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a b s t r a c t

Quantum systems coupled to environments exhibit intricate dy-
namics. The master equation gives a Markov approximation of
the dynamics, allowing for analytic and numerical treatments.
It is ubiquitous in theoretical and applied quantum sciences.
The accuracy of the master equation approximation was so far
proven for small values of the system–environment interaction
coupling strength λ, under the additional constraint that time t
must not exceed an upper bound, λ2t ≤ constant. Here, we show
that the Markov approximation is valid for fixed small coupling
strength and for all times. We also construct a new approximate
Markovian dynamics – a completely positive, trace preserving
semigroup – which is asymptotically in time exact, to all orders
in the coupling.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

The evolution in quantum theory is governed by the Schrödinger equation. When a system is
coupled to its environment, the Schrödinger equation applies to the whole system–environment
complex. The effective evolution of degrees of freedom of the system, i.e., the open system dynamics,
does not follow a Schrödinger equation, though. Finding this effective equations is difficult. Under
suitable conditions, in particular for weak system–environment coupling and if the environment has
correlations which decay sufficiently quickly in time, one expects this evolution to be approximately
Markovian. The corresponding equation is the ubiquitous Markovian master equation. In this paper,
we show how to obtain bounds for the accuracy of this approximation in a rigorous way . We do
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this using the so-called dynamical resonance theory. Our method works under certain hypotheses
specified below and, to our knowledge, it is the only one able to derive such rigorous bounds.

Advantages of our approach are:

• We give rigorous bounds for the accuracy of the Markovian approximation, valid for all
times. In particular, we show that the usual master equation generated by the Davies
generator, is accurate to O(λ2), independently of time t for all t ≥ 0, where λ is the system–
environment coupling constant. So far, this accuracy was shown to hold only under the
additional constraint λ2t ≤ constant.

• We construct another, new Markovian approximation which is asymptotically exact. That is,
for which the final state is the correct reduced equilibrium state of the system, to all orders
in the perturbation parameter λ (which is still supposed to be small). This is an improvement
over the approximation based on the Davies generator, since the latter predicts a final state
which deviates from the true one by O(λ2).

• Our method works for initial system–environment states which are entangled. The tech-
niques developed in most of the literature, only works under the assumption of disentangled
system–environment initial states. Our method also describes the evolution of observables
of the environment, but we do not elaborate on this aspect in the current paper.

Difficulties we encounter in our approach are:

• The error bounds for the accuracy of the Markovian approximations we derive involve
constants. Those constants do not depend on the system–environment coupling strength
λ nor on time t . However, they depend on other parameters, such as the dimension of the
system and the smoothness and infrared and ultraviolet behavior of the coupling function.
We have not obtained the explicit dependences on these parameters (even though in
principle, it is possible to do so).

• The environment, also called reservoir, consists of free quantum particles. In the present
work, we consider Bosons. It is possible to take a reservoir of free Fermions, but a reservoir
of interacting particles is not treatable, up to now.

In order to be able to focus on the main ideas of the dynamical resonance theory, we make the
technically most advantageous assumptions in this paper. This means the class of systems we treat
here is somewhat restricted by stronger regularity assumptions. However, we plan to extend the
theory in several directions:

• The assumptions we make in this manuscript imply that reservoir correlations decay
exponentially quickly in time. This is not necessary for the dynamical resonance theory to
work. By using Mourre theory (as opposed to complex spectral deformation), we will treat
the situation where correlations are merely polynomially decaying.

• We plan to discuss in detail the system evolution for initially entangled system–environment
states elsewhere. In the current manuscript, we set up the resonance theory for the general,
possibly entangled case (Section 3.4), but we discuss finer detail on the dynamics, namely
our Results 1–3 (Sections 2.7–2.9) only for factorized initial states.

2. Main results

2.1. The model

We consider open quantum system Hamiltonians

H = HS + HR + λG ⊗ ϕ(g) (2.1)

where HS is an N × N hermitian matrix with eigenvalues Ej and eigenvectors φj,

HS =

N∑
j=1

Ej|φj⟩⟨φj| (2.2)
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and HR is the environment, or reservoir Hamiltonian

HR =

∑
k

ωka∗

kak, (2.3)

describing modes of a collection of harmonic oscillators, labeled by k. Their frequencies are ωk > 0
(we set h̄ = 1) and the creation and annihilation operators a∗

k , ak, satisfy the canonical commutation
relations [ak, a∗

ℓ] = δk,ℓ (Kronecker symbol). The interaction term contains a coupling constant
λ ∈ R, an interaction operator G (hermitian N × N matrix), and it is linear in the field operator

ϕ(g) =
1

√
2

∑
k

gka∗

k + h.c., (2.4)

where h.c. denotes the hermitian conjugate. The collection of the numbers gk ∈ C constitutes the
form factor g (or, spectral density of noise, see also A.6). The size of gk determines how strongly the
mode k is coupled to the system.

To describe irreversible effects – such as thermalization and decoherence in the small system
– it is mathematically convenient to pass to a limit where the oscillator frequencies ωk take on
continuous values (and hence so must k). In principle, the parameter k belongs to an arbitrary
continuous set. For instance, having in mind a reservoir modeling a (scalar) quantized field in
physical space R3 (infinite volume limit), the oscillatory frequencies are indexed by k ∈ R3, and ωk,
gk, a∗

k and ak become functions ω(k), g(k), a∗(k), a(k) with [a(k), a∗(ℓ)] = δ(k − ℓ) (Dirac function).
In the continuous mode limit, the reservoir Hamiltonian (2.3) and field operator (2.4) are

HR =

∫
R3
ω(k)a∗(k)a(k)d3k,

ϕ(g) =
1

√
2

∫
R3

(
g(k)a∗(k) + h.c.

)
d3k. (2.5)

The Hilbert space on which the operators (2.5) act is the Bosonic Fock space over the single particle
wave function space L2(R3, d3k) (momentum representation),

F = ⊕n≥0 L2sym(R
3n, d3nk), (2.6)

where the subscript sym refers to symmetric functions (Bosons) and the summand with n = 0 is
interpreted to be C.

It is customary in the physics literature to carry out calculations for discrete modes ((2.3), (2.4))
and take the continuous limit in quantities of interest at the end. However, it might be advantageous
to start off directly with the continuous model, because then one can attack the dynamical problem
by spectral analysis of the Hamiltonian, using that continuous spectrum is associated with scattering
effects and irreversibility. This is the approach we take here. A (minor) trade off is that in the
continuous mode models, defining the equilibrium state is slightly more complicated: while the
operator e−βHR has a finite trace for (2.3) this is not the case when HR has continuous spectrum,
(2.5). The notion of reservoir equilibrium density matrix ρR,β ∝ e−βHR has therefore to be replaced
by that of a state (normalized linear functional) ωR,β on reservoir observables. The latter is obtained
by taking the thermodynamic limit of the discrete mode model and is determined entirely by its
two point function (k, l ∈ R3)

ωR,β
(
a∗(k)a(l)

)
=

δ(k − l)
eβω(k) − 1

. (2.7)

Averages of general reservoir observables are found using Wick’s theorem (quasi free, or Gaussian
state). We explain this in Section 3. The analysis presented here can be carried out for more general
states, where the right side of (2.7) is replaced by µ(k)δ(k − l) for general functions µ(k) > 0, see
e.g. Section 4.3 of [1]. Having in mind spectral methods, as mentioned above, it will be useful to
take a purification of the reservoir state, i.e., to describe ωR,β by a vector state in a (new) Hilbert
space.

In this paper, it is understood that the continuous mode limit is performed and all statements
are given for continuous models. In other words, we consider Hamiltonians (2.1) with HR and ϕ(g)
given in (2.5).
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2.2. Initial states

We consider initial states belonging to the folium of the reference state ωref = ωS ⊗ωR,β , where
ωS(·) =

1
N tr(·) is the trace state on the system and ωR,β is the reservoir equilibrium state in the

thermodynamic limit, characterized by (2.7).1 These states are also called normal states with respect
to ωref [2,3]. The folium contains the states which are spatially asymptotically close to equilibrium.
To explain what this means, denote by τx, x ∈ R3, the translation automorphism group acting on
reservoir observables, so that if AR,loc is a reservoir observable (for instance a polynomial of creation
and annihilation operators) supported in a bounded region R ⊂ R3, then τx(AR,loc) is its translate,
supported on R+x. Now let ω = ωS⊗ωR be a disentangled state in the folium of ωref. Then we have
lim|x|→∞ ω(1S ⊗ τx(AR,loc)) = ωR,β (AR,loc).2 (For convex combinations of such states the argument is
similar.) This is the meaning of the asymptotical equilibrium property.

The reason for our choice of initial states is easily understood: our methods rely on representing
the initial state in a Hilbert space and relate the dynamics to spectral properties of the generator
of the dynamics. All states represented in the same Hilbert space can then be dealt with on the
same footing. Notice that within this folium, the initial system–reservoir states are allowed to be
entangled. We explain this point below in Section 3, and (3.57) is our fundamental result for the
dynamics, equally valid for entangled and product initial states. The dynamics for non-factorized
initial states in the van Hove (weak coupling regime) was analyzed in [4,5] (see also the references
therein) and we will address the detailed analysis of our results on the dynamics of entangled states
elsewhere.

The main goal of Sections 2.7–2.9 is to make a link with the usual setup and results in open
system theory, where the system dynamics is given by a propagator Vt . The latter is well defined
for disentangled initial states of the form ρS ⊗ ρR,β , where ρR,β is the equilibrium state (in the
thermodynamic limit) and ρS is an arbitrary system state. (Strictly speaking, ρR,β here is the density
matrix representing ωR,β in the purification Hilbert space — this point is explained in detail in
Section 3.) The system dynamics is described by the reduced system density matrix

ρS(t) = trR e−itH (ρS ⊗ ρR,β ) eitH , (2.8)

where trR is the partial trace over the reservoir degrees of freedom. The relation (2.8) defines a
linear map on system density matrices, called the dynamical map Vt , by

ρS ↦→ VtρS ≡ ρS(t), (2.9)

and where ≡ denotes a definition. Equivalently, one can introduce the Heisenberg dynamics t ↦→

αtA of system observables A (hermitian matrices acting on the system), by setting

trS (VtρS)A = trS ρS(αtA). (2.10)

It is well known (and a source of great difficulty in theory and applications) that the map t ↦→ Vt is
not a group in t , namely Vt+s ̸= Vt◦Vs. Of course, for λ = 0, VtρS = e−itHSρS eitHS does have the group
property, but when the system interacts with the reservoir (λ ̸= 0), correlations between the two
are built up and the group property is destroyed. Still, being the reduction of a unitary dynamics of
a bigger physical system (namely, the system plus the reservoir), the reduced dynamics, Vt , has a
special structure. Indeed, for each t fixed, Vt is a completely positive, trace preserving map, for short,
Vt is CPT.3 Using (2.10) it is not difficult to understand that, for any t fixed, Vt is CPT if and only if
αt is completely positive and identity preserving (αt1 = 1).

1 By definition (see for instance [2]), a state ω belongs to the folium of a state ωref if ω is represented by a density
matrix in the Hilbert space of ωref . More precisely, let (H, π,Ω) be the Gelfand–Naimark–Segal (GNS) representation of
ωref , i.e., ωref(A) = ⟨Ω, π (A)Ω⟩ for all observables A and where the inner product is that of H. Then the folium is the
collection of all states ω such that ω(A) = trH

(
ϱπ (A)

)
, where ϱ is any density matrix on H.

2 ωR is a convex combination of states of the form ⟨π (Y )ΩR,β , π (·)π (Y )ΩR,β ⟩, where Y is a local (or quasilocal) unitary
operator and ΩR,β is the GNS vector representing ωR,β . Due to (quasi-) locality we have lim|x|→∞[τx(AR,loc), Y ] = 0
(commutator) which implies the statement.
3 A map V acting on B(H), the bounded operators on a Hilbert space H, is called CPT if (i) for all ρ ∈ B(H) having

finite trace, trVρ = trρ (trace preserving) and (ii) V ⊗ 1 is positivity preserving on the space of operators B(H)⊗ B(CK ),
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2.3. Importance of the group property

If the group property Vt+s = Vt ◦ Vs is satisfied, then there is a generator L, a linear operator
acting on density matrices, such that Vt = etL. The open system dynamics is entirely determined
by the spectral data (eigenvalues and eigenvectors) of L. Assume for the moment that one can show
a spectral representation

etL =

∑
j

eitϵjPj, (2.11)

where iϵj are the eigenvalues of L and Pj the corresponding eigenprojections.4 All dynamical
information is then contained in the ϵj and Pj. Namely, the ϵj with Im ϵj > 0 drive irreversible
decay (t > 0), with decay rates Im ϵj and the associated Pj determine the decay directions in state
space. Stationary states are in the range of the projections Pj with j such that ϵj = 0.

