1967) 1039.
[14] M. Tinkham, J. Hergenrother, J. Lu, Phys. Rev. B 51 (1995) 12649.
[15] D. von Delft, D. Ralth, Phys. Rep. 345 (2001) 61.
[16] R. Richardson, Phys. Lett. 3 (1963) 277.
[17] J. von Delft, F. Braun, arXiv:cond-mat/99/1058v1, 1999.
[18] P. Anderson, J. Phys. Chem. Solids 11 (1959) 59.
[19] K. Matveev, A. Larkin, Phys. Rev. Lett. 78 (1997) 3749.
[20] Y. Ovchinnikov, V. Kresin, Phys. Rev. B 81 (2010) 214505; Phys. Rev. B 85 (2012) 064518.
[21] D. Cobert, U. Schoolwock, von Delft, Eur. Phys. J. B 38 (2004) 501.
[22] J. Friedel, J.Phys. 2 (1992) 959.
[23] A. Halder, A. Liang, V.V. Kresin, Nano Lett. 15 (2015) 1410.
[24] A. Halder, V.V. Kresin, Phys. Rev. B 92 (2015) 214506.
[25] B. Cao, C. Neal, A. Starace, Y. Ovchinnikov, V. Kresin, M. Jarrold, J. Super. Novel Magn. 21 (2008) 163.
[26] V. Kresin, JETP 34 (1972) 527.
[27] V. Kresin, V. Litovchenko, A. Panasenko, J. Chem. Phys. 63 (1975) 3613.
[28] A. Drozdov, M. Eremets, I. Troyan, V. Ksenofontov, S. Shylin, Nature 525 (2015) 73.
[29] Y. Li, J. Hao, H. Liu, Y. Li, Y. Ma, Sci. Rep. 5 (2014) 9948.
[30] D. Duan, Y. Liu, F. Tian, D. Li, X. Huang, Z. Zhao, H. Yu, B. Liu, W. Tian, Ti Cui, Sci. Rep. 4 (2014) 6968.
[31] L. Gor’kov, V. Kresin, Rev. Modern Phys. 90 (2018) 011001.
[32] E. Clar, Aromatishe Kohlenwasserstoffe, Springer-Verlag, Berlin, 1952.
[33] G. Hotjtiak, P. Zandstra, Mol. Phys. 3 (1960) 371.
[34] L. Landau, E. Lifshits, The Classical Theory of Fields, Pergamon, NY, 1994.
[35] K. Higasi, H. Baba, A. Rembaum, Quantum Organic Chemistry, Wiley, NY, 1965.
[36] A. Anselm, Introduction to Semiconductor Theory, Prentice-Hall, NY, 1982.
[37] M. Dewar, The Molecular Orbital Theory of Organic Chemistry, McGraw-Hill, NY, 1969.
[38] L. Gor’kov, V. Kresin, Phys. Rep. 400 (2004) 149.
[39] E. Hückel, Z. Phys. 70 (1931) 204.

