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a b s t r a c t

The exact solutions of the Dirac equation that describe a mas-
sive, non-charged particle with spin−

1
2 in the curved space-

time geometry of regular Bardeen black hole surrounded by
quintessence (BBHSQ) are investigated. We first derive the Dirac
equation in the BBHSQ background using a null tetrad in the
Newman–Penrose formalism. Afterwards, we separate the Dirac
equation into ordinary differential equations for the radial and
angular parts. The angular equations are solved exactly in terms
of standard spherical harmonics. The radial part equations are
transformed into one-dimensional Schrödinger like wave equa-
tions with effective potentials. The effect of the quintessence
on the regular Bardeen black hole is analyzed via the physical
behaviors of the effective potentials. We also exhibit the poten-
tial graphs by changing the quintessence parameters, magnetic
monopole charge parameter, and the frequency of the particle in
the physically acceptable regions. Finally, we study the greybody
factors of bosons and fermions from the BBHSQ.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

At astrophysics scale, observations confirm the accelerating expansion of the universe [1]. To
explain the expansion, it is suggested that the matter content in the universe has a negative pressure
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called dark energy [2]. There are two kinds of negative pressure, first the cosmological constant [3,4]
and the second is the so-called quintessence that causes the acceleration of the universe [5–7].
Quintessence is characterized by the state equation: p = wqρq where p is the pressure, ρq is the
energy density, and wq is the state parameter. In addition, the scalar fields are also hypothetical
forms of dark energy where a broad types of scalar field models have been suggested such as
quintessence [8–15], phantom models [16–20], K-essence [21,22], quintom [23,24], and so on.
Ultimately, the difference between these models is due to the magnitude of wq and for quintessence
−1 ≤ wq ≤ −

1
3 . The quintessence model refers to a minimally coupled scalar field with a potential

which decreases as the field increases. Quintessence is a scalar field with an equation of state where
wq is given by the potential energy and a kinetic term. Hence, quintessence is dynamic and generally
has a density, and wq parameter varies with time. By contrast, a cosmological constant is static,
possessing a fixed energy density, and it has wq = −1.

Usually, black holes (BHs) have singularity inside the horizon. However, Bardeen BH (BBH)
is a regular BH which does not have singularity inside the horizon. It was first introduced by
Bardeen [25]. Since Bardeen introduced his model, many other models of spherical symmetric
regular BHs were presented in the literature [26–36]. Later, in Ref. [37,38] the authors have shown
that BBH model is explained as the gravitational field produced by a nonlinear magnetic monopole.
This explanation was extended so that it includes nonlinear electric charge. Moreover, regular BHs
surrounded by quintessence have received major attention. Kiselev [8] obtained the first analytical
solutions with spherical symmetry with quintessence surrounding the static BHs. Later, the gener-
alization of Kiselev solutions was obtained by constructing their rotating counterpart [39,40]. On
the other hand, the effect of quintessence on BHs has received considerable attention and their
thermodynamics has been investigated. For example, in Ref. [41] the thermodynamic properties of
the Bardeen black hole surrounded by quintessence (BBHSQ) was thoroughly studied.

In this paper, we consider the Dirac equation in regular BBHSQ space–time. Recall that analytical
solutions to the Dirac equation can be obtained in several backgrounds [42–48]. A reader is referred
to see the complete analytical solutions to the Dirac equation on de-Sitter and anti de-Sitter
space–time [49–53]. The Dirac equation that we consider in this study describes a massive and
non-charged particle with spin- 12 . To this end, we choose a null tetrad in order to apply the
Newman-Penrose (NP) formalism. Next, we separate the Dirac equation into ordinary differential
equations and the get coupled radial and angular parts. The angular part equations are solved exactly
in terms of standard spherical harmonics. The radial equations are transformed into one dimensional
Schrödinger like differential wave equations with effective potentials. In addition, we investigate the
behavior of the effective potentials by plotting them as a function of radial distance and expose the
effect of the quintessence parameters, magnetic monopole charge parameter, and the frequency of
the particle on them. Finally, we study the outcome of scattering a wave off a BBHSQ in terms of an
absorption cross-section. The absorption cross-section, which is a measure for the probability of an
absorption process, is directly connected to the greybody factor. Then, we compute the greybody
factor, which is nothing but the transmission probability for an outgoing wave emitted from the
event horizon of the BBHSQ to reach the asymptotic region [54–57]. Our main motivation in the
present paper paves the way to study the quasi-normal modes associated to a field of spin- 12 on
the BBHSQ background. Further, the given analytical expressions of the solution could be useful for
the study of the thermodynamical properties of the spinor field in same background.

