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1. Introduction

Hall–Post (HP) inequalities link N-body energies to N ′-body energies with N ′ < N . More pre-
cisely, the ground-state of a N-body system is bounded below by a sum of ground-state energies of
smaller N ′-body systems. This supplements very usefully the upper bounds provided by variational
methods, and in some cases, constraints dramatically the possibility of deep binding.

There are several lower bounds to bound-state energies, see, e.g., [1]. The best known is the
Temple–Kato one, which for the ground state reads,

⟨H⟩φ −
(∆H)φ

Ẽ1 − ⟨H⟩φ

≤ E0 ≤ ⟨H⟩φ , (1)

where Ẽ1 is a lower bound on the energy E1 of the first excited state, provided the denominator
remains positive, and ⟨H⟩φ is a variational estimate using the normalized trial function φ, which

1 If we may compare small things with large ones (Vergilius).
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also provides the variance (∆H)φ = ⟨H2
⟩φ − ⟨H⟩

2
φ . We follow here the derivation by Galindo and

Pascual [2]. The obvious operator inequality

(H − E0)(H − E1) ≥ 0 , (2)

translates into

(∆H)φ +
(
⟨H⟩φ − E0

) (
⟨H⟩φ − E1

)
≥ 0 , (3)

from which the result follows. The Temple inequality was used for instance by Tang et al. [3], who
claimed to have only 3% difference between their variational upper bound and the associated lower
bounds for a 3-body system experiencing a short-range interaction with a strongly repulsive core.

The Hall–Post inequalities are based on a different strategy, namely a suitable decomposition
of the Hamiltonian under consideration. Let us give a first example of the usefulness of splitting a
Hamiltonian into pieces, considering the simple one-body operator

H = 2 p2
+ r2 − 1/r , (4)

with a ground state at E ≃ 3.252. For a simple upper bound, one can treat the Coulomb term as
a perturbation: E = E0 + E1 + · · · with E0 = 3

√
2 and E1 = −23/4/

√
π , E0 + E1 ≃ 3.294. If one

starts from the pure Coulomb case, one gets E = E ′

0 + E ′

1 + · · · with E ′

0 = −1/8 and E ′

1 = 48, thus
E ′

0 + E ′

1 = 47.875, very far, but still above the exact result. If one wishes a lower bound, the naive
sum H = H1 +H2, with H1 = p2

+ r2 of ground state ϵ1 and H2 = p2
− 1/r of ground state ϵ2, gives

a crude lower bound E ≥ ϵ1 + ϵ2 = 2.75, significantly below the exact result. Here, and often along
this article, we use the simple result that the minimum of a sum is larger than the sum of minima.
One can actually optimize the decomposition and write

H =
[
(1 + x) p2

+ r2
]
+
[
(1 − x) p2

− 1/r
]
, (5)

corresponding to a lower bound

η(x) = 3 (1 + x)1/2 − (1 − x)−1/4 , (6)

whose maximum

max
x
η(x) ≃ 3.179 , (7)

is close to the exact value.
This paper is devoted to decompositions of the type H = H1 + H2 + · · · where H is a N-body

Hamiltonian and the Hi are N ′-body Hamiltonians with N ′ < N , which provide lower bounds on N-
body ground-state energies in terms of the energies of simpler systems. The trick was first proposed
by Hall and Post to study light nuclei [4,5] and developed in several papers which will be cited
along the present article. The method has been reinvented, sometimes in a degraded form, when
studying the stability of matter or the relation between baryon and meson masses in the quark
model [6–8]. The aim of this article is twofold: to review the Hall–Post inequalities, and to present
some recent applications to tetraquarks in simple quark models, with the need to include coupled-
channels in the formalism. Most efforts have been devoted to the case of self-interacting bosons,
or, equivalently, systems of few fermions whose antisymmetry can be endorsed by the spin, isospin
or color degrees of freedom, and thus having a symmetric orbital wave function. We shall see that
the case of unequal masses requires some subtle developments, which can be applied to the case
of bosons with both a pairwise interaction and the potential of a fixed source. The case of fermions
is discussed in two paragraphs at the end of Sections 2 and 3.

In the original formulation, the HP inequalities simply rely on the variational principle: if
H = H1 + H2 + · · ·, then, using the ground state Ψ of H as a trial function immediately leads
to minH ≥ minH1 + minH2 + · · ·. For fermions, or for improving the simple Hall–Post bounds, it
might be necessary to analyze the structure of Ψ , namely its content in terms of the representations
of the permutation group of (N−1)-body clusters [9] and its expansion into the tower of eigenstates
of subsystems [10]. This sets the limits of the review: inequalities expressed in terms of energies of
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smaller systems. We shall not elaborate much on developments that require the knowledge of the
wave functions of the subsystems and the solution of integro-differential equations.

Several applications will be given along this review. Originally, the HP inequalities were devised
in the framework of nuclear physics, but they were applied to systems bound by gravity, few-charge
systems in atomic physics, and quark systems, on which we shall come back, with due references.
Solvable models of the Calogero–Sutherland type were considered in [11].

This paper is organized as follows. In Section 2, we present the so-called naive bound, which
is the simplest form of the inequalities. In Section 3, we show the gain obtained when removing
the center-of-mass energy of the whole system and of the subsystems entering the inequality,
with saturation for boson systems bound by harmonic forces: this corresponds to the improved
bound, also named Post bond. In the case of systems with unequal masses or asymmetries in
the potential, it is shown in Section 4 that the lower bound can be further bettered by writing
a more flexible decomposition, at the expense of having to vary some parameters: this is named
the optimized bound, first developed for systems of three unequal masses, and further developed
for larger systems. The methods developed for unequal masses lead to some better results for
bosons with both a pairwise interaction and a potential from a fixed source. The applications to the
window for Borromean binding is reviewed in Section 5. The inequalities are applied to few-charge
systems in Section 6, with rather deceiving results, that illustrate the limitations of the method. In
Section 7, we list some inequalities among meson and baryon masses within quark models, with
either standard pairwise potentials with color factors, or the prescription of a string of minimal
length. The case of tetraquarks is discussed in Section 8, first in the approximation where the color
wave function is frozen, resulting a single-channel 4-body problem, and next when color mixing
is accounted for. In the latter case, some technical developments of the Hall–Post formalism are
required. The conclusions are presented in Section 10.

