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a b s t r a c t

The virial and the Hellmann–Feynman theorems for massless
Dirac electrons in a solid are derived and analyzed using general-
ized continuity equations and scaling transformations. Boundary
conditions imposed on the wave function in a finite sample are
shown to break the Hermiticity of the Hamiltonian resulting
in additional terms in the theorems in the forms of boundary
integrals. The thermodynamic pressure of the electron gas is
shown to be composed of the kinetic pressure, which is related
to the boundary integral in the virial theorem and arises due
to electron reflections from the boundary, and the anomalous
pressure, which is specific for electrons in solids. Connections
between the kinetic pressure and the properties of the wave
function on the boundary are drawn. The general theorems are
illustrated by examples of uniform electron gas, and electrons
in rectangular and circular graphene samples. The analogous
consideration for ordinary massive electrons is presented for
comparison.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Discovery of graphene [1] and three-dimensional Dirac and Weyl semimetals [2], where the
electron low-energy dynamics is described by the effective Dirac equation for massless particles,
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uncovered the new area of solid state physics of Dirac materials [3]. Peculiar properties of these
materials motivate researchers to reconsider the conventional notions and models of quantum
electron phenomena initially developed for massive electrons. One of such notions is the virial
theorem and related quantum theory of stress and pressure of electron gas [4–7].

The virial theorem for a system of interacting particles provides the relationship between average
kinetic energy, Coulomb interaction energy, and external pressure [4]. Applications of the virial
theorem in classical and quantum statistical physics include estimation of the system properties,
derivation of equations of state, checking accuracy of quantum chemistry and density functional
calculations etc. The quantum-mechanical virial theorem for a system of ordinary massive electrons
can be derived by using scaling transformations of an electron wave function [8,9] and spatial
integration of the continuity equation for momentum density [10,11]. The pressure can be exerted
on the system by Coulomb potentials of atomic nuclei [10,12], by a generic external potential,
or by impenetrable walls with the Dirichlet boundary conditions imposed on the electron wave
function. In the last case, the Hamiltonian of the system is Hermitian only in the subspace of
wave functions satisfying these conditions, and the scaling transformations drive the functions out
of the Hermiticity domain [13]. The non-Hermiticity of the Hamiltonian in the presence of the
scaling transformations results in emergence of the additional term in the virial theorem, which
is proportional to pressure and has a form of an integral of the virial current density through
the boundary [4,14–16]. An alternative way to calculate pressure as a response of the system
energy to small volume changes relies on the Hellmann–Feynman theorem. The non-Hermiticity
of a Hamiltonian of enclosed system in the space of perturbed wave functions leads to emergence
of the boundary integral in the Hellmann–Feynman theorem as well [9,14,16–18]. The consistency
between these two definitions of pressure (see Ref. [4], p. 289) requires fulfillment of a specific
boundary relationship for the wave function on the system boundary which relates its spatial
derivative to its derivative with respect to the boundary location [14,19,20]. Note that the virial
theorem is a particular case of more general stress theorem [5,6,11,12].

In the Dirac materials, the linear electron dispersion causes modification of the conventional
virial theorem [21,22]. Moreover, the momentum cutoff imposed at the bottom of the valence band
in order to bound the system energy from below leads to appearance of the additional term in
the resulting generalized virial theorem [22]. However, the proper quantum-mechanical analysis
of boundary contributions to the virial theorem for massless Dirac electrons is still lacking. The
electron wave function in these materials is multi-component and obeys the boundary conditions
which differ from the Dirichlet ones for massive electrons. For graphene, the infinite mass [23,24],
zigzag, and armchair [24–26] boundary conditions are used depending on the lattice edge crystal
structure. For three-dimensional Dirac and Weyl semimetals, various boundary conditions are
proposed [27,28]. Other possible anomalies in scaling properties of a system of massless Dirac
electrons can also give rise to additional terms in the virial theorem [29].

In this paper, we derive the generalized virial and Hellmann–Feynman theorems for massless
Dirac electrons, that contain additional terms coming from the non-Hermiticity of the Hamiltonian
in the presence of a system boundary and from the momentum cutoff. Associating these terms
with the pressure, we show that the thermodynamic pressure of Dirac electrons is the sum of the
kinetic pressure, which is caused by reflections of electrons from the boundary, and the anomalous
pressure, which is caused by redistribution of electron states during changes of the system volume
in the presence of the momentum cutoff.

For the kinetic pressure, we show that the physically relevant boundary conditions imply the
boundary relationship for the wave function, which allows us to achieve consistency between
definitions of the pressure based on the virial and Hellmann–Feynman theorems. In addition to
the total pressure, we calculate the local pressure on the boundary and connect it with the kinetic
part of the stress tensor. To illustrate the derived theorems, we consider several particular examples:
uniform electron gas in graphene, and rectangular and circular graphene flakes with the appropriate
boundary conditions. The calculations of the electron pressure in these examples are in agreement
with the generalized virial theorem.

The article is organized as follows. In Section 2 we consider the virial and Hellmann–Feynman
theorems for ordinary massive electrons, and derive the boundary relationship and the quantum-
mechanical expressions for the electron pressure. In Section 3 we provide the similar analysis for
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massless Dirac electrons and reveal the important differences stemming from the momentum cutoff
and from different form of boundary conditions. In Section 4 we consider electrons in graphene
samples of different geometries and demonstrate fulfillment of the general theorems in these
systems, and in Section 5 we summarize and discuss our results. Appendices A and B are devoted to
consideration of the scaling properties of uniform gases of massive and massless electrons, which
are closely connected with the virial theorems. In Appendix C we consider two-band model of
massive electrons and in Appendix D we calculate corrections to graphene electron gas properties
caused by electron dispersion nonlinearities.

2. Massive electrons

2.1. Virial theorem

The virial and Hellmann–Feynman theorems for a bounded system of ordinary massive elec-
trons [4] can be derived from the generalized continuity equations. We will assume that the system
is surrounded by infinitely high potential walls, so the wave function obeys the Dirichlet boundary
conditions. Consider first a single particle with a stationary state wave function ψ(r) obeying the
Schrodinger equation Hψ = Eψ locally at the point r. Multiplying this equation by ψ∗A from the
left (where A is some operator) and subtracting the Hermitian conjugate equation ψ∗H+ = Eψ∗,
which is multiplied by Aψ from the right, we get

−ψ∗[H, A]ψ + ψ∗(H − H+)Aψ = 0. (1)

Since the wave function ψ can disobey the Dirichlet boundary condition after action of A, the
Hamiltonian bracketed between ψ∗ and Aψ becomes, in general case, non-Hermitian. In coordinate
representation this non-Hermiticity is demonstrated only by the kinetic part Hkin = −h̄2

∇
2/2m of

H , and we can write

ψ∗(H − H+)Aψ = −ih̄ div J[A], (2)

where

J[A] =
h̄

2mi
ψ∗(∇ − ∇+)Aψ (3)

is the single-particle generalized current density of the quantity corresponding to the operator A,
e. g., the probability current if A = 1 or the momentum current if A = pµ [4]. Hereafter we treat
∇ ≡

−→
∇ and ∇+ ≡

←−
∇ as the operators, which act on the functions, respectively, to the right and

to the left. Substituting (2)–(3) in (1), integrating over the volume of the system Ω and applying
the Gauss theorem, we get the formula

−
i
h̄
⟨ψ |[H, A]|ψ⟩ +

∮
∂Ω

ds · J[A] = 0, (4)

which equates total generation rate of the quantity A in the system to the flux of this quantity out
of the system in a stationary state.