The plan of the paper is as follows. In the next section, we give a brief discussion on the regular
BBHSQ space–time. In Section 3, we present the Dirac equation in BBHSQ geometry and decouple
the equations into ordinary differential equations for having the radial and angular parts. We then
obtain solutions of the angular and radial equations in Section 4. The influence of the quintessence
parameter is investigated through the behavior of the effective potentials by plotting them as a
function of radial distance in the physically acceptable region. Sections 5 and 6 are devoted to the
studies of greybody factors of the BBHSQ for the spin-0 and spin- 12 particles, respectively. Finally,
we present our conclusions in Section 7.
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2. Regular BBHSQ space–time

In this section, we shall give a brief introduction to BBHSQ which was obtained by
Kiselev [8], who assumed a spherically symmetric static gravitational field with the following
energy–momentum tensor:

T t
t = T r

r = ρq,

T θθ = Tφφ = −
ρq

2

(
3wq + 1

)
, (1)

where wq is the quintessence state parameter with range −1 ≤ wq ≤ −1/3 and ρq is the density
of the quintessence matter given by

ρq = −
3cwq

2r3(1+wq)
, (2)

where c is the positive normalization factor (c ≥ 0). The metric of the regular BBHSQ can be
expressed as [41]

ds2 = −f (r) dt2 + f −1(r)dr2 + r2
(
dθ2 + sin2 θdφ2) (3)

where f (r) has the following form

f (r) = 1 −
2Mr2(

r2 + β2
)3/2 −

c
r3wq+1 . (4)

in which M is the mass of the BH and β can represent the monopole charge of a self-gravitating
magnetic field described by a nonlinear electrodynamics source or an electric source with a field that
does not behave as the Coulomb field [58]. In fact, c term is related to the density of quintessence:

ρq =
−3cwq

2r3(wq+1)
.

The curvature of the metric (3) has the form of

R = 2Tµµ = 2ρq
(
3wq − 1

)
, (5)

which admits a singularity at r = 0 if wq ̸= {0, 1
3 ,−1}. Therefore, the metric in (3) represents

a spherically symmetric solutions for the Einstein equations describing BBHSQ with the energy–
momentum tensors given in (1). This metric satisfies all the required limits: when (c = 0 = β), we
have Schwarzschild BH metric; as (c = 0, β ̸= 0), we get Bardeen BH; and (c ̸= 0, β ̸= 0) yields
the BBHSQ.

We use the NP formalism [59,60] to write and solve the Dirac equation in the spacetime of (3).
Therefore let us define the complex null tetrad vectors (l, n,m,m) for the metric (3) where they
satisfy the orthogonality conditions, (l.n = −m.m = 1) as

lµ = dt −
dr
f (r)

,

nµ =
1
2
f (r) dt +

1
2
dr,

mµ =
−r
√
2
(dθ + i sin θdφ),

mµ =
−r
√
2
(dθ − i sin θdφ), (6)

and

lµ = f (r) dt + dr,

nµ =
1
2
dt −

1
2
f (r) dr,
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mµ
=

1
√
2r

(dθ +
i

sin θ
dφ),

mµ
=

−r
√
2
(dθ − i sin θdφ), (7)

We determine the nonzero NP complex spin coefficients [60] as follows

ρ = −
1
r
, µ =

1
2r

−
Mr(

r2 + β2
)3/2 −

c
2r3wq+2 ,

γ =
Mr
2

[
r2 − 2β2(
r2 + β2

)5/2
]

+
(3w + 1) c
4r2r3w

, α = −β1 =
− cot θ

2
√
2r
. (8)

3. Dirac equation in BBHSQ

We write the Dirac equations in the NP formalism by using the standard notation for the spin
coefficients [59,60] as(

lµ∂µ + ϵ − ρ
)
F1 +

(
mµ
∂µ + π − α

)
F2 = iµ0G1, (9)(

nµ∂µ + µ− γ
)
F2 +

(
mµ∂µ + β1 − τ

)
F1 = iµ0G2, (10)(

lµ∂µ + ϵ − ρ
)
G2 −

(
mµ∂µ + π − α

)
G1 = iµ0F2, (11)(

nµ∂µ + µ− γ
)
G1 −

(
mµ
∂µ + β1 − τ

)
G2 = iµ0F1. (12)

where F1, F2,G1 and G2 represent the components of the wave functions ”Dirac spinors”, the mass of
the particle µ0 =

