
Annals of Physics 417 (2020) 168137

Contents lists available at ScienceDirect

Annals of Physics

journal homepage: www.elsevier.com/locate/aop

Fluctuational anomalous Hall and Nernst effects
in superconductors✩

Songci Li, Alex Levchenko ∗

Department of Physics, University of Wisconsin-Madison, Madison, WI 53706, USA

a r t i c l e i n f o

Article history:
Received 18 February 2020
Received in revised form 2 March 2020
Accepted 6 March 2020
Available online 26 March 2020

Keywords:
Anomalous Hall effect
Superconducting fluctuations
Skew-scattering
Side-jump
Hikami box

a b s t r a c t
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by Maki–Thompson interference and density of states fluctu-
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coupling BCS model we also sketch an approach for the account
of fluctuational transport effects in the strong-coupling limit.
In particular we explore an example of how Keldysh version
of the Eliashberg theory can in principle be constructed and
estimate fluctuation-induced conductivity within conventional
electron–phonon coupling scenario. These ideas may pave the
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applications to fluctuations in unconventional superconductors
and anomalous transport responses in particular.
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1. Introduction and motivation

The Hall effect in superconductors has been a subject of intensive studies over the years. One
usually distinguishes transport regimes below and above the transition temperature into the super-
conducting state. Below the critical temperature Tc in the mixed state of type-II superconductors
the longitudinal (σxx) and Hall (σxy) conductivities are dominated by the vortex physics and the
flux-flow. The generally accepted description of this transport regime was given in the original
studies of Bardeen–Steven [1] and Nozières–Vinen [2] who showed that σxx ≈ σn(Hc2/H) and
σxy ≈ (Ωτ )σxx, where σn is the normal-state conductivity, τ is the elastic lifetime with respect
to impurity scattering, and Hc2 is the upper critical field. The energy scale Ω ≈ ∆2/εF ≪ ∆, where
∆ is the superconducting energy gap and εF is the Fermi energy, is related to the energy spacings
of the Caroli–De Gennes–Matricon discrete electronic levels localized within the vortex core [3].
The model of the flux-flow Hall effect reflects an idea that the region inside the vortex core may
be considered just as a normal metal with respect to its electronic properties. The microscopic
calculations of flux-flow conductivities based on the quasiclassical nonequilibrium diagrammatic
technique and kinetic equation that followed [4–9] essentially confirmed the basic assumptions.
They also clarified importance of the pinning and the physics of dissipative processes in the vortex
core related to electron–phonon relaxation as well as additional dissipation induced by the motion
of a vortex via rare nonadiabatic Landau–Zener processes of electron excitations between the core
levels.

The physical mechanisms of the Hall effect observed above the transition are different and
governed by the emergence of superconducting fluctuations (SF). At the onset of Tc fluctuations
of the superconducting order parameter form a new branch of charged collective excitations
that contribute to the electromagnetic response. Three main mechanisms of fluctuation-induced
transport have been identified. The direct contribution of the fluctuating Cooper pairs was proposed
by Aslamazov–Larkin [10]. Almost simultaneously an additional interference mechanism was found
by Maki [11]. The apparent divergence of the corresponding fluctuation correction was termed
anomalous and Thompson later showed [12] how pair-breaking scattering (or dephasing more
generally) regularizes Maki’s result. Lastly, a typically weaker density of states (DOS) mechanism
was pointed out by Abraham–Redi–Woo [13] who accounted for the redistribution of the quasi-
particle states near the Fermi level by the long-lived fluctuations that tend to open an energy gap.
Shortly after the zero-field calculations were completed, Fukuyama–Ebisawa–Tsuzuki [14] provided
generalizations of the theory to fluctuational regimes in the external magnetic field. They revealed
significant difference between Maki–Thompson (MT) and Aslamazov–Larkin (AL) fluctuational Hall
conductivities and elucidated the crucial role of electron–hole asymmetry.

The research topic of transversal transport effects in superconductors was rejuvenated by the
discovery of high-Tc materials when an anomalous behavior of the Hall coefficient was observed
upon cooling from the normal state [15] and giant Nernst signal was detected at the onset of Tc
[16–18]. The sign reversal of the Hall resistivity observed across Tc had been seen even earlier in
the conventional superconductors such as niobium (Nb) and vanadium (V) for example, however
this feature was originally believed to be of extrinsic origin due to pinning or possible thermoelectric
effects. The subsequent detailed measurements in copper-oxides revealed much deeper universality
of this phenomenon as sign change of the Hall effect was detected to take place in both hole-doped
systems, such as YBa2Cu2O7−x [19], and electron-doped compounds such as Nd2−xCexCuO4 [20].
Many other materials showed the same signature feature [21] including most recently van der
Waals structures based on atomically thin superconducting Bi2.1Sr1.9CaCu2O8+x [22]. An anomaly in
the Nernst effect has been also confirmed in different superconducting materials by various groups,
see review in Ref. [23] and references therein. These results triggered the resurgence of interest in
the topic of superconducting fluctuations as a possible cause for the observed features. Theoretical
calculations were revisited in the context of both Hall [24–29] and Nernst [30–37] effects, and
additional new mechanisms were proposed ranging from phase fluctuations [38,39] to topological
vortex excitations and Berry phase [40–42].

In a parallel vein of developments finite polar Kerr effect (PKE) was observed below Tc in
a broad class of complex superconductors including strontium ruthenate Sr2RuO4 [43], some
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cuprates including YBa2Cu3O6+x [44] and La1−xBsxCuO4 [45], as well as heavy-fermion systems
UPt3 [46], URu2Si2 [47], and PrOs4Sb12 [48]. The angle of Kerr rotation θK can be related to
the frequency dependent Hall conductivity σxy. Thus observability of finite Kerr effect without
external magnetic field at minimum requires broken time reversal symmetry. For this reason
Kerr rotation measurements are considered to be an extremely sensitive probe of unconventional
superconducting states. In the model calculations the microscopic origin of the Kerr effect was
quickly suggested to be linked to the same intrinsic and extrinsic mechanisms of the anomalous
Hall effect (AHE) as known to occur in ferromagnets [49]. These are the anomalous velocity and
spin–orbit band effects due to Karplus–Luttinger [50], skew-scattering introduced by Smit [51], and
peculiar quantum side-jump revealed by Berger [52]. Thus the existing analytical treatments of
PKE can be roughly split into two main groups: clean multiband models [53–55] and single band
disorder models [56–59]. Alternative scenarios for the possible explanations of the Kerr effect in
superconductors have also been proposed including spin-fluctuation mechanism [60] and persistent
loop current correlations [61].

The intent of this work is to bring together main concepts from the theories of superconducting
fluctuations and anomalous Hall effects to investigate fluctuation-induced anomalous responses in
superconductors. In our recent study [62] we have demonstrated that interaction effects in the
Cooper channel and the related quantum interference corrections can be important for the tem-
perature dependence of the anomalous Hall conductivity even for nominally non-superconducting
materials. In the present paper we tailor and expand our analysis specifically to superconducting
systems in the proximity of Tc .

The rest of the paper is organized as follows. In Section 2 we briefly summarize main aspects
of the diagrammatic technique in application to disordered superconducting systems and present
extensions of the methods needed to capture anomalous transversal transport coefficients. In
Section 3 we discuss the skew-scattering mechanism of the anomalous Hall effect for both Maki–
Thompson and density of states contributions. A similar analysis is carried out in Section 4 for
the side-jump mechanism. In Section 5 we consider nonlinear fluctuation effects in the context of
Aslamazov–Larkin contribution to fluctuation-induced transport. We introduce new element of the
theory, skew-scattering Hikami box, that connects fluctuating modes and renders finite anomalous
Nernst effect (ANE) provided particle–hole asymmetry. Finally in Section 6 we lay out main ideas
for the extension of weak-coupling results of superconducting fluctuations to the domain of strong
coupling by employing Eliashberg’s theory. Section 7 contains a snapshot of main results in a table
format and an outlook discussion of remaining open interesting questions for the future research.

2. Technical approach, microscopic formalism, and assumptions

In this section we briefly review main ingredients and building blocks of the diagrammatic
technique for disordered electronic systems, provide basic definitions, and introduce key notations.
This material is well established and covered in multiple textbooks [63–65], nevertheless we choose
to keep it here to have a self-contained presentation and to explain clearly essential generalizations
needed in the context of AHE. Throughout the paper we work in the units h̄ = kB = 1.