2.4. Importance of complete positivity

Suppose you have a bipartite system AB in an entangled initial state ρAB. Suppose that the
subsystem B evolves independently, according to its own unitary dynamics Ut (generated by a
Hamiltonian HB) and that the dynamics of subsystem A is given by Vt (emerging for instance by
interaction with a reservoir). The state of AB at time t is then ρAB(t) = (Vt ⊗ Ut )ρAB(0). This state is
guaranteed to be a density matrix only because Vt is completely positive. (If Vt was not completely
positive, then one could find an initial density matrix ρAB(0) for which ρAB(t) would have some
negative eigenvalues!) On the mathematical side, complete positivity of a map V is equivalent with
V having a Kraus representation, which is again equivalent with V being the reduction of a unitary
map acting on a bigger system (adding an ancilla reservoir system). We refer to [6–9] for more
detail about this.

2.5. Markovian approximation in the van Hove weak coupling regime

Intuitively, if the reservoir dynamics is very fast, maybe if local disturbances of the reservoir
state are quickly propagated far away (short lived reservoir memory), and if the system–reservoir
interaction is not too large, then the back reaction from the reservoir onto the system might be
minor. In this situation, one expects the group property to hold for t ↦→ Vt . Quantifying this idea is
an important problem, leading to the Markovian approximation. The challenge is to show the validity
of a Markovian approximation

Vt = etL + R(t, λ) (2.12)

and to find a parameter regime in which the remainder term R(t, λ) is small. When the remainder
is squarely neglected, Vt = etL is the integrated version of the differential equation d

dt Vt = LVt , or
as per (2.9), d

dt ρS(t) = LρS(t), which is called the Markovian master equation for the system density
matrix ρS(t). It is a difficult problem to find quantitative and controlled (not heuristic) bounds on the
remainder R(t, λ) in (2.12). There is one rigorous approach, called the van Hove-, or weak coupling
limit. It states that for all a > 0,

lim
λ→0

sup
0≤λ2t<a

Vt − et(LS+λ
2K )

 = 0. (2.13)

for all K ≥ 1 (complete positivity). Positivity preserving in turn means that if X is a bounded non-negative operator acting
on H ⊗ CK (having non-negative spectrum only), then (V ⊗ 1)X is a bounded non-negative operator acting on H ⊗ CK .
If V is completely positive then it is positivity preserving, but the converse is not true. For instance, consider two qubits
and take V to be the partial transpose operator. This is a positivity preserving map but it is not CP. Indeed the positive
partial transpose (PPT) criterion to check for entanglement in quantum information theory is based on the fact that the
partial transpose is not CP.
4 This diagonalization property is assumed here. It is satisfied if all eigenvalues are simple, for example. Our method

works equally well in case L has Jordan blocks but we do not address this point here.
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Here, LS and K are commuting operators acting on system density matrices and for each t fixed,
et(LS+λ

2K ) is CPT.5 The operator LS = −i[HS, ·] generates the free system dynamics (no interaction)
and K is a (lowest order) correction term, encoding coupling effects. The λ2t scaling was used in [10]
and later analyzed with mathematical rigor in [11,12]. The literature on the weak coupling regime
and Markovian master equations is huge and growing. It has important applications not only in
physics and mathematics, but also in chemistry, biology and the quantum information sciences
[13–16]. It is worthwhile to note that many different (heuristic) approximations and candidates
for generators have been proposed over time, often violating the CPT requirement. If one insists
on the CPT requirement to be satisfied, then the Davies generator LS + λ2K above emerges as the
correct one [17,18]. However, from a practical (numerical) perspective and in combination with
other methods, different generators might be more advantageous and might be able to describe
specific phenomena in more detail [19].

The relation (2.13) is the same as (2.12) with L = LS + λ2K and (2.13) says

lim
λ→0

sup
0≤λ2t<a

R(t, λ) = 0. (2.14)

The shortcoming of (2.13), (2.14) is that only times up to t ≈ a/λ2 are resolved by the Markovian
approximation. Beyond that time scale, et(LS+λ

2K ) is not guaranteed to be accurate (the remainder
may not be small). Of course, a is arbitrary, so in principle one can consider large times — but the
bigger one takes a, the smaller λ has to be in order to make the remainder smaller than a given
accuracy. (In other words, the speed of convergence in (2.14) depends on a). Another way of saying
this is that, when considering t → ∞ one has to take at the same time λ → 0 in such a way
that λ2t stays bounded (< a), in order to be sure that the Markovian approximation is valid. This
is called the van Hove weak coupling regime.

One of our main results is to remove the condition that λ2t needs to be bounded. We show the
accuracy of the Markovian approximation for all times t ≥ 0.

2.6. Regularity assumption on the form factor and decay of reservoir correlations

The symmetrized correlation function is defined as

Cβ (t) = ReωR,β
(
ϕ(g) eitHRϕ(g) e−itHR

)
= ReωR,β

(
ϕ(g)ϕ( eiωtg)

)
, (2.15)

where g is the form factor in the interaction (2.1) and ωR,β is the reservoir thermal equilibrium
state (2.7). The free reservoir dynamics is characterized by the Bogoliubov transformation g(k) ↦→

eiω(k)tg(k) (see also (2.5)). The resonance theory we develop requires a regularity condition on the
function g . To state it, define the complex valued function

gβ (u,Σ) =

√
u

1 − e−βu |u|1/2
{

g(u,Σ) u ≥ 0
− eiα ḡ(−u,Σ) u < 0 , (2.16)

where g(r,Σ) on the right side is the form factor g expressed in spherical coordinates, r ≥ 0 and
Σ ∈ S2, and ḡ denotes the complex conjugate. In (2.16), u ∈ R, so gβ is a function of R × S2, while
the original g is a function of R+ × S2 = R3. The phase α ∈ R can be chosen arbitrarily.

We assume the following condition.

(A) For θ ∈ R, set (Tθgβ )(u,Σ) = gβ (u − θ,Σ). There exists a θ0 > 0 such that θ ↦→ Tθgβ has an
analytic extension (as a function from R to L2(R × S2)) to 0 < Imθ < θ0 which is continuous
at Imθ → 0+.

Note that the θ in condition (A) is not an angle, rather it is a parameter of translation. A condition
which is less technical and which implies (A) is the following.

5 Which norm ∥ · ∥ we take in (2.13) is not too important here, as we assume that the system Hilbert space has finite
dimension and so all norms are equivalent.
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(H) Suppose that for some θ0 > 0, the function u ↦→ gβ (u,Σ) extends to an analytic function for
complex values of u belonging to the strip Sθ0 = {z ∈ C : −θ0 < Imz < θ0}, for all Σ ∈ S2,
such that

c0 = sup
−θ0<v<θ0

∫
R
du

∫
S2

dΣ
⏐⏐gβ (u + iv,Σ)

⏐⏐2 < ∞. (2.17)

Functions gβ having this property belong to the Hardy class on the strip Sθ0 . Condition (H)
implies condition (A).

Discussion of assumptions (A) and (H)

(1) The function g has to behave appropriately in the infrared regime so that the parts of (2.16)
fit nicely together at u = 0, to allow for an analytic continuation. The square root in (2.16)
must be analytic as well, which implies the condition θ0 < 2π/β . This means that we have
to consider strictly positive temperature T = 1/β > 0. Furthermore, our method requires an
upper bound λ2 ≤ cθ0 (some fixed c), see e.g. Fig. 1, so we need the condition λ2 ≤ cT to hold.
A family of form factors g satisfying condition (A) is given by

g(r,Σ) = rp e−r2g1(Σ), with p = −1/2 + n, n = 0, 1, 2, . . .,

and where g1 is an arbitrary function of the angle Σ ∈ S2 satisfying g1(Σ) = eiα
′

ḡ1(Σ) for an
arbitrary phase α′

∈ R. As an example, suppose g(r,Σ) = r−1/2 e−r2 . Then we chose α = π in
(2.16) and get gβ (u,Σ) = e−u2

√
u

1− e−βu which satisfies (H), hence (A). If g(r,Σ) = r1/2 e−r2 ,

then we choose α = 0 in (2.16) and obtain gβ (u,Σ) = u e−u2
√

u
1− e−βu , which again satisfies

(H) and (A).
(2) Assumption (A) guarantees that the simplest version of spectral deformation techniques is

applicable (namely, spectral translation). The reservoir correlation function (2.15) can be
written as

Cβ (t) =

∫
R
du eiut

∫
S2

dΣ |gβ (u,Σ)|2

(this is a direct calculation, see also [20], Appendix A) and (A) implies exponential decay of
the correlation function. Indeed, let θ ′ < θ0, then

Cβ (t) = e−θ ′t
∫
R
du ei(u−iθ ′)t

∫
S2

dΣ |gβ (u,Σ)|2.

By a change of the variable u, the integral is over the function |gβ (u + iθ ′,Σ)|2, which is finite
and therefore, Cβ (t) ≤ const. e−θ ′t . In this paper, we thus assume that the reservoir correlation
decay exponentially. An extension of the theory to polynomially decaying correlations is
possible and is planned, see point (4) below.

(3) The property of return to equilibrium for open systems, that is, that initial states converge
to the coupled system–reservoir equilibrium in the limit of large times (see also (3.1)), was
shown under milder regularity conditions on g by using a combination of spectral dilation
and translation and a rather involved renormalization group analysis in [21]. However, those
techniques have never been used to address the much more detailed information on the
reduced system dynamics as we do here in Sections 2.7–2.9.

(4) Another approach is to replace spectral deformation theory by an infinitesimal version of it,
called Mourre theory. Here one can significantly weaken the regularity requirements on g ,
replacing analyticity by just real differentiability. This implies that Cβ (t) decays polynomially
in time only. This technically more demanding route was taken in [22] to find the reduced
dynamics of the system modulo an error ∝ 1/t for large times. The fact that weaker regularity
of g leads to polynomial decay of errors (while analyticity implies exponential decay in our
results here, Sections 2.7–2.9) might not be surprising. The disadvantage of [22] is that the
remainder is not shown to be small in λ. An extension of the techniques of [22] to show this
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smallness is planned. It would yield results presented here for a much larger class of form
factors g , so a less stringent regularity condition can be traded off for polynomially decaying
remainder terms.

(5) The fact that (H) implies (A) can be seen as follows. First note that weak analyticity is
equivalent with strong analyticity [23] (Theorem VI.4). This means we only have to show that
for each f ∈ L2 = L2(R × S2, du × dΣ), the complex valued function θ ↦→ ⟨f , gβ (· − θ )⟩ =∫
R du

∫
S2 dΣ f (u,Σ)gβ (u − θ,Σ) extends to complex values of θ with 0 < Imθ < θ0 which is

continuous at the real line. First take f with compact support in the variable u. Then you may
interchange d/dθ with the integrals,

d
dθ ⟨f , gβ (· − θ )⟩ =

∫
R
du

∫
S2

dΣ f (u,Σ) d
dθ gβ (u − θ,Σ)

and it is now clear that θ ↦→ ⟨f , gβ (· − θ )⟩ is analytic in Sθ0 due to condition (H). To show
analyticity for an arbitrary f , take a sequence of functions fn ∈ L2 with compact support in u
satisfying ∥fn − f ∥L2 → 0. Each Fn(θ ) = ⟨fn, gβ (· − θ )⟩ is analytic by the previous argument.
Moreover, since |Fn(θ ) − ⟨f , gβ (· − θ )⟩| ≤ c0∥fn− f ∥L2 , where c0 is given in (2.17), we have that
Fn(θ ) converges to ⟨f , gβ (· − θ )⟩ uniformly in θ ∈ Sθ0 . Hence the limit function is also analytic.

2.7. Result 1: Resonance expansion of the dynamics

The resonance theory is a mathematically rigorous approach for the analysis of the evolution
of the system–reservoir complex. It does not only describe the dynamics of the system state or
observables, but also that of the reservoir. Here we explain the results on the system Schrödinger
dynamics. To state our results in terms of the dynamical map Vt , we assume that the initial system–
reservoir state is disentangled, of the form (2.8) for t = 0. (The result for general initial states is
given in (3.57).)