√
2µp and ϵ, ρ, π, α, µ, γ , β1, τ are the spin coefficients and bar over a quantity

denotes complex conjugation. We now study the Dirac equations (9)–(12) in the background of
metric (3). To solve the Dirac equations, we will consider the corresponding Compton wave of the
Dirac particle as in the form of F = F (r, θ) ei(kt+mφ), where k is the frequency of the incoming wave
and m is the azimuthal quantum number of the wave. For separable solutions, we assume [59],

rF1 = R1 (r) A1 (θ) exp [i (kt + mφ)] ,

F2 = R2 (r) A2 (θ) exp [i (kt + mφ)] ,

G1 = R2 (r) A1 (θ) exp [i (kt + mφ)] ,

rG2 = R1 (r) A2 (θ) exp [i (kt + mφ)] . (13)

Substituting the appropriate spin coefficients (8) and the spinors (13) into the Dirac equations
(9)–(12), we obtain the following set of equations

A1

(
d
dr

+ i
k
f

)
R1 +

1
√
2
R2LA2 = iµ0rR2A1,

r2fA2

(
d
dr

− i
k
f

+
2f + rf ′

2rf

)
R2 −

√
2R1L

†
A1 = −2iµ0rR1A2,

A2

(
d
dr

+ i
k
f

)
R1 −

1
√
2
R2L

†
A1 = iµ0rR2A2,

r2fA1

(
d
dr

− i
k
f

+
2f + rf ′

2rf

)
R2 +

√
2R1LA2 = −2iµ0rR1A1. (14)

where L and L†
are the angular operators, which are known as the laddering operators:

L =
d
dθ

+
m

sin θ
+

cot θ
2
, L

†
=

(
d
dθ

−
m

sin θ
+

cot θ
2

)
(15)
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From (14) and (15), we get(
d
dr

+ i
k
f

)
R1 − iµ0rR2 = −λ1R2,

r2f
(

d
dr

− i
k
f

+
2f + rf ′

2rf

)
R2 + 2iµ0rR1 = λ2R1,(

d
dr

+ i
k
f

)
R1 − iµ0rR2 = λ3R2,

r2f
(

d
dr

− i
k
f

+
2f + rf ′

2rf

)
R2 + 2iµ0rR1 = −λ4R1, (16)

LA2 = λ1A1, L
†
A1 = λ2A2,

L
†
A1 = λ3A2, LA2 = λ4A1, (17)

The constants λ1, λ2, λ3, and λ4 are called the separation constants. To obtain the radial and the
angular pair equations, we assume (λ4 = λ1 = −λ, λ2 = λ3 = λ), therefore (16) and (17) reduce to(

d
dr

+ i
k
f

)
R1 = (λ+ iµ0r) R2, (18)(

d
dr

− i
k
f

+
2f + rf ′

2rf

)
R2 =

1
r2f

(λ− 2iµ0r) R1, (19)

LA2 = −λA1, L
†
A1 = λA2. (20)

4. Solution of angular and radial equations

Angular equations (20) can be rewritten as

dA1

dθ
+

(
cot θ
2

−
m

sin θ

)
A1 = −λA2, (21)

dA2

dθ
+

(
cot θ
2

+
m

sin θ

)
A2 = λA1. (22)

which lead to the spin-weighted spheroidal harmonics whose solution is given in terms of standard
spherical harmonics [60–62] as

A1,2 = Ym
l (θ) , (23)

with λ2 =
(
l + 1

2

)2
.