As A, we can take the virial (virial of momentum, to be more precise) operator

G =
r · p+ p · r

2
= −ih̄

(
r · ∇ +

D
2

)
, (5)

where D is the space dimensionality. If the particle moves in the external potential Uext(r), then
H = Hkin + Uext and [H,G] = ih̄(−2Hkin + r · ∇Uext). With A = G, Eq. (4) takes the form of the virial
theorem with the boundary term:

⟨ψ | − 2Hkin + r · ∇Uext|ψ⟩ +

∮
∂Ω

ds · J[G] = 0. (6)



4 A.A. Sokolik, A.D. Zabolotskiy and Y.E. Lozovik / Annals of Physics 412 (2020) 168001

2.2. Generalized Hellmann–Feynman theorem

Let us return to a single-particle Schrodinger equation H|ψ⟩ = E|ψ⟩ written for the whole
state vector |ψ⟩ and admit a small variation of the Hamiltonian δH and/or boundary conditions,
resulting in a small variation |δψ⟩ of |ψ⟩. Taking into account conservation of the wave function
normalization ⟨δψ |ψ⟩ + ⟨ψ |δψ⟩ = 0, which implies ⟨δψ |H|ψ⟩ = −⟨ψ |H+|δψ⟩, we can write the
variation of energy E = ⟨ψ |H|ψ⟩ as

δE = ⟨ψ |δH|ψ⟩ + ⟨ψ |H − H+|δψ⟩. (7)

Assuming the variation δλ of some parameter as a physical origin of both δH and |δψ⟩, we get the
Hellmann–Feynman theorem, generalized for the case of non-Hermitian Hamiltonian of a bounded
system:

∂E
∂λ
=

⟨
ψ

⏐⏐⏐⏐∂H∂λ
⏐⏐⏐⏐ψ⟩+ ⟨ψ ⏐⏐⏐⏐H − H+

⏐⏐⏐⏐ ∂ψ∂λ
⟩
. (8)

Using (2) and the Gauss theorem, we can rewrite (8) as

∂E
∂λ
=

⟨
ψ

⏐⏐⏐⏐∂H∂λ
⏐⏐⏐⏐ψ⟩− ih̄

∮
∂Ω

ds · J
[
∂

∂λ

]
. (9)

The boundary integrals in the virial (6) and Hellmann–Feynman (9) theorems for massive electrons
[4] can be related to the pressure, as will be shown below.

2.3. Thermodynamic pressure

The thermodynamic pressure P = −∂E/∂Ω is defined as a response of the system energy to
adiabatically slow volume change. The latter can be introduced as a uniform and isotropic dilation
or contraction of the system boundary points r→ r(1+δR/R), where R is a linear size of the system.
In this approach the Hamiltonian of the system does not change, and the wave function is affected
only by the change of boundary conditions. Taking R as a slowly varying parameter in (9), we obtain

DPΩ = −R
∂E
∂R
= ih̄

∮
∂Ω

ds · J
[
R
∂

∂R

]
. (10)

An alternative way to calculate the pressure is to assume a finite-height confining potential
Ub(r) outside the boundary added to the Hamiltonian, so we can discard the boundary integrals,
because the Hamiltonian becomes Hermitian due to vanishing of ψ and ∇ψ at |r| → ∞.
Introducing the system size dependence Ub(r) = Ũb(r/R) and applying the ordinary virial (6) and
Hellmann–Feynman theorems, we get:

⟨ψ | − 2Hkin + r · ∇Uext|ψ⟩ + DPΩ = 0, (11)
DPΩ = ⟨ψ |r · ∇Ub|ψ⟩. (12)

In this paper, we do not use this method to define the system boundary, because it is inapplicable
in the case of massless Dirac electrons, which cannot be confined by a scalar potential [1] because
their energy spectrum is unbounded from below. Instead, for both kinds of electrons we define
the boundary directly through the boundary conditions for the wave function, giving rise to the
boundary integral in (6). Connection of this integral with the physically measurable pressure will
be drawn below.

2.4. Boundary relationship

To calculate P using Eq. (10), we need to know the derivative ∂ψ/∂R on the system boundary.
Suppose ψ and ψ̃ are the wave functions of the same stationary state at, respectively, initial
and slightly perturbed boundaries (see Fig. 1). If any boundary point r0 moves outwards on a
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Fig. 1. Wave functions near the boundary at initial r0 and perturbed r0 + δr0 boundary point locations, subject to the
Dirichlet condition. The wave function change δψ(r0) is shown by the arrows.

small vector δr0, then the Dirichlet boundary conditions imply ψ(r0) = 0 and ψ̃(r0 + δr0) = 0,
and the wave function change in a fixed point is δψ(r0) ≡ ψ̃(r0) − ψ(r0) = ψ̃(r0). We can
consider ψ(r) = ψ(r; r0) as a function of the vector r and the boundary position r0, so ψ̃(r) =
ψ(r; r0+δr0), and ψ(r; r0) vanishes when its arguments coincide. Hence δψ(r0) = ψ(r0; r0+δr0) =
δr0 · ∇r0ψ(r; r0)|r=r0+O([δr0]2). By using the property (∇r + ∇r0 )ψ(r; r0)|r=r0= 0, we obtain the
boundary relationship

δψ(r0) = −δr0 · ∇ψ(r0)+ O([δr0]2). (13)

We can see from Fig. 1 that δψ is indeed proportional to ∇ψ because the main cause of the wave
function change is just a motion of the boundary and the wave function as a whole, while the change
of ∇ψ provides only a second-order contribution.

Assuming a uniform and isotropic contraction or dilation of the system boundary r0 → r0
(1 + δR/R), we get from (13) another version of the boundary relationship valid on the system
boundary (see also [14,19,20]):

R
∂ψ

∂R
= −r · ∇ψ. (14)

In Appendix A we show how this relationship can be obtained based on the scaling arguments.
Using (3), (5) (14) and the Dirichlet condition, we see that on the boundary

J[G] = ih̄ J
[
∂

∂R

]
. (15)

This formula can be applied to unify (6) and (10) as the virial theorem with the pressure term:

⟨ψ | − 2Hkin + r · ∇Uext|ψ⟩ + DPΩ = 0, (16)

DPΩ =
∮
∂Ω

ds · J[G] =
h̄2

2m

∮
∂Ω

ds · r|∇ψ |2 (17)

(here we have used that Dirichlet boundary conditions imply that ∇ψ is directed parallel to the
normal to the boundary). It is similar to (11)–(12), but formulated for a bounded system.