We show that if |λ| ≤ λ0 (for some λ0 > 0), then for all times t ≥ 0,Vt − Wt − ρS,β,λ ⟨tr|
 ≤ Cλ2 e−γ (λ)t . (2.18)

The constant C < ∞ is independent of λ, t and γ (λ) ≥ 0 does not depend on t . In (2.18), ⟨tr| is the
linear functional ρ ↦→ tr(ρ) = 1. Moreover, ρS,β,λ is the effective system equilibrium state, obtained
by taking the full, coupled system–reservoir equilibrium state (relative to H , (2.1)) and tracing out
the reservoir degrees of freedom. Wt is a linear map on system states (density matrices), describing
how, and if, the system approaches the equilibrium ρS,β,λ. It has an expansion of the type (2.11),

Wt =

∑
j

eitϵj(λ)Pj, (2.19)

where the Pj are λ-independent projection operators (acting on system density matrices). They
satisfy

PjPk = δj,kPj and
∑

j

Pj = W0 = 1 − ρS,β,0 ⟨tr|, (2.20)

where ρS,β,0 = e−βHS/tr( e−βHS ) is the (uncoupled) system equilibrium state. The ϵj(λ) ∈ C are
analytic in λ at the origin,

ϵj(λ) = ϵ
(0)
j + λ2ϵ

(2)
j + O(λ4) (2.21)

and ϵ(0)j are differences of eigenvalues of HS (Bohr energies). It is clear from (2.19) and the properties
of the Pj that

Wt+s = Wt ◦ Ws. (2.22)

Symmetries or degeneracies in the spectrum of HS can cause some of the ϵj(λ) to vanish (or to
be real). In this case, the associated Pj project onto additional stationary states, other than ρS,β,λ.
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However, generically, in the absence of symmetries and degeneracies, one has Imϵj(λ) > 0 for all
j (for small, nonzero λ). Then all terms in (2.19) decay in time, the jth one at the rate Imϵj(λ).
Denoting by 2ℓj the order of the zero of Imϵj(λ) at the origin, i.e., Imϵj ∝ λ2ℓj to leading order in λ,
we see that Wt is a sum of terms decaying at (possibly different) rates λ2ℓj . The slowest decay rate
is

γ (λ) = min
j

Imϵj(λ) ≥ 0 (2.23)

and coincides with that of the remainder in (2.18). Note, however, the additional factor λ2 on the
right side of (2.18). The result (2.18) can be expressed as

Vtρ = ρS,β,λ + Wtρ + O
(
λ2 e−γ (λ)t) (2.24)

for any density matrix ρ, with an error term which is (quadratically) small in λ for all times, and
which also decays to zero exponentially quickly in time.

2.8. Result 2: Approximation of the dynamics by a CPT semigroup for all times

In applications it is often observed that the imaginary parts of all the ϵj(λ) are strictly positive
already to second order in λ (see (2.21)), i.e., that

γFGR ≡ min
j

Im ϵ(2)j > 0. (2.25)

If (2.25) is satisfied we say that the Fermi Golden Rule Condition holds [21,24–27]. In this situation,
Wt contains the single characteristic time scale λ−2. We assume (2.25) now. Retaining only the
leading terms of Wt and ρS,β,λ on the left side of (2.18), namely

ϵj(λ) ≈ ϵ
(0)
j + λ2ϵ

(2)
j , ρS,β,λ ≈ ρS,β,0 =

e−βHS

tr e−βHS
, (2.26)

we can show the following result. There is a λ0 > 0 such that if |λ| ≤ λ0, then for all t ≥ 0,Vt − et(LS+λ
2K )

 ≤ Cλ2. (2.27)

Here, LS = −i[HS, ·] (commutator) and K are commuting operators acting on system density
matrices, and K is constructed entirely in terms of ϵ(2)j and Pj. Moreover, et(LS+λ

2K ) is a CPT
semigroup satisfying

et(LS+λ
2K )ρS,β,0 = ρS,β,0. (2.28)

It is the same semigroup as the one in the weak coupling (van Hove) result (2.13). In passing from
(2.18) to (2.27) we have gained the CPT and semigroup properties of the approximation, but we
have traded it for a worse error estimate. Namely, the approximation (2.27) is still O(λ2) for all
t ≥ 0, but it does not decay to zero for large times, as it did in (2.18). The inequality (2.27) proves
that the Markovian approximation, implemented by a CPT semigroup, is valid for all times t ≥ 0. It
can be phrased as

sup
t≥0

Vt − et(LS+λ
2K )

 ≤ Cλ2. (2.29)

This is a significant improvement of the weak coupling result (2.13).
The generator K can be obtained by perturbation theory or by the relation

lim
λ→0

V τ

λ2
◦ e−

τ

λ2
LS

= eτK , τ ≥ 0, (2.30)

which identifies K as the Davies generator (the same K as in (2.13)), [7–9,11,12,28]. It can be
calculated explicitly, see the Appendix.
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2.9. Result 3: Approximation of the dynamics by an asymptotically exact CPT semigroup

The origin of the loss of time decay in the remainder, when passing from (2.18) to (2.27) as
described in the previous section, comes from replacing ρS,β,λ by ρS,β,0 (see (2.26)). We recall that
ρS,β,λ is the restriction to the system of the full, coupled system–reservoir equilibrium state. This
replacement unavoidably introduces an error of O(λ2) for large times, as the true final (t → ∞)
system state is ρS,β,λ, while the one predicted by the approximation is ρS,β,0, differing from the
true one by O(λ2). Above, this replacement was necessary in order to incorporate the final state
into the approximate dynamical group, as an element in the kernel of the generator LS + λ2K , see
(2.28). To avoid the approximation of ρS,β,λ, we might try to modify the generator into a new one,
M(λ), by adding supplementary terms of all orders in λ, as to make the full ρS,β,λ an invariant state.
This is the result we explain now, and in this result we restore the time decay of the remainder
(obtaining thus a time asymptotically exact approximation).

We introduce a renormalization, H̃S(λ), of the system Hamiltonian, satisfying

e−βH̃S(λ)

tr e−βH̃S(λ)
= ρS,β,λ. (2.31)

By carrying out the resonance theory leading to the results of Section 2.7, but now with this
renormalized reference state (2.31), the CPT semigroup approximating the true dynamics Vt turns
out to be et(L̃S+λ

2K̃ ), with λ dependent operators L̃S and K̃ . The crucial point is that et(L̃S+λ
2K̃ )ρS,β,λ =

ρS,β,λ, which replaces the property (2.28) in the previous argument and allows us to obtain a
remainder which decays to zero for large times. We show the following.

Suppose that the Fermi Golden Rule Condition γFGR > 0 is satisfied (c.f. (2.25)). Then there is a
λ0 > 0 such that for |λ| < λ0, and all times t ≥ 0,Vt − etM(λ)

 ≤ C
(
|λ| + λ2t

)
e−λ2γFGR t (1+O(λ2)). (2.32)

Here, etM(λ) is a CPT semigroup with a generator M(λ) analytic in λ, containing all orders of λ. Its
Taylor series can be calculated by perturbation theory. The result (2.32) shows that we can construct
a CPT semigroup which approximates the true dynamics and which is asymptotically exact, meaning
that limt→∞(Vt − etM(λ)) = 0. Note, however, that for t ∼ 1/λ2, the right hand side of (2.32) is not
small. Still, for times t > 1/(λ2γFGR) the remainder becomes negligible.

We obtain a better result for the dynamics of observables which commute with HS (or, for the
populations of the system density matrix). Namely, we show that there is a λ0 > 0 such that for
|λ| < λ0,Vt ◦ V S

−t − etλ
2Md(λ) − (1S − V S

−t )ρS,β,λ ⟨tr|
 ≤ C(λ+ λ4t) e−λ2t(γFGR+O(λ2)). (2.33)

Here, V S
−t is the free system dynamics, V S

−t ρ = eitHSρ e−itHS for any system density matrix ρ.
Moreover, etλ

2Md(λ) is a CPT semigroup with a generator Md(λ) analytic in λ (d for diagonal), which
is explicitly constructible by perturbation theory and satisfies Md(0) = K , the Davies generator (see
(2.30)). The generators M(λ) and Md(λ) are related by

M(λ) = −i[H̃S(λ), · ] + λ2Md(λ) (2.34)

and the two operators on the right side commute.
We now show how (2.33) implies a better result than (2.32) for the evolution of the populations

of the state Vtρ, i.e., the diagonal of the density matrix Vtρ in the energy basis of HS (Pauli equations,
see also [24]). The last term on the left side in (2.33) vanishes when applied to system observables
X which commute with HS. Namely, let ρ be a system initial state and let X be such an observable.
Then

trS
(
(1S − V S

−t )ρS,β,λ ⟨tr| ρ
)
X = trS ρS,β,λ(X − e−itHSX eitHS ) = 0. (2.35)

For an operator A, set

[A]k,ℓ = ⟨φk, Aφℓ⟩, (2.36)
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where φk is the eigenvector of HS associated to the eigenvalue Ek, see (2.2). The population of the
energy Ek at time t is then

[Vtρ]k,k = ⟨φk, (Vtρ)φk⟩. (2.37)

Combining (2.33) and (2.35) shows that

[Vtρ]k,k = [ etλ
2Md(λ)ρ]k,k + O

((
|λ| + λ4t

)
e−λ2t(γFGR+O(λ2))

)
, (2.38)

so we have a CPT semigroup which approximates the populations to accuracy O(λ) for all times,
and on top of this, is asymptotically exact.

Remark on the parameter dependence of constants in the error estimates and λ0. The
constants C in our main results (2.18), (2.27), (2.32) and (2.38) will depend on the system dimension
N and properties of the interaction operator G and the form factor g . Finding the dependence is in
principle possible in our approach. This analysis must be carried out on a remainder that depends on
all powers of λ and we have not done this so far. We believe it would be interesting to start with a
benchmark problem, say compare the approximation of the dynamics by the resonance theory to the
explicit solution for the spin-boson model (or N spins coupled to bosons) with energy conserving
interaction. One could then use numerical methods to compare the resonance approximation to
the correct dynamics and exhibit the dependence of the difference on N and on properties of the
coupling function g (e.g. the ultraviolet and infrared characteristics of g). Similarly, one might test
the validity of the resonance approximation for varying sizes of the coupling parameter λ and find
the dependence of λ0 on model parameters.

3. Mechanism of the resonance theory

3.1. History

The method we develop has its origins in works using a C∗-dynamical system approach,
pioneered in [21,25]. In those works, it was shown that all initial system–reservoir states ω, taken
from the same class as we consider, converge to the coupled system–reservoir equilibrium state
ωSR,β,λ in the limit of large times. More precisely, for system–reservoir observables A,

lim
t→∞

ω
(
eitHA e−itH)

= ωSR,β,λ(A). (3.1)

Here, states are viewed as linear functionals acting on observables. In this setup, the approach to
equilibrium is linked to the spectrum of the (complex deformed) Liouville operator. The spectrum
of this operator consists of complex numbers and eigenvalues are called resonances. Convergence
to equilibrium is implied by the fact that the Liouville operator has a simple eigenvalue at zero, the
eigenvector being the equilibrium state. A spectral gap in the spectrum at the origin (when zero is
an isolated resonance) makes the convergence in (3.1) exponentially fast in time. This mechanism
is revealed below in Section 3.4.

We point out that the system–reservoir dynamics overall is Hamiltonian, governed by the unitary
group eitH . So how is the relation (3.1) possible? The point is that one considers only (quasi-)local
observables A in (3.1). To explain this, one can view the reservoir as a spatially infinitely extended
reservoir of quantum particles (quantum field) in R3. Local observables A are those made of system
observables and field operators (or creation and annihilation operators) supported only at spatial
points x ∈ R3 belonging to bounded sets. Quasi-local observables are limits of such observables. It
becomes then intuitively clear that while the global dynamics is unitary, on local observables it is
irreversible. This is just as in usual quantum theory: A single, free particle in R3 with Hamiltonian
−

h̄2
2m∆x having continuous spectrum will leave any bounded region as t → ∞, so the average of any

quasi-local observable will vanish in this limit. This happens even though the dynamics is unitary.
In [26,27] it was realized that the nonzero resonances govern the evolution of the system

coherences and consequently a rigorous analysis of the dynamics of decoherence and entanglement
in various physical settings became possible, see e.g. [29,30]. The CPT properties and asymptotic
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exactness of the approximating Markovian dynamics have not been addressed until very recently.
In [31] we give a short (two page) outline of a proof of the Results 1 and 2 presented in the
current work. The paper [31] focuses on the construction of an asymptotically exact Markovian
approximation, which is part of Result 3 of the present publication. However, there is a gap in the
proof of the main result in [31]. This is explained in an erratum to [31], where it is also announced
that we can still show the result in its full strength for the dynamics of the populations of the
system (but not the coherences). We give the corresponding precise statement and proof of it here
in (2.38).

An approximate system dynamics valid for all times was constructed [32], using a semigroup
with a generator depending on all powers of λ, but which is not asymptotically exact, and which
is not shown to be CPT. In contrast, we show here that the approximation by the CPT semigroup
given by the free dynamics plus the Davies generator, which is merely quadratic in λ, works for all
times already. By adding higher orders in λ to the generator, we achieve an asymptotically exact CPT
semigroup.

In this work, we only consider time independent Hamiltonians, but the resonance theory has
also been applied to time dependent ones, see [33–35].

Of course, non Markovian effects play an important role in quantum physics and are heavily
studied (see for instance the reviews [36,37]). A refined weak coupling limit which captures non-
Markovian effects has been developed in [38]. It will be interesting to examine how our resonance
theory will contribute to this line of study.