A word about the notation. It is difficult to carry exactly the same symbols for systems with a
single mass and a single potential, and for systems with different masses with or without external
attraction. For instance, the 2-body energy (unless specified, it is the ground-state) is denoted E2(m)
or E2(m1,m2) with E2(m1,m2) = E2(2m1 m2/(m1 + m2)), or E2(m; g) if the strength is specified
(alternatively E2(m; V ) or E2(m; g V )) and E2(m1,m2; g; g ′) in an external potential. Similarly for a
3-body system, we shall use E3(m1,m2,m3) = E3(mi), or E3(m1,m2,m3; g23, g31, g12) = E3(mi; gij),
which for symmetric systems, is abbreviated as E3(m; g) or E3(m; V ), and in case of an external field,
we denote the energy as E3(m1,m2,m3; g23, g31, g12; g ′

1, g
′

2, g
′

3) = E3(mi; gij; g ′

k).

2. Naive bound

2.1. Naive bound for identical bosons

Consider three identical bosons of mass m interacting through a pairwise, symmetric potential∑
V (rij). Their Hamiltonian can be written as

H3 =

[
p2
1

4m
+

p2
2

4m
+ g V (r12)

]
+

[
p2
2

4m
+

p2
3

4m
+ g V (r23)

]
+

[
p2
3

4m
+

p2
1

4m
+ g V (r31)

]
. (8)

Then the ground-state E3(m; g) is bounded by2

E3(m; g) ≥ Enai = 3 E2(2m; g) =
3
2
E2(m; 2 g) , (9)

hereafter referred to as the naive bound, where E2(m; g) is the ground-state of the 2-body system
(p2

1 +p2
2)/(2m)+ g V (r12) (which is assumed to exist; see Section 5 for a discussion on the coupling

threshold, i.e., the minimal strength required to get a bound state).

2 If one aims at mathematical rigor, one cannot combine 2-body and 3-body Hamiltonians which act on different
Hilbert spaces. A possible remedy consists in associating the 2-body term of, say, the pair {1, 2} with a wide harmonic
well α(p2

3 + r23 ), and take the limit α → 0.
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For instance, if m = 1, and V (r) = r2, one gets a lower bound Enai = 9/
√
2 ≃ 6.364 to be

compared to E3 = 6
√
3/2 ≃ 7.348. In the linear case, V (r) = r , one gets Enai ≃ 5.567 (−E2(1, 1) is

the first zero of the Airy function), vs. E3 ≃ 6.132 from an accurate numerical calculation [12]. In
the gravitational case, V (r) = −1/r , the lower bound is −3/2, to be compared to E3 ≃ −1.07.

The bound (9) is easily generalized to N > 3. If one keeps N ′
= 2, one gets

EN (m; g) ≥
N(N − 1)

2
E2((N − 1)m; g) , (10)

and it is straightforward to extend to other values of N ′.

2.2. Naive bound for distinguishable particles

We now consider the case of particles with different masses mi interacting with pairwise
interactions V (rij), or Vij(rij) if the potential differs from one pair to another. The immediate
generalization of (8) reads

H3 =

∑
i<j

[
p2
i

4mi
+

p2
j

4mj
+ gij Vij(rij)

]
, (11)

leading to

E3(mi; gij) ≥ Enai =

∑
i<j

E2(2µij; gij Vij) , µij =
2mi mj

mi + mj
, (12)

where µij is twice the reduced mass. For instance, for a system of masses {1, 1, 5} interacting
through a linear potential, the lower bound is Enai ≃ 4.986, to be compared to the exact E3 ≃ 5.457.

2.3. Naive bounds for bosons in an external potential

There are many examples, for instance in the modeling of cold atoms, of systems with both
a pairwise interaction and an external potential U(ri) acting on each particle. Let us consider the
Hamiltonian

HN (m; g; g ′) =

∑
i

[
p2
i

2m
+ g ′ U(ri)

]
+ g

∑
i<j

V (rij) , (13)

with ground state energy EN (m; g; g ′). The simple decomposition

HN (m; g; g ′) =

∑
i<j

H2
(
(N − 1)m, g, g ′/(N − 1)

)
, (14)

implies

EN (m; g; g ′) ≥
N (N − 1)

2
E2
(
(N − 1)m; g; g ′/(N − 1)

)
=

N
2

E2(m; (N − 1)g; g ′) . (15)

If g ′
≫ g , the inequality tends to be saturated, as the particles become independent and the energy

EN (m; 0; g ′) is proportional to N . If g ′
→ 0, one recovers the case studied in Section 2.1. If the

confinement and the pairwise interaction are both harmonic, HN is exactly solvable: one can rescale
to m = g = 1, and study the bound as a function of g ′. This is shown in Fig. 1.

2.4. Naive bound for fermions

In the case of three spinless fermions, the orbital wave function of the ground state is antisym-
metric. For instance, for the harmonic oscillator

∑
i<j V (rij) = 2 (r212+r223+r231)/3 = x2+y2, where x

and y are the usual Jacobi coordinates, the wave function is Ψ ∝ x×y exp(−(x2+y2)/2). For another
symmetric potential, Ψ contains x × y times a more complicated symmetric function. The 2-body
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Fig. 1. Ratio of the exact energy to the HP bound Eq. (15) for four bosons of mass m = 1 submitted to a pairwise
interaction

∑
i<j r

2
ij and an external potential g ′

∑
i r

2
i .

subsystems are in a p-wave state (with a small admixture of higher ℓ ≥ 3 odd orbital momenta if
the potential is not harmonic). So the bound (9) holds with E3 being the lowest energy in the fully
antisymmetric sector and E2 the lowest energy with orbital momentum ℓ = 1.