2.5. Local pressure

Now let us calculate from (7) the response of the system energy on arbitrary small perturbations
δr0 of the boundary points r0. Using (2)–(3) with Aψ = δψ and applying the Gauss theorem, we get

δE = −
h̄2

2m

∮
∂Ω

ds · ψ∗∇+δψ. (18)

The boundary relationship (13) allows us to rewrite it in the form

δE = −
h̄2

2m

∮
∂Ω

dsν (δr0)µψ∗∇+ν ∇µψ. (19)
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Introducing the kinetic stress tensor (or spatial part of the stress–energy tensor, or momentum flux
density) by applying (3) to the momentum operator [6],

Tµν ≡ Jν[pµ] =
h̄2

2m
ψ∗∇µ(∇+ν −∇ν)ψ, (20)

we recast (19) as

δE = −
∮
∂Ω

dsν (δr0)µTµν . (21)

Associating δE with the work done by external forces acting on the system, which are opposite to
the vector of local pressure P of the system itself, we write

δE = −
∮
∂Ω

ds δr0 · P, (22)

thus, given the arbitrariness of δr0, the comparison of (21) and (22) results in

Pµ = Tµνnν, (23)

where n is the unit normal to the boundary and directed outside. The physical meaning of Eq. (23)
is that the system pressure Pµ exerted to the surroundings at some point is caused by particle
collisions with the boundary, which transfer momentum at the rate proportional to the normal
component J[pµ] · n of the momentum flux at that point.

In the case of uniform expansion δr0 = (δR/R)r0 of the system boundary we recover (17) with
the relationship between thermodynamic and local pressures:

DPV =
∮
∂Ω

ds r · P =
∮
∂Ω

dsν rµTµν . (24)

The integrals here are independent of the choice of the origin because
∮
∂Ω

ds P = 0 for a system
being in mechanical equilibrium with its surroundings.

2.6. Many-body system

The many-body and thermal ensemble generalizations of all calculations presented above are
rather straightforward. Assume that the system state is characterized by an N-particle density
matrix

ρN =
∑
n

wn|Ψn⟩⟨Ψn|, (25)

where |Ψn⟩ are the eigenstates, H|Ψn⟩ = En|Ψn⟩, of the many-body Hamiltonian H =
∑

i[(−h̄
2
∇

2
i

/2m) + Uext(ri)] + (1/2)
∑

i̸=j Vint(ri − rj) with the energies En, entering the ensemble with the
probabilities wn. As specific examples, we can consider the many-body ground state |Ψ0⟩ at T = 0,
where wn = δn0, or the thermal state, where wn ∝ exp(−En/T ).

Introducing the one-body density matrix

ρ1(r, r′) =
∑
n

wn

∫ ∏
j

drjdr′j
∑

i

δ(r− ri)δ(r′ − r′i)Ψn(r1 . . . rN )Ψ ∗n (r
′

1 . . . r
′

N ), (26)

we can define the many-body counterpart of the generalized current (3):

J[A] =
h̄

2mi
(∇r −∇r′ )Arρ1(r, r′)

⏐⏐
r′=r . (27)

Another distinction of the many-body system is the presence of the interparticle interaction Vint,
leading to an additional term ∝ [Vint,G] in the virial theorem. For the Coulomb interaction, we
have [Vint,G] = −ih̄Vint, and the many-body virial theorem can be obtained by taking the linear
combination of the single-particle ones (6) with the coefficients wn:

⟨−2Hkin − Vint + r · ∇Uext⟩ +

∮
∂Ω

ds · J[G] = 0 (28)
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(here ⟨A⟩ is defined as Tr [ρA]). The generalized Hellmann–Feynman theorem (8) for a many-body
system is

∂E
∂λ
=

∑
n

⟨
Ψn

⏐⏐⏐⏐∂(wnH)
∂λ

⏐⏐⏐⏐Ψn

⟩
− ih̄

∮
∂Ω

ds · J
[
∂

∂λ

]
. (29)

The thermodynamics pressure P can be calculated using (29) with λ = R. At T = 0 we have
P = −∂E0/∂Ω , but at T > 0 we need to consider the free energy F to define the pressure
P = −∂F/∂Ω . In both cases the derivatives of wn in (29) do not appear in the resulting formula
for P , and we obtain

DPΩ = ih̄
∮
∂Ω

ds · J
[
R
∂

∂R

]
, (30)

which looks equivalent to (10), although with the many-body current operator (27).
The Dirichlet boundary conditions imposed on the many-body wave function Ψn(r1 . . . rN ) imply

Ψn = 0 when any of ri is located on the boundary. Therefore the same boundary relationship (13)
is valid for Ψn when r is replaced by any of its arguments ri, and Eq. (15) is valid for a many-body
system as well. Combining (15), (27), (28), and (30), we obtain the many-body counterpart of the
single-particle virial theorem (16)–(17) with the pressure term:

⟨−2Hkin − Vint + r · ∇Uext⟩ + DPΩ = 0, (31)

DPΩ =
∮
∂Ω

ds · J[G] =
h̄2

2m

∮
∂Ω

dsν rν∇µ∇ ′µρ1(r, r
′)|r′=r. (32)

Derivation of (31) in the case of power-law Uext by using scaling properties is shown in Appendix A.
The consideration (21)–(23) of the local pressure can be also repeated with the many-body kinetic
stress tensor

Tµν =
h̄2

2m
∇µ (∇ ′ν −∇ν)ρ1(r, r

′)
⏐⏐
r′=r . (33)

Alongside with the local pressure on the boundary (23), we can define the local kinetic pressure
[7,10,11]

Pbulk(r) =
1
D

(
Tµµ − σ int

µµ + rµf extµ

)
(34)

in the bulk related to a trace of the total stress tensor consisting of the kinetic part Tµν , interaction
part σ int

µν defined in an appropriate gauge [5,7,11] and the contribution of the external body forces
acting on electrons with the spatial density f extµ = −ρ1(r, r)∇µUext(r). According to the stress
theorem [5,6,11,12], the spatial average of (34) should be equal to the thermodynamic pressure:

P =
1
Ω

∫
dr Pbulk(r). (35)

3. Massless Dirac electrons

3.1. Generalized virial and Hellmann–Feynman theorems

Now we will turn to massless Dirac electrons in a solid. As a specific example, we consider
two-dimensional system of electrons in graphene, but our general theorems should be applicable
to any other Dirac materials. The massless electrons in graphene [1] have the following distinctions
from the massive ones, important for our analysis: (1) their effective (single-particle) wave function
ψ = (ψAK, ψBK, ψBK′ , ψAK′ )T is a multi-component column with the components corresponding to
the sublattices A, B and valleys K,K′; (2) the kinetic part of the Hamiltonian is Hkin = vFΣ · p,
where Σ = diag(σ,−σ) is the (4 × 4) vector matrix with the vectors composed of Pauli matrices
on the diagonal; (3) the boundary conditions imposed on the wave function are not the Dirichlet
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condition but have more diverse forms of the system of equations Mψ = ψ , with the (4 × 4)
matrices M dependent on the edge types [23–26]; (4) to define the ground state and make the
system energy bounded from below, an appropriate momentum cutoff |p| < pc deep in the valence
band should be introduced; this approach allows us to approximate the tight-binding model of
electrons in graphene, which have a physically bounded valence band, by a simpler effective model.