For electrons moving in the random potential whose correlation function is given by the Gaussian
white-noise, self-energy of the single-particle Green’s function reduces to a single graph as all other
crossed-type and rainbow-type diagrams with impurity lines are suppressed in powers of the large
parameter εFτ ≫ 1 [63]. The resummation of leading term in the Dyson equation generates simple
geometric series that leads to a classical result for the disorder-averaged Green’s function in the
form

Gp(εn) = (iε̄n − ξp)−1, ε̄n = εn +
1
2τ

sgn(εn), ξp =
p2

2m
− εF (2.1)

where εn = (2n+1)πT is the fermionic Matsubara frequency. In this model the impurity scattering
time is given by τ−1

= 2πνnimpV 2
0 to the leading order in the Born approximation for scattering

probability, where ν is the density of states at the Fermi energy, nimp is the impurity concentration,
and V0 is the zero-momentum Fourier transform of the impurity potential V (r). As local attractive



4 S. Li and A. Levchenko / Annals of Physics 417 (2020) 168137

interactions in the BCS model lead to a formation of Cooper pairs another quantum coherent effect
of disorder manifests in the vertex renormalization in the particle–particle channel as electrons
forming a pair experience scattering on the same impurity. In general the two-particle vertex
function λq(ε, ε′) satisfies the integral Bethe–Salpeter equation, however for the disorder model
under considerations it simplifies to an algebraic form. In complete analogy to the Green’s function
calculation, the resummation of ladder diagrams gives for the vertex function in the momentum
prepresentation

λq(εn, εm) = 1 +
1

2πντ

∫
p
λq(εn, εm)Gp+q(εn)G−p(εm). (2.2)

The resulting form of λq that follows from the solution of this equation strongly depends on the
value of the parameter Tτ . In general one should distinguish three different fluctuational regimes
in superconductors: the diffusive scattering Tτ ≪ 1, the ballistic limit 1 ≪ Tτ ≪

√
Tc/(T − Tc),

and the ultra-clean limit Tτ ≫
√
Tc/(T − Tc). We will primarily concentrate on the diffusive case,

which is also mathematically simpler. In the ballistic case, fluctuation effects become strongly non-
local in space which brings additional significant complications. In calculating the two-particle
GG-block in the diffusive limit it is sufficient to expand the Green’s function at small momentum
Gp+q ≈ Gp + (vq)G2

q + (vq)2G3
p, where v = p/m. Then upon momentum integration and angular

average over the direction on the Fermi surface
∫
p → ν

∫
dξpdOp/4π one arrives at

λq(εn, εm) =
|ε̄n − ε̄m|

|εn − εm| + Dq2Θ(−εnεm)
(2.3)

where D is the diffusion coefficient of the conduction electrons and Θ(x) is the Heaviside step-
function.

In the weak-coupling BCS theory with attractive interaction constant g , electron interactions in
the Cooper channel are characterized by the propagator Lq(Ωk). The latter is found from the Dyson
equation by summing a sequence of GG-loop diagrams with disorder renormalizations in the ladder
approximation. This gives

L−1
q (Ωk) = −g−1

+ T
∑
εn

∫
p
λq(εn +Ωk,−εn)Gp+q(εn +Ωk)G−p(−εn). (2.4)

With the explicit forms of Gp from Eq. (2.1) and λq from Eq. (2.3) the momentum integration
followed by the frequency summation gives

L−1
q (Ωk) = −ν

[
ln

T
Tc

+ ψ

(
1
2

+
Dq2 + |Ωk|

4πT

)
− ψ

(
1
2

)]
, (2.5)

where ψ(x) is the digamma function, and the critical temperature Tc = (2γEωD/π ) exp[−1/(νg)]
was expressed through the bare BCS coupling constant g , with γE = 1.78 being the Euler constant
and ωD being the Debye frequency which cuts logarithmically divergent summation at nmax =

ωD/2πT in the λGG-polarization operator. At temperatures close to Tc , ln(T/Tc) ≈ (T − Tc)/Tc ,
the pole structure of the propagator at (q,Ω) → 0 suggests a simplified form, which is the most
useful in practical calculations

Lq(Ωk) ≈ −
8Tc
πν

1
τ−1
GL + Dq2 + |Ωk|

, τGL =
π

8(T − Tc)
, (2.6)

where we introduced Ginzburg–Landau time τGL and used ψ ′(1/2) = π2/2 when expanding the
digamma function. Thus bosonic fluctuation modes are soft with characteristic energies (Dq2,Ω) ∼

T − Tc which are much smaller than typical excitation energies of fermionic quasiparticles ε ∼ T .
This fact brings technical advantages in the analysis of diagrams relevant for transport processes
and strong coupling effects.

In the preceding considerations we assumed that impurity scattering of electrons does not
involve spin degree of freedom. There are two main sources of spin-related scattering of conduction
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electrons originating either from localized spins of magnetic impurities or spin–orbit (SO) interac-
tion. The latter can be characterized by the scattering amplitude ∝ [σ · (p × p′)], where p and p′

are the initial and final momenta of an electron, and σ is the spin operator whose components are
the Pauli matrices. To account for the SO effects we will use the following momentum dependent
scattering amplitude

Vpp′ = V0

[
1 −

iαso

p2F
(p × p′)z

]
, (2.7)

where αso is the dimensionless coupling constant proportional to the average of the spin ⟨σz⟩,
which could be assigned either to polarization of conduction carriers or to the localized impurity.
In the context of disordered superconductors this amplitude appeared perhaps for the first time
in the work of Abrikosov–Gor’kov on the problem of the Knight shift [66]. In the context of
transport properties it was employed by Hikami–Larkin–Nagaoka in their seminal work on the weak
antilocalization [67]. For our purposes, the form of this spin and momentum dependent scattering
potential generates two important effects. The cross product between the first and the second term
in Eq. (2.7) leads to skewness in the differential scattering cross-section of electronic transport. It
also generates an additional term in the matrix element of the velocity operator which is responsible
for the side-jump processes. In addition, the square of the second term in Eq. (2.7) averaged
over the directions of momenta leads to the dephasing in the Cooper channel. The latter feature
shifts critical temperature by Abrikosov–Gor’kov mechanism and also provides regularization for
the anomalous Maki–Thompson term. The spin-flip term neglected in Eq. (2.7) gives the same
effect on Tc suppression and MT diagram. The dephasing time corresponding to Vpp′ of Eq. (2.7)
is τ−1

φ = 2πνnimpα
2
soV

2
0 , which shifts the diffusive term in the vertex function Dq2 → Dq2 + τ−1

φ of
Eq. (2.3), and a similar shift carries over to the pair propagator in Eq. (2.5). As a result, the pole of
Lq(Ωk) in (q,Ω) → 0 limit occurs at different Tc

ln
(

Tc
Tc0

)
= ψ

(
1
2

)
− ψ

(
1
2

+
Γ

4πTc

)
. (2.8)

This equation implicitly defines the renormalized critical temperature Tc as a function of the
depairing energy scale Γ = τ−1

φ . A full analytic solution of this equation in terms of Tc(Γ ) is not
possible, but asymptotic expressions can be easily extracted. For Γ ≪ Tc0 we can expand the
digamma function ψ(x + 1/2) to first order in x and thus obtain ln(Tc0/Tc) − π2Γ /8πTc = 0.
To the first order in Γ this yields Tc ≈ Tc0 − πΓ /8. The expansion for large values of Γ is
slightly more involved, because there exists a critical value of the pair-breaking parameter Γc at
which the critical temperature vanishes nonanalytically as a function of Γ . In order to see this, we
rewrite Eq. (2.8) in the following form Tc0/Tc = exp[ψ(1/2+Γ /4πTc)] exp[−ψ(1/2)]. For the case
of sufficiently strong depairing at which Tc tends to vanish, we can make use of the asymptotic
expansion exp[ψ(x + 1/2)] ≈ x + 1/(24x) + · · · valid for large x ≫ 1. This expansion yields
Tc0/Tc ≈ 4γE(Γ /4πTc + πTc/6Γ ). The critical pair-breaking parameter is defined as the value
at which the critical temperature vanishes Tc(Γc) = 0. In this case we can neglect the second
term on the right hand side of the last equation and obtain Γc = πTc0/γE ≈ 1.76Tc0. Expressed
in terms of this quantity the critical temperature for Γ → Γc then behaves asymptotically as
Tc ≈ (

√
6/2π )

√
Γc(Γc − Γ ). In what follows we will focus our attention to the case of weak

depairing Γ ≪ Tc0.

3. Skew-scattering mechanism of the AHE in superconductors

We proceed to calculate the static conductivity, which in the linear response of Kubo formalism
can be expressed in a standard way in terms of the operator of the electromagnetic response
Qij(ων). It is calculated from the current–current correlation function that is expressed at Matsubara
frequencies first and then an analytical continuation into the upper half-plane of complex frequency,
ων → −iω, is needed to find the corresponding retarded kernel Q R

ij (ω). In the dc-limit, ω → 0,
conductivity is given by σij = limω→0 Q R

ij (ω)/(−iω). To find Hall conductivity we need to calculate
the transversal part of Q R

xy.
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Fig. 1. Diagrams for the Maki–Thompson corrections to the AHE in the skew-scattering mechanism. The wavy line
represents pair-propagator Eq. (2.5). The shaded triangles stand for the impurity ladder vertex function Eq. (2.3). The
dashed lines represent scattering by an impurity, marked by a cross, with the corresponding potential from Eq. (2.7). A
factor of four near each diagram represents the total number of equivalent ways to arrange for impurity lines between
Green’s function as per Eq. (2.1) depicted by solid lines.

3.1. Maki–Thompson contribution to AHE

We begin with the Maki–Thompson diagrams. There are three distinct possibilities shown in
Fig. 1, each of which comes in four copies. We carefully remark that there are additional two
diagrams containing an impurity vertex ladder that connects upper and lower Green’s functions
and crosses the line of a pair-propagator, the so-called cross Cooperon diagrams. As is known
these terms are not important near Tc in terms of their temperature dependence in T − Tc . In
addition, in accordance with the established terminology, MT contribution is split into the regular
and anomalous parts. In that context, the term anomalous references to the fact that that particular
contribution is formally logarithmically divergent in two-dimensional case unless regularization due
to pair breaking is included. We will focus on anomalous MT term as it carries the most singular
temperature dependence.