The radial equations (18) and (19) can be rearranged as(
d
dr

+ i
k
f

)
R1 = (λ+ iµ∗r) R2, (24)

r
√
f
(

d
dr

− i
k
f

+
2f + rf ′

2rf

)
r
√
f R2 = (λ− iµ∗r) R1, (25)

where µ∗ is the normalized rest mass of the spin- 12 particle.
Our task now is to put the radial equations (24) and (25) in the form of one dimensional wave

equations. To this end, we follow the method applied by Chandrasekhar’s book [59]. We start by
making the following transformations

P1 = R1, P2 = r
√
f R2. (26)

Hence, (24) and (25) transform to
dP1
dr

+ i
k
f
P1 =

1
r2f

(λ+ iµ∗r) P2, (27)
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dP2
dr

− i
k
f
P2 +

2f + rf ′

2rf
P2 =

1
r2f

(λ− iµ∗r) P1, (28)

Assuming

du
dr

=
1
f
, (29)

then, (27) and (28), in terms of the new independent variable u, become

dP1
du

+ ikP1 =

√
f
r
(λ+ iµ∗r) P2, (30)

dP2
du

− ikP2 +
2f + rf ′

2rf
P2 =

√
f
r
(λ− iµ∗r) P1. (31)

where

u = r −

√
M2 − a2M2 − 2Mr tan−1

(
r

√
M2 − a2M2 − 2Mr

)
. (32)

Let us apply another transformation:

P1 = φ1 exp
[

−i
2

tan−1
(µ∗r
λ

)]
, P2 = φ2 exp

[
i
2
tan−1

(µ∗r
λ

)]
, (33)

and then changing the variable u into r̂ as r̂ = u−
1
2k tan

−1
(
µ0r
λ

)
, then (30) and (31) can be written

in the alternative forms:
dφ1

d̂r
+ ikφ1 = Wφ2, (34)

dφ2

d̂r
− ikφ2 = Wφ1, (35)

where

W =
2k

√
f
(
λ2 + µ2

∗
r2
)3/2

2kr
(
λ2 + µ2

∗
r2
)
+ rf λµ∗

. (36)

To put (34) and (35) into one dimensional wave equations, we define

2φ1 = ψ1 + ψ2, 2φ2 = ψ1 − ψ2. (37)

Hence, (34) and (35) become

dψ1

d̂r
− Wψ1 = −ikψ2, (38)

dψ2

d̂r
+ Wψ2 = −ikψ1. (39)

Finally, we end up with the following pair of one dimensional wave equations

d2ψ1

d̂r2
+ k2ψ1 = V+ψ1, (40)

d2ψ2

d̂r2
+ k2ψ2 = V−ψ2, (41)

where the effective potentials can be obtained from

V± = W 2
±

dW
d̂r
. (42)
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We calculate the effective potentials as

V± =
r2B3

D2

(
1 −

2Mr2(
r2 + β2

)3/2 −
c

r3wq+1

)

±
r
D2

√
B3 −

2Mr2B3(
r2 + β2

)3/2 −
cB3

r3wq+1

(
(r − M) B + 3r3µ2

∗
−

6r5µ2
∗
M(

r2 + β2
)3/2 −

3r3µ2
∗
c

r3wq+1

)

∓
r3B5/2

D3

(
1 −

2Mr2(
r2 + β2

)3/2 −
c

r3wq+1

)3/2 [(
2rB + 2r3µ2

∗

)
+
(r − M) λµ∗

k

]
, (43)

where

B =
(
λ2 + µ2

∗
r2
)
, D = r2B +

λµ∗r2

2k

(
1 −

2Mr2(
r2 + β2

)3/2 −
c

r3wq+1

)
. (44)

Let us note that the effective potentials for the case of massless Dirac particle (neutrino) can be
obtained by setting µ∗ = 0 in (43) namely

V± = λ2

(
1
r2

−
2M(

r2 + β2
)3/2 −

c
r3wq+3

)
±
λ (r − M)

r3

√(1 −
2Mr2(

r2 + β2
)3/2 −

c
r3wq+1

)

∓
2λ
r2

(
1 −

2Mr2(
r2 + β2

)3/2 −
c

r3wq+1

)3/2

, (45)

whereas substituting c = 0, β ̸= 0 reduces to the effective potentials for BBH

V± =
r2B3

D2

(
1 −

2Mr2(
r2 + β2

)3/2
)

±
r
D2

√
B3 −

2Mr2B3(
r2 + β2

)3/2
(
(r − M) B + 3r3µ2

∗
−

6r5µ2
∗
M(

r2 + β2
)3/2

)

∓
r3B5/2

D3

(
1 −

2Mr2(
r2 + β2

)3/2
)3/2 [(

2rB + 2r3µ2
∗

)
+
(r − M) λµ∗

k

]
, (46)

where

B =
(
λ2 + µ2

∗
r2
)
, D = r2B +

λµ∗r2

2k

(
1 −

2Mr2(
r2 + β2

)3/2
)
. (47)