Now we can repeat the calculations of Section 2 with taking into account that for massless Dirac
electrons the single-particle

J[A] = vFψ+ΣAψ (36)

and many-body

J[A] = vF Tr [ΣArρ1(r, r′)]
⏐⏐
r′=r (37)

expressions for the generalized current are different from (3), (27) due to different form of the
non-Hermitian Hkin. The single-particle density matrix ρ1 in (37) is assumed to be a (4 × 4)
matrix over sublattice and valley degrees of freedom. Taking also into account that Hkin is linear
in momentum and assuming Coulomb interaction in a many-body system, that imply [H,G] =
ih̄(−Hkin − Vint + r · ∇Uext), we get the counterpart of the virial theorem (28) for massless Dirac
electrons:

⟨−Hkin − Vint + r · ∇Uext⟩ +

∮
∂Ω

ds · J[G] = 0. (38)

Eq. (38) can be compared with the generalized virial theorem, obtained in [22] by means of scaling
transformations of a many-body wave function with the imposed momentum cutoff:

⟨−Hkin − Vint + r · ∇Uext⟩ + DPΩ + pc
∂E
∂pc
= 0 (39)

(see the alternative derivation in Appendix B). Here, as in the previous sections, P = −∂E/∂Ω , and
E should be understood as the ground state energy E0 at T = 0 or as the free energy F at T > 0.
Comparing (38) and (39), we obtain for graphene

DPΩ =
∮
∂Ω

ds · J[G] − pc
∂E
∂pc

. (40)

To draw connection between the boundary term in (40) and the physical pressure caused by
electron collisions with the boundary, as in Section 2.5, we again need to consider the boundary
relationship for the wave function.

3.2. Boundary relationship and local pressure

Due to the specific form of boundary condition Mψ = ψ , the boundary relationship for massless
Dirac electrons will be different from (13) for massive electrons. We can consider Mψ − ψ as the
four-component function satisfying the Dirichlet condition on the boundary, so Eq. (13) with the
replacement ψ → Mψ − ψ can be applied in this case:

Mδψ = δψ − δr0 ·M∇ψ + δr0 · ∇ψ + O([δr0]2). (41)

The matrix M should be unitary, M+ = M−1, and anticommuting with the normal component
Σn ≡ Σ · n of the probability current operator, {M,Σn} = 0, to ensure that the particles do not
cross the boundary, i.e. J[1] · n = vFψ

+Σnψ = 0 [24,26]. Using these properties of M , we get
ψ+Σnδψ = ψ

+MΣnδψ = −ψ
+ΣnMδψ . Applying (41) and again the condition {M,Σn} = 0, we

obtain

ψ+Σnδψ = −δr0 · ψ+Σn∇ψ + O([δr0]2). (42)

This is the counterpart of the boundary relationship (13) for massless Dirac electrons.
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If the single-particle stationary state ψ is unaffected by the momentum cutoff both before and
after the boundary perturbation, then the energy change of this state can be found by using (2), (7),
(36), and Gauss theorem:

δE = −ih̄vF

∮
∂Ω

ds ψ+Σnδψ. (43)

Using (42) and introducing the kinetic stress tensor for massless Dirac particles,

Tµν ≡ Jν[pµ] = −ih̄vFψ+∇µΣνψ, (44)

we get the formulas, which are fully analogous to (21)–(23). In this derivation we did not used any
specific form of M , requiring only the absence of particle flux through the boundary, thus its results
should be applicable to any bounded system of massless Dirac electrons.

3.3. Thermodynamic pressure: kinetic and anomalous parts

Generalization of the results of Section 3.2 for a many-body system should be done with caution
because of the presence of the momentum cutoff. A generic many-body wave function Ψn can be
presented as a sum of factorized wave functions

Ψn(r1 . . . rN ) =
∑
k

C (k)
n ψ

(k)
1 (r1) . . . ψ

(k)
N (rN ), (45)

where each ψ (k)
i satisfies the boundary conditions and does not need to be an eigenfunction of the

Hamiltonian. When the boundary is perturbed, several transformations occur with this function:
first, the single-particle wave functions ψ (k)

i , which satisfy the momentum cutoff both before and
after perturbation, are changed by the values δψ (k)

i obeying (42) on the boundary. Second, some
terms in (45) disappear because one or several of ψ (k)

i in these terms cease to satisfy the momentum
cutoff condition, and some new terms with ψ (k)

i satisfying the momentum cutoff condition after the
perturbation can appear instead of the disappeared ones. Consequently, the perturbation δΨn =

δdefΨn + δcΨn can be presented as a sum of

δdefΨn(r1 . . . rN ) =
∑
k

C (k)
n

[
δψ

(k)
1 (r1) . . . ψ

(k)
N (rN )+ · · · + ψ

(k)
1 (r1) . . . δψ

(k)
N (rN )

]
, (46)

which is caused by deformations of the single-particle functions ψ (k)
i , and δcΨn, which is caused by

momentum cutoff.
Two contributions to δΨn will result, through (7), in two parts of the energy response δE to

the volume change δΩ , and, correspondingly, in two parts of the pressure. Assuming a uniform
expansion of the system boundary δr0 = (δR/R)r0 and applying (42) for each δψ (k)

i in (46), we obtain
the energy change due to single-particle wave function deformations: δdefE = −(δR/R)

∮
∂Ω

ds · J[G],
which is analogous to that for massive electrons. We can call the corresponding part of the
thermodynamic pressure P = Pkin + Panom as kinetic pressure

Pkin =
1

DΩ

∮
∂Ω

ds · J[G] =
1

DΩ
⟨Hkin + Vint − r · ∇Uext⟩, (47)

which is caused, from the physical point of view, by a transfer of momentum to the boundary during
electron reflections. The second part of P , according to (40), is equal to

Panom = −
pc
DΩ

∂E
∂pc

(48)

and can be called anomalous pressure. It is caused by redistribution of electron states during a
change of Ω due to the presence of the cutoff, which provides an additional contribution to the
energy change.
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Thus, in contrast to massive electrons, where the thermodynamic and kinetic pressures are
equal [4], in the case of massless Dirac electrons they differ by Panom, and the formulas (23), (24)
and (35) are applicable only to Pkin.

We should note that the breaking of the equality between P and Pkin is not restricted to the Dirac
model, but can appear in any solid with a filled valence band. The previously considered Dirac model
is the important example of such systems because the valence band cutoff is not just a formal tool
used to bound the system energy from below, but has observable consequences, e. g., logarithmic
renormalization of the Fermi velocity of electrons in graphene induced by Coulomb interaction [1].
Also, the Dirac model is convenient to work with because it uniformly describes both valence and
conduction bands using just a single parameter, vF. However we can extend our consideration to the
system with quadratic electron dispersion and energy gap between conduction and valence bands,
which is the simplest model of semiconductor or insulator. In Appendix C we calculate kinetic and
anomalous parts of the pressure for this model.