For three fermions with spin and/or isospin, this is more delicate, as well as for N ≥ 4 particles.
In this latter case, an astute trick has been devised. See, e.g., [6]. The Hamiltonian is rewritten as

HN =

N∑
i=1

hi ((N − 1)m; g/2) =

N∑
i=1

⎡⎣∑
j̸=i

p2
j

2 (N − 1)m
+

g
2
V (rij)

⎤⎦ . (16)

where each hi(m, g) is a Hamiltonian describing (N − 1) independent particles of mass m in the
field g V (r) of particle i. If the energy levels ϵn of the hi are known, as well as their degeneracy gn,
then one should make the counting of the occupied levels for N − 1 particles, and calculate their
cumulated energy in hi. The exercise is done in [6] for the gravitational interaction −Gm2/r , with
the results

ϵn((N − 1)m;Gm2/2) = −
(N − 1)G2 m5

4 n2 , gn = n2 ,

⟨hi((N − 1)Gm2/2)⟩ ≥ −
1
2
(N − 1)4/3 G2 m5 ,

EN (m; g) ≥ −
1
2
N (N − 1)4/3 G2 m5 .

(17)

for spinless fermions, and suitable 2 s + 1 factors for fermions of spin s.
For bosons, the decomposition (16) is equivalent to the naive bound, with the product of the

effective mass and coupling being (N − 1)mg in each pair. We shall return to this identity when
discussing the excited states, in Section 9.

3. Improved bounds

The naive bound never saturates the exact value of the ground state. The reason lies in the
center-of-mass energy. The eigenvalue E3 is the minimum of H3 in the 3-body rest frame, but it
is expressed in terms of the minimum of the subsystems. In the 3-body rest frame, the pair {1, 2} is
not at rest, so omitting the overall kinetic energy of {1, 2} significantly underestimates the energy.
The remedy, already proposed in [4,5], and independently rediscovered in [13], consists of writing
identities among intrinsic Hamiltonians.
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Fig. 2. Left: Comparison of the exact ground-state energy (red) for three bosons of unit mass in the potential Vb(r) =

(rb − 1)/b, and the naive (green) or improved bound (blue), as a function of the exponent b. Right: relative difference
between the exact ground-state energy and the bounds.

3.1. Improved bound for three identical bosons

Let H̃3 = H3 − (p1 + p2 + p3)2/(6m) and H̃ (ij)
2 (m) = (pi − pj)2/(4m)+ g V (rij) denote the intrinsic

parts of the 3-body and 2-body Hamiltonians. From the identity

H̃3(m; g) =

∑
i<j

H̃ (ij)
2 (3m/2; g) , (18)

one gets the improved bound

E3(m; g) ≥ Eimp = 3 E2(3m/2; g) , (19)

which is automatically better than the naive bound (9) since E2 is a decreasing function of the
reduced mass. For a harmonic oscillator, (19) becomes an identity. Thus it is the ultimate ‘‘universal’’
lower bound for the ground-state energy of three bosons in terms of 2-body energies.

For a linear interaction V (r) = r and m = 1, the bound Eimp ≃ 6.1276 is very close to the exact
E3 ≃ 6.1323. In the gravitational case, the bound Eimp = −1.125 approximates decently the exact
E3 ≃ −1.07.

The improved bound is compared to the naive one and to the exact energy in Fig. 2 for various
power law potentials, more precisely for the family Vb(r) = (rb − 1)/b, which reduces to V0 =

log r as b → 0. There is a very slow deterioration of the accuracy when one departs from the
harmonic-oscillator limit b = 2.

3.2. Improved bound for N identical bosons

The generalization to N > 3 identical bosons is straightforward. It relies on the identity

1
2

N∑
i=1

p2
i −

1
2N

(
N∑
i=1

pi

)2

=
2
N

∑
i<j

(
pi − pj

2

)2

, (20)

and reads

EN (m; g) ≥
N(N − 1)

2
E2(N m/2; g) = (N − 1) E2(m; g N/2) . (21)

It is also saturated in the case of the harmonic oscillator.
The case of four-body systems is shown in Fig. 3. As expected, the naive bound is less accurate

for the four-body system than for the three-body one, since the overall kinetic energy of a pair is
larger in the former case.
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Fig. 3. Same as Fig. 2, but for four bosons.

Fig. 4. Upper variational bound and improved lower bound for N bosons in the potential −g
∑

exp(−rij/a). The plot
displays ϵ = −E m a2/(N − 1) vs. v = N ma2 g/2. The red disk corresponds to two exact 4-body calculations, the blue
squares (triangles) to old quantum Monte-Carlo estimates by Kalos [14] of 3-body (4-body) systems. This plot is copied
from [5].

The power of (21) was illustrated by Hall and Post [5] who used several potential shapes. We
have redrawn in Fig. 4 their Fig. 7, which includes some quantum Monte-Carlo estimates by [14]
and two exact calculations of the 4-bosons system bound by an exponential potential. We use their
notation

ϵ =
|En|ma2

N − 1
, v =

N mg a2

2
, (22)

for the case of an exponential interaction −g
∑

exp(−rij/a). The upper curve corresponds to a
variational approximation based on the simple Gaussian exp(−α

∑
r2ij ). Hall and Post stressed the

existence of an almost universal curve for the binding energies when E/(N − 1) is plotted against
g/N . Two exact energies corresponding to N = 4 are shown to be just in between the lower and
upper limits. Some 3-body and 4-body energies computed by Kalos [14] in some early quantum
Monte-Carlo simulations have been shown by Hall and Post to violate the bounds.

There have been several applications to systems of bosons with gravitational interaction V (r) =

−Gm2/r , with the same (21) for the lower bounds, but different methods for calculating a
variational upper bound. In [13], a hyperscalar form is used for the trial wave function, Ψ (r212 +· · ·),
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with the result, for large N

−0.0625N5 G2 m5 < EN < −0.0531N5 G2 m5 . (23)

This upper bound is necessarily better than the one obtained from a Gaussian trial function
exp[−λ(r212 + · · ·)], which is a particular case of hyperscalar function. It has been noticed by Re-
bane [15] that the exponential exp(−Gm3∑

i<j rij/2) gives a slightly better EN < −0.0548N5 G2 m5.
Presumably an exponential of the sum of distances, exp(−α

∑
i<j rij), with an adjustable coefficient

α, or a generalized Feshbach–Rubinow approximation [16], G(
∑

i<j rij), will further improve this
upper bound.

3.3. Improvements of the lower bounds for fermions

3.3.1. History
The case of fermions is notoriously more difficult than for bosons. It turns out hard to get a

better bound than the one of Section 2.4, in which the N-fermion energy is expressed as (N − 1)
two-body energies. There is some literature, but either with some controversy or a restricted domain
of validity. Manning, for instance, suggested to modify the s-wave two-body energies entering the
bound [17], but this resulted in a series that is barely convergent in the case of a harmonic oscillator
and diverges for a linear interaction. The bound by Carr [18] has been criticized by Balbutsev and
Manning [19,20].