The complete solution of (40) and (41) can be obtained by the WKB approximation method (for
more details, a reader is referred to [63,64]). To study the asymptotic behavior of the potentials (43),
we can expand it up to order O

( 1
r

)3
. The potentials (43) for BBHSQ (here, we choose wq = −

1
3 )

behave as

V± ≃ µ2
∗
(1 − c)−

2Mµ2
∗
± µ∗c

√
1 − c

r
+ η±

(
1
r

)2

+ O
(
1
r

)3

, (48)

where

η± =

[
λ2 (1 − c)−

λµ∗

k

(
c2 − 2c + 1

)
±

Mµ∗ (3c ∓ 4)
√
1 − c

± 5Mµ∗

√
1 − c

]
, (49)
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Fig. 1. Family of potential graphs V± for different values of c with µ∗
= 0.12, k = 0.2,M = 0.5, λ = 1, β = 0.25, and

wq = −
5
6 .

In case of neutrino, the potentials simplified to

V± ≃ λ2
(
1
r

)2

+ O
(
1
r

)3

. (50)

The first term in (48) represents the constant value of the potential at the asymptotic infinity. The
second term corresponds to the monopole type potential, while the third term represents the dipole
type potential. As seen from the asymptotic expansion of the potentials (48), the effect of adding
the quintessence term

(
c

r3wq+1

)
to the lapse function f (r) in the metric (3) is observed at all terms.

From (43), we notice that the potentials V± depend on the c, β , and k parameters. We would like
to remind that the effect of the quintessence on BH has received considerable attention in General
Relativity [65,66]. Therefore, it is interesting to investigate the quintessence affect the massive and
non-charged Dirac particle.

It is obvious from (43) that the potentials become singular when D = 0. They also have local
extrema when (dV±/dr) = 0, however, these local extrema are very complicated algebraic equation
to be solved. To understand the physical behavior of the potentials (43) in the physical region and
to expose the effect of the quintessence parameters c , magnetic monopole charge parameter β
and the frequency k of the particle, we make two-dimensional and three-dimensional plots of the
potentials for massive particles. In all plots, we choose the fermion’s mass µ∗ = 0.12 and the
frequency k = 0.2 such that k > µ∗. The effective potential V±(43) versus r for different values of c
is depicted in Fig. 1. It is observed that the potentials have sharp peaks for all values of c. We notice
that when the normalization factor c increases, the sharpness of the potential peaks also increases.
We deduce From Fig. 1 that, a massive Dirac particle in the presence of quintessence matter (c ̸= 0)
meets with a high potential barrier, which causes a decreasing in their kinetic energies. However,
without quintessence (c = 0) the particle encounters a low potential barrier, which means that the
Dirac particle’s kinetic energy would increase.

In Fig. 2, we investigate the behavior of the effective potentials by obtaining potential curves for
some specific values of the frequency k while keeping the normalization factor constant (c = 0.01).
We can see that the potentials have peaks for all values of k. Again, while the frequency increases,
the potential barrier increases, and potentials behave similarly in the sufficiently large distances.

The effect of the quintessence term can be observed explicitly by making a three-dimensional
plot of the potential with respect to the normalization factor c and the radial distance r . In Fig. 3, we
observe a three-dimensional small peak for values of normalization factor c. As the value of radial
distances increases, potentials level off. Fig. 4 represents the three-dimensional plot of potential
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Fig. 2. Family of potential graphs V± for different values of frequency k with µ∗
= 0.12, c = 0.01, M = 0.5, λ = 1,

β = 0.25, and wq = −1.

Fig. 3. Three-dimensional plots of potential graphs V+ for different values of c with µ∗
= 0.12, M = 1, k = 0.4, λ = 0.4,

β = 0.25, and wq = −
1
3 .

with respect to frequency k and the radial distance. It is seen from Fig. 4 that; sharp peaks are clear
for high frequencies. The effect of the monopole charge of a self-gravitating magnetic field β on the
potentials for the massive charged spin- 12 particle can be observed in Fig. 5. We deduce that; high
potential barriers are observed for small values of β whereas for large values the potential barriers
decrease. Again, the potential levels decrease for large values of distance r and asymptote behavior
is manifested. Finally, the three-dimensional plot of potential with varying the state parameter wq
is shown in Fig. 6. We see from Fig. 6 that the potential levels are constant for different values of
wq which implies that the state parameter wq does not affect the potentials.