4. Examples

4.1. Free noninteracting electrons in thermodynamic limit

Let us consider the simplest example of free two-dimensional noninteracting electrons occupying
the single-particle states ψpγ (r) = eip·r/h̄(1, γ eiϕp )T/

√
2Ω with the energies ϵpγ = γ vFp in the

conduction (γ = +1) and valence (γ = −1) bands in the K valley of graphene. In the case of
electron doping, the states in conduction and valence bands are filled up to the Fermi pF and cutoff
pc momenta respectively [see Fig. 2(a)]. Without attributing the exact form of boundary conditions,
we can reasonably assume that in the sample of the linear size R the momenta p are quantized in
the units of 2π h̄/R. This neglect of the boundary behavior should be justified in the thermodynamic
limit of a large system. The total energy E and number N of electrons can be calculated in the
thermodynamic limit by transforming sums over momenta into integrals:

E = g
∑
pγ

ϵpγ =
gΩvF
6π h̄2 (p

3
F − p3c ), (49)

N = g
∑
pγ

1 =
gΩ
4π h̄2 (sµp

2
F + p2c ), (50)

where the sign sµ of the chemical potential distinguishes the cases of electron (sµ = +1) or hole
(sµ = −1) doping, and g = 4 is the degeneracy over valleys and spin projections. To calculate the
pressure P = −(∂E/∂Ω)N , we need to consider simultaneous changes of Ω ∝ R2 and pF which
preserve N , and the result is:

P =
gvF

12π h̄2 (p
3
F + 3sµpFp2c + 2p3c ). (51)

On the other hand, we can calculate kinetic and anomalous parts of P separately. Using (47), we
find that each electron state contributes ϵpγ /2Ω to Pkin, so

Pkin =
gvF

12π h̄2 (p
3
F − p3c ). (52)

Note that electrons in the valence band provide large negative contribution to Pkin because
they have negative group velocity that implies negative momentum transfer to the boundary on
collisions. The anomalous part of pressure can be calculated from (48) with taking into account
that pc and pF should change simultaneously to preserve N:

Panom =
gvF
4π h̄2 p

2
c (sµpF + pc). (53)

The sum of (52) and (53) gives (51) in agreement with the generalized virial theorem.
The origin of Panom can be traced by looking at Fig. 2 showing the case sµ = +1. When R is

slightly increased, the momentum quantization interval decreases, that shifts the energies of the
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Fig. 2. (a) Initial state of the electron-doped system of massless Dirac electrons occupying the states from the Fermi level
down to the momentum cutoff. (b) After adiabatic decrease of the electron momenta due to increase of the system size,
new unoccupied single-particle states marked by dashed lines appear in the bottom. (c) After electron transfers from the
Fermi level to the unoccupied states the ground state of the many-body system is restored.

occupied states closer to the Dirac point and results in the total energy change responsible for
the kinetic pressure: δE = −PkinδΩ . Since pc ≫ pF, this δE will be positive, hence Pkin < 0.
However, due to the same decrease of the quantization interval, new unoccupied states appear at
the bottom of the valence band [Fig. 2(b)]. To maintain the ground state, the system should fill these
states with electrons taken from the Fermi level [Fig. 2(c)]. The number of transferred electrons
is proportional to p2c and their energy changes are −vF(sµpF + pc), thus we obtain the additional
negative contribution δE = −PkinδΩ to the energy change, giving rise to the positive anomalous
pressure (53).

The nonlinear corrections to the dispersion away from the Dirac point affect the pressure
quantitatively, as is shown in more detail in Appendix D, but preserve the general picture of two
physically different contributions to the thermodynamic pressure.

4.2. Interacting uniform electron gas in graphene

In the case of spatially uniform electron gas in graphene with the Coulomb interaction, the
expressions (51)–(53) acquire interaction-induced corrections. Writing the energy E = Ωϵ(n, pc)
and electron number N = Ωn in terms of energy ϵ and electron n densities, we can rewrite the
generalized virial theorem (39) in the form

−3ϵ + 2n
(
∂ϵ

∂n

)
pc

+ pc

(
∂ϵ

∂pc

)
n
= 0, (54)

whereas the pressure components (47)–(48) and the total pressure become

Pkin =
1
2
ϵ, Panom = −

1
2
pc

(
∂ϵ

∂pc

)
n
, P = −ϵ + n

(
∂ϵ

∂n

)
pc

. (55)

The theorem (54) is equivalent to P = Pkin + Panom.
In the low-energy physics of graphene [1] only the properties of electron gas at low doping

levels pF ≪ pc are observable. To describe the properties of such low-doping Dirac electron gas, we
introduce the regularized energy and electron densities, obtained after subtraction of the valence
band contribution: ϵr = ϵ − ϵ0 − µ0nr, nr = n − n0 = sµgp2F/4π h̄

2, where n0 = gp2c/4π h̄
2 is the

density of electrons in the filled valence band, ϵ0 = ϵ(n0, pc) is the energy density of the filled
valence band, µ0 = (∂ϵ/∂n)pc |n=n0 is the chemical potential of the electron gas at nr = 0. Thus at
nr = 0, when the Fermi level is located in the Dirac point, we have ϵr = 0 and the regularized
chemical potential (∂ϵr/∂nr)pc = 0. Switching from ϵ(n, pc) to ϵr(nr, pc) and taking into account
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that, according to dimensionality, ε0 ∝ p3c and µ0 ∝ pc, we obtain the regularized version of the
generalized virial theorem, previously discussed in Ref. [22]:

−3ϵr + 2nr

(
∂ϵr

∂nr

)
pc

+ pc

(
∂ϵr

∂pc

)
nr

= 0. (56)

Similarly to (55), we introduce the regularized kinetic, anomalous and total pressures,

Pr,kin =
1
2
ϵr, Pr,anom = −

1
2
pc

(
∂ϵr

∂pc

)
nr

, Pr = −ϵr + nr

(
∂ϵr

∂nr

)
pc

, (57)

so the theorem (56) states Pr = Pr,kin + Pr,anom. Despite the similarity of (54)–(55) and (56)–(57),
the quantities entering these formulas are very different in value and dependencies on system
parameters.

To reveal the meaning of Pr,kin and Pr,anom, we can use the scaling form of energy density:
ϵr = ϵ

(0)
r f (Λ, rs), where ϵ(0)r = gvFp3F/6π h̄

2 is the regularized energy density of noninteracting gas,
Λ = pc/pF is the dimensionless cutoff momentum, and rs = e2/εh̄vF is the Coulomb interaction
scale (‘‘fine structure constant’’) for graphene, ε is the dielectric constant of surrounding medium.
In terms of f , we obtain Pr,anom = −(ϵ

(0)
r /2)Λ(∂ f /∂Λ). As we see, Pr,anom is caused by the cutoff

dependence of the energy, which appears only in the presence of Coulomb interaction, because
f = 1 and Pr,anom = 0 at rs = 0 (in contrast to Panom, which is nonzero even at rs = 0, see (53)).
As shown in Ref. [22], Pr,anom measures the extent of scale invariance breaking due to the cutoff
in the theorem (56). So, even after subtraction of the valence band contributions to energy and
chemical potential, the electron gas properties continue to depend on the cutoff momentum pc in
the presence of interaction.

As a specific example, we can take the Hartree–Fock approximation, in which function f can be
expanded at large Λ with sufficient accuracy as [30,31]

f = 1+ rs

{
1
4
lnΛ+

1
2
ln 2−

1
24
−

2C + 1
2π

+
3sµ
32Λ
+ O

(
1
Λ2

)}
, (58)

where C ≈ 0.916 is Catalan’s constant. In more accurate random-phase approximation [30,32], the
coefficients at lnΛ and Λ−n (n ⩾ 0) acquire additional nonlinear rs dependencies. If, generally,
f = 1 + A(rs) lnΛ + O(1/Λ) (A = rs/4 in the Hartree–Fock approximation), then the leading lnΛ
term is related to the quantity

K = Λ
∂ f
∂Λ
=

pc
ϵ
(0)
r

(
∂ϵr

∂pc

)
nr

= −
2Pr,anom

ϵ
(0)
r

, (59)

which was discussed in Ref. [22] and can be evaluated from experimental data on graphene electron
compressibility or quantum capacitance. At Λ→∞, we have K = A(rs)+ O(1/Λ). The numerical
calculations show that K is nearly constant in the range of doping levels of graphene accessible by
using the electric field effect [22]. Thus the regularized anomalous pressure Pr,anom can be related
to experimental data and to the logarithmic term in f . Note that, as seen from (58), Pr,kin is also
changed in the presence of interaction due to renormalization of electron Fermi velocity [1].