3.2. Purification of the initial state

Given any (initial) system density matrix ρS acting on CN , we take a purification, i.e., a normalized
vector ΨS ∈ CN

⊗ CN satisfying

trSρSX = ⟨ΨS, (X ⊗ 1S)ΨS⟩ (3.2)

for all system operators X ∈ B(CN ).6 We also take a purification of the reservoir thermal equilibrium
state (2.7), whose associated Hilbert space is again obtained by doubling the original one, namely
the Fock space F , (2.6). On F ⊗ F , define the thermal annihilation operators

aβ (k) =

√
1 + µ(k)

(
a(k) ⊗ 1

)
+

√
µ(k)

(
1 ⊗ a∗(k)

)
,

µ(k) =
1

eβω(k) − 1
, (3.3)

and set (aβ (k))∗ ≡ a∗

β (k). This representation is due to [39]. One verifies that [aβ (k), a∗

β (l)] = δ(k− l),
and that the purification of ωR,β is given by

ωR,β (P) =
⟨
ΩR,PβΩR

⟩
, (3.4)

where

ΩR = Ω ⊗Ω ∈ F ⊗ F, (3.5)

Ω is the vacuum vector in F , P is an arbitrary polynomial in creation and annihilation operators
and Pβ is that same polynomial with each a∗(k), a(l) replaced by a∗

β (k), aβ (l). For the purposes of
this paper, we shall call such Pβ reservoir observables.7 We denote the smoothed out operators by
(f ∈ L2(R3, d3k), f its complex conjugate)

a∗

β (f ) =

∫
R3

f (k)a∗

β (k), aβ (f ) =

∫
R3

f (k)aβ (k), ϕβ (f ) =
1

√
2

(
a∗

β (f ) + aβ (f )
)
. (3.6)

6 To do this explicitly, first diagonalize ρS =
∑

j pj|χj⟩⟨χj|. Then the vector ΨS =
∑

j
√
pjχj ⊗ Cχj does the job in

(3.2), where C is any antiunitary map. Our convention is to take C to be the operator taking the complex conjugate of
vector coordinates in the eigenbasis of HS . This purification is also known under the name of Gelfand–Naimark–Segal
representation in the theory of operator algebras, and for finite dimensions in linear algebra it is called vectorization.
7 In a more mathematical approach, the reservoir algebra is the Weyl algebra, represented on F ⊗ F , generated by

thermal Weyl operators Wβ (f ) = eiϕβ (f ) .
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To show that (3.4) is a purification of the reservoir equilibrium state, one just has to check that

ωR,β
(
a∗(k)a(l)

)
=

⟨
ΩR, a∗

β (k)aβ (l)ΩR
⟩

(3.7)

equals the right side of (2.7), which is easy to do. The disentangled system–reservoir state is thus
represented in the purification Hilbert space by the reference vector

Ψref = ΨS ⊗ΩR ∈ Href ≡ CN
⊗ CN

⊗ F ⊗ F . (3.8)

The initial states we consider are exactly those which are represented by a vector (or a density
matrix) on the space Href. This class contains entangled system–reservoir states. As an example,
take an initial state obtained by entanglement via interaction, of the form (expressed before the
continuous mode limit) ρSR,0 = e−iτ (G⊗P)(ρS ⊗ ρR,β )eiτ (G⊗P). Here, τ is a preparation time during
which the disentangled ρS ⊗ ρR,β builds up entanglement due the system–reservoir interaction
G⊗P , where G and P are self-adjoint operators (e.g. P a polynomial in field operators ϕ(g), (2.5)).
The purification vector of the entangled state ρSR,0 is ΨSR,0 = e−iτ (G⊗1S⊗Pβ )Ψref ∈ Href and belongs
to the class of initial states we allow.

The glued Fock space representation. It is sometimes useful to represent F ⊗ F , where F is
given in (2.6), as a Fock space over a different single-particle space. We explain this here and refer
to [27], Appendix A, for further detail and also to [25]. The symmetric Fock space F(H) over a Hilbert
space H is defined by

F(H) = ⊕n≥0
(
⊗

n
symH

)
,

where the summand with n = 0 is interpreted to be C and ⊗
n
symH is the set of all symmetric

(permutation invariant) vectors in H ⊗ · · · ⊗ H. The exponential property of Fock spaces reads

F(H1) ⊗ F(H2) = F(H1 ⊕ H2), (3.9)

where the equality signifies that there is an isometric isomorphism between the left and right sides.
It can be easily verified using the identification

a∗(f1) · · · a∗(fm)Ω ⊗ a∗(g1) · · · a∗(gn)Ω
= a∗(f1 ⊕ 0) · · · a∗(fm ⊕ 0)a∗(0 ⊕ g1) · · · a∗(0 ⊕ gn)Ω, (3.10)

where f1, . . . , fm ∈ H1 and g1, . . . , fn ∈ H2 and the vectors Ω are the vacua corresponding to the
Fock spaces in question.

With (3.9) and, as per definition (2.6), F = F(L2(R, d3k)), we have

F ⊗ F = F
(
L2(R, d3k) ⊕ L2(R, d3k)

)
. (3.11)

Next, we have an identification (isometric isomorphism) L2(R, d3k) ⊕ L2(R, d3k) = L2(R × S2, du ×

dΣ), given explicitly by

f ⊕ g = h, h(u,Σ) = u
{

f (u,Σ) u ≥ 0
− eiαg(−u,Σ) u < 0 (3.12)

where α ∈ R is arbitrary (but fixed). On the right side of (3.12), the functions f , g are represented
in polar coordinates R3

∋ k ↔ (u,Σ) ∈ R+ × S2. Using the isomorphisms (3.11) and (3.12) we
arrive at

F ⊗ F = F
(
L2(R × S2, du × dΣ)

)
. (3.13)

We call the Fock space on the right side the glued Fock space, since two radial variables in R+ have
been glued together at the origin to give a new variable u ∈ R. Accordingly, the reference Hilbert
space (3.8) is identified with

Href = CN
⊗ CN

⊗ F
(
L2(R × S2, du × dΣ)

)
. (3.14)

In the glued Fock space, the field operator ϕβ (g), (3.6), takes the form ϕ(gβ ), where gβ ∈

L2(R × S2, du × dΣ) is defined in (2.16). More precisely, ϕ(gβ ) =
1

√
2
(a∗(gβ ) + a(gβ )), where the
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operators on the right side are the creation and annihilation operators acting on the glued Fock
space (3.13). So, for example, a∗(gβ )a∗(hβ )Ω =

1
2 (gβ ⊗ hβ + hβ ⊗ gβ ) is a symmetric two particle

state with single particle wave functions gβ and hβ (each is a member of the enlarged single-particle
Hilbert space L2(R × S2, du × dΣ)).

3.3. Equilibrium states

The uncoupled equilibrium state obtained as the continuous mode limit of ∝ e−βHS ⊗ e−βHR has
the purification

ΩSR,β,0 = ΩS,β ⊗ΩR, (3.15)

where ΩR is given in (3.5) and (see (2.2))

ΩS,β = Z−1/2
S,β

∑
j

e−βEj/2φj ⊗ φj ∈ CN
⊗ CN , (3.16)

with ZS,β = tre−βHS . Of course ΩSR,β,0 ∈ Href. The interacting equilibrium state ΩSR,β,λ, defined
as the continuous mode limit of the density matrix ∝ e−βH (the interacting H , (2.1)) is given
by8

ΩSR,β,λ =
e−

β
2 (L0+λG⊗1S⊗ϕβ (g))ΩSR,β,0

∥ e−
β
2 (L0+λG⊗1S⊗ϕβ (g))ΩSR,β,0∥

∈ Href. (3.20)

Here, L0 is the uncoupled Liouvillian, explicitly given in (3.23) below. The equilibrium state ΩSR,β,λ,
for any λ ∈ R, has the important property of cyclicity and separability, a property shared by all
equilibrium (KMS) states, and which is known in generality from the theory of operator algebras [3]
(Volume 2, Corollary 5.3.9). Cyclicity ofΩSR,β,λ means that any vector Ψ ∈ Href can be approximated
arbitrarily well by a vector of the form BΩSR,β,λ, for some operator B which is a linear combination
of terms G⊗1S ⊗Pβ , where G and Pβ are system and reservoir observables.9 Separability of ΩSR,β,λ
means that an arbitrary Ψ ∈ Href can also be approximated arbitrarily well by a vector of the form
B′ΩSR,β,λ, for some operator B′ which is a linear combination of terms 1S ⊗ G ⊗ P ′

β , where G is
a system observable and P ′

β is an operator acting on F ⊗ F which commutes with any reservoir
observable Pβ .

The cyclicity and separating properties are easily shown for finite dimensional systems. Namely,
cyclicity comes from the fact that (in finite dimensions) any equilibirum density matrix e−βHS has
full range (is invertible). The separating property (which is the same as cyclicity relative to the

8 Formula (3.20) is known from the perturbation theory of KMS states, see for instance [3,21,40,41] For finite
dimensional systems in particular, this is easy to understand. Let ω0 and ω be an unperturbed and a perturbed equilibrium
states given by density matrices ∝ e−βH and ∝ e−β(H+V ) . Then

ω(A) =
tr( e−β(H+V )A)
tr e−β(H+V ) =

tr( e−βH e
β
2 H e−

β
2 (H+V )Ae−

β
2 (H+V ) e

β
2 H )

tr e−β(H+V )

=
tr e−βH

tr e−β(H+V ) ω0
(
e
β
2 H e−

β
2 (H+V )Ae−

β
2 (H+V ) e

β
2 H)

. (3.17)

Now ω0(B) = ⟨Ω0, (B ⊗ 1)Ω0⟩, with Ω0 satisfying LΩ0 = 0, where L = H ⊗ 1 − 1 ⊗ H . We have(
e−

β
2 (H+V )Ae−

β
2 (H+V ))

⊗ 1 = (1 ⊗ e−
β
2 H )

(
e−

β
2 (L+V⊗1)(A ⊗ 1) e−

β
2 (L+V⊗1))(1 ⊗ e−

β
2 H ). (3.18)

This is so since e−
β
2 (L+V⊗1)

= e−
β
2 (H+V )

⊗ e
β
2 H . It follows from (3.18) that

ω0
(
e
β
2 H e−

β
2 (H+V )A e−

β
2 (H+V ) e

β
2 H)

∝ ⟨Ω0, e
β
2 L e−

β
2 (L+V⊗1)(A ⊗ 1) e−

β
2 (L+V⊗1) e

β
2 LΩ0⟩. (3.19)

Since e
β
2 LΩ0 = Ω0 , (3.19) is of the form ⟨Ω, (A ⊗ 1)Ω⟩ with Ω ∝ e−

β
2 (L+V⊗1)Ω0 . Combining this with (3.17) gives

ω(A) = ⟨Ω, (A ⊗ 1)Ω⟩. This is the formula (3.20).
9 For any ϵ > 0 there is a B s.t. ∥Ψ − BΩSR,β,λ∥ < ϵ.
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commutant) comes about by a natural isomorphism between observables and operators commuting
with observables (X ⊗ 1S ↔ 1S ⊗ X). Explicitly, from (3.16) we see that for any k, l,

φk ⊗ φl =
(
G1 ⊗ 1S

)
ΩS,β =

(
1S ⊗ G2

)
ΩS,β , (3.21)

for G1 = Z1/2
S,β e

βEl/2|φk⟩⟨φl| and G2 = Z1/2
S,β e

βEk/2|φl⟩⟨φk|. Hence in (3.21) we can reconstruct any
basis element φk ⊗ φl. By linear combination, given any Ψ ∈ CN

⊗ CN , we can find G′

1 and G′

2 s.t.
Ψ = (G′

1 ⊗ 1S)ΩS,β = (1 ⊗ G′

2)ΩS,β . These properties carry over to equilibrium states of infinite
dimensional (continuous mode) systems, with the only difference that exact equality might not be
possible, but an arbitrarily accurate approximation of Ψ can be achieved [3].

Dynamics of the purified state: the Liouvillian. The uncoupled dynamics is generated by the
Hamiltonian H0 = HS + HR, (2.2), (2.3). Its Heisenberg form eitH0

(
G ⊗ a∗(k)

)
e−itH0 = eitHSGe−itHS ⊗

eiω(k)ta∗(k) is implemented in the purification Hilbert space as follows. Let Ψ0 ∈ Href be the vector
representing the state ω0. Then

ω0
(
eitH0

(
G ⊗ a∗(k)

)
e−itH0

)
=

⟨
Ψ0,

(
eitHSG e−itHS ⊗ 1S ⊗ eiω(k)ta∗

β (k)
)
Ψ0

⟩
=

⟨
Ψ0, eitL0 (G ⊗ 1S ⊗ a∗

β (k)) e
−itL0Ψ0

⟩
, (3.22)

where L0 is called the uncoupled Liouvillian, given by

L0 = LR + LS
LS = HS ⊗ 1S − 1S ⊗ HS

LR = HR ⊗ 1R − 1R ⊗ HR. (3.23)

Relation (3.22) is readily verified. Note that LRΩR = 0 (see (3.5)). Adding the term −1S ⊗ HS to the
system Liouvillian LS as defined in (3.23) is optional.10 It serves to ensure the agreeable property
LSΩS,β = 0 (see (3.16)). Thus we have

L0ΩSR,β,0 = 0. (3.24)

The full, interacting dynamics generated by H , (2.1), is implemented as

ω0
(
eitH (X ⊗ P) e−itH)

=
⟨
Ψ0, eitLλ (X ⊗ 1S ⊗ Pβ ) e−itLλΨ0

⟩
. (3.25)

Here, Lλ is the coupled Liouvillian, given by

Lλ = L0 + λI
I = G ⊗ 1S ⊗ ϕβ (g) − J

(
G ⊗ 1S ⊗ ϕβ (g)

)
J. (3.26)

The operator Lλ is self-adjoint, for any value of λ ∈ R. This is proven for instance by using
Glimm–Jaffe–Nelson triples techniques, c.f. [42].