5. Greybody radiation of Bosons from BBHSQ

In this section, we evaluate the greybody factor of BBHSQ for spin−0 particles. For the sake of
simplicity, we consider the massless Klein-Gordon equation [67]

□Ψ (t, r, θ, φ) = 0, (51)
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Fig. 4. Three-dimensional plots of potential graphs V+ for different values of k with µ∗
= 0.12, M = 1, c = 0.05, λ = 0.4,

β = 0.25, and wq = −1.

Fig. 5. Three-dimensional plots of potential graphs V+ for different values of β with µ∗
= 0.12, M = 1, c = 0.05, λ = 0.4,

k = 0.4, and wq = −
1
3 .

where the box symbol denotes the Laplacian operator [68]:

□ =
1

√
−g

∂µ
√

−ggµν∂ν . (52)

By considering the metric (3) of BBHSQ, then (51) reads

−f −1∂2t Ψ + r−2∂r
(
r2f ∂r

)
Ψ +

r−2

sin θ
∂θ (sin θ∂θ )Ψ +

r−2

sin2 θ
∂2φΨ = 0. (53)

Where the scalar field can be defined as

Ψ = p (r) A (θ) exp (−iωt) exp (imφ) , (54)
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Fig. 6. Three-dimensional plots of potential graphs V+ for different values of wq with µ∗
= 0.12, M = 1, c = 0.05,

λ = 0.4, k = 0.4, and β = 0.25.

here ω denotes the frequency of the wave. Substituting the scalar field in (53), one obtains

d2p(r)
dr2

+

(
f −1 df

dr
+ 2r−1

)
dp(r)
dr

+
(
ω2f −2

− λ̂r−2f −1) p (r) = 0, (55)

where λ̂ = l (l + 1) is the eigenvalue coming from the physical solution of the angular equation of
A (θ), which is nothing but the standard spherical harmonics [60–62]. By changing the variable in a
new form as p =

u
r , the radial wave equation (55) recasts into a one dimensional Schrödinger like

equation as follows

d2u
dr2

∗

+
(
ω2

− Veff
)
u = 0, (56)

where the effective potential for BBHSQ is given by

Veff = f
(
λ

r2
+

1
r
df
dr

)
. (57)

To evaluate the greybody factor we use [59,69]

σl (ω) ≥ sec h2
(∫

+∞

−∞

℘dr∗

)
, (58)

in which r∗ is the tortoise coordinate: dr∗
dr =

1
f (r) , and

℘ =
1
2h

√(
dh
dr

)2

+ (ω2 − Veff − h2)2. (59)

In (59), h is a particular positive function that satisfies the following conditions: h(r⋆) > 0 and
h(−∞) = h(∞) = ω [70]. Here, without loss of generality, we simply set it as h = ω [69,70],
resulting in that the integration of (58) becomes

σl (ω) ≥ sec h2 1
2ω

∫
+∞

rh

(
λ

r2
+

1
r
df
dr

)
dr. (60)
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Fig. 7. σl (ω) versus ω graph. The plots are governed by Eq. (61). For different wq values, the corresponding event horizons
(i.e, f (rh) = 0) are illustrated. The physical parameters for this plot are chosen as M = l = c = 1, and β = 2.

After making a straightforward calculation, one finds

σl (ω) ≥ sec h2

⎛⎜⎜⎝ 1
2ω

⎡⎢⎢⎣ l (l + 1)
rh

+
c
(
3wq + 1

)(
3wq + 2

)
r3wq+2
h

−
2M
β2 +

2M

β2

√
1 +

β2

r2h

+
2M

r2h

(
1 +

β2

r2h

)3/2

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ , (61)

where rh represents the event horizon.
We depict the greybody factors of the BBHSQ in Fig. 7. As seen from Fig. 7, the values of wq

and event horizon (rh) are linearly proportional to each other. It is obvious that greybody radiation
strictly depends also on the state parameter wq. According to the information we obtained from the
graph, a similar radiation emission occurs around critical wq values (− 1

3 and −1). However, while
wq value moves away from those critical values, then radiation may decrease or increase depending
on wq.