Both regularized and nonregularized thermodynamic pressures are connected with the observ-
able quantum capacitance per unit area of graphene CQ [30]:

e2C−1Q =
1
n

(
∂P
∂n

)
pc

=
1
nr

(
∂Pr

∂nr

)
pc

. (60)

In principle, we can calculate the total, unregularized pressures P , Pkin, and Panom using the known
dependence C−1Q (nr):

P = −ϵ0 + µ0n0 + e2
∫ n−n0

0
(n0 + n′r )C

−1
Q (n′r) dn

′

r, (61)

Pkin =
1
2
ϵ0 +

1
2
µ0(n− n0)+

e2

2

∫ n−n0

0
(n− n0 − n′r )C

−1
Q (n′r) dn

′

r, (62)
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Fig. 3. (a) Bulk and boundary kinetic pressure (in the units of eV/cm) of the single-particle state with quantum numbers
m = 5, n = 4, ϵ > 0 of massless Dirac electron in a rectangular graphene flake of dimensions Lx = 20 nm, Ly = 16 nm.
(b) Kinetic (orange line, bottom), anomalous (green line, top), and total thermodynamic (blue line, middle) pressure of
Dirac electrons in a rectangular graphene flake as a function of the Fermi energy. Dimensions Lx,y are the same as in (a).

and Panom = P − Pkin. Using the power series expansion of C−1Q for the interacting system,
similar to (58), we can perform the integrations analytically and obtain the interaction-induced
corrections to the unregularized pressures, caused by corresponding corrections to C−1Q studied in
Ref. [30]. However the formulas (61)–(62) contain the parameters n0, ϵ0, and µ0 of the filled valence
band, which can be the sources of additional interaction-induced corrections. In estimating these
parameters, we also need to take into account deviations from the linear dispersion at large electron
momenta (see Appendix D).

4.3. Rectangular graphene flake

Here we consider the single-particle states of massless Dirac electrons in a rectangular graphene
sample with zigzag horizontal edges and armchair vertical edges, imposing the corresponding
boundary conditions: ψAK = ψAK′ = 0 at the bottom edge, ψBK = ψBK′ = 0 at the top edge,
ψAK + ψAK′ = ψBK + ψBK′ = 0 on the left edge, e2πνiψAK + ψAK′ = e2πνiψBK + ψBK′ = 0 on the right
edge, where ν = ±2/3 or 0 depending on the atomic-scale details [25,26]. Hereafter we set h̄ ≡ 1,
vF ≡ 1 in the formulas; in numerical calculations, we take vF = 106 m/s and such cutoff pc that
the filled valence band has two electrons per unit cell of graphene, which corresponds to the cutoff
energy around 7.2 eV. In a Lx × Ly rectangle, the (not normalized) eigenstates ψ = (eikxx sin kny,
∓(−1)neikxx sin kn(Ly− y), ±(−1)ne−ikxx sin kn(Ly− y), −e−ikxx sin kny)T with energies ϵ = ±

√
k2x + k2n

are determined by quantum numbers m ∈ Z and n, where kx = (− 2
3ν + m)π/Lx (we take

ν = 0), and kn is the nth positive root of the equation kn = −kx tan knLy. The local pressure on
the boundaries as defined in (23) is constant at the zigzag edges and oscillates along the armchair
ones. These oscillations occur because the zigzag edges preserve the valley of the incident wave
so in the direction normal to them a standing wave pattern is formed, while the armchair edges
change the valley so there is no interference between incident and reflected waves. Besides the
local pressure on the boundaries, we calculate the local bulk pressure (34), which equals simply
1
2ϵψ

+ψ . It is constant over the x direction and oscillates over the y direction. The example of a
typical pressure distribution for one single-particle state is shown in Fig. 3(a). If we consider the
pressure distribution of a many-body system with many different states occupied, the oscillations
of the pressure disappear, but the feature of zero boundary pressure in the x direction at the angles
of the flake is preserved.

To calculate the kinetic pressure of the many-body system according to (47), which in the
noninteracting case reduces to Pkin = E/2LxLy, and the anomalous pressure (48), we need to
consider the total energy E as a function of pc with a constant N . Due to discrete nature of the energy
spectrum, the derivative (∂E/pc)N is the sum of Dirac delta functions, so they should be smoothened
(replaced by Lorentzians in our calculations) to get sensible result for Panom. Both contributions to
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Fig. 4. Distribution of local bulk pressure (in eV/cm2 , without spin and valley degeneracies) for single-particle states in
the circular graphene flake with radius R = 10 nm at quantum numbers j = 3/2, n = 2, γ = ±1 in, respectively, the
top and the bottom row, and for the Coulomb impurity dimensionless charges g̃ = −0.4, 0, 0.4 in, respectively, the left,
middle, and right columns.

the pressure are shown in Fig. 3(b). In the region of large momenta, where the energy levels are
spaced densely enough, the picture is expectedly very similar to the case of free Dirac electron gas,
described by Eqs. (52)–(53). Note that the total thermodynamic pressure is positive everywhere.

4.4. Circular graphene flake in Coulomb potential

For a circular flake, we impose the infinite mass boundary condition ψB = ieiφψA, where
φ is the polar angle of the direction normal to the boundary [23], which decouple the valleys
and allows considering only a single valley. To study the effects of the external potential in the
circular geometry, we assume the presence of a Coulomb impurity in the center. Without external
potential, the solutions of the Dirac equation are given by Bessel functions; for a subcritical Coulomb
potential −Ze2/r ≡ g̃ h̄vF/r , |g̃| < 1/2, the solutions are given by the Coulomb wave functions [33].
The quantum numbers defining a solution are the half-integer angular momentum j, the radial
quantum number n ∈ N, and the energy sign γ . The electron–hole symmetry of the system requires
ϵγ ,j,n(g̃) = −ϵ−γ ,−j,n(−g̃). The local pressure on the boundary (23) is uniform due to the circular
symmetry of the system. The distributions of the local bulk pressure (34), which now includes the
contribution of the external Coulomb force, are shown in Fig. 4 for several single-particle states. As
shown in Fig. 5(a), the states with the same quantum numbers have higher quantum pressure (both
the total kinetic pressure and the local boundary pressure) at higher values of the Coulomb potential
parameter g̃ in the agreement with Eq. (47): the repulsive potential increases the pressure by
pushing the electrons towards the boundary, while the attractive potential decreases the pressure
by pulling the electrons to the center.

Fig. 5(b) shows the kinetic, anomalous (smoothened with Lorentzians), and total pressure of
Dirac electrons in a circular flake. In comparison with Fig. 3(b), here the smaller size of the flake
leads to visible deviations of the anomalous pressure from the linear trend (53) near the Dirac point,
but the agreement with thermodynamic limit (52)–(53) is restored at large Fermi momenta.