http://refhub.elsevier.com/S0003-4916(20)30074-9/sb1
http://refhub.elsevier.com/S0003-4916(20)30074-9/sb2
http://refhub.elsevier.com/S0003-4916(20)30074-9/sb3
http://refhub.elsevier.com/S0003-4916(20)30074-9/sb4
http://refhub.elsevier.com/S0003-4916(20)30074-9/sb5
http://refhub.elsevier.com/S0003-4916(20)30074-9/sb6
http://refhub.elsevier.com/S0003-4916(20)30074-9/sb7
http://refhub.elsevier.com/S0003-4916(20)30074-9/sb8
http://refhub.elsevier.com/S0003-4916(20)30074-9/sb9
http://refhub.elsevier.com/S0003-4916(20)30074-9/sb10
http://refhub.elsevier.com/S0003-4916(20)30074-9/sb11
http://refhub.elsevier.com/S0003-4916(20)30074-9/sb12
http://refhub.elsevier.com/S0003-4916(20)30074-9/sb13
http://refhub.elsevier.com/S0003-4916(20)30074-9/sb14
http://refhub.elsevier.com/S0003-4916(20)30074-9/sb15
http://refhub.elsevier.com/S0003-4916(20)30074-9/sb16
http://arxiv.org/abs/cond-mat/99/1058v1
http://arxiv.org/abs/cond-mat/99/1058v1
http://arxiv.org/abs/cond-mat/99/1058v1
http://arxiv.org/abs/cond-mat/99/1058v1
http://arxiv.org/abs/cond-mat/99/1058v1
http://arxiv.org/abs/cond-mat/99/1058v1
http://arxiv.org/abs/cond-mat/99/1058v1
http://arxiv.org/abs/cond-mat/99/1058v1
http://arxiv.org/abs/cond-mat/99/1058v1
http://arxiv.org/abs/cond-mat/99/1058v1
http://arxiv.org/abs/cond-mat/99/1058v1
http://arxiv.org/abs/cond-mat/99/1058v1
http://arxiv.org/abs/cond-mat/99/1058v1
http://arxiv.org/abs/cond-mat/99/1058v1
http://arxiv.org/abs/cond-mat/99/1058v1
http://arxiv.org/abs/cond-mat/99/1058v1
http://arxiv.org/abs/cond-mat/99/1058v1
http://arxiv.org/abs/cond-mat/99/1058v1
http://arxiv.org/abs/cond-mat/99/1058v1
http://arxiv.org/abs/cond-mat/99/1058v1
http://arxiv.org/abs/cond-mat/99/1058v1
http://arxiv.org/abs/cond-mat/99/1058v1
http://arxiv.org/abs/cond-mat/99/1058v1
http://arxiv.org/abs/cond-mat/99/1058v1
http://refhub.elsevier.com/S0003-4916(20)30074-9/sb18
http://refhub.elsevier.com/S0003-4916(20)30074-9/sb19
http://refhub.elsevier.com/S0003-4916(20)30074-9/sb20
http://refhub.elsevier.com/S0003-4916(20)30074-9/sb20
http://refhub.elsevier.com/S0003-4916(20)30074-9/sb21
http://refhub.elsevier.com/S0003-4916(20)30074-9/sb22
http://refhub.elsevier.com/S0003-4916(20)30074-9/sb23
http://refhub.elsevier.com/S0003-4916(20)30074-9/sb24
http://refhub.elsevier.com/S0003-4916(20)30074-9/sb25
http://refhub.elsevier.com/S0003-4916(20)30074-9/sb26
http://refhub.elsevier.com/S0003-4916(20)30074-9/sb27
http://refhub.elsevier.com/S0003-4916(20)30074-9/sb28
http://refhub.elsevier.com/S0003-4916(20)30074-9/sb29
http://refhub.elsevier.com/S0003-4916(20)30074-9/sb30
http://refhub.elsevier.com/S0003-4916(20)30074-9/sb31
http://refhub.elsevier.com/S0003-4916(20)30074-9/sb32
http://refhub.elsevier.com/S0003-4916(20)30074-9/sb33
http://refhub.elsevier.com/S0003-4916(20)30074-9/sb34
http://refhub.elsevier.com/S0003-4916(20)30074-9/sb35
http://refhub.elsevier.com/S0003-4916(20)30074-9/sb36
http://refhub.elsevier.com/S0003-4916(20)30074-9/sb37
http://refhub.elsevier.com/S0003-4916(20)30074-9/sb38
http://refhub.elsevier.com/S0003-4916(20)30074-9/sb39

	Pair correlation in nano systems
	Introduction
	Metallic nanoclusters
	Superconducting state and critical temperature. High Tc
	Finite systems and coherence length
	Nano-based tunneling networks
	How to observe the phenomenon?

	2D nano systems. Aromatic molecules
	Declaration of competing interest
	Acknowledgments
	Appendix. Methods: Benzene molecule
	References