6. Greybody radiation of fermions from BBHSQ

In this section, we shall derive the fermionic greybody factors of the neutrinos emitted from
BBHSQ. To this end, we consider the case of wq = −

1
3 in order to obtain analytical results from

Eq. (58). In the case of wq = −
1
3 , the potentials (45) can be rewritten as

V± =
λ

r2
f ±

λ (r − M)
r3

√
f ∓

2λ
r2

f 3/2, (62)
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Fig. 8. σ+

l (ω) versus ω graph for the case of wq = −
1
3 . The plots are governed by Eq. (65). For different c values,

the corresponding event horizons (i.e, f (rh) = 0) are illustrated. The physical parameters for these plots are chosen as
M = l = 1, and β = 0.5.

in which

f = 1 −
2Mr2(

r2 + β2
)3/2 − c. (63)

Following the procedure described in the previous section [see Eqs. (58)–(62)], one can get

σ±

l (ω) ≥ sec h2
(

1
2ω

∫
+∞

rh

[
λ

r2
±

(
λ

r2
−
λM
r3

)
1

√
f

∓
2λ
r2
√
f
]
dr
)
, (64)

in which σ+

l (ω) and σ
−

l (ω) stand for the greybody factors of the spin-up and spin-down fermions,
respectively. After performing some tedious computations, the greybody factors of the fermions can
be obtained as follows

σ±

l (ω) ≥ sec h2
{

1
2ω

[
λ

r
±

(
λ

rh
√
1 − c

+
Mλ

2 (1 − c)3/2 r2h
+

M2λ

2 (1 − c)5/2 r3h
+

−3λMβ2(1 − c)2 + 5M3λ

8r4h (1 − c)3
√
1 − c

+
−9M2β2λ(1 − c)2 +

35
4 M4λ

10r5h (1 − c)4
√
1 − c

−
λM

2
√
1 − cr2h

−
λM2

3 (1 − c)3/2 r3h
−

3λM3

8r4h (1 − c)5/2
−

−3λM2β2(1 − c)2 + 5λM4

10r5h (1 − c)3
√
1 − c

−
−9λM3β2(1 − c)2 +

35
4 λM

5

12r6h (1 − c)4
√
1 − c

)

∓

(
2λ

√
1 − c
rh

−
λM

√
1 − cr2h

−
λM2

3 (1 − c)3/2 r2h
+
λ
√
1 − c

(
3Mβ2(1 − c)2 − M3

)
4r4h (1 − c)3

+
λ
√
1 − c

(
12M2β2(1 − c)2 − 5M4

)
20r5h (1 − c)4

)]}
( for 0 ≤ c < 1) , (65)

As it can been seen from Figs. 8 and 9, the greybody factors of spin-up and spin-down fermions
exhibit almost the same behaviors as c changes.
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Fig. 9. σ−

l (ω) versus ω graph for the case of wq = −
1
3 . The plots are governed by Eq. (65). For different c values,

the corresponding event horizons (i.e, f (rh) = 0) are illustrated. The physical parameters for these plots are chosen as
M = l = 1, and β = 0.5.

7. Conclusion

In this paper, we have investigated the exact solutions of the Dirac equations that describe a
massive, non-charged particle with spin- 12 in the curved space–time geometry of BBHSQ, using
NP (null tetrad) formalism. By employing an axially symmetric ansatz for the Dirac spinors, we
decouple equations into angular and radial parts. The angular equation leads to the spin-weighted
spheroidal harmonics with eigenvalue λ2 =

(
l + 1

2

)2
. The radial equations were reduced to pair of

one-dimensional Schrodinger-like wave equations with effective potentials for the Dirac particle.
We then studied the potentials by plotting them as a function of radial distance. Thus, the effect
of the quintessence term on the BBH is unfolded. We revealed that potentials barriers having
quintessence matter become more higher than the potentials without the quintessence. We also
showed that, as the frequency increases, potentials levels increase as well. However, as the magnetic
monopole charge parameter β increases, the potential levels decrease whereas the potentials
do not change for varying the state parameter wq. Remarkably, we depicted how the greybody
factors of bosons and fermions vary with the quintessence state parameters wq (see Fig. 7) and c
(see Figs. 8 and 9), respectively.

In future work, we will extend our analysis to the Dirac equation of charged massive fermionic
waves propagating in the rotating geometry of the BBHSQ. In this way, we plan to analyze the
effect of quintessence on the stationary spacetimes using fermions. For this purpose, we shall also
consider the Janis-Newman algorithm [71] for the static BBHSQ (3).
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