5. Discussion

Using the generalized continuity equation and scaling transformations, we derived and analyzed
the virial and Hellmann–Feynman theorems for single- and many-electron systems with taking
into account the presence of system boundaries. The boundary conditions imposed on the wave
function make the Hamiltonian generally non-Hermitian, which results in appearance of additional
terms in (6), (9) in the form of boundary integrals. We start with the case of massive electrons and
analyze the thermodynamic pressure as a response of a system energy on small volume changes
and relate the pressure to the boundary term in the virial theorem (16)–(17) using the boundary
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Fig. 5. (a) The dimensionless kinetic pressure on the boundary, given by the normal momentum current, in the circular
flake of radius R with Coulomb impurity as a function of the Coulomb potential parameter for various quantum numbers.
(b) Kinetic (orange line, bottom), anomalous (green line, top), and total thermodynamic (blue line, middle) pressures of
Dirac electrons in a circular graphene flake (R = 4 nm, g̃ = −0.4) as functions of the Fermi energy.

relationships (13)–(14). Besides, we find the local pressure as a response (22) of the energy on local
deformations of the boundary and connect it with the kinetic part of the stress tensor (20), (23). The
formulas are first derived for a single-particle system and then generalized for a many-body system
in Section 2.6. While the most of these relationships for massive electrons can be found elsewhere
[4,10,13–17,19,20], we presented them for the sake of completeness. The connection (22)–(23)
between energy change and boundary perturbations is also known in the boundary perturbation
theory of the boundary-value problems [34].

For massless Dirac electrons in a solid the similar formulas are different in some aspects because
of the linear dispersion, different forms of boundary conditions for a wave function and due to
the presence of momentum cutoff in the valence band. The latter results in appearance of the
cutoff-induced term in the generalized virial theorem (39), and the thermodynamic pressure (40)
turned out to consist of two parts. The first part is the kinetic pressure (47), which is just a
sum of responses of single-particle energies weighted with their occupation numbers. Using the
boundary relationships (41), (42) for massless Dirac electrons, we can relate it, analogously to
(23), to the kinetic stress tensor. Thus the kinetic pressure is caused by momentum transferred
by electrons to the surroundings during their reflections from the boundary. The second part is the
anomalous pressure (48), which is related to the momentum cutoff and caused by redistribution of
electron states during a volume change, as shown in Fig. 2. Note that the problem of consistency
between kinetic and thermodynamic definitions of the pressure, resolved for ordinary massive
electrons [14,19,20] with the help of the boundary relationships, rises again in the case of massless
Dirac electrons because of the anomalous contribution.

The example of free electrons considered in Section 4.1 demonstrates that while the total kinetic
pressure of an electron gas in graphene is negative due to overwhelming contribution of the valence
band, it is overcompensated by the anomalous pressure, making the thermodynamic pressure
positive. The examples of rectangular and circular graphene flakes with the zigzag, armchair and
infinite effective mass boundary conditions for the wave functions demonstrate fulfillment of the
general theorems.

The pressure P studied in this paper is related to the grand thermodynamic potential Ωg =

−PΩ of the electron gas, so taking its derivatives with respect to the parameters can provide all
thermodynamic properties. The derivatives of P with respect to the electron density are related
to such observable quantities as electron compressibility and quantum capacitance, which were
studied in graphene in the context of interaction and disorder-induced effects [30]. In Section 4.2
we consider connection of P , Pkin, Panom with quantum capacitance. Our analysis of a bounded
system allows to extend these studies by including the effects of boundary conditions in small
graphene flakes. The general theorems derived here can be applied not only to graphene, but also
to three-dimensional Dirac and Weyl semimetals, which host massless Dirac electrons as well [2,3].

The changes of the volume of the system considered in this paper concern only electron
subsystem and not the crystal lattice itself. We analyze what happens with the electrons described
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by the effective Dirac equation when we move the boundary conditions without deforming the
lattice, so pc = const in these processes. However the other kind of the system volume changes,
when graphene is compressed or stretched as a whole, can be considered. In this case the energy
change can be related to a total mechanical stress and total mechanical compressibility of graphene.
Analysis of such graphene properties should include, besides the considered response of Dirac
electrons, the responses of the core electrons and atomic nuclei, which is beyond the scope of our
paper.

The problem of breaking the equality between thermodynamic and kinetic pressures due to the
anomalous contribution is not unique for Dirac particles and can arise in any solid state system
with the filled valence band. Change of electron number in this band proportional to the change
of enclosing volume requires electron transitions between valence and conduction bands, which
provide anomalous contribution to the total pressure. As the recent study [35] suggests, such
transitions can proceed through the Tamm states inside the energy gap.

The momentum cutoff deep in valence band of graphene, which results in appearance of the
‘‘anomalous’’ terms in the generalized virial theorem and pressure, may be considered as an artificial
construct, however in solids with massless Dirac electrons it has real physical grounds, because
valence band is indeed bounded in energy and momentum spaces. In graphene it leads to a
finite-valued logarithmic renormalization of the Fermi velocity due to Coulomb interaction [1].
Nevertheless, more accurate analysis with going beyond the Dirac model and with taking into
account Tamm states on the boundaries can provide more insight into the problem of electron
gas pressure in solids with unusual band structure. The study of relationship between kinetic and
thermodynamic pressures with taking into account other possible anomalies can be extended to a
broader context of statistical physics of confined many-particle systems.
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Appendix A. Scaling relations for uniform system of massive electrons

Consider a system of N massive electrons with Coulomb interaction Vint(r) = e2/εr in the
external power-law potential Uext(r) = U0rγ , confined in the volume Ω by infinitely high potential
walls. This system is described by the many-body Schrodinger equation⎧⎨⎩∑

i

(
−

h̄2
∇

2
i

2m
+ U0r

γ

i

)
+

1
2

∑
i̸=j

e2

ε|ri − rj|

⎫⎬⎭Ψ = EΨ . (A.1)

On the boundary we impose the Dirichlet condition: Ψ (r1 . . . rN ) = 0 when ∀i : ri ∈ ∂Ω .
With the characteristic size of Ω being R, we can switch to the dimensionless coordinates

ρi = ri/R, and the wave function is scaled as Ψ (r1 . . . rN ) = R−ND/2Ψ̃ (ρ1 . . . ρN ). Introducing the
dimensionless energy Ẽ = mR2E/h̄2, interaction strength rs = e2mR/εh̄2, and external potential
strength ~ = U0mRγ+2/h̄2, we obtain the scaled equation⎧⎨⎩∑

i

(
−

1
2
∂2

∂ρ2
i
+ ~ρ

γ

i

)
+

1
2

∑
i̸=j

rs
|ρi − ρj|

⎫⎬⎭ Ψ̃ = ẼΨ̃ , (A.2)

which does not depend on R explicitly. The boundary conditions for Ψ̃ depend only on the shape
of Ω and not on its size. As a result, we obtain the scaling forms

Ψ (r1 . . . rN ) =
1

R
ND
2
Ψ̃

(
r1
R
. . .

r1
R
;
e2mR
εh̄2 ,

U0mRγ+2

h̄2

)
, (A.3)
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E =
h̄2

mR2 Ẽ
(
e2mR
εh̄2 ,

U0mRγ+2

h̄2

)
. (A.4)

Calculating derivatives of (A.3) and (A.4) with respect to R, we obtain the following scaling
properties of Ψ and E:{

−

(∑
i

ri · ∇i +
ND
2

)
− R

∂

∂R
+ e2

∂

∂(e2)
+ (γ + 2)U0

∂

∂U0

}
Ψ = 0, (A.5)

−R
∂E
∂R
− 2E + e2

∂E
∂(e2)

+ (γ + 2)U0
∂E
∂U0
= 0. (A.6)

Since e2(∂E/∂(e2)) = ⟨Vint⟩ and γU0(∂E/∂U0) = ⟨r · ∇Uext⟩, we can immediately identify (A.6) as
the virial theorem (31) for the case of power-law Uext(r). Eq. (A.5) should be valid in all points
of space, so if one of the ri is located on the boundary, ∂Ψ /∂(e2) and ∂Ψ /∂U0 vanish due to the
Dirichlet boundary condition, so we obtain (

∑
i ri · ∇i)Ψ = −R(∂Ψ /∂R) and hence the many-body

counterpart of the boundary relationship (14).