A significant progress was achieved by Hall [21,22], improving previous attempts given in
Ref. [23] and references there. It is based on a generalization of the decomposition (20), which
reads

H =

∑
i<j

2
mN

(
pj − pi

2

)2

+ V (rij) . (24)

Thanks to an optimal choice3 of (non-orthogonal) Jacobi coordinates and associated relative mo-
menta πij, it is rewritten as

H =

∑
i<j

[
π2

ij

mN λ
+ V (rij)

]
, (25)

with the best bound obtained for λ = 4/3. It is

EH =
N
2

N−1∑
i=1

E i
2(mN λ) , (26)

as it is shown that the requirement of antisymmetry imposes a summation over the N−1 first levels
of −∆/(mN Λ)+ V . For the case of the harmonic oscillator, the ratio of the lower bound EH to the
exact energy Eex can be calculated and compared to the one corresponding to the decomposition
by Lévy-Leblond et al. (L-L) in Section 2.4,

EH
Eex

=

√
3
2

N − 1
N − 2

,
EL-L
Eex

=

√
N(N − 1)

√
2 (N + 1)

. (27)

The bound EH is better for N > 3.
We now present below some more recent attempts.

3 The optimization of the Jacobi coordinates somehow anticipates the parametrization of the decomposition in the
optimal bound for unequal masses, which is explained in Section 4.
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Fig. 5. Comparison of the HP bound and the upper and lower bounds BM derived from the convexity inequalities for 3
bosons in a potential rb , as a function of b. Left: ratio of the 3-body energy to the exact 2-body energy (the improved HP
bound, at this scale, is hardly distinguishable from the exact 3-body calculation). Right: Ratio of the exact 3-body energy
to the lower bound.

3.3.2. Use of convexity inequalities
Basdevant and Martin (BM) [24] considered the class of power-law potentials Vq =

∑
rqij , and

revisited convexity inequalities (that become identities for q = 2) relating Vq , the sum of one-body
potentials Uq =

∑
rqi and the term Wq = |

∑
r i/N|

q acting on the center of mass. They derived
new lower bounds for the ground state energies of bosons and fermions. In the latter case, this
corresponds to a significant improvement with respect to the naive bound of Section 2.4. More
precisely, it is shown that

22−q Vq + N2 Wq ≷ N Uq

Vq + Nq Wq ≶ N Uq ,
(28)

with the upper inequality for 1 ≤ q ≤ 2, and the lower one for q ≥ 2, and a mere identity for q = 2.
When the kinetic energy is added, this is translated into the operator inequalities⎡⎣∑

i

p2
i

2m
+

∑
i<j

22−q rqij

⎤⎦+

[
P2

2N m
+ N2 Wq

]
≷
∑

i

[
p2
i

2m
+ N rqi

]
,

⎡⎣∑
i

p2
i

2m
+

∑
i<j

rqij

⎤⎦+

[
P2

2N m
+ Nq Wq

]
≶
∑

i

[
p2
i

2m
+ N rqi

]
.

(29)

Let us consider the case of bosons, with the shortened notation ϵq = E2(1; 1) to denote the
ground-state energy of p2

+ |r|q. For 1 ≤ q ≤ 2 (upper case) and q ≥ 2 (lower case), respectively,
one gets

2(4−2 q)/(2+q) EN (q) + N4/(2+q) 2−q/(2+q) ϵq ≷ N (2+2 q)/(2+q)2−q/(2+q) ϵq ,

EN (q) + N2 q/(2+q) 2−q/(2+q) ϵq ≶ N (2+2 q)/(2+q)2−q/(2+q) ϵq .
(30)

The bounds obtained for three bosons are shown in Fig. 5. This is clearly rather crude as compared to
the improved bound (21). We conclude from this parenthesis dealing with bosons that the convexity
inequalities (28) quickly deteriorate as soon as one departs from the harmonic case q = 2.

We now come back to the case of fermions. Let us denote ϵb(n, ℓ) the single-particle energies
of p2

+ rb with b > 1 and fq(N) =
∑
ϵq(n, ℓ) the cumulated energies of N fermions experiencing∑

i(p
2
i + rbi ). As in the textbooks of elementary chemistry, f (N) = ϵ(1S) + 3 ϵ(1P) + ϵ(2S) + · · · for

spinless fermions, and twice the previous expression for spin 1/2 fermions. The ordering of ϵ(n, ℓ)
vs. ϵ(n′, ℓ′) is discussed in [25] for closest neighbors, but remains an issue in the general case, so
that fq(N) has to be estimated empirically. In Fig. 6 are shown the ratio of the exact energy to the
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Fig. 6. Ratio of the exact energy to the BM lower bound, the one of Juillet et al. [9] (JFTRV) for N = 3 or 4 spin 1/2
fermions of total spin S, and the simple bound of Lévy-Leblond [6] discussed in Section 2.4, for a potential rb .

BM bounds for three or four spin 1/2 fermions. There is a substantial improvement with respect to
the naive bound of Section 2.4.

3.3.3. Group-theoretical considerations
Juillet et al. [9] adopted a different strategy. They studied the structure of a N-fermion wave

function, more precisely how it can be constructed out of properly antisymmetrized (N − 1)-body
clusters.