An analytical expression for the current–current response function corresponding to diagram-(a)
in Fig. 1 can be written as

Q sk-MT-a
xy (ων) = 2e2T

∑
Ωk

∫
q
Lq(Ωk)Σ sk-MT-a

q (Ωk, ων). (3.1)

The internal block of this formula represents what one gets after the summation over the Fermionic
momenta and frequencies, namely

Σ sk-MT-a
q = T

∑
εn

λq(εn,Ωk−n)λq(εn+ν,Ωk−n−ν)Jsk-MT-a
xy , (3.2)

where εn+ν ≡ εn + ων,Ωk−n ≡ Ωk − εn, and we assumed ων > 0 without loss of generality. The
transversal current block

Jsk-MT-a
xy = nimpν

3
⟨vp,xv−k,yVpk′Vk′kVkp⟩

×

∫
dξkGk(εn)Gk(εn+ν)G−k(Ωk−n−ν)G−k(Ωk−n)

∫
dξpdξk′Gp(εn)Gp(εn+ν)Gk′ (εn+ν) (3.3)

contains an angular average ⟨. . .⟩ over the directions of momenta. By carrying out integrals over the
fermionic dispersions, performing angular average over the Fermi surface followed by the Fermionic
frequency summation, we obtain

Σ sk-MT-a
q (Ωk ≥ 0, ων) =

2π2D
3

nimpαsoν
3V 3

0 τ
Θ(ων −Ωk+1)
ων + Dq2 + Γ

×

[
ψ

(
1
2

+
2ων −Ωk + Dq2 + Γ

4πT

)
− ψ

(
1
2

+
Ωk + Dq2 + Γ

4πT

)]
. (3.4)
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Fig. 2. Diagrams for the density of states corrections to the anomalous Hall conductivity in the skew-scattering mechanism.
The convention for the diagrammatic blocks is the same as in Fig. 1. The numerical coefficients in front of each diagram
indicates the total number of possible rearrangements of skew impurity lines and fluctuation propagator line that lead
to a similar contribution.

The step-function here implies that the summation over Ωk is confined within the external
frequency ων . The remaining Matsubara sum over the bosonic frequencies Ωk in Eq. (3.1) is done
via the contour integral in the complex plane, so that after the analytical continuation we arrive at
conductivity

σ sk-MT-a
xy =

8π2

3
σQ (Tτ )

D
τsk

∫
q

1
(Dq2 + τ−1

φ )(Dq2 + τ−1
GL )

(3.5)

where we have used Eqs. (2.3) and (2.6) and introduced the characteristic skew-scattering time
τ−1
sk = nimpαsoν

2V 3
0 . The notation σQ = e2/(2π h̄) is for the quantum of conductance. The evaluation

of the remaining diagrams in Fig. 1 reveals that σ sk-MT-b
xy = −σ sk-MT-a

xy and σ sk-MT-c
xy = (1/2)σ sk-MT-a

xy .
Therefore

σ sk-MT
xy = 4

[
σ sk-MT-a
xy + σ sk-MT-b

xy + σ sk-MT-c
xy

]
=

4π
3
σQ (τ/τsk)(TcτGL) ln(τφ/τGL), (3.6)

where the final expression after momentum integration was specified to a two-dimensional case of
superconducting fluctuations relevant to thin films whose thickness is small compared to Ginzburg–
Landau coherence length. We have also assumed τφ ≫ τGL. It is worth noting that in terms of the
main singularity in the temperature dependence, transversal MT conductivity in the skew scattering
mechanism has the same asymptotic behavior as MT correction to the longitudinal conductivity,
namely σ sk-MT

xy (T ) ∝ σMT
xx (T ).

3.2. Density of states contribution to AHE

We continue with the analysis of the density of states diagrams, which are drawn in Fig. 2. The
structural form of the electromagnetic response kernel Q sk-DOS

xy corresponding to these diagrams is
identical to that of Eq. (3.1) while the only difference is in the self-energy block that now reads as
follows for the (a)-diagram as an example

Σ sk-DOS-a
q = T

∑
εn

λ2q(εn,Ωk−n)Jsk-DOS-axy , (3.7)
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where

Jsk-DOS-axy = nimpν
3
⟨vp,xvk,yVpkV−p−k′V−k′−k⟩

×

∫
dξk′G−k′ (εn+ν)

[∫
dξkG−k(εn+ν)Gk(Ωk−n)Gk(Ωk−n−ν)

]2
. (3.8)

After carrying out integrals over fermionic dispersions followed by the angular averages over the
Fermi surface, we get

Σ sk-DOS-a
q =

4π3DT
3

nimpαsoν
3V 3

0 τ

(∑
εn>0

−

∑
εn<0

+2
∑

−ων<εn<0

)
Θ(−εnΩk−n)(

|2εn −Ωk| + Dq2
)2 , (3.9)

where at the intermediate step we have split the summation in the frequency interval (−∞,

−ων) into the domains of εn < 0 and −ων < εn < 0. Also in the denominator of the Cooperon
we neglected depairing term Γ as it does not play the same significant role as in the previous case
of MT contributions. The summations in the frequency interval εn > 0 and εn < 0 are independent
of the external frequency ων and are canceled out by their mirror image diagrams. Keeping only
the ων dependent term, we have

Σ sk-DOS-a
q (Ωk, ων)

=
πνD
6T

(τ/τsk)

{
Θ(Ωk)

[
ψ ′

(
1
2

+
2ων + |Ωk| + Dq2

4πT

)
− ψ ′

(
1
2

+
|Ωk| + Dq2

4πT

)]

+Θ(−Ωk)Θ(Ωk + ων−1)
[
ψ ′

(
1
2

+
2ων − |Ωk| + Dq2

4πT

)
− ψ ′

(
1
2

+
|Ωk| + Dq2

4πT

)]}
.

(3.10)

As the next step we substitute this Σ sk-DOS-a
q into the response function Q sk-DOS

xy , carry out the
Matsubara sum over Ωk, perform analytical continuation, and expand the result to the linear order
in external frequency. These steps lead us to the corresponding conductivity

σ sk-DOS-a
xy = −

56ζ (3)
3π

σQ
τD
τsk

∫
q

1
Dq2 + τ−1

GL

(3.11)

where ζ (x) is Riemann zeta-function. In the two-dimensional case, the remaining momentum
integral is logarithmically divergent at the upper limit which should be cut at the scale Dq2 ∼ T
since in deriving the above equation we used approximate form of the pair propagator Eq. (2.6)
obtained after the expansion of the digamma function in small ratio Dq2/4πT ≪ 1. This spurious
divergence is a well known artifact in the computation of the DOS term. A more accurate regu-
larization procedure changes only the numerical factor under the logarithm which is beyond the
accuracy of our analysis. Evaluations of the remaining diagrams in Fig. 2 show that σ sk-DOS-b

=

σ sk-DOS-a, σ sk-DOS-c
+σ sk-DOS-d

= σ sk-DOS-a
+σ sk-DOS-b, and σ sk-DOS-e

= σ sk-DOS-f
= −σ sk-DOS-a. Therefore,

in two dimensional case the total correction is

σ sk-DOS
xy = 2

[
σ sk-DOS-a

+ σ sk-DOS-b
+ 2σ sk-DOS-c

+ 2σ sk-DOS-d
+ 2σ sk-DOS-e

+ σ sk-DOS-f
]

= −
28ζ (3)
π2 σQ (τ/τsk) ln(TcτGL). (3.12)

Similarly to the MT contribution, the transversal Hall DOS term has the same temperature depen-
dence as the longitudinal DOS fluctuation correction to diagonal conductivity. However the negative
sign of DOS terms as compared to MT interference has to do with the depletion of quasiparticle
states near the Fermi level as superconducting fluctuations tend to open an energy gap.
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Fig. 3. Diagrams for the MT interference corrections in the side-jump mechanism. A factor of four in each case accounts
for additional possibilities to connect impurity line to a different Green’s function to extend this line from the different
current vertex.

4. Side-jump mechanism of the AHE in superconductors

The side jump effect is manifest in an additional term in the matrix element of the velocity
operator due to spin–orbit coupling

⟨p′
|v̂|p⟩=

p
m
δpp′ −

iαso

2mεF

∑
j

Vp−p′ei(p−p′)·Rj [ez × (p − p′)] (4.1)

where R j is the radius vector of a given impurity and ez is the unit vector along z-axis. As a
consequence of that, one has to retain this new term in the current vertex of the electromagnetic
response kernel Qxy. Since Qxy contains the product of two currents the cross term between the
usual velocity and the anomalous velocity generates additional contributions in both MT and DOS
terms. It is found that the combined effect of side-jump processes cancels in the MT interference
channel but survives and yields finite result in the DOS terms. Below we present technical details
that lead to these conclusions.