Appendix B. Scaling relations for uniform system of massless Dirac electrons

A system of N massless Dirac electrons with Coulomb interaction Vint(r) = e2/εr in the external
power-law potential Uext(r) = U0rγ , confined in the volume Ω , is described by the many-body
Dirac equation:⎧⎨⎩∑

i

(
−ih̄vFΣi · ∇i + U0r

γ

i

)
+

1
2

∑
i̸=j

e2

ε|ri − rj|

⎫⎬⎭Ψ = EΨ . (B.1)

Some boundary conditions of the kind MiΨ = Ψ , not specified explicitly here, are imposed on
Ψ (r1 . . . rN ) when ∀i : ri ∈ ∂Ω . We should also impose the momentum cutoff condition PpcΨ = Ψ ,
where the operator Ppc of projection on the subspace |pi| ≤ pc of momentum space was described
in Ref. [22].

As in Appendix A, we use the dimensionless coordinates ρi = ri/R and the scaled wave function
Ψ (r1 . . . rN ) = R−ND/2Ψ̃ (ρ1 . . . ρN ). Introducing the dimensionless energy Ẽ = RE/h̄vF, interaction
constant rs = e2/εh̄vF, and the external potential strength ~ = U0Rγ+1/h̄vF, we obtain the scaled
Dirac equation:⎧⎨⎩∑

i

(
−iΣi ·

∂

∂ρi
+ ~ρ

γ

i

)
+

1
2

∑
i̸=j

rs
|ρi − ρj|

⎫⎬⎭ Ψ̃ = ẼΨ̃ . (B.2)

The boundary conditions for Ψ̃ are now independent on R, and the cutoff condition depends only
on the dimensionless parameter Λ = Rpc. The resulting scaling forms of Ψ and E are

Ψ (r1 . . . rN ) =
1

R
ND
2
Ψ̃

(
r1
R
. . .

r1
R
;

e2

εh̄vF
,
U0Rγ+1

h̄vF
, Rpc

)
, (B.3)

E =
h̄vF
R

Ẽ
(

e2

εh̄vF
,
U0Rγ+1

h̄vF
, Rpc

)
. (B.4)

Calculating derivatives of (B.3) and (B.4) with respect to R, we obtain the scaling properties:{
−

(∑
i

ri · ∇i +
ND
2

)
− R

∂

∂R
+ (γ + 1)U0

∂

∂U0

}
Ψ = 0, (B.5)

−R
∂E
∂R
+ pc

∂E
∂pc
− 2E + (γ + 1)U0

∂E
∂U0
= 0. (B.6)

Taking into account that γU0(∂E/∂U0) = ⟨r · ∇Uext⟩ we obtain from (B.6) the generalized virial
theorem (39). The Eq. (B.5) can be interpreted as a counterpart of (14) for the many-body wave
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function subject to momentum cutoff. The scaling analysis of a system of massless Dirac electrons
can be also found in [29].

Appendix C. Massive electrons in a two-band model

Consider a two-band model with nonzero effective mass:

Hkin =

(
∆+

p2

2m

)
σz . (C.1)

This is the simplest model description of conduction and valence bands of a semiconductor or
insulator separated by the gap 2∆.

If the momentum cutoff at p = pc is imposed in the valence band, it can be shown in the same
way as in the Dirac case that the anomalous pressure arises in such system, too. In particular, in
the two-dimensional noninteracting many-body system with degeneracy factor g , the number of
particles N is given by Eq. (50), while the energy, the thermodynamic pressure, and the kinetic and
the anomalous contributions to it are given by the following expressions (the derivatives are taken
at constant N):

E =
gΩ
2π h̄2

{
p4F − p4c
8m

+∆
p2F − p2c

2

}
, (C.2)

P = −
∂E
∂Ω
=

g
2π h̄2

{
(sµp2F + p2c )

2

8m
+ (sµ + 1)∆

p2c
2

}
, (C.3)

Pkin =
E
Ω

⏐⏐⏐⏐
∆→0
=

g
2π h̄2

p4F − p4c
8m

, (C.4)

Panom = −
pc
2Ω

∂E
∂pc
=

g
2π h̄2

{
(sµp2F + p2c )p

2
c

4m
+ (sµ + 1)∆

p2c
2

}
. (C.5)

Here sµ = ±1 for, respectively, electron- and hole-doped material. Similarly to the case of
noninteracting Dirac electrons (Section 4.1), at pc ≫ pF we have Pkin < 0, but the total pressure is
positive due to anomalous contribution.

Appendix D. Corrections to pressure due to dispersion nonlinearities

For noninteracting Dirac electrons in graphene with perfectly linear dispersion, the kinetic and
the anomalous pressures are given by the Eqs. (52) and (53). However far away from the Dirac point
the dispersion has nonlinear corrections [1]. Here we consider the corrections to the pressure from
these nonlinearities.

If the nearest-neighbor tight-binding Hamiltonian for the 2pz orbitals of carbon atoms in
graphene is expanded near the K point [1], the first term is linear in the momentum p, the next term
is the trigonal warping proportional to p2 sin 3ϕp which provides no contribution to the pressure
after integration over the polar angle ϕp, and the cubic term is: δϵ(3)pγ = −(7/64)γ vFp3(d/h̄)2 where
d is the interatomic distance. The corrections to the kinetic and anomalous pressures caused by δϵ(3)pγ
are:

δP (3)
kin =

21gκvF
1280π h̄2

(
1−

p5F
p5c

)
p3c , δP (3)

anom = −
7gκvF
256π h̄2 (sµp

3
F + p3c ), (D.1)

where κ = (pcd/h̄)2. If we take such cutoff pc that the filled valence band has two electrons per unit
cell, as in Section 4.3, then κ = 4π/3

√
3, and the kinetic pressure nearly halves in absolute value,

while the anomalous pressure drops by one quarter near the Dirac point. The next-order correction
is much less significant though.

We also consider the isotropic quadratic correction coming from the next-to-nearest-neighbor
hopping, δϵ(2)pγ = νvFp2d/h̄, where ν = 3t2/2t , t and t2 are the nearest-neighbor and the
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next-to-nearest-neighbor hopping integrals. The corresponding pressure corrections are:

δP (2)
kin =

gνκ1/2vF

8π h̄2

(
p4F
p4c
− 1

)
p3c , δP (2)

anom =
gνκ1/2vF

4π h̄2 (sµp2F + p2c )pc. (D.2)

If we take the upper bound ν = 0.3 [1], then the correction approximately doubles the kinetic
pressure and increases the anomalous pressure by half.
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