For instance, if N fermions of spin 1/2 form a state of total spin S = N/2 (in absence of any other
quantum number such as isospin, color, etc.), then the orbital function has to be antisymmetric, as
well as the wave function of any subcluster. In particular

ES=N/2
N (m; g) ≥

N
N − 2

ES=(N−1)/2
N−1 (N m/(N − 1); g) , (31)

which reduces to (19) for N = 3. For a more general value of the total spin S (with 0 ≤ S ≤ N/2),
it was shown in [9] that

ES
N (m; g) ≥

N − 1
N(N − 2)(2S + 1)

[
S(N + 2S + 2) ES−1/2

N−1

(
m;

Ng
N − 1

)

+ (S + 1)(N − 2S) ES+1/2
N−1

(
m;

Ng
N − 1

)]
. (32)

Some examples are shown in Fig. 6 for power-law potentials.
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Table 1
HP lower bound and its improvement HP∗ by seeking the optimal occupation number
of the ground-state of the subsystems, for some power-law potentials sgn(β) rβ ,
where sgnβ = β/|β|.
β HP HP∗ E3 λ

−1 −1.1250 −1.1095 −1.0670 2.9447
1 6.1276 6.1309 6.1323 2.9978
2 7.3485 7.3485 7.3485 3

3.4. Further improvements

Clearly, the previous HP bounds suffer from the fact that the expectation value of 2-body (or
more generally N ′-body with N ′ < N) subsystems within the exact N-body wave function is
approximated by the ground state. Van Neck et al. [10] have analyzed the corrections due to the
excited states. Let us restrict here to the case of N ′

= 2 subsystems. Schematically, the N-body
ground state is written as

Ψ
(N)
0 ∝

∑
n

Ψ (2)
n (x)Φn(y, z, . . .) , (33)

where x = r2−r1, y, . . . is a set of Jacobi coordinates, besides the overall center of mass. This results
into replacing (21) by

EN (m; g) =
N(N − 1)

2

[
α0 E

(0)
2 (N m/2; g) + α1 E

(1)
2 (N m/2; g) + · · ·

]
, (34)

with
∑
αn = 1. The usual HP bound comes from E(n)

2 ≥ E(0)
2 . The first improvement reads

EN (m; g) ≥
N(N − 1)

2

[
α0 E

(0)
2 (N m/2; g) + (1 − α0) E

(1)
2 (N m/2; g)

]
, (35)

the task is to evaluate the occupation numbers α0 or an approximation that keeps the inequality.
This is done in [10], together with some analogous developments for systems in a central field and
for fermions.

In the case of three self-interacting bosons, it can be shown that the maximal occupation number
for the ground state is the largest eigenvalue λ of the integral equation

(λ− 1)G(r) = 2
∫

∞

0
dr ′ r ′2 W (r, r ′)G(r ′) ,

W (r, r ′) =
1
2

∫
+1

−1
dx g(|r/2 + r ′

|) g(|r ′/2 + r|) ,
(36)

where x = r̂.r̂ ′, g(r) is the radial wave function (not reduced) of the ground state of the two-body
problem, and G its overlap with the 3-body wave function. Eq. (36) can be solved by discretization
of the integral (e.g., by Gauss–Hermite quadrature), resulting in a matrix equation whose unknown
are the values G(ri) at the chosen points. Some results of Table I of [10] are reproduced in Table 1.
Very likely, the method could be extended to the first excitations.4

3.5. Improved bound for unequal masses

The generalization of the improved bound to unequal masses is straightforward: the intrinsic
3-body Hamiltonian is written in terms of intrinsic 2-body Hamiltonians, where the momentum
conjugate of r j − r i is the usual combination (mi pj − mj pi)/(mi + mj). It reads

H̃3(mi; gij) =

[
1
µ12

(
m2 p1 − m1 p2

m2 + m3

)2

+ g12 V12

]
+ circ. perm. , (37)

4 A correspondence with Dimitri van Neck and Michel Waroquier is gratefully acknowledged.
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where

µij =
2mi mj (m1 + m2 + m3)

(mi + mj)2
, (38)

leading to

E3(mi; gij) ≥ Eimp =

∑
i,j

E2(µij; gij) , (39)

where {i, j, k} is a direct permutation of {1, 2, 3}. For instance, with V (r) = r2 and masses {1, 1, 2},
one gets a lower bound Eimp ≃ 6.621, very close to the exact solution E3 ≃ 6.674, but saturation is
not reached exactly.

Needless to say that saturation is lost also for equal masses and unequal strengths. For instance
for mi = 1 ∀i and an interaction r212 + 2 r223 + 3 r231, the exact energy is E3 ≃ 10.28, while the
lower bound (39) is Eimp = 10.16. For the linear r12 + 2 r23 + 3 r31, the values are E3 ≃ 9.655 and
Eimp = 9.533.

The result (39) is easily extended to more than three particles. For N particles, the effective mass
of the pair {1, 2} is

µ12 =
2m1 m2(m1 + · · · + mN )

(m1 + m2)2
. (40)

4. Optimized bound

The improved bound of the previous section is excellent for bosons, and even becomes exact
in the case of V (r) ∝ r2, but deteriorates for unequal masses (and/or unequal strengths). It is
even observed, as in Figs. 7 and 8, that sometimes the naive bound provides a better result. The
optimized bound presented in this section is always better than the naive or the improved ones, and
is saturated for the harmonic oscillator. However, it requires the adjustment of some parameters.

The early literature focused on the (M,m,m,m, . . .) configurations with M infinite or M ≫ m,
which will be reviewed in Section 4.4. We first consider the most general distribution of masses.

4.1. Optimized bound for three-body systems

The key is that many sub-Hamiltonians have the same 2-body spectrum with ground-state E2.
The momentum (m1 p2 − m2 p1)/(m1 + m2) is not compulsory as the conjugate of r2 − r1, any
combination α2 p2 −α1 p1 can be used, provided α1 +α2 = 1. Moreover, instead of subtracting from
H3 the kinetic energy of the center of mass, one can subtract a more general term proportional to
the total momentum p1 + p2 + p3, whose expectation value vanishes within any eigenstate of H̃3.
This gives more flexibility. The most general decomposition reads

H3(mi; gij) =

(
3∑

i=1

pi

)
.

(
3∑

i=1

ai pi

)
+

∑
i<j

[
x−1
ij

(
uij pj − pi

1 + uij

)2

+ gij Vij

]
. (41)

The identification of the coefficients of p2
i and pi.pj gives six relations, and one can express the

parameters ai and xij as functions of the uij. Then one can maximize the lower bound

Eopt = max
u12,...

∑
i<j

E2(xij[u12, . . .]; gij) . (42)

Note that the conditions for stationarity, which for each pair {k, ℓ} are of the form∑
i<j

∂E2(xij, gij)
∂xij

∂xij
∂ukℓ

= 0 , (43)
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Fig. 7. Comparison of the various lower bounds for a symmetric linear interaction, and masses {1, 1,M}. At the scale of
the figure, the optimized bound is hardly distinguishable from the upper bound obtained from the stochastic variational
method of Varga and Suzuki [12].