We will not use explicitly the form of Lλ in this paper, but let us explain the term J
(
G ⊗ 1S ⊗

ϕβ (g)
)
J in (3.26). This is an operator which commutes with all observables (i.e., with all operators

which are linear combinations of the form X ⊗ 1S ⊗ Pβ ). The map J is an anti-unitary involution,
the modular conjugation of Tomita Takesaki theory, defined by the property

J e−βL0/2
(
G ⊗ 1S ⊗ Pβ

)
ΩSR,β,0 =

(
G ⊗ 1S ⊗ Pβ

)∗
ΩSR,β,0, (3.27)

valid for all G and Pβ .11 The action of J can be written down explicitly. Namely, J = JS ⊗ JR, with JS,
JR defined by the following relations (plus antilinear extension and continuity)

JS
(
χ1 ⊗ χ2

)
= Cχ2 ⊗ Cχ1

10 We mean that HS ⊗ 1S and HS ⊗ 1S + 1S ⊗ K implement the same dynamics, no matter what the operator K is.
This is due to the doubling of the Hilbert space: indeed, eitHS⊗1S (G⊗1S) e−iHS⊗1S = eit(HS⊗1S+1S⊗K )(G⊗1S) e−i(HS⊗1S+1S⊗K ) ,
because eit(HS⊗1S+1S⊗K )

= eitHS ⊗ eitK . The observables are always of the form G⊗1S acting trivially on the second factor.
This is why we can modify the generator by adding a term acting on the second tensor factor without changing the
dynamics.
11 J e−βL0/2 is the polar decomposition of the antilinear operator S defined by SAΩSR,β,0 = A∗ΩSR,β,0 for all observables
A, see for instance [3] (Volume 1, Definition 2.5.10).
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JR
(
ψ1(k1, . . . , km) ⊗ ψ2(ℓ1, . . . , ℓn)

)
= ψ2(ℓ1, . . . , ℓn) ⊗ ψ1(k1, . . . , km), (3.28)

where χ1, χ2 ∈ CN and C is the antiunitary taking complex conjugates of coordinates in the
eigenbasis of HS. In (3.28), the ψ1,2 ∈ F are finite particle wave functions and ψ1,2 their complex
conjugates. For more detail we refer e.g. to [21,27]. It follows from (3.23) and (3.28) that

JL0J = −L0. (3.29)

We will not use the fine properties of J in this paper. An important property of J that we will
use, however, is this: given any system observable A and any reservoir observable Pβ , the operator
J(A⊗1S⊗Pβ )J commutes with all system–reservoir observables B⊗1S⊗Qβ . Adding the commuting
term J

(
G⊗1S ⊗ϕβ (g)

)
J in the interaction is optional (meaning that the equality (3.25) still holds if

I is defined without adding this term). The reason for this non-uniqueness of the Liouvillian comes
from the fact that adding to the generator an operator which commutes with all observables will
not alter the dynamics of observables, just as explained in footnote 10. The choice (3.26) ensures
that the coupled equilibrium state (3.20) satisfies

LλΩSR,β,λ = 0. (3.30)

To prove (3.30), denote the operator λI in (3.26) by V − JVJ , defining V = λ(G⊗1S ⊗ϕβ (g)). Taking
into account (3.20), which reads ΩSR,β,λ ∝ e−β(L0+V )/2ΩSR,β,0, we have

LλΩSR,β,λ ∝ (L0 + V − JVJ) e−β(L0+V )/2ΩSR,β,0

= e−β(L0+V )/2(L0 + V )ΩSR,β,0 − JVJ e−β(L0+V )/2ΩSR,β,0 . (3.31)

Due to (3.24), we have e−β(L0+V )/2ΩSR,β,0 = e−β(L0+V )/2 eβL0/2ΩSR,β,0 and one can expand the
product of the last two exponentials into an (imaginary time) Dyson series with general term
(−1)n

∫
0≤tn≤···≤t1≤β/2 V (tn) · · · V (t1)dt1 · · · dtn, where V (t) = e−tL0VetL0 . As mentioned above, JVJ

commutes with V (t) and hence

JVJ e−β(L0+V )/2ΩSR,β,0 = e−β(L0+V )/2eβL0/2JVJΩSR,β,0 = e−β(L0+V )/2VΩSR,β,0. (3.32)

The last equality is true since JΩSR,β,0 = ΩSR,β,0 (see (3.27)) and eβL0/2J = J e−βL0/2 (see (3.29)) and
since J e−βL0/2VΩSR,β,0 = VΩSR,β,0, by (3.27) again and since V is self-adjoint. Using (3.32) in (3.31)
(and L0ΩSR,β,0 = 0) shows that the right hand side of (3.31) vanishes. Hence (3.30) is proven.

3.4. Representation of the dynamics

The Heisenberg evolution of a system observable X is

αt
λ(X ⊗ 1R) = eitH (X ⊗ 1R)e−itH , (3.33)

where H is the interacting system–reservoir Hamiltonian (2.1). Let ω0 be an (initial) system–
reservoir state, with purification Ψ0 ∈ Href. The vector Ψ0 can be approximated arbitrarily well
by B′ΩSR,β,λ for a suitable B′ commuting with all observables. This follows from the separability
property of the state ΩSR,β,λ, as explained before (3.21). Since the full dynamics is unitary, this
approximation is uniform in time. We will hence assume without loss of generality that

Ψ0 = B′ΩSR,β,λ. (3.34)

Note that if the initial state is of the form ρS ⊗ωR,β then the corresponding vector is Ψ0 = ΩS ⊗ΩR
for some ΩS ∈ HS ⊗ HS and where ΩR is given in (3.5). Then there is an operator B′

S ∈ B(HS)
such that ΩS = (1S ⊗B′

S)ΩS,β , see the discussion involving (3.21). Furthermore, by (3.20), ΩSR,β,λ =

ΩS,β ⊗ΩR + O(λ), so we have (3.34) with

B′
= 1S ⊗ B′

S ⊗ 1R + O(λ), some B′

S ∈ B(HS). (3.35)

Here, B(HS) denotes the set of all bounded operators on HS. What follows works for all initial states
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(3.34). We have

ω0
(
αt
λ(X ⊗ 1R)

)
=

⟨
Ψ0, eitLλ (X ⊗ 1S ⊗ 1R)e−itLλΨ0

⟩
=

⟨
Ψ0, B′eitLλ (X ⊗ 1S ⊗ 1R)e−itLλΩSR,β,λ

⟩
=

⟨
Ψ0, B′eitLλ (X ⊗ 1S ⊗ 1R)ΩSR,β,λ

⟩
. (3.36)

In the second equality we moved B′ to the left, as it commutes with the observable eitLλ (X ⊗

1S ⊗ 1R) e−itLλ . In the third we use the invariance (3.30). Next comes the core analytical tool, the
resonance expansion of eitLλ . It is important to realize that this expansion is only correct in the weak
sense; one cannot perform it independently on both factors e±itLλ in (3.36).12 This is why we have
to exploit the algebraic structure (existence of B′) and eliminate one of the propagators e−itLλ by
making it act on the invariant state ΩSR,β,λ in (3.36).

The right side of (3.36) is of the form
⟨
ψ, eitLλφ

⟩
for two vectors ψ , φ. We use the usual resolvent

representation of the propagator,⟨
ψ, eitLλφ

⟩
=

−1
2π i

∫
R−i

eitz
⟨
ψ, (Lλ − z)−1φ

⟩
dz. (3.37)

The integral is over the horizontal contour z = x − i, x ∈ R. Since Lλ is self-adjoint, (Lλ − z)−1 is a
well defined, bounded operator. We explain the further analysis of (3.37) in the technically easiest
situation (which requires the most regularity, though), namely, when the spectral deformation
technique applies. The strategy is to construct a meromorphic continuation in z of the function⟨
ψ, (Lλ − z)−1φ

⟩
, extending the domain of z from the lower half plane C− across the real axis into

(parts of) the upper complex half plane. Whether this is possible depends of course on the operator
Lλ (and the vectors ψ, φ).

Denote by Uθ the action of Tθ defined in condition (A) after (2.16), lifted from the single-particle
space to Fock space. Then Uθ , θ ∈ R, is a unitary group on Href (3.8) (or equivalently, by isometric
isomorphy, (3.14)) satisfying⟨

ψ, (Lλ − z)−1φ
⟩
=

⟨
Uθψ,Uθ (Lλ − z)−1φ

⟩
=

⟨
ψθ̄ , (Lλ,θ − z)−1φθ

⟩
(3.38)

and (assuming condition (A) above), the right side of (3.38) has an extension to complex values of θ
(here, θ̄ is the complex conjugate of θ and it shows up in (3.38) since the scalar product is antilinear
in its left argument). The first equality in (3.38) is due to unitarity of Uθ and we define ψθ = Uθψ ,
φθ = Uθφ and Lλ,θ = UθLλU∗

θ . The deformed Liouvillian Lλ,θ is of the form Lλ,θ = L0,θ + λIθ , acting
on Href (3.14), where

UθL0(Uθ )∗ = L0 + θN, (3.39)

and N is the number operator on the glued Fock space (3.13), that is, N = dΓ (1). Equality (3.39)
follows from the explicit identifications given above following (3.9).

The relation (3.38) stays valid for complex values of θ due to the identity theorem of complex
analysis (varying the real part of θ does not change the inner products, due to unitarity). When θ
becomes complex, Lλ,θ is not a self-adjoint operator any longer (it is not even a normal operator)
and hence generically, its spectrum leaves the real axis as Imθ ̸= 0. Take now θ with Imθ = θ0 > 0
fixed.

By analytic perturbation theory and the fact that L0,θ = L0+θN , where N is the number operator,
having spectrum N ∪ {0}, one shows the following result [21,25,27]:

In a strip {z ∈ C : 0 ≤ Imz < θ0/2}, the spectrum of the operator Lλ,θ = L0,θ + λIθ (c.f. (3.26))
consists of eigenvalues which are independent of θ (for λ not too large compared to θ). All other spectrum
of Lλ,θ is located within {z ∈ C : Imz > 3θ0/4}.

12 This is readily seen: weakly, eitLλ → |ΩSR,β,λ⟩⟨ΩSR,β,λ| for t → ∞ and using this for both propagators in (3.36)
would yield the result

⟨
ΩSR,β,λ, (X ⊗ 1S ⊗ 1R)ΩSR,β,λ

⟩
|⟨ΩSR,β,λ,Ψ0⟩|

2 for t → ∞. But this is not the correct final state.
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Fig. 1. The eigenvalues e of L0,θ bifurcate into the complex plane, becoming eigenvalues ϵ(s)e (λ) of Lλ,θ , for nonzero λ.

The situation is depicted in Fig. 1. For λ = 0, the eigenvalues coincide (including multiplicity)
with those of LS. More precisely, the spectral projection, of rank me, associated to the eigenvalue e
of L0,θ is given by

Pe = P(LS = e) ⊗ PR, (3.40)

where P(LS = e) is the eigenprojection of LS associated to the eigenvalue e and PR = |ΩR⟩⟨ΩR|. Since
e is an isolated eigenvalue of L0,θ , analytic perturbation theory implies that for small λ, e splits into
≤ me eigenvalues ϵ(s)e (λ), s = 1, 2, . . . (the added up multiplicity equaling me), which are analytic
at λ = 0 and have the expansion

ϵ(s)e (λ) = e + λ2a(s)e + O(λ4). (3.41)

The corrections a(s)e can be calculated by perturbation theory.13 They are the eigenvalues of the level
shift operator

Λe = −PeIP⊥

e (L0 − e + i0)−1IPe. (3.42)

This is a fact from second order analytic perturbation theory, sometimes also phrased as the
Feshbach map, see for instance [21,22,43]. Using (3.38) in (3.37) yields

⟨
ψ, eitLφ

⟩
=

−1
2π i

∑
e∈spec(LS)

me∑
s=1

∮
Γ

(s)
e

eitz
⟨
ψθ̄ , (Lλ,θ − z)−1φθ

⟩
dz + O

(
e−

3
4 θ0t

)
. (3.43)

To arrive at (3.43), we have deformed the contour of integration z = x − i into z = x +
3
4 iθ0,

thereby creating the contour integrals
∮
Γ

(s)
e
, where Γ (s)

e is a circle centered at ϵ(s)e (λ), not containing
any other eigenvalue of Lλ,θ . The remainder decays at rate −

3
4θ0 due to the factor eitz . Indeed, this

remainder is a contour integral over z = x+
3
4 iθ0 and for such z, we have | eitz | = e−

3
4 θ0t . Consider

the situation where all of the ϵ(s)e are distinct (for λ ̸= 0). The integrand in (3.43) has a simple pole
at z = ϵ

(s)
e in the interior of Γ (s)

e and so we have

−1
2π i

∮
Γ

(s)
e

eitz(Lλ,θ − z)−1dz = eitϵ
(s)
e (λ)( −1

2π i

) ∮
Γ

(s)
e

(Lλ,θ − z)−1dz ≡ eitϵ
(s)
e (λ)Π (s)

e , (3.44)

13 In principle, there are O(λ) correction terms given by PeIθPe , but this operator vanishes for the interactions we
consider.
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where Π (s)
e = Π

(s)
e (λ, θ ) is the (Riesz) spectral projection associated to the eigenvalue ϵ(s)e (λ) of Lλ,θ .