4.1. Maki–Thompson contribution to AHE

Diagrammatically a side-jump event corresponds to a particular diagram when an impurity line
extends from the current vertex. Physically it corresponds to the transversal displacement of the
electronic wave-packet accumulated in successive scattering events. Two representative examples
of side jumps in MT interference process are depicted in Fig. 3. For the diagram-(a) the respective
self-energy block of the electromagnetic response reads

Σ sj-MT-a
q (Ωk, ων) = T

∑
εn

λq(εn,Ωk − εn)λq(εn+ν,Ωk − εn+ν)Jsj-MT-a
xy (4.2)

where

Jsj-MT-a
xy = −inimpν

2 αsoV 2
0

2mεF
⟨[ez × (p − p′)]xv−p,y⟩

×

∫
dξpdξp′Gp(εn)Gp(εn+ν)G−p(Ωk − εn+ν)G−p(Ωk − εn)Gp′ (εn+ν). (4.3)

After carrying out integrations over fermionic dispersions, we have

Σ sj-MT-a
q (Ωk, ων) = 4π2ν2τnimp

αsoV 2
0

2mεF
⟨[ez × (p − p′)]xv−p,y⟩

×

(∑
εn>0

−

∑
εn<−ων

+

∑
−ων<εn<0

)
Θ(−εnΩk−n)

|2εn −Ωk| + Dq2
Θ(−εn+νΩk−n−ν)

|2εn+ν −Ωk| + Dq2
. (4.4)
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It can be shown following exactly the same steps of derivation that diagram-(b) in Fig. 3 gives the
opposite contribution Σ sj-MT-b

q = −Σ
sj-MT-a
q . Therefore

σ sj-MT
xy = 4

(
σ sj-MT-a

+ σ sj-MT-b)
= 0 (4.5)

and we find complete cancellation in the net effect of side-jump processes in the MT channel.

4.2. Density of states contribution to AHE

The remaining terms to be considered are the side-jumps in the density of states fluctuations. The
corresponding diagrams are displayed in Fig. 4. The sum of self-energies for the first two diagrams is

Σ sj-DOS-(a+b)
q = T

∑
εn

λ2q(εn,Ωk−n)Jsj-DOS-(a+b)xy , (4.6)

where

Jsj-DOS-(a+b)xy = −inimpν
2 αsoV 2

0

2mεF
⟨[ez × (p − p′)]xvp,y⟩

×

∫
dξpξp′G2

p(εn)Gp(εn+ν)Gp(Ωk−n)
[
Gp′ (εn+ν) + Gp′ (εn)

]
. (4.7)

The momentum integrations and angular average in the current block Jxy reduce self-energy to the
following expression

Σ sj-DOS-(a+b)
q =

2πnimpαsoνV 2
0

εF
(πνDT )

(∑
εn>0

−

∑
εn<−ων

)
Θ(−εnΩk−n)

(|2εn −Ωk| + Dq2)2
. (4.8)

As in the previous case, it is technically advantageous to split the summation in the frequency
interval (−∞,−ων) into two regions

∑
εn<−ων

(· · ·) =
(∑

εn<0 −
∑

−ων<εn<0

)
(· · ·). Again the

summations in the frequency interval εn > 0 and εn < 0 are ων independent and canceled out
by their mirror image diagrams, thus we obtain

Σ sj-DOS-(a+b)
q

=
nimpαsoνV 2

0

εF

νD
8T

{
Θ(Ωk)

[
ψ ′

(
1
2

+
2ων + |Ωk| + Dq2

4πT

)
− ψ ′

(
1
2

+
|Ωk| + Dq2

4πT

)]

+Θ(−Ωk)Θ(Ωk + ων−1)
[
ψ ′

(
1
2

+
2ων − |Ωk| + Dq2

4πT

)
− ψ ′

(
1
2

+
|Ωk| + Dq2

4πT

)]}
.

(4.9)

Finally, we substitute Σ sj-DOS-(a+b)
q (Ωk, ων) into Q sj-DOS

xy (ων), carry out the summation over Ωk,
perform analytical continuation ων → −iω, and expand to linear order in ω to find

σ sj-DOS-(a+b)
xy = −

14ζ (3)
π2 σQDςsj

∫
q

1
Dq2 + τ−1

GL

, (4.10)

where we have introduced a dimensionless parameter ςsj = nimpαsoνV 2
0 /εF characterizing the rate

of side-jump accumulation. Evaluations of the remaining diagrams in Fig. 4 show that σ sj-DOS-c
+

σ sj-DOS-d
= σ sj-DOS-a

+ σ sj-DOS-b, so that in total for the two-dimensional case

σ sj-DOS
xy = 4

(
σ sj-DOS-a

+ σ sj-DOS-b
+ σ sj-DOS-c

+ σ sj-DOS-d)
= −

28ζ (3)
π3 σQςsj ln(TτGL). (4.11)

The relative importance of two extrinsic terms can be estimated as σ sk-DOS
xy /σ

sj-DOS
xy ∼ (εFτ )(νV0).

For moderately strong impurity potential when, νV0 ∼ 1, skew scattering dominates in the metallic
regime εFτ ≫ 1. However, σ sk-MT

xy has an additional logarithmic in temperature enhancement as
compared to σ sk-DOS

xy .
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Fig. 4. Diagrams for the DOS fluctuational corrections in the side-jump mechanism. The conventions are the same as in
Fig. 3 with the same nomenclature for the combinatorial coefficients.

5. AHE and ANE effects from interaction of superconducting fluctuations

In order to appreciate the significant difference between Maki–Thompson (σMT
xy ) and Aslamazov–

Larkin (σ AL
xy ) terms in the context of anomalous Hall transport it will be useful to recall the difference

between the two in the context of the usual Hall effect [64]. The fluctuation processes of the
MT and DOS types contribute to the renormalization of the diffusion coefficient so that they
do not change Hall resistivity ρxy = H/en. For the Hall conductivity, however, one may write
σxy = ρxyσ

2
xx ≈ ρxyσ

2
n + 2ρxyσnδσxx, with the correction δσxx = σMT

xx + σDOS
xx . Based on this simple

argument it is expected that the relative fluctuation correction to Hall conductivity is twice as large
as the fluctuation correction to the diagonal component. Indeed, the microscopic diagrammatic
analysis confirms this argument [14], where one finds that σMT

xy = 2(ωcτ )σMT
xx , where ωc is the

cyclotron frequency. Curiously, we find essentially the same relationship between MT term in the
skew scattering mechanism and diagonal MT contribution, at least in terms of their respective
T -dependence, indeed from Eq. (3.6) it follows that σ sk-MT

xy ≃ (τ/τsk)σMT
xx . The difference with the

ordinary Hall effect is that the role of cyclotron frequency is replaced by the skew-scattering time
ωc → τ−1

sk , and we do not find the simple factor of two. The latter is clear, while having nonmagnetic
disorder is sufficient to render finite MT correction to σxx, one needs to work beyond the leading
Born order and use momentum dependent amplitude of scattering to generate finite corrections to
σxy. In contrast, the AL process corresponds to an independent channel of the charge transfer that
cannot be simply reduced to a renormalization of the diffusion coefficient. It contributes to the Hall
conductivity only if particle–hole asymmetry of the Cooper pairs is present. For that reason σ AL

xy is
not simply proportional to σ AL

xx , like in the MT case, but rather one finds σ AL
xy =

1
3 (ωcτ )σ AL

xx γpha(TcτGL).
The gauge invariance leads to the asymmetry factor in the form γpha = ∂ ln Tc/∂ ln εF [28]. As a
consequence, AL diagonal and Hall conductivities have distinct temperature dependences σ AL

xx ∝

(T −Tc)−1 and σ AL
xy ∝ (T −Tc)−2. At the level of the main AL diagram we do not find any possibilities

to generate nonvanishing σ AL
xy by including skew scattering and side-jump scattering. Finite terms

appear only at the next order that includes interaction of fluctuations. The leading process that
we have identified is shown in Fig. 5, which brings us to the realm of nonlinear superconducting
fluctuations.

In their early work Takayama–Maki [68] classified all the second-order corrections to the
fluctuation-induced conductivity in an attempt to rigorously establish a control parameter of such



12 S. Li and A. Levchenko / Annals of Physics 417 (2020) 168137

Fig. 5. Nonlinear Aslamazov–Larkin diagram-(a) that describes interaction of fluctuating superconducting modes. The
quantum crossing of Cooperons is described by a Hikami box shown by a gray shaded rectangle whose analytical structure
is defined by Eq. (5.7). As further illustrated by panels (b)–(c) skew-scattering inside Hikami box leads to an asymmetry
and thus renders finite AHE. The triangular blocks represent vector current vertices and defined by Eq. (5.1).

a perturbative expansion. They identified five classes of diagrams that include: (I)—interaction
corrections mixed between MT and DOS terms, (II)—renormalization of the electrical current vertex
in the AL process, (III)—renormalization of the fluctuation propagator, (IV)—renormalization of
electron propagator, and finally (V)—quantum interference of superconducting fluctuations of the
AL type (see Fig. 3 in Ref. [68] for the diagrammatic representation of each class). A self-consistent
calculation was further developed by Larkin–Ovchinnikov [69], who demonstrated that the Gaussian
region of superconducting fluctuations is restricted to the temperature range

√
Gi < (T−Tc)/Tc < 1,

while nonlinear effects dominate at Gi < (T − Tc)/Tc <
√
Gi where perturbation theory is still

well defined, see also Ref. [70]. Here Gi ≃ 1/g□ ≃ 1/(εFτ ) is the Ginzburg number and we used
a standard definition in the transport context relating Gi to a dimensionless conductance g□ in
2D case (note that other definitions of Gi exist in the context of thermodynamic properties, for
example by relating fluctuation correction to specific heat and its jump at Tc , see Ref. [64] for further
details). These higher-order diagrams resurfaced numerous times in various other contexts, for
example in the analysis of intrinsic dephasing in the Cooper channel [71,72], in the study of current–
voltage characteristics of superconducting tunnel and Josephson junctions [73–75], fluctuations in
granular superconductors [76], where tunneling plays a major role, mesoscopic fluctuations [77,78],
and finally in calculations of the renormalization of the upper critical field [79]. In this section
we consider the most important diagrams from the class-(I) and (V) in the context of anomalous
fluctuation-induced Hall and Nernst kinetic coefficients.