Fig. 8. Comparison of the various lower bounds for a symmetric gravitational interaction, and masses {1, 1,M}.

with non-zero (actually negative) derivatives E ′

2, imply that the 3 × 3 determinant of the ∂xij/∂ukℓ
vanishes. This leads to∏

k<ℓ

ukℓ = 1 . (44)

This condition holds both for a symmetric potential Vij = V (rij) with a unique function V or any
asymmetric potential Vij = Vij(rij).

For instance, in the case of a linear interaction with masses {1, 2, 3} and Vij = rij, one reaches
the maximum, Eopt ≃ 5.144 for {ukℓ} ≃ {1.546, 1.214, 0.533}. Conversely for equal masses m = 1
and potentials gij rij with {gij} = {1, 2, 3}, one gets the best lower bound Eopt ≃ 9.648 for {ukℓ} ≃

{0.732, 0.758, 1.802}. In both cases, (44) is satisfied.
For a quadratic interaction, the optimized bound coincides with the exact ground-state energy

for unequal masses and/or strengths.
As an illustration how this simple maximization helps, we show in Fig. 7 the naive, improved and

optimized lower bounds for a symmetric linear potential rij and masses {1, 1,M}, as a function of
M . The calculation is repeated in Fig. 8 for a gravitational interaction, and the lower bounds become
less accurate, as expected when one further departs from the harmonic case.

4.2. Optimized bound for four-body and larger systems

When going from the improved to the optimized bound for three-body systems, we had (i) to
vary some parameters, (ii) to subtract an operator more general than the overall kinetic energy,
and (iii) to introduce in the 2-body subsystems a more general combination of individual momenta,
namely αj pj − αi pi, with αi + αj = 1.
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Fig. 9. Comparison of various Hall–Post bounds to the exact energies for masses {1, 2, 3, 4} in the potential V (r) =

(rb − 1)/b, as a function of the exponent b.

When deriving an optimized lower bound for four-body systems, the third of the above exten-
sions should be pushed further. Namely, the conjugate of r j−r i is not restricted to be a combination
of pi and pj. Twice the momentum conjugate to r j − r i is written as

∑
k xij,k pk. But as one may add

any vector proportional to the total momentum
∑

k pk and has to impose the normalization of the
commutators of the position and momentum variables, one can choose xij,i = 1 and xij,i = −1.
Eventually, the decomposition reads

H4 =

4∑
i=1

p2
i

2mi
+

∑
i<j

Vij =

(
4∑

i=1

pi

)
.

(
4∑

i=1

bi pi

)
+

∑
i<j

⎡⎣a−1
ij

4

(
4∑

k=1

xij,k pk

)2

+ Vij

⎤⎦ . (45)

The identification of the coefficients gives 10 equations, from which one can determine the reduced
masses aij and the auxiliary quantities bi as functions of the parameters xij,k with k ̸= i and k ̸= j.
As for the 3-body case, when the cumulated energy S =

∑
i<j E2(aij) is maximized, the twelve

conditions ∂S/∂xij,k = 0 are not independent. Seven general relations can be written down, and for
each set of masses and potentials, the lower bound S is optimized by varying only five parameters.
Details are given in [26]. The study has been pushed further by Zouzou et al. [27–29], for more than
four particles.

As a first illustration, we consider a set of masses {mi} = {1, 2, 3, 4} experiencing a power-law
interaction Vb(r) = (rb − 1)/b. The comparison of the exact energy and the naive, improved and
optimized bounds is done in Fig. 9.

Instead of introducing different masses in a symmetric potential, one can consider a potential
with unequal strength factors among the pairs, experienced by equal-mass particles. In Fig. 10 is
shown the case of equal massesmi = 1 experiencing the same shifted power-law potential as above,
but with a multiplying factor gij = i+ j for each pair. Again, the optimized bound is slightly better,
and matches the exact energy for harmonic confinement.

One can of course combine the asymmetries in the potential and in the masses. With masses
mi = i and the above gij = i+ j, the exact HO energy E4 ≃ 18.17 is recovered by adjusting properly
the parameters of the optimized bound.

4.3. Optimized bound for four-body systems in terms of three-body subsystems

There are circumstances where the 4-body Hamiltonian is under control, but where some of its
2-body subsystems, if taken separately, either do not bind (see Section 6) or are not bounded below
(see Section 8.1.2). The former case corresponds to the repulsion between identical charges, the
latter one to a linear confinement

∑
gijrij with g12 < 0 but the other gij being sufficiently positive

to ensure that the whole potential remains always positive, thanks to the triangular inequalities.
Then a lower bound in terms of 2-body energies is meaningless, but one can get an interesting
Hall–Post bound from 3-body subsystems, at least for a certain range of values for the couplings.
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Fig. 10. Comparison of various Hall–Post bounds to the exact energies for equal masses mi = 1 in the potential∑
gij (rbij − 1)/b, with gij = i + j, as a function of the exponent b.

For simplicity, and in view of the applications to hydrogen-like molecules (M+,M+,m−,m−)
and tetraquarks (QQ q̄q̄), we shall restrict ourselves to study the systems (M,M,m,m) with at most
two values for the masses and two couplings, g = g12 = g34 and g ′

= g13 = g14 = g23 = g24. For the
harmonic oscillator, the 2-body systems exist for g > 0 and g ′ > 0; the 3-body ones for g ′ > 0 and
2 g + g ′ > 0, while the 4-body system requires only g ′ > 0 and g + g ′ > 0. We shall concentrate on
the cases where binding exists for both the 4-body system and its 3-body subsystems, and derive
the corresponding Hall–Post inequalities. To our knowledge, these details have never been spelled
out in the literature.