Combining (3.36), (3.43) and (3.44) yields

ω0
(
αt
λ(X ⊗ 1R)

)
=

∑
e∈spec(LS)

me∑
s=1

eitϵ
(s)
e

⟨
[(B′)∗Ψ0]θ̄ ,Π

(s)
e

(
X ⊗ 1S ⊗ 1R

)
[ΩSR,β,λ]θ

⟩
+O

(
λ e−

3
4 θ0t

)
. (3.45)

Note that the remainder, which is given by∫
R
ei(x+3iθ0/4)⟨[(B′)∗Ψ0]θ̄ , (Lλ,θ − x − 3iθ0/4)−1(X ⊗ 1S ⊗ 1R

)
[ΩSR,β,λ]θ ⟩dx, (3.46)

vanishes to zeroth order in λ. This is so since to this order, [ΩSR,β,λ]θ is given by ΩS,β ⊗ ΩR and
the Lλ,θ in the resolvent is simply LS, to this order and when applied to the vector in question. The
contour integral (3.46) is thus not enclosing any singularities of the integrand to order λ0 and so it
vanishes. If the initial state is of the unentangled form ωS ⊗ ωR,β , then the remainder in (3.45) is
actually O(λ2), due to (3.35) (see Proposition 4.2 of [26]).

Our next step is to eliminate the θ dependence of the main term in (3.45). Consider first e = 0.
Due to (3.30) and since [ΩSR,β,λ]θ = UθΩSR,β,λ is analytic in θ , we have Lλ,θ [ΩSR,β,λ]θ = 0. It
follows that Lλ,θ has an eigenvalue ϵ(1)0 = 0 for all λ, θ . We use s = 1 to label it. The associated
eigenprojection is

Π
(1)
0 = |[ΩSR,β,λ]θ ⟩⟨[ΩSR,β,λ]θ̄ |. (3.47)

In the sum (3.45), the term e = 0, s = 1 equals⟨
[(B′)∗Ψ0]θ , [ΩSR,β,λ]θ

⟩ ⟨
[ΩSR,β,λ]θ̄ ,

(
X ⊗ 1S ⊗ 1R

)
[ΩSR,β,λ]θ

⟩
=

⟨
Ψ0, B′ΩSR,β,λ

⟩ ⟨
ΩSR,β,λ,

(
X ⊗ 1S ⊗ 1R

)
ΩSR,β,λ

⟩
= trS

(
ρS,β,λX

)
. (3.48)

The first equality in (3.48) holds by the identity principle of complex analysis. The final equality
follows from (recall (3.34))

⟨
Ψ0, B′ΩSR,β,λ

⟩
= ⟨Ψ0,Ψ0⟩ = 1 and from the definition of ρS,β,λ as the

reduction to the system of the full, interacting system–reservoir equilibrium state. Above, we are
able to arrive at the result (3.48), which is non-perturbative in λ, since we know to begin with that
LλΩSR,β,λ = 0.

For the other terms in the sum (3.45), associated with nonzero resonance energies, we use
regular analytic perturbation theory in λ (as we do not know an a priori expression for them).
Consider the situation where each level shift operator Λe (see (3.42)) is diagonalizable, i.e.,

Λe =

me∑
s=1

a(s)e Q (s)
e , (3.49)

where a(s)e and Q (s)
e are the eigenvalues and rank-one eigenprojections, neither depending on θ . We

have

Q (s)
e < P(LS = e) and

me∑
s=1

Q (s)
e = P(LS = e). (3.50)

The relation LλΩSR,β,λ = 0 implies that Λ0ΩS,β = 0. This follows from the isospectrality property of
the Feshbach map, see e.g. Theorem B.1 in [22]. Assuming that all the eigenvalues of Λ0 are simple
then yields

Q (1)
0 = |ΩS,β⟩⟨ΩS,β |. (3.51)

Analytic perturbation theory gives the following expansion for Π (s)
e , the spectral projection of Lλ,θ

associated to ϵ(s)e

Π (s)
e (θ, λ) = Q (s)

e ⊗ |ΩR⟩⟨ΩR| + O(λ). (3.52)
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Consider a term in (3.45) with (e, s) fixed (not equal to (0, 1)). We have⟨
[(B′)∗Ψ0]θ̄ ,Π

(s)
e

(
X ⊗ 1S ⊗ 1R

)
[ΩSR,β,λ]θ

⟩
=

⟨
Ψ0, B′

(
Q (s)
e ⊗ |ΩR⟩⟨ΩR|

)(
X ⊗ 1S ⊗ 1R

)
ΩSR,β,λ

⟩
+ O(λ)

=
⟨
Ψ0, B′

(
Q (s)
e ⊗ 1R

)(
X ⊗ 1S ⊗ 1R

)
(ΩS,β ⊗ΩR)

⟩
+ O(λ). (3.53)

In the first equality of (3.53) we have used the approximation (3.52) and that UθΩR = ΩR. In the
second equality we made use of (1S ⊗ 1S ⊗ |ΩR⟩⟨ΩR|)ΩSR,β,λ = ΩS,β ⊗ΩR + O(λ2) (see (3.15) and
(3.20)). If the initial condition is of the unentangled form ωS ⊗ ωR,β , then (3.35) holds and it is not
hard to see that since ⟨ΩR|I|ΩR⟩ = 0, the remainder in (3.53) is actually O(λ2). Due to the cyclicity
of ΩS,β , there are uniquely defined operators Q(s)

e acting on system observables, satisfying(
Q(s)

e (X) ⊗ 1S
)
ΩS,β = Q (s)

e (X ⊗ 1S)ΩS,β , ∀X . (3.54)

The Q(s)
e are a family of disjoint projection operators (as the Q (s)

e are). The main term on the right
side of (3.53) is then⟨

Ψ0, B′
(
Q (s)
e ⊗ 1R

)(
X ⊗ 1S ⊗ 1R

)
(ΩS,β ⊗ΩR)

⟩
=

⟨
Ψ0,

(
Q(s)

e (X) ⊗ 1S ⊗ 1R
)
B′(ΩS,β ⊗ΩR)

⟩
= ω0

(
Q(s)

e (X) ⊗ 1R
)
+ O(λ) (3.55)

To arrive at (3.55), we have used that B′ commutes with all observables, so we can move it to the
right of Q(s)

e (X) ⊗ 1S ⊗ 1R and we also take into account that

B′(ΩS,β ⊗ΩR) = B′ΩSR,β,λ + O(λ) = Ψ0 + O(λ). (3.56)

The O(λ) term in (3.56) comes about by replacing the uncoupled equilibrium ΩS,β ⊗ ΩR by the
coupled one, ΩSR,β,λ. The initial state Ψ0 emerges in (3.56) due to (3.34). Again, for initial states
ωS ⊗ ωR,β , the remainder in (3.55), (3.56) is actually O(λ2), due to (3.35).

Combining (3.55) with (3.53), (3.48) and (3.45) shows the expansion

ω0
(
αt
λ(X ⊗ 1R)

)
= trS

(
ρS,β,λX

)
+

∑
(e,s)̸=(0,1)

eitϵ
(s)
e ω0

(
Q(s)

e (X) ⊗ 1R
)

+ O(λ e−γ (λ)t ) + O
(
λ e−

3
4 θ0t

)
. (3.57)

Here, γ (λ) was defined in (2.23) to be the slowest decay rate. The corresponding error term in
(3.57) stems from making in (3.45) approximations to within O(λ) in the scalar product, which is
time independent. Since γ (0) = 0 and λ ↦→ γ (λ) is continuous, we have γ (λ) < 3

4θ0 for small
enough λ and so the second error term in (3.57) is smaller than the first one. Eq. (3.57) is the basic
result of the resonance theory for system observables. Again, as explained during the derivation, for
initial states ωS ⊗ ωR,β the λ in both remainders in (3.57) are actually replaced by λ2.

3.5. Proof of (2.18)

Suppose that the initial state is disentangled, ω0 = ωS ⊗ ωR,β , where ωS is given by a general
system density matrix ρ and ωR,β is the reservoir equilibrium (or a local perturbation thereof). The
remainders in (3.57) are then O(λ2). The dynamical map ρ ↦→ Vtρ is defined by

trS
(
(Vtρ) X

)
= ω0

(
αt
λ(X ⊗ 1R)

)
, ∀X . (3.58)

The result (3.57) then implies

Vtρ = ρS,β,λ + Wtρ + O(λ2 e−γ (λ)t ), (3.59)

where Wt is the map on density matrices defined by duality. It is given by (2.19) in which the sum
is over j = (e, s) ̸= (0, 1). In particular, the P (s)

e are determined uniquely by

tr(P (s)
e ρ)X = trρ(Q(s)

e X), ∀ρ, X . (3.60)
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Recall the definition (3.54), in which the Q (s)
e are spectral projections of the level shift operators

(3.49). They form a family of disjoint projections, Q (s)
e Q (s′)

e′ = δe,e′δs,s′Q
(s)
e and satisfy (see (3.50))∑

(e,s)̸=(0,1) Q
(s)
e = 1S ⊗ 1S − |ΩS,β⟩⟨ΩS,β |. Accordingly, it follows from (3.54) that

Q(s)
e Q(s′)

e′ = δe,e′δs,s′Q(s)
e (3.61)

and ∀X ∈ B(HS),∑
(e,s)̸=(0,1)

Q(s)
e X = X − tr(ρS,β,0 X)1S. (3.62)

The duality (3.60) then translates into the corresponding properties (2.20) of the family P (s)
e .

4. Derivation of the main results

4.1. Proof of (2.27)

Define the operator M(λ), acting on system observables, by its spectral decomposition

M(λ) =

∑
(e,s)̸=(0,1)

ϵ(s)e (λ) Q(s)
e , (4.1)

where the sum is over all e, s except (e, s) = (0, 1). Note that if ϵ(s)e (λ) ̸= 0 for (e, s) ̸= (0, 1) (this
is typically the case and holds in particular if the Fermi Golden Rule (2.25) is satisfied), then we
have14

KerM(λ) = RanQ(1)
0 = {CρS,β,0}⊥ ≡ {X : tr(ρS,β,0X) = 0}. (4.2)

Using the definition (4.1), the power series expansion of the exponential and (3.62), we obtain

eitM(λ)
=

∑
(e,s)̸=(0,1)

eitϵ
(s)
e (λ)Q(s)

e + 1 −

∑
(e,s)̸=(0,1)

Q(s)
e

=

∑
(e,s)̸=(0,1)

eitϵ
(s)
e (λ)Q(s)

e + tr
(
ρS,β,0 ·

)
. (4.3)

Combining (4.3) with (3.57) (with error ∝ λ2 due to the product form of the initial condition) gives

ω0
(
αt
λ(X ⊗ 1R)

)
= trS

(
(ρS,β,λ − ρS,β,0)X

)
+ ω0

(
eitM(λ)(X) ⊗ 1R

)
+ O(λ2 e−γ (λ)t ). (4.4)

The first term on the right side is O(λ2), hence

ω0
(
αt
λ(X ⊗ 1R)

)
= ω0

(
eitM(λ)(X) ⊗ 1R

)
+ O(λ2), (4.5)

where the remainder is uniform in t . Eq. (4.5) gives an approximation of the Heisenberg system
dynamics by the semigroup eitM(λ), up to a precision O(λ2), for all times. Notice that the state
ωS,β ⊗ ωR,β , where ωS,β is given by the system equilibrium state ρS,β,0, is invariant under this
dynamics (see (4.2)). We now show that if we truncate the generator M(λ) by taking into account
only the part up to O(λ2) in the eigenvalues ϵ(s)e (λ) in (4.1), then we obtain a CPT semigroup. Using
that15

eitϵ
(s)
e (λ)

= eit(e+λ
2a(s)e )

+ O
(
λ4t e−λ2t(γFGR+O(λ2))), (4.6)