5.1. Skew-scattering Hikami quantum-crossing and Aslamazov–Larkin contribution to AHE

The analysis of nonlinear AL term [Fig. 5] requires consideration of two new elements in
the diagrammatic technique. The first one is the triangular block of the electrical current vertex
function, which we denote as B(e)

q . The second one is a Hikami box [80] that captures quantum
interferences processes in the crossings of cooperons, which we denote as Hqq′ . We begin with the
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former which is defined by the product of three Green’s functions and two impurity vertex ladders
summed up over the fermion frequency running in the loop and integrated over the electronic
momentum. It reads explicitly

B(e)
q (Ωk, ων) = 2eT

∑
εn

λq(εn + ων,Ωk − εn)λq(εn,Ωk − εn)

×

∫
p
vpGp(εn + ων)Gp(εn)Gq−p(Ωk − εn). (5.1)

Being a function of three frequencies and momentum, this vertex is fairly complicated, however in
the classical region of fluctuations near Tc its evaluation is relatively straightforward. The essential
simplification comes from the separation of energy scales. Bosonic modes are pinned to the energy
set by the pole structure of superconducting propagator Dq2 ∼ |Ωk| ∼ T − Tc . At the same time
all fermionic modes are governed by the temperature |εn| ∼ T . To capture the leading singularity
near the transition, T − Tc ≪ T , it is sufficient to evaluate the vertex function by setting all the
bosonic frequencies to zero B(e)

q → B(e)
q (0, 0). Recall that within the linear response Kubo analysis

the external frequency is also set to zero in the end of the calculation. These approximations are
not valid however in the regime of quantum fluctuations where more elaborate calculation of B(e)

q
is required. As a result, near Tc we can approximate

B(e)
q = 2eT

∑
εn

λ2q(εn,−εn)
∫
p
vpG2

p(εn)Gq−p(−εn). (5.2)

Transforming now momentum integration into the integral over fermionic dispersion,
∫
p . . . →

ν
∫
dξp⟨. . .⟩, where as in the previous cases averaging goes over the Fermi surface, and using

Eq. (2.1) we get

B(e)
q = −2eνT

∑
εn

λ2q(εn,−εn)
∫

+∞

−∞

dξp
(iε̄n − ξp)2

⟨
v

iε̄n + ξp − vq

⟩
, (5.3)

where we expanded ξq−p ≈ ξp −vq in Gq−p. From here we need only the leading small-q part of the
vertex. Expanding the denominator to the linear order in q and using Eq. (2.3), the above equation
transforms into

B(e)
q = −2eνT ⟨v(vq)⟩

∑
εn

|ε̄n|
2

|εn|
2

∫
+∞

−∞

dξp
(ξ 2p + ε̄2n)2

. (5.4)

The remaining ξp-integration, followed by a εn-summation, can be completed in the closed form in
terms of the digamma function

B(e)
q = 2eBq, Bq = 2νDτq

[
ψ

(
1
2

+
1

4πTτ

)
− ψ

(
1
2

)
−

1
4πTτ

ψ ′

(
1
2

)]
. (5.5)

Focusing on the diffusive case only, Tτ ≪ 1, the above expression simplifies even further

Bq = −2νηq , η = πD/8T . (5.6)

The Hikami box part of the AL diagram can be derived similarly by generalizing existing calcula-
tions known from the context of mesoscopic fluctuations to include skew-scattering amplitude [26].
The resulting structure of the box is depicted in Fig. 5(b–c) and its analytical structure has the form

Hsk-(b)
qq′ = Hsk-(c)

qq′ = T
∑
εn

λ2q(εn,−εn)λ
2
q′ (εn,−εn)

× nimp

∫
pp′

Vpp′Vp′pG2
p(εn)Gq−p(−εn)G2

p′ (εn)Gq′−p′ (−εn), (5.7)

where the scattering amplitude, following Refs. [26,66], is generalized as Vpp′ = V0[1− ibpp′ (p̂× p̂′)z]
to allow for the arbitrary momentum dependence of the spin–orbit term to all orders in the
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scattering potential. Here bpp′ is in general a complex dimensionless function of momenta and we
introduced a short-hand notation for a unit vector along momentum p̂ = p/p. Full momentum
dependence of the skew scattering cross section for strong potential can be calculated exactly in
some model cases, for example in circular-barrier potential [81]. The product Vpp′Vp′p becomes, in
the first order of bpp′ , Vpp′Vp′p = 2V 2

0 ℑbpp′ (p̂ × p̂′)z , and for this reason calculation with Eq. (2.7),
where constant amplitude is assumed bpp′ → αso, is insufficient to capture skew-scattering in AL
term. It can be immediately seen that one should expand Green’s functions to the linear order in
qq′ so that the angular average over the Fermi surface is nonvanishing. Specifically, we need the
following expansion Gq−p(−εn) ≈ G−p(−εn) − (vq)G2

−p(−εn). The Hikami box then reduces to

Hsk-(b)
qq′ = Hsk-(c)

qq′ = T
∑
εn

λ2q≈0(εn,−εn)λ
2
q′≈0(εn,−εn)

⟨
2V 2

0 ℑbpp′ (p̂ × p̂′)z(vpq)(vp′q′)
⟩
p̂,p̂′

× nimpν
2
∫

dξpdξp′G2
p(εn)G

2
−p(−εn)G

2
p′ (εn)G2

−p′ (−εn). (5.8)

Averaging over the directions of moment one has ⟨· · ·⟩p̂,p̂′ =
2V2

0 v
2
F ℑb

d2
(q × q′)z , here d is the

dimensionality, and the notation for the momentum dependence in b was suppressed for brevity.
Next, integrating over dispersions ξp and ξp′ , one finds a factor of (4πντ 3)2. Combining everything
together we finally get for the Hikami box

Hsk
qq′ =

16
3

nimpη
2ν2V 2

0 ℑb
v2F T

(q × q′)z =
16
3

η2ν

v2F Tτsk
(q × q′)z, (5.9)

where the redefined skew-scattering time is τ−1
sk = nimpνV 2

0 ℑb, which applies only to AL diagram
also in the context of the Nernst effect that will be discussed in the next section. As is well known,
vanishing of the Hikami box in the q → 0 limit corresponds to the normalization of the probability
of quantum diffusion that essentially follows from the conservation of the particle number.

With these ingredients at hand we are prepared now to consider the electromagnetic response
function of the AL term. It reads

Q sk-AL
xy = T 2

∫
qq′

[
B(e)
q
]
x

[
B(e)
q′

]
yH

sk
qq′

∑
Ωk

Lq(Ωk)Lq(Ωk + ων)
∑
Ω ′

k

Lq′ (Ω ′

k)Lq′ (Ω ′

k + ων) (5.10)

The frequency summation over Ωk can be evaluated via the contour integral in the complex plane
with the coth-function that has simple poles and unity residues as follows

T
∑
Ωk

Lq(Ωk)Lq(Ωk + ων) =

∮
dΩ
4π i

coth(Ω/2T )Lq(−iΩ)Lq(−iΩ + ων)

=

∫
+∞

−∞

dΩ
2π

coth(Ω/2T )
[
LRq(−iΩ + ων) − LAq(−iΩ − ων)

]
ℑLRq(−iΩ), (5.11)

where one has to account for the breaks of analyticity of Lq(Ωk) as a function of frequency when
transforming the integral. Thus one gets a particular combinations of retarded and advanced
components. The summation over Ω ′

k is completely analogous. As the next step we analytically
continue the resulting expression ων → −iω, and expand Q sk-AL

xy to the linear order in external
frequency. In performing frequency (Ω,Ω ′)-integrals we notice that the most relevant region is
Ω,Ω ′

∼ T − Tc so that one can safely expand coth(Ω/2T ) ≈ 2T/Ω as singular parts are canceled
by extra powers of Ω in ℑLR/Aq . In other words we can approximate

coth(Ω/2T )ℑLRq(−iΩ) ≈ −
16T 2

πν

1
(Dq2 + τ−1

GL )2 +Ω2
. (5.12)

Then at the intermediate step we find

σ sk-AL
xy =

32πe2η4

3νv2F τsk

∫
qq′

qxq′
y(q × q′)z[

ξ 2q2 + t
]3[
ξ 2q′2 + t

]2 , t =
T − Tc

Tc
. (5.13)
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Fig. 6. The second-loop diagrams for DOS-(a) and MT-(b) corrections to the anomalous Hall conductivity in the skew
scattering mechanism near Tc due to interaction of superconducting fluctuations. These diagrams show a basic skeleton
and other similar diagrams can be generated by reordering of impurity lines in the skew-scattering amplitude.