For equal masses m, there is a straightforward improved bound, as previously defined. One can
match the intrinsic part H̃4 of the 4-body Hamiltonian with a sum of intrinsic 3-body Hamiltonians∑

i H̃
(i)
3 (m′), where i denotes the missing particle and m′

= 8m/3. It reads

4∑
i=1

p2
i

2m
−

(p1 + · · · + p4)2

8m
+

j=4∑
1≤i<j

Vij

=

[
3(p2

1 + p2
2 + p2

3)
16m

−
(p1 + p2 + p3)2

16m
+

V12 + V23 + V31

2

]
+ · · · (46)

This corresponds to a lower bound

E4(m; V ) ≥ Eimp = 4 E3(8m/3; V/2) . (47)

For instance, with a harmonic interaction
∑

i<j r
2
ij for the 4-body problem, and mass m = 1, the

lower bound saturates the exact value E4 = 9
√
2. With a purely linear V (r) = r or gravitational

V (r) = −1/r , one gets, respectively, E4 ≃ 11.148, Eimp ≃ 11.143 and E4 ≃ −2.788, Eimp ≃ −2.857.
In the case of unequal masses, (M,M,m,m), the simplest decomposition does not modify the

sharing of strengths within the subsystems. It corresponds to u = 0 in:

p2
1 + p2

2

2M
+

p2
3 + p2

4

2m
−

(
4∑

i=1

pi

)
. (A p1 + A p2 + a p3 + a p4)+

j=4∑
1≤i<j

Vij

=

[
p2
1 + p2

2

2 x1
+

p2
3

2 x2
−

p1 + p2 + p3

2 x1 + x2
+

1
2
(V12 + (1 + u)(V13 + V23))

]
+ {3 ↔ 4}

+

[
p2
3 + p2

4

2 x3
+

p2
1

2 x4
−

p3 + p4 + p1

2 x3 + x4
+

1
2
(V34 + (1 − u)(V13 + V14))

]
+ {1 ↔ 2} .

(48)
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Consider first the simplest choice u = 0. The identification gives four relations among the
parameters A and a and the four masses xi, and one can calculate x3 and x4 from x1 and x2. By varying
the latter, the lower bound 2 E3(x1, x1, x2)+2 E3(x3, x3, x4) can be optimized and approaches closely
the exact energy, for instance 10.902 vs. 10.917 for m = 1 and M = 2 in the harmonic oscillator.

An improvement consists of introducing some flexibility in the sharing of the (M,m) interaction
terms, namely u ̸= 0 in (48). Varying u as well and the masses x1 and x2 leads to exact saturation
in the case of the harmonic oscillator.

The same decomposition works for unequal strengths associated with equal masses, or a com-
bination of unequal masses and unequal strengths. For instance, for

∑
i<j gij r

2
ij and g12 = g34 = 1

and other gij = 2, one gets saturation of the exact energy E4 = 16.39 with masses x1 = x3 = 3 and
x2 = x4 = 2.2 in the 3-body clusters, and a balanced sharing of strengths (u = 0). If the masses are
changed to M = 2 and m = 1, saturation of the exact energy can still be obtained, at E4 ≃ 14.07
for xi ≃ {7.2, 3.6, 2.6, 2.9} and u = −1/3. One could check, however, that a function is stationary
near its maximum. The improved bound, with a mere subtraction of the center-of-mass energy, and
corresponding to the masses

{xi} =

{
4M(m + M)
m + 2M

,
4m(m + M)
m + 2M

,
4m(m + M)
2m + M

,
4M(m + M)
2m + M

}
, (49)

and u = 0, is just about 0.5% below the optimized maximum. More examples will be given when
discussing hydrogen-like molecules and tetraquarks.

At the end of this section, we insist that the decomposition of 4-body in terms of 3-body clusters
is useful mostly when some 2-body subsystems do not bind or are ill defined, for instance with
an anti-confining interaction. In case of very unequal masses, or strength coefficients close to the
domain of collapse for 3-body systems, the optimization of the lower bound becomes delicate, with
the mass parameters at the edge of the allowed domain.

4.4. Application to bosons in a central field

The methods developed for unequal masses lead to a significant progress for the lower bound to
a system of bosons experiencing both an external interaction and pairwise forces. The Hamiltonian
is given by (13) of Section 2.3, where the naive form of the lower bound was given.

For such systems, there is no improved bound in the sense that it is in general impossible to
separate explicitly the center-of-mass motion, an exception being the case of a harmonic interaction.
Calogero and Marchioro [30] have proposed various decompositions, which in our notation read

H = H1 + H2 =

∑
i

[
(1 − x) p2

i

2m
+ g ′ U(ri)

]
+

⎡⎣∑
i

x p2
i

2m
+ g

∑
i<j

V (rij)

⎤⎦ , (50)

and are to be optimized by varying the parameter x that governs the sharing of the kinetic energy.
Then the improved bound can be applied to the self-interacting system H2. For three-bosons with
m = g = g ′

= 1, and potentials U(r) = r2 and V (r) = r , one obtains E ≥ 9.8236 if H2 is
treated exactly, not too far from the exact value (obtained numerically), which is about 9.8346. For
comparison, the naive bound of Section 2.3 gives Enai ≃ 9.663, while the above bound by Calogero
and Marchioro, once optimized on x, gives a rather poor 9.2914.

Now, we can consider the above system as a (N + 1)-body system with masses (M,m,m, . . .)
in the limit where M → ∞, and search for the optimized bound. This results into a significant
improvement. For the above example involving a linear interaction, it is 9.8236, very close to the
exact 9.8346. At the optimum, the effective masses are about µMm ∼ 4 and µmm ∼ 2. Once more,
the optimized bound is seen to redistribute the inertia over the different pairs.

In [31], Hall studied the case of a finite mass for the center, i.e., the configurations of the type
(M,m,m,m, . . .), with coordinates r0, r1, . . .. With the Jacobi variables R for the center of mass
and xi = r i − r0, and their conjugate momenta P and qi with i ≥ 1, the kinetic energy operator K
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reads

K =
P2

2(M + N m)
+

N∑
i=1

q2
i

2

(
1
M

+
1
m

)
+

∑
1≤i<j≤N

qi.qj

M
, (51)

as customary in atomic physics, when one exhibits the so-called mass-polarization terms. In the
ground-state of the whole system, all q2

i have the same expectation value, as well all qi.qj. Hence
the expectation value of the (N +1)-body Hamiltonian within its translation-invariant ground state
can be seen as N/2 times the expectation value of the 3-body Hamiltonian

H ′

3 =
q2
1 + q2

2

2

(
1
M

+
1
m

)
+ (N − 1)

q1.q2

M
+ V01 + V02 + (N − 1) V12 , (52)

which is, in the mass-polarization representation, the intrinsic part of an Helium-like Hamiltonian
with potentials V01, V02, and (N − 1) V12, and masses {M ′,m′,m′

}, with M ′
= M/(N − 1) and

m′
= (1/m − (N − 2)/M)−1.
For an overall harmonic interaction Vij(r) = r2ij , and N = 3, and masses M = 15 and m = 1, one

gets a lower bound E4 ≥ 10.36, while the exact value is 10.81. In this case, the optimized bound of
Section 4.2 is exact.