14 Note that Q (1)
0 (X ⊗ 1S)ΩS,β = (trρS,β,0X)ΩS,β , so by (3.54) Q(1)

0 (X) = tr(ρS,β,0X)1S .
15 We have eitϵ(λ) = eit(e+λ

2a+O(λ4))
= eit(e+λ

2a)
+ eit(e+λ

2a)
[ eitO(λ

4)
−1] and | eitO(λ

4)
− 1| = |iO(λ4)

∫ t
0 eisO(λ

4)ds| ≤ Cλ4tetλ
4c ,

for some C, c > 0 independent of λ, t .
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we obtain(
eitM(λ)(X) ⊗ 1S

)
ΩS,β =

∑
e,s

eitϵ
(s)
e Q (s)

e (X ⊗ 1S)ΩS,β

= eit(LS+λ
2Λ)(X ⊗ 1S)ΩS,β + O

(
λ4t e−λ2t(γFGR+O(λ2))), (4.7)

where the total level shift operator is defined to be

Λ =

⨁
e∈spec(LS)

Λe, (4.8)

with Λe given in (3.49). We now define the group δtλ, acting on system observables, by(
δtλ(X) ⊗ 1S

)
ΩS,β = eit(LS+λ

2Λ)(X ⊗ 1S)ΩS,β . (4.9)

Combining (4.5) and (4.7) we get, for γFGR > 0,

ω0
(
αt
λ(X ⊗ 1R)

)
= ω0

(
δtλ(X) ⊗ 1R

)
+ O(λ2). (4.10)

By duality, we have trS(ρ δtλ(X)) = trS((etGρ)X) for all system density matrices ρ and all system
observables X . We have eitLS (X ⊗ 1S)ΩS,β = ( eitHSX e−itHS ⊗ 1S)ΩS,β , which follows simply from
e−itLSΩS,β = ΩS,β . This gives a contribution −i[HS, ·] to the generator G. For nonzero λ, we then get
Gρ = −i[HS, ρ] + λ2Kρ, with K satisfying (2.30), see also the Appendix.

Since (LS+λ2Λ)ΩS,β = 0 we have δtλ(1S) = 1S. It remains to prove that δtλ is completely positive.

4.1.1. Proof that δtλ is CP
It follows from (4.10) that

lim
λ→0

ω0
(
α
t/λ2
λ ◦ α

−t/λ2
0 (X ⊗ 1R)

)
= ω0

(
σ t (X) ⊗ 1R

)
, (4.11)

where σ t is defined by(
σ t (X) ⊗ 1S

)
ΩS,β = eitΛ(X ⊗ 1S)ΩS,β . (4.12)

Since limits of CP maps are CP, we know from (4.11) that σ t is CP. Next, δtλ is the composition of
two CP maps,

δtλ =
(
eitHS · e−itHS

)
◦ σ λ

2t ,

and hence it is CP itself. This shows (2.27).

4.2. Proof of (2.32)

4.2.1. The renormalized quantities
The reduced system equilibrium density matrix ρS,β,λ is defined by the relation

tr
(
ρS,β,λX

)
= ωSR,β,λ(X ⊗ 1R), ∀X (4.13)

where ωSR,β,λ is the coupled system–reservoir equilibrium state whose purification is (3.20). We
introduce the renormalized system Hamiltonian H̃S(λ) by the relation (2.31). This defines H̃S(λ)
only up to an additive term ∝ 1S. Of course, we would like the property H̃S(0) = HS, which will
determine this additive term. Without loss of generality, we suppose that min specHS = 0 (the
smallest eigenvalue of HS is normalized to be at the origin). Let Ẽ0(λ) be the smallest eigenvalue of
H̃S(λ). We have from (2.31) that tr( e−βH̃S(λ)) ∥ρS,β,λ∥ = e−βẼ0(λ), where ∥ρS,β,λ∥ is the operator
norm of the density matrix. Then we impose the normalization Ẽ0(λ) = 0, which amounts to
tr( e−βH̃S(λ)) = 1/∥ρS,β,λ∥ and so we define

H̃S(λ) = −
1
β

ln
ρS,β,λ

∥ρS,β,λ∥
. (4.14)
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By simple perturbation theory we have ρS,β,λ = ρS,β,0 + O(λ2).16 It follows from (4.14) that

H̃S(λ) = HS + O(λ2), (4.15)

where HS is the original, uncoupled system Hamiltonian (2.2). The spectral representation of the
renormalized Hamiltonian is

H̃S(λ) =

N∑
j=1

Ẽj |̃φj⟩⟨̃φj|, (4.16)

where Ẽj and φ̃j depend on λ and satisfy

|Ej − Ẽj(λ)| = O(λ2), ∥φj − φ̃j(λ)∥ = O(λ2). (4.17)

In analogy with (3.23) we introduce the Liouvillians

L̃0 = L̃S + LR
L̃S = H̃S ⊗ 1S − 1S ⊗ CH̃S C
LR = HR ⊗ 1R − 1R ⊗ HR (4.18)

where C is the operator taking complex conjugation of coordinates in the basis of eigenvectors {φj}

of HS. A purification of ρS,β,λ is given by the vector (̃Z is a normalization constant)

Ω̃S,β,λ = Z̃−1/2
N∑
j=1

e−βẼj/2φ̃j ⊗ Cφ̃j. (4.19)

Namely, for any system observable X , we have

trS(ρS,β,λX) = ⟨Ω̃S,β,λ, (X ⊗ 1S)Ω̃S,β,λ⟩. (4.20)

We also define

Ω̃0 = Ω̃S,β,λ ⊗ΩR, (4.21)

where ΩR is the vacuum (3.5). It is clear from the definitions (4.18), (4.19) and (4.21) that

L̃SΩ̃S,β,λ = 0 and L̃0Ω̃0 = 0. (4.22)

Given an eigenvalue ẽ of L̃0 (the eigenvalues of L̃0 and of L̃S are the same17), we denote by P̃̃e the
associated spectral projection and we define the level shift operators (compare with (3.42), (4.8))

Λ̃ẽ = −P̃̃eIP̃⊥

ẽ (̃L0 − ẽ + i0)−1I P̃̃e, Λ̃ =

⨁
ẽ∈spec(̃LS)

Λẽ. (4.23)

A perturbation theory argument based on (4.15) shows that Λ̃ẽ−Λe = O(λ2). Assuming that the Λe
have the expansion (3.49) (where all a(s)e are distinct, for simplicity), the operator Λ̃ẽ has a similar
expansion,

Λ̃ẽ =

me∑
s=1

ã(s)ẽ Q̃ (s)
ẽ , (4.24)

where ã(s)ẽ and Q̃ (s)
ẽ are the eigenvalues and rank-one eigenprojections, satisfying

a(s)e = ã(s)ẽ + O(λ2), Q̃ (s)
ẽ = Q (s)

e + O(λ2). (4.25)

16 The correction linear in λ vanishes, since in our models, the interaction is linear in the field (c.f. (2.1)) and⟨
ΩR, ϕβ (g)ΩR

⟩
= 0.

17 The spectrum of LS covers the whole real line and is absolutely continuous except for a simple eigenvalue at the
origin (with eigenvector ΩR). So the eigenvectors of L̃0 are exactly ΨS ⊗ΩR , where ΨS are eigenvectors of L̃S . And these
eigenvectors correspond to the same eigenvalues of the two operators. Of course, the whole spectra do not coincide: L̃0
has additionally continuous spectrum covering R.



24 M. Merkli / Annals of Physics 412 (2020) 167996

One also shows that (compare with (3.51), and see [31], Proposition 3.2)

Λ̃0Ω̃0 = 0, i.e., ã(1)0 = 0, Q̃ (1)
0 = |Ω̃0⟩⟨Ω̃0|. (4.26)

4.2.2. The resonance expansion
The vector Ω̃0 is cyclic and separating and furthermore, one can find an operator D′, which

commutes with all system–reservoir observables,18 and which satisfies

Ω̃0 = D′ΩSR,β,λ, D′
= 1 + O(λ). (4.27)

(The existence of a bounded D′ belonging to the commutant of the operator algebra, and which
satisfies (4.27) to arbitrary precision, is guaranteed by the separating property of ΩSR,β,λ. However,
(4.27) is an equality, not an approximation. The equality can be obtained due to the special form of
the vectors involved, see [31].) We take initial conditions of the form

Ψ0 = B′Ω̃0 = B′D′ΩSR,β,λ, (4.28)

where B′ belongs to the commutant (as before) and where the second equality follows from (4.27).
Varying over B′, the vectors Ψ0 form a dense set. We repeat the argument in (3.36),

ω0
(
αt
λ(X ⊗ 1R)

)
=

⟨
Ψ0, eitLλ (X ⊗ 1S ⊗ 1R) e−itLλΨ0

⟩
=

⟨
Ψ0, B′D′ eitLλ (X ⊗ 1S ⊗ 1R)ΩSR,β,λ

⟩
. (4.29)

Then we perform again the spectral deformation, (3.38) and deform the contour of integration, to
arrive at (compare with (3.45))

ω0
(
αt
λ(X ⊗ 1R)

)
=

∑
e∈spec(LS)

me∑
s=1

eitϵ
(s)
e

⟨
[(D′B′)∗Ψ0]θ̄ ,Π

(s)
e

(
X ⊗ 1S ⊗ 1R

)
[ΩSR,β,λ]θ

⟩
+ O

(
λ e−

3
4 θ0t

)
. (4.30)

The term e = 0, s = 1 is (see (3.47))⟨
[(D′B′)∗Ψ0]θ̄ , [ΩSR,β,λ]θ

⟩ ⟨
[ΩSR,β,λ]θ̄ ,

(
X ⊗ 1S ⊗ 1R

)
[ΩSR,β,λ]θ

⟩
= trS

(
ρS,β,λX

)
=

⟨
Ω̃0,

(
X ⊗ 1S ⊗ 1R

)
Ω̃0

⟩
=

⟨
(B′)∗Ψ0, |Ω̃0⟩⟨Ω̃0|

(
X ⊗ 1S ⊗ 1R

)
Ω̃0

⟩
. (4.31)

We use here that
⟨
[(D′B′)∗Ψ0]θ̄ , [ΩSR,β,λ]θ

⟩
= 1 and ⟨(B′)∗Ψ0, Ω̃0⟩ = 1. In the other terms, (e, s) ̸=

(0, 1), in the sum in (4.30), we replace D′ by 1 (see (4.27)), use the approximation (3.52) and retain
only the part e + λ2a(s)e in the resonance energies (see (4.6)). Then (4.30) and (4.31) give (see also
(4.6))

ω0
(
αt
λ(X ⊗ 1R)

)
=

⟨
(B′)∗Ψ0, |Ω̃0⟩⟨Ω̃0|

(
X ⊗ 1S ⊗ 1R

)
Ω̃0

⟩
+

∑
(e,s)̸=(0,1)

eit(e+λ
2a(s)e ) ⟨(B′)∗Ψ0,Q (s)

e

(
X ⊗ 1S ⊗ 1R

)
ΩSR,β,λ

⟩
+O

(
(λ+ λ4t) e−λ2t(γFGR+O(λ2))

)
+O

(
λ e−

3
4 θ0t

)
. (4.32)

Next, since e + λ2a(s)e = ẽ + λ2̃a(s)ẽ + O(λ2) and Q (s)
e = Q̃ (s)

ẽ + O(λ2) (see (4.25)), we replace in (4.32)
e+ λ2a(s)e and Q (s)

e by ẽ+ λ2̃a(s)ẽ and Q̃ (s)
ẽ , incurring an error O((λ+ λ2t) e−λ2tγFGR ) (proceed similarly

18 Some care has to be taken here as D′ is not a bounded operator, but the technicalities of this difficulty are not too
severe to overcome, see Lemma 3.4 of [31].
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as in (4.6)). But now,∑
(̃e,s)̸=(0,1)

eit (̃e+λ
2̃a(s)ẽ )Q̃ (s)

ẽ = eit (̃LS+λ
2Λ̃)P(Λ̃ ̸= 0) (4.33)

and P(Λ̃ = 0) = |Ω̃0⟩⟨Ω̃0|, where P(Λ̃ ̸= 0) and P(Λ̃ = 0) are spectral (Riesz) projections. (See
also (4.23) and (4.26).) Therefore, the two main terms on the right side of (4.32) yield the operator
eit (̃LS+λ

2Λ̃), namely,

ω0
(
αt
λ(X ⊗ 1R)

)
=

⟨
(B′)∗Ψ0, eit (̃LS+λ

2Λ̃)(X ⊗ 1S ⊗ 1R
)
Ω̃0

⟩
+O

(
(λ+ λ2t) e−λ2t(γFGR+O(λ2))

)
. (4.34)