Here we introduced coherence length ξ =
√
πD/8Tc in the diffusive limit. In the remaining

momentum integrations one notices that q′-integral is logarithmically divergent in the upper limit.
However, this divergence is easily cured by retaining q′ dependence of the corner cooperons in the
Hikami box, originating from the zeroth Matsubara frequency term of λq′ (εn,−εn), which adds an
additional square of the Lorentzian factor, [ξ 2q′2

+π2/2]−2, inside the integrand of the last formula.
As a result, with the logarithmic accuracy we find

σ sk-AL
xy =

σQ

12εFτ
(τ/τsk)(TcτGL) ln(TcτGL). (5.14)

This result should be compared to σ sk-MT
xy from Eq. (3.6). Coincidentally both terms have the

same temperature dependence, however, nonlinear AL contribution is parametrically smaller in
1/(εFτ ) ≪ 1. We will show in the section below that nevertheless quantum interference of
superconducting fluctuations captured by nonlinear AL process plays an important role in the
thermo-magnetic response where MT term vanishes.

5.2. Nonlinear Maki–Thompson and density of states interference corrections to AHE

Interaction of fluctuations occurs also via the second order DOS and MT interference processes.
Two representative diagrams are depicted in Fig. 6. We concentrate on the skew-scattering mecha-
nism only as side-jumps, although possible, are expected to be smaller for realistic impurities. We
already elaborated on this point in Section 4. For the nonlinear density of states effect [Fig. 6(a)]
the electromagnetic response correlation function in the Kubo formula is given by

Q sk-DOS-nl
xy (ων) = 2e2T 2

∫
qq′

∑
ΩkΩ

′
l

Lq(Ωk)Lq′ (Ω ′

l )Σ
sk-DOS-nl
qq′ (Ωk,Ω

′

l , ων), (5.15)

The corresponding self-energy block is

Σ sk-DOS-nl
qq′ (Ωk,Ω

′

l , ων) = T
∑
εn

λ2q(εn,Ωk − εn)λ2q′ (εn+ν,Ωk − εn+ν)Jsk-DOS-nlxy (5.16)

where

Jsk-DOS-nlxy = nimpν
3
⟨vp,xvk,yVpk′Vk′kVkp⟩

∫
dξpGp(εn)Gp(εn+ν)

∫
dξk′Gk′ (εn+ν)

×

∫
dξkG2

k(εn)G−k(Ωk − εn)G2
k(εn+ν)G−k(Ω ′

l − εn+ν). (5.17)
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After all the standard technical steps of carrying out integrals over the fermionic dispersions,
performing angular averages, completing summations over frequencies followed by analytical
continuation we obtain for the conductivity

σ sk-DOS-nl
xy = 24π3e2νD(τ/τsk)

∫
qq′

∫
dε
2π

∂

∂ε

(
tanh

ε

2T

)
×

∫
dΩdΩ ′

(2π )2
ℑLRq(−iΩ) coth(Ω/2T )[

Dq2 + i(2ε −Ω)
]2 ℑLRq′ (−iΩ ′) coth(Ω ′/2T )[

Dq′2 − i(2ε −Ω ′)
]2 . (5.18)

It is worthwhile noting that even though we labeled this contribution as nonlinear DOS effect its
analytical structure with the mixed product of advanced and retarded cooperons in fact corresponds
to the anomalous MT term. We thus cautiously state that already at the second order there is
no simple classification of various terms just as DOS and MT so that the terminology here is
somewhat symbolic. In order to extract the most singular part of the above expression it is sufficient
to approximate ∂ε tanh(ε/2T ) ≈ 1/2T under the integral and use Eq. (5.12). Then all remaining
frequency and momentum integrations become elementary and can be done in the closed form by
residues. We find the result

σ sk-DOS-nl
xy ≃

σQ

εFτ
(τ/τsk)(TcτGL)3 (5.19)

where we omitted overall numerical pre-factor which is of the order of unity. The self-energy part
of the nonlinear MT diagram-(b) in Fig. 6 is of the form

Σ sk-MT-nl
qq′ (Ωk,Ω

′

l , ων) = T
∑
εn

λq(εn,Ωk − εn)λq(εn+ν,Ωk − εn+ν)

× λq′ (−εn,Ω ′

l + εn)λq′ (−εn+ν,Ω ′

l + εn+ν)Jsk-MT-nl
xy (5.20)

where

Jsk-MT-nl
xy = nimpν

3
⟨vp,xvk,yVpk′Vk′kVkp⟩

∫
dξpdξk′Gp(εn)Gp(εn+ν)Gk′ (εn+ν)

×

∫
dξkG2

k(εn)G−k(Ωk − εn)G2
k(εn+ν)G−k(Ω ′

l − εn+ν). (5.21)

This translates to the conductivity correction in the form

σ sk-MT-nl
xy = 16π3e2νD(τ/τsk)

∫
qq′

∫
dε
2π

∂

∂ε

(
tanh

ε

2T

)
×

∫
dΩdΩ ′

(2π )2
ℑLRq(−iΩ) coth(Ω/2T )[

(Dq2 + τ−1
φ )2 + (2ε −Ω)2

] ℑLRq′ (−iΩ ′) coth(Ω ′/2T )[
(Dq′2 + τ−1

φ )2 + (2ε −Ω ′)2
] (5.22)

where we retained the dephasing time in the cooperons as it plays an important role in the
regularization of this contribution. The respective shift of Tc is implicit in the pair propagators.
In the limit when depairing is weak, τφ ≫ τGL, and with the logarithmic accuracy we extract the
temperature dependence in the form up to a numerical factor

σ sk-MT-nl
xy ≃

σQ

εFτ
(τ/τsk)(TcτGL)3 ln2(τφ/τGL). (5.23)

We conclude that nonlinear terms of MT and DOS type are more singular than AL correction
Eq. (5.14). Furthermore, comparing Eqs. (5.19) and (5.23) with Eq. (3.6) we see that nonlinear
terms become more important than linear corrections at temperatures (T − Tc)/Tc < 1/

√
εFτ . Note

however that at this scale σ sk-MT-nl
xy is still smaller than its normal state value σ n

xy ∼ (τ/τsk)σn in
a parameter σ sk-MT-nl

xy /σ n
xy ∼ 1/

√
εFτ ≪ 1 so that perturbative expansion in fluctuations is still

justified. This confirms an earlier assertion that nonlinear fluctuations could play a dominant role
in determining transport characteristics sufficiently close to Tc at Gi < (T − Tc)/Tc <

√
Gi.
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5.3. Nonlinear Aslamazov–Larkin mechanism of ANE

Thermal fluctuations of the superconducting order parameter also contribute to thermoelectric
responses. This includes both longitudinal thermopower, Seebeck and Peltier effects, and also
transversal responses such as Nernst and Ettingshausen effects. These phenomena can be viewed
through the prism of Onsager reciprocal relations for kinetic coefficients as superconducting fluctu-
ations transport heat current in response to an electric field, or conversely transport electric current
in response to the temperature gradient applied to the system. The transversal responses obviously
require external magnetic field and in this section we will look at their anomalous counterparts.

Thermoelectric coefficients can be also computed from the Kubo formula where we need to know
the mixed thermal current-electrical current response function, which we label as Kij(ων). Provided
that the analytically continued retarded function K R

ij (ω) is known the tensor of thermoelectrical
conductivities follows βij = −

1
T limω→0 ℑK R

ij /ω. We briefly recapitulate computation of the diagonal
component of βij first from the AL diagram [64] and then generalize it to the case of off-diagonal
component. The thermal current block of the AL diagram corresponds to the following triangular
vertex

B(h)
q (Ωk, ων) = T

∑
εn

i(εn+ν + εn)
2

λq(εn + ων,Ωk − εn)λq(εn,Ωk − εn)

×

∫
p
vpGp(εn + ων)Gp(εn)Gq−p(Ωk − εn). (5.24)

Ussishkin [32] analyzed this function and showed its connection to the corresponding electrical
block which was introduced earlier in Eq. (5.1). Specifically one finds B(h)

q = [i(Ωk + ων/2)/2e]B(e)
q

which yields the thermoelectric response kernel

KAL
xx = T

∫
q

∑
Ωk

[
B(h)
q
]
x

[
B(e)
q
]
xLq(Ωk)Lq(Ωk + ων). (5.25)

Summation over the Matsubara frequency Ωk and analytical continuation follows the same way as
in the case of the conductivity calculation, so that we obtain

βAL
xx =

e
2πT 2

∫
q

[
Bq
]2
x

∫
ΩdΩ

sinh2(Ω/2T )

[
ℑLRq(−iΩ)

]2
. (5.26)

It is seen here that for the pair propagator in the form of Eq. (2.5) frequency integration in the
above formula gives identical zero for βxx since [ℑLRq]

2 is an even function of Ω whereas the rest of
the integrand is odd. Thus one needs a more general expression that accounts for the particle–hole
asymmetry [28]

Lq(Ωk) = −
1
ν

1
πDq2/8T + t + π |Ωk|/8T + ΥΩ

, ΥΩ = (iΩk/2Tc)(∂Tc/∂εF ). (5.27)

The asymmetry factor ΥΩ in particular accounts for the variation of the density of states at the
Fermi surface. When expanding LRq to the linear in ΥΩ order produces

βAL
xx = −

eν
πT 2

∫
q

[
Bq
]2
x

∫
ΩΥΩdΩ

sinh2(Ω/2T )

[
ℑLRq(−iΩ)

]
ℑ
[
LRq(−iΩ)

]2 (5.28)

where now both propagators have been taken at ΥΩ → 0. In the end, we recover a well known
result [64]

βAL
xx ≃ βQςpha ln(TcτGL), ςpha =

∂Tc
∂εF

(5.29)

where βQ = e/(2π h̄) is the quantum unit of the thermoelectric coefficient.
One can generalize now Eq. (5.25) to include the Hikami box with skew scattering Eq. (5.9)

that induces the transversal part of the thermoelectric response. This is described by the following



18 S. Li and A. Levchenko / Annals of Physics 417 (2020) 168137

expression

K sk-AL
xy = T 2

∫
qq′

[
B(h)
q
]
x

[
B(e)
q′

]
yH

sk
qq′

∑
Ωk

Lq(Ωk)Lq(Ωk + ων)
∑
Ω ′

k

Lq′ (Ω ′

k)Lq′ (Ω ′

k + ων) (5.30)

By repeating the steps that lead us to the equation for σ AL
xx we find instead

βsk-AL
xy =

28eςphaη4

3πνv2F τsk

∫
qq′

qxq′
y(q × q′)z[

ξ 2q2 + t
]2[
ξ 2q′2 + t

]2 . (5.31)

and finally for the temperature dependence of the anomalous Nernst coefficient

βsk-AL
xy ≃

βQ

εFτ
ςpha(τ/τsk) ln2(TcτGL). (5.32)

There are several interesting aspects of the results obtained in this section that deserve further
discussion. Apparently there exists a substantial difference in how particle–hole asymmetry affects
fluctuation-induced transversal response in superconductors. The ordinary Hall conductivity re-
quires finite ςpha [28] whereas Nernst effect is not [32]. It is the other way around for the anomalous
coefficients as both skew-scattering and asymmetry are required for finite thermoelectric response
Eq. (5.32), whereas anomalous Hall conductivity is already present at vanishing ςpha Eq. (5.14).
In addition, the sensitivity of transversal transport coefficients to particle–hole asymmetry makes
them useful for diagnostics of effects related to Fermi surface reconstruction. Of particular interest
are diagnostics for electronic Lifshitz-type transition associated with a change of topology of the
Fermi surface [82] that can be induced by doping, changing the impurity concentration, applying
pressure or stress.

6. Fluctuation-induced transport in superconductors at strong-coupling

The substance of this section is devoted to an outline of main ideas and discussion of technical
details needed to extend existing theory of superconducting fluctuations to the regime of strong
coupling in Eliashberg formulation [83]. In the context of the present study, the motivation for
the need of this elaborate framework is clear. As we summarized in the opening section, most of
the transport anomalies of interest were observed in unconventional superconductors where BCS
weak coupling description is not expected to hold. However, since microscopic origin of electronic
pairing glue is still being actively debated practically for all the existing unconventional systems, it
makes sense to begin with the canonical electron–phonon mechanism. In principle, it should be then
possible to extend the method further for the case of pairing mediated by a composite low-energy
boson.

Eliashberg’s approach has been applied by Bulaevskii–Dolgov [84] and Narozhny [85] to calculate
the fluctuation effects in the specific heat δc and diamagnetic susceptibility δχ above Tc . They
concluded that the resulting temperature dependence of both δc and δχ is the same as in the
BCS weak coupling limit [64], namely (δc, δχ ) ∝ 1/t in 2D case, and ∝ 1/

√
t in 3D, but in the

extreme limit of the theory fluctuations are enhanced by a large dimensionless parameter λ ≫ 1.
This implies that at strong coupling fluctuational region widens which is at least qualitatively
consistent with numerous observations where fluctuations survive relatively far away from Tc . The
dimensionless coupling constant λ can be re-expressed as the ratio of some effective interaction g
in the model and the Debye frequency λ = (g/ωD)2, and related to the integrated bosonic spectral
function. For large λ, as demonstrated by Allen and Dynes [86], the critical temperature scales within
a numerical factor as Tc ≃ ωD

√
λ ∼ g . At zero temperature the energy gap scales with Tc , ∆ ∼ Tc

similar to the BCS limit albeit the proportionality coefficient is different.
The method of Ref. [84], where an effective Ginzburg–Landau description in strong coupling was

derived, cannot be directly applied to the calculation fluctuation-induced corrections in transport
coefficients as one actually needs Keldysh type representation in terms of real energies [87].
This representation is needed for both vertex functions of electromagnetic response kernels
and pair propagator itself. Fortunately a progress has been made in this direction as analytical
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continuation of Eliashberg gap equations has been implemented in the works of Marsiglio–
Schossmann–Carbotte [88] and Karakozov–Maksimov–Mikhailovskii [89], see also a detailed study
of Combescot [90]. To make use of these advances, in principle, one can proceed in two complimen-
tary ways. The first route is to work in the path integral representation to construct Luttinger–Ward
functional. The saddle point of the corresponding action will be a linearized Eliashberg gap equation.
The expansion around this solution to the quadratic order in low-energy modes of pair excitations
should lead to the propagator of superconducting fluctuations. We choose to follow an alternative
way, which is more naturally connected to the diagrammatic approach employed in this paper,
and consider Bethe–Salpeter equation for the irreducible part of the two-particle Green’s function
Γ C
pp′q [64,84,85]. To avoid further complications with the disorder averaging we concentrate on the

clean case and focus only on the strong coupling effects in fluctuations. We assume that electron–
phonon scattering relaxes electronic momentum and thus gives finite normal state conductivity.
Also having in mind applications to superconducting films, we further assume that film thickness
is such that spectra of electrons and phonons are 3D while the SC fluctuations are effectively 2D
close to Tc .

The irreducible two-particle vertex obeys the integral equation

Γ C
pp′q(εn, εm,Ωk) = Dp−p′ (εn−εm)+T

∑
εl

∫
k
Dp−k(εl−εn)Gq−k(εl+Ωk)Gk(−εl)Γ C

kp′q(εl, εm,Ωk)

(6.1)

where Dq(ωk) is a propagator for a phonon. In the Eliashberg theory, electron Green’s function
G−1
p (εn) = iεn − ξp + Σ(εn) self-consistently contains self-energy mediated by retardation of

interactions with phonons which is also an integral equation of Dyson type

Σ(εn) = T
∑
ωk

∫
q
Dq(ωk)Gp−q(εn − ωk). (6.2)

It can be directly seen that by replacing phonon propagator with a constant in Eq. (6.1), in a spirit of
the weak-coupling approach with point interactions, one immediately recovers Eq. (2.4) for the pair-
propagator. Note that in the absence of impurity scattering the impurity ladder function λq(ε, ε′)
in Eq. (2.4) should be replaced by unity. In general, solution to coupled integral equations for Γ C

and Σ poses a daunting problem. Near Tc , however, a major simplification is possible that makes
this problem tractable analytically. Indeed, at T = Tc as q,Ω → 0 vertex function Γ C has a pole. At
temperature close to Tc , the proximity to T−Tc at finite momentum q and energyΩk sets the typical
scale for bosonic fluctuating modes. At the same time, fermionic modes are fast in this regime with
typical excitations of the order of temperature ε ∼ T . This separation of energy scales, ε ≫ Ω ,
makes it possible to postulate a physically motivated ansatz

Γ C
pp′q(εn, εm,Ωk) = ∆(εn)∆(εm)Lq(Ωk) (6.3)

where one singles out singular part of the vertex into a pair-propagator that is superimposed with
the product of smooth amplitude eigenfunctions ∆(εn). As we will see momentarily the latter can
be adjusted to fulfill exactly the linearized homogeneous Eliashberg equation for T = Tc . In this
approximation electronic momenta p, p′ are set to Fermi momentum and Eliashberg interaction
function is defined in a standard way by averaging phonon propagator over the Fermi surface

Λ(εn) =

∫
∞

0

2ωdω
ε2n + ω2 α

2(ω)F (ω) (6.4)

where α2(ω)F (ω) is the phonon spectral function introduced by Eliashberg. As demonstrated by
Combescot, the actual shape of α2(ω)F (ω) is irrelevant at strong coupling, as the bosonic spectral
function enters into the theory only via the effective dimensionless interaction parameter λ =

1
⟨ω2⟩

∫
2ωα2(ω)F (ω)dω where parametrically ⟨ω2

⟩ ∼ ω2
D. With the trial form of Γ C from Eq. (6.3)

the Bethe–Salpeter equation (6.1) reduces to the Fredholm integral equation of the second kind
with the separable kernel. This equation can be solved exactly. Indeed, we bring Eq. (6.3) into
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Eq. (6.1), multiply both sides by the product ∆(εn)∆(εm) and sum over both fermionic Matsubara
frequencies. For the amplitude functions with the Plancherel normalization to unity this gives an
algebraic equation for the pair propagator that is solved by

Lq(Ωk) =
N

1 − Pq(Ωk)
. (6.5)

Here norm in the numerator is given by

N =

∑
εnεm

∆(εn)∆(εm)D(εn − εm), (6.6)

whereas polarization operator in the denominator is determined by

Pq(Ωk) = T
∑
εnεl

∫
k
∆(εl)∆(εn)D(εl − εn)Gk(−εl)Gq−k(εl +Ωk). (6.7)

It readily follows that Pq→0(Ωk → 0) = 1 at T = Tc provided that ∆(εn) satisfies an equation

∆(εn) = Tc
∑
εn

∫
k
∆(εl)D(εl − εn)Gk(−εl)G−k(εl) = −

iTc
2π

∑
εl

Λ(εl − εn)
∆(εl)

iεl +Σ(εl)
(6.8)

which coincides with the linearized Eliashberg equation for Tc . In this model self-energy can be also
expressed in therms ofΛ-function. From Eq. (6.2) it follows thatΣ(εn) = −

iTc
2π

[
Λ(0)+2

∑n
l=1Λ(εl)

]
.

For the purpose of conductivity calculation we need a current vertex function. For the AL diagram
the corresponding triangular block is given by

B(e)
q (Ωk, ων) = 2eT

∑
εn

vpGp(εn + ων)Gp(εn)G−p+q(Ωk − εn)∆(εn + ων)∆(εn). (6.9)

This expression should be compared to Eq. (5.1) in the weak coupling formulation. The difference
is twofold, in the clean case λq → 1 in Eq. (5.1), however instead the strong coupling effects add
two factors of dynamical amplitude function ∆(εn) due to parametrization of the irreducible vertex
Γ C in Eq. (6.3).

As the next step we need to analytically continue Eqs. (6.2), (6.6)–(6.8) from the Matsubara to
real frequencies. Following the prescription of Ref. [89] and expanding Eq. (6.7) at low frequencies
Ωk and momenta q we establish a functional form of the pair propagator

PR
q (−iΩ) = 1 + pqq2 + pt t − ipωΩ, t = (T − Tc)/Tc, (6.10)

where a set of functions pq,t,ω has an extremely complicated form that can be asymptotically
estimated for λ ≫ 1. With this form of PR

q and redefining expansion coefficients ν = N/pt ,
ξ =

√
pq/pt , and a = pω/pt we can cast the pair propagator to a standard form that resembles

the weak coupling result quoted earlier in Eq. (2.6)

LRq(−iΩ) = −
1
ν

1
ξ 2q2 + t − iaΩ

. (6.11)

Further progress in estimating the effective coherence length ξ , damping parameter a, and current
vertex B(e)

q can be made by utilizing a large parameter approximation. In the limit λ ≫ 1 Eliashberg
interaction function in Eq. (6.4) can be approximated as Λ ∼ λω2

D/ε
2
n , which translates to the

self-energy ΣR
∼ λTc . Then carrying out the asymptotic analysis we estimate

a ∼ 1/(λTc), ξ ∼ (vF/Tc)(1/λ3/2), B(e)
q ∼ eνq(vF/λTc)2. (6.12)

The principal observation to make here is that strong coupling effects change the relationship
between the electrical current vertex and coherence length due to retardation of interaction
mediated by phonons. Indeed, at weak coupling we see from Eq. (5.5) in the ballistic limit Tτ ≫ 1
that B(e)

q ≃ eν(vF/Tc)2q ∝ ξ 2 but the relationship Bq ∝ ξ 2 does not hold at strong coupling in power
counting of interaction parameter as now one finds B(e)

q ∝ λξ 2.
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Table 1
Summary of results for the temperature dependence of the fluctuation-induced corrections to the anomalous Hall
conductivity δσ AHE

xy in the main skew-scattering mechanism. The table entries are normalized in units of normal state Drude
conductivity σD . Ginzburg number has different definitions for 2D case Gi ≃ 1/(νTcξ 2), and for 3D case Gi ≃ 1/(νTcξ 3)2 .
δσ AHE

xy /σD 2D limit 3D limit Eq. (#)

Skew-scattering DOS Gi(τ/τsk) ln(TcτGL)
√
Gi(τ/τsk)1/

√
TcτGL Eq. (3.12)

Skew-scattering MT Gi(τ/τsk)(TcτGL) ln(τφ/τGL)
√
Gi(τ/τsk)

√
TcτGL Eq. (3.6)

Nonlinear skew DOS Gi2(τ/τsk)(TcτGL)3 Gi(τ/τsk)(TcτGL)2 Eq. (5.19)
Interference skew MT Gi2(τ/τsk)(TcτGL)3 ln2(τφ/τGL) Gi(τ/τsk)(TcτGL)2 Eq. (5.23)
Quantum-crossing AL Gi2(τ/τsk)(TcτGL) ln(TcτGL) Gi(τ/τsk)

√
TcτGL Eq. (5.14)

At strong coupling fluctuation-induced correction to diagonal conductivity can be estimated with
the help of the usual formula for AL correction but with the modified form of the pair propagator
Eq. (6.11) and current vertex (6.12). Indeed, the electromagnetic response function is given by

Q AL
xx (ων) = T

∫
q

∑
Ωk

[
B(e)
q
]2
xLq(Ωk + ων)Lq(Ωk) (6.13)

which translates into the corresponding dc-conductivity

σ AL
xx =

1
4πT

∫
q

[
B(e)
q
]2
x

∫
+∞

−∞

[ℑLRq(−iΩ)]2dΩ

sinh2(Ω/2T )
=

aTc
2ν2

∫
q

[
B(e)
q
]2
x

1[
ξ 2q2 + t

]3 (6.14)

after the standard steps of frequency summation and analytical continuation. As in all the previous
similar cases, when performing frequency integral we expanded hyperbolic sine function in the
denominator since integral is dominated by small values of frequency Ω ∼ T − Tc . The resulting
temperature dependence of the AL term is the same as that found in the BCS theory at weak
coupling,

σ AL
xx ≃ σQλ

(
Tc

T − Tc

)
, (6.15)

however it contains now an extra interaction parameter λ ≫ 1. This analysis can be extended to the
calculation of fluctuation effects in other relevant models of pairing boson. The method of extracting
pair propagator for superconducting fluctuations near Tc does not rely on any particular properties
of the bosonic Green’s function. The approximation in Eq. (6.3) is based on the separation of energy
scales between fermionic and bosonic modes which is generically valid at sufficient proximity to
Tc . We plan to investigate strong coupling effects on other kinetic coefficients, including transversal
anomalous responses, and collective modes.

7. Summary and outlook

In this work we presented a systematic approach to the anomalous Hall effect in superconduc-
tors. We explored the interplay of disorder scattering and electron interactions on the temperature
dependence of anomalous Hall conductivity. We found that superconducting fluctuations close to
Tc contribute to transversal responses in both skew-scattering and side-jump mechanisms. We
conclude that skew-scattering mechanism dominates as it leads to a more pronounced temperature
dependence and stronger dependence on impurity scattering parameters. Table 1 summarizes
our main results for all the skew-scattering terms in density of states, Maki–Thompson, and
Aslamazov–Larkin fluctuational effects for superconducting films (2D) and bulk (3D) systems.

There remain a number of physically motivated interesting open questions that deserve further
detailed studies. As an outlook for future possible research, we briefly discuss several effects and
transport regimes that were left outside of the scope of this paper.

(i) Spin-polarization plays an important role not only in defining skew-scattering cross-section
but also in defining the structure of the pair-propagator [91]. If the energy scale of spin-splitting
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becomes comparable or larger than temperature then fluctuational effects are governed by the
virtual quasiparticle excitations that give dominant contributions to the triangular current vertex
of AL diagram (virtual Cooper pairs). This regime has been analyzed in the context of longitudinal
transport properties of Pauli limited superconductors [92] and it is expected that anomalous
responses will also have substantially different temperature dependences than that considered in
this study.

(ii) In many classes of unconventional superconductors Tc can be suppressed to zero by a control
parameter (e.g. doping). The effect of quantum superconducting fluctuations on anomalous Hall
like responses near such a quantum critical point have not been systematically studied which is a
conceptually interesting problem.

(iii) We have concentrated primarily on the extrinsic mechanisms of AHE. However, it has been
argued recently that the nontrivial band geometry of pairing electrons makes fingerprints at the
spectrum of fluctuations [93]. Indeed, under certain physically accessible conditions the spectrum
of fluctuating Cooper pairs, as described by the effective Ginzburg–Landau Hamiltonian, can have
topologically nontrivial Berry texture and is thus characterized by nonzero Chern number. As a
result, such topological fluctuating pairs define an intrinsic anomalous Hall paraconductivity. The
temperature dependence of this mechanism is weaker than that due to skew-scattering, however
the idea itself is fruitful and may be more relevant in the other physical scenarios.

(iv) Perhaps a more practical problem, is to extend current analysis to the case of strong
impurities as it was done for example in Ref. [94] for the normal state properties. This can be
done by using a self-consistent expressions for the Green’s function together with the Lippmann–
Schwinger equation for the full T̂ -matrix. In the context of near-Tc transport properties, we expect
to obtain the same results for σ AHE

xy (T ) in terms of singularities in the temperature dependence but
with properly renormalized scattering times. However, below Tc full T̂ -matrix analysis may lead
to new features such as formation of sub-gap bands in unconventional superconductors that could
have significant effect on the observed anomalies in the polar Kerr effect.
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