For a linear interaction Vij(r) = rij, and same masses, the lower bound is E4 ≥ 9.42, not very
close to the exact 9.97. This is better than the simple improved bound of Section 3.5, which is 8.84,
but significantly worse than the optimized bound 9.96.

5. Application to Borromean binding

5.1. Borromean binding of three or more bosons

So far, we compared the energies of the N-body and N ′-body systems at given coupling. Another
point of view consists of comparing the couplings corresponding to a vanishing energy, i.e., the
coupling thresholds. It is well known that for a number of dimensions d > 2, a minimal coupling
is necessary for binding in a short-range attractive potential. Starting with the seminal paper by
Thomas [32], it is also observed that the coupling threshold required to bind a three-body system,
g3, is smaller than the one, g2, of a two-body system.5 This phenomenon is now referred to as
Borromean binding.

From (9), one gets a crude limit g3 ≥ g2/2 on the window for Borromean binding. It can be
refined to

g3 ≥ 2 g2/3 , (53)

from (19), which is saturated for a harmonic well made vanishing at very large distances, for
instance

V (r) = (−A + r2) exp(−λ r) , A > 0 , λ > 0 (54)

in the limit λ → 0. See, for instance, [33,34]. For simple monotonic potentials such as the ones with
a Gaussian, or exponential or Yukawa shape, one gets typically g3/g2 ≃ 0.80.

The inequality (53) is easily generalized for N bosons as

N gN ≥ (N − 1) gN−1 , (55)

i.e., N gN is an increasing function of N . For the decreasing character of gN , see, e.g., [35].

5 The convention here for g V is that g > 0 and V contains negative parts.
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Fig. 11. Strict limit for Borromean 3-body binding (cyan) of the system (a, a, b) with equal masses ma = mb = 1, in the
plane of the couplings gaa and gab normalized such that gij = 1 is the coupling threshold for the {i, j} pair. The red curve
is a numerical estimate in the case of an exponential interaction −g−1

0
∑

i<j gij exp(−rij), with g0 ≃ 1.4458.

5.2. Borromean binding of three distinguishable particles

For non-identical particles, the inequality involves several couplings. If, for instance, one con-
siders a system (a, a, b) with two couplings normalized such that gij is the coupling threshold for
binding the {i, j} pair, one can distinguish two domains in the {gaa, gab} plane, one near gaa = gab = 0
without 3-body binding and another one with 3-body binding and four regions (see, e.g., [36]):

• for gaa > 1 and gab > 1, 3-body binding is obvious,
• for gaa < 1 and gab > 1, one subsystem is unbound, this is ‘‘tango binding’’,
• for gaa > 1 and gab < 1, two subsystems are unbound, this is ‘‘samba binding’’,
• for gaa < 1 and gab < 1, the three subsystems are unbound, this is ‘‘Borromean binding’’,

An example is given in Fig. 11, with an exponential potential. There is a substantial domain of
possible Borromean binding.

5.3. Borromean binding of four particles

For N ≥ 4, one can envisage several definitions of a Borromean system, for instance by requiring
that all subsystems are unbound. According to the prevailing convention, a system is Borromean if
there is no path to build it by adding the constituents one by one. For instance, the positronium
hydride (p, e+, e−, e−) is remarkable since the second electron stabilizes the unstable (p, e−, e+), but
it is not Borromean if one considers the chain p → (p, e−) → (p, e−, e−) → (p, e−, e−, e+). On the
other hand for M ≃ 2m, the purely Coulombic system (M+,M−,m+,m−) is genuinely Borromean,
as it is stable, while none of its 3-body subsystems is stable [37].

The case of four particles interacting through a short-range potential was studied in [38]. For
(m,m,M,M) with two pairs of bosons (or fermions in a spin singlet state), there are three couplings,
{gmm, gMM , gmM}, normalized such that gij = 1 is the critical coupling for binding in the attractive
potential experienced by masses mi and mj, so that the Hamiltonian reads

H4 =
p2
1 + p2

2

2m
+

p2
3 + p2

4

2M
+

gmm

m
u12 +

gMM

M
v34 +

(M + m) gmM

2mM

∑
i=1,2
j=3,4

wij . (56)
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Fig. 12. Forbidden domain of binding for (m,m,M,M) with M/m = 2, using the partially optimized decomposition (57)
(left), or the fully optimized decomposition (45) (center). Also shown (right) are the forbidden domains for (m,m,M) and
(M,M,m) binding. The red points in the figure in the middle correspond to an estimate of the critical coupling for a
potential ∝ exp(−r2).

In [38], the decomposition of the kinetic part as

T4 = (p1 + p2 + p3 + p4).(a p1 + a p2 + A p3 + A p4)

+
x
4
(p1 − p2)

2
+

y
4
(p3 − p4)

2
+

z
4

∑
i=1,2
j=3,4

(
(1 − α)pi − α pj

)2
, (57)

to the conclusion that binding cannot happen if the inequalities

gmm < −(m/M)2 α2
+ 1 − α2 ,

gMM < −(M/m) (1 − α)2 + α (2 − α) ,
gmM < 1/2 ,

(58)

are simultaneously satisfied. For M/m = 2, after optimization of the parameter α, this corresponds
to the cylindrical section shown in Fig. 12 (left), while the fully optimized decomposition (45)
extends significantly the forbidden domain, as seen in the plot at the center. Also shown (right) is
the volume where 4-body binding is possible while 3-body binding is strictly forbidden. Of course,
the domain of couplings for which 4-body binding and 3-body binding actually occur, depends on
the details of the potentials.

6. Application to few-charge systems

Systems made of three or four unit charges, such as H−(p, e−, e−) or Ps2(e+, e+, e−, e−), have
been thoroughly studied. In this section, we briefly review the lower bounds of Hall–Post type. This
illustrates the hierarchy among