By cyclicity of Ω̃S,β,λ, the relation

eit (̃LS+λ
2Λ̃)(X ⊗ 1S

)
Ω̃S,β,λ =

(
τ tλ(X) ⊗ 1S

)
Ω̃S,β,λ (4.35)

defines uniquely a group (in t), τ tλ , acting on system observables. Using (4.35) and commuting B′

through the observable and using B′Ω̃0 = Ψ0, we obtain for the first term on the right side of (4.34)
simply the expression ⟨Ψ0, (τ tλ(X) ⊗ 1S ⊗ 1R)Ψ0⟩ = ω0(τ tλ(X) ⊗ 1R). So (4.34) yields

ω0
(
αt
λ(X ⊗ 1R)

)
= ω0

(
τ tλ(X) ⊗ 1R

)
+ O

(
(λ+ λ2t) e−λ2t(γFGR+O(λ2))

)
. (4.36)

For initial states ω0 = ωS ⊗ ωR,β , where ωS is given by a density matrix ρ and ωR,β is the reservoir
equilibrium (or a local perturbation thereof), we get

ω0
(
αt
λ(X ⊗ 1R)

)
= trS

(
ρτ tλ(X)

)
+ O

(
(λ+ λ2t) e−λ2t(γFGR+O(λ2))

)
. (4.37)

By duality, we define uniquely M(λ), an operator acting on system density matrices, by

trS
(
ρτ tλ(X)

)
= tr

(
( etM(λ)ρ)X

)
, (4.38)

and (2.32) follows from (4.37), (4.38).
That τ tλ(1S) = 1S is clear from the definition (4.35), as (̃LS + λ2Λ̃)Ω̃S,β,λ = 0. We show below in

Section 4.2.3 that for λ, t fixed, τ tλ is a CP map.
Evolution of observables X commuting with HS. We treat the general term in the sum of (4.32)

as follows,

eiteQ (s)
e (X ⊗ 1S ⊗ 1R)ΩSR,β,λ = Q (s)

e eitLS (X ⊗ 1S ⊗ 1R)ΩSR,β,λ

= Q (s)
e eitLS (X ⊗ 1S ⊗ 1R)ΩSR,β,0 + O(λ)

= Q (s)
e (Xt ⊗ 1S ⊗ 1R)ΩSR,β,0 + O(λ)

= Q (s)
e (Xt ⊗ 1S ⊗ 1R)ΩSR,β,λ + O(λ). (4.39)

Here, we have set

Xt ≡ eitHSX e−itHS . (4.40)

The first equality in (4.39) is due to (3.50). The third one comes from e−itLSΩSR,β,0 = ΩSR,β,0 and
the remaining ones follow from ΩSR,β,λ − ΩSR,β,0 = O(λ). We now use (4.39) in the sum over
(e, s) ̸= (0, 1) in (4.32) and arrive at

ω0
(
αt
λ(X ⊗ 1R)

)
=

⟨
(B′)∗Ψ0, |Ω̃0⟩⟨Ω̃0|

(
X ⊗ 1S ⊗ 1R

)
Ω̃0

⟩
+

∑
(e,s)̸=(0,1)

eitλ
2a(s)e

⟨
(B′)∗Ψ0,Q (s)

e

(
Xt ⊗ 1S ⊗ 1R

)
ΩSR,β,λ

⟩
+O

(
(λ+ λ4t) e−λ2t(γFGR+O(λ2))

)
+ O

(
λ e−

3
4 θ0t

)
. (4.41)



26 M. Merkli / Annals of Physics 412 (2020) 167996

Replacing in the last sum eitλ
2a(s)e by eitλ

2̃a(s)ẽ we incur an error of O(λ4t e−λ2t(γFGR+O(λ2))). Now we
define the group τ td,λ, acting on system observables, by

eitλ
2Λ̃

(
X ⊗ 1S

)
Ω̃S,β,λ =

(
τ td,λ(X) ⊗ 1S

)
Ω̃S,β,λ. (4.42)

Combining (4.42) with (4.41) then yields (recall also (4.31))

ω0
(
αt
λ(X ⊗ 1R)

)
= trS

(
ρS,β,λ

(
X − Xt

))
+ ω0

(
τ td,λ(Xt ) ⊗ 1R

)
+O

(
(λ+ λ4t) e−λ2t(γFGR+O(λ2))

)
. (4.43)

Assuming that the initial state ω0 of product form we can express (4.43) in the dual space as relation
(2.33). For the invariant observables X s.t. [X,HS] = 0, we have Xt = X for all t , so

ω0
(
αt
λ(X ⊗ 1R)

)
= ω0

(
τ td,λ(X) ⊗ 1R

)
+ O

(
(λ+ λ4t) e−λ2t(γFGR+O(λ2))

)
. (4.44)

It is clear from (4.42) and (4.26) that τ td,λ(1S) = 1S. We show below in Section 4.2.3 that τ td,λ is
completely positive. Again by duality, and for an initial condition ω0 = trS(ρ ·) ⊗ ωR,β , Eq. (4.44)
becomes

trS(Vtρ)X = trS( etλ
2Md(λ)ρ)X + O

(
(λ+ λ4t) e−λ2t(γFGR+O(λ2))

)
, (4.45)

valid ∀X s.t. [X,HS] = 0. Taking X = |ϕk⟩⟨ϕk| we obtain Eq. (2.38).

4.2.3. Proof that τ tλ and τ td,λ are CP
The idea is to view τ tλ as a weak coupling dynamics and proceed as in Section 4.1.1. To do this,

introduce the Liouvillian

L̃µ = L̃0 + µλI, (4.46)

where L̃0 is given in (4.18) and the interaction I is (3.26). Here we consider µ ∈ R as the interaction
constant, and λ is viewed as part of the interaction operator. (Recall that L̃0 also depends on λ.) The
eigenvalues of the unperturbed L̃µ|µ=0 are the same as those of L̃0 and the levels shift operators
associated to (4.46) are given by (4.23) with I replaced by λI (they give the quadratic corrections
in µ to the spectrum). In other words, λ2Λ̃, with Λ̃ given in (4.23), is the (complete) level shift
operator of L̃µ. We define the dynamics γ̃ t

µ by

ω0
(
γ̃ t
µ(X ⊗ P)

)
=

⟨
Ψ0, eit̃Lµ (X ⊗ 1S ⊗ Pβ ) e−it̃LµΨ0

⟩
. (4.47)

In (4.47), X and P are system and reservoir observables, with Pβ being the representation in the
purification space, see also (3.4). The equilibrium (KMS) state associated to L̃µ is given by (compare
with (3.20))

Ω̃SR,β,µ =
e−

β
2 (̃L0+µλG⊗1S⊗ϕβ (g))ΩSR,β,0

∥ e−
β
2 (̃L0+µλG⊗1S⊗ϕβ (g))ΩSR,β,0∥

(4.48)

(and depends on λ as well). This is a cyclic and separating vector and the initial condition can be
written as Ψ0 = B′D′Ω̃SR,β,µ (c.f. (4.28)). We then obtain (c.f. (4.29))

ω0
(
γ̃ t
λ (X ⊗ 1R)

)
=

⟨
Ψ0, B′D′ eit̃Lµ (X ⊗ 1S ⊗ 1R)Ω̃SR,β,µ

⟩
(4.49)

(with B′, D′ depending on both λ and µ). Proceeding to perform the spectral deformation and
resonance expansion in the same manner as we did in Sections 3.4–4.1, we obtain (analogous to
(4.5)),

ω0
(
γ̃ t
µ(X ⊗ 1R)

)
=

⟨
(B′)∗Ψ0, eit (̃L0+µ2λ2Λ̃)(X ⊗ 1S ⊗ 1R

)
Ω̃0

⟩
+ O(µ2), (4.50)
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with a remainder term uniform in t . It follows that

lim
µ→0

ω0
(
γ̃ t/µ2

µ ◦ γ̃
−t/µ2

0 (X ⊗ 1R)
)

=

⟨
(B′)∗Ψ0, eitλ

2Λ̃
(
X ⊗ 1S ⊗ 1R

)
Ω̃0

⟩
= ω0

(
(τ td,λ(X) ⊗ 1R)

)
. (4.51)

Consequently, τ td,λ is CP. Since τ tλ = τ td,λ ◦ ( eitH̃S · e−itH̃S ) it follows that τ tλ is CP as well.

5. Conclusion

We establish rigorous bounds on Markovian approximations to the dynamics of a finite dimen-
sional quantum system linearly coupled to an environment of free quantum particles (a quantum
field). We show that the Markovian master equation is valid for all times, approximating the true
dynamics to O(λ2), λ being the system–environment coupling constant. Further, we construct a
new Markovian semigroup which is asymptotically exact, meaning that it approximates the true
dynamics and converges to the correct final state to all orders in λ, as time tends to infinity. Our
method is based on the quantum dynamical resonance theory which we explain in some detail.
In particular, we derive the theory for a wide class of initial system–reservoir states, including
entangled states. Our approach is purely analytical and our constructions are based on concrete
perturbation theory in λ, valid for all times.
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Appendix. Explicit form of the generator K

We define the generator G acting on system density matrices by

trS
(
ρ δtλ(X)

)
= trS

(
(etGρ) X

)
, (A.1)

valid for all system observables and density matrices X and ρ. Here, δtλ is given in (4.9). We show
that

Gρ = −i [HS, ρ] + λ2Kρ, (A.2)

where [·, ·] is the commutator and, denoting by {·, ·} the anti-commutator,

Kρ = ĥ(0)
N∑

k,ℓ=1

(
PkGPkρPℓGPℓ −

1
2

{
PℓGPℓ PkGPk, ρ

})
+

∑
k,ℓ : k̸=ℓ

ĥ(Ek − Eℓ)
(
PℓGPkρPkGPℓ −

1
2

{
PkGPℓGPk, ρ

})
− i [HLS, ρ] (A.3)

and

HLS =
1
π

N∑
k,ℓ=1

(
P.V.

∫
R

ĥ(u)
Ek − Eℓ − u

du
)
PkGPℓGPk. (A.4)
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Here, ĥ(u) is the Fourier transform of the correlation function,

ĥ(u) =

∫
R
e−itu ωR,β

(
ϕ(g)ϕ(gt )

)
dt, u ∈ R (A.5)

where g(k) is the form factor and gt (k) = eiω(k)tg(k). We have the expression (u ∈ R, ω ≥ 0)

ĥ(u) = Jnoise(|u|)
⏐⏐⏐⏐ eβu

eβu − 1

⏐⏐⏐⏐ , Jnoise(ω) =
π

2
ω2

∫
S2

|g(ω,Σ)|2dΣ (A.6)

(spherical coordinates). Jnoise is called the reservoir spectral density and ĥ(0) is understood as the
limit u → 0 of ĥ(u), (A.5). The first two terms in (A.3) constitute the dissipator and the commutator
is with the Lamb shift Hamiltonian HLS, representing a correction to the system energies. K is the
usual Davies generator [7–9]. It is manifestly CPT due to the results [44,45].

In order to show (A.2)–(A.4) we first calculate G∗, defined by etG∗X = δtλ(X), i.e.,(
(G∗X) ⊗ 1S

)
ΩS,β = i(LS + λ2Λ)(X ⊗ 1S)ΩS,β . (A.7)

The definitions of LS and Λ are (3.23) and (4.8), (3.42) and the system Gibbs state ΩS,β is defined
in (3.16). For any system operators X , Y and Z we have

(Y ⊗ 1S) JS(Z ⊗ 1S)JS (X ⊗ 1S)ΩS,β =
(
(YXe−βHS/2Z∗eβHS/2) ⊗ 1S

)
ΩS,β , (A.8)

where JS is the system modular conjugation (3.28). To verify (A.8) we first note that by (3.29) we
have JSLSJS = −LS and so JS = JS eβLS/2 e−βLS/2 = e−βLS/2JS e−βLS/2. This together with and (3.27)
gives

JS(X ⊗ 1S)ΩS,β = e−βLS/2(X∗
⊗ 1S)ΩS,β = ( e−βHS/2X∗ eβHS/2 ⊗ 1S)ΩS,β . (A.9)

In the last step, we have used that LS = HS ⊗ 1S − 1S ⊗ HS and LSΩS,β = 0. We now apply (A.9)
again to find out the action of JS(Z ⊗1S) on the left side of (A.8) and we easily arrive at the equality
(A.8).

It is then clear that iLS(X ⊗ 1S)ΩS,β = (i[HS, X] ⊗ 1R)ΩS,β . This gives a contribution −i[HS, · ]

to G. To calculate the contribution coming from iλ2Λ, we consider the situation where all nonzero
eigenvalue differences e = Ek − Eℓ are simple (the general case is done in the same way). Then the
projections in (3.42) are rank one for e ̸= 0, Pe = Pk⊗Pℓ⊗|ΩR⟩⟨ΩR|, where Pk = |φk⟩⟨φk| (see (2.2)).
The projection onto the eigenvalue e = 0 of LS has dimension N , Pe=0 =

∑N
j=1 Pj ⊗ Pj ⊗ |ΩR⟩⟨ΩR|.

By expanding Λe, (3.42), using the form (3.26) of the interaction I we arrive at the expressions
(A.3), (A.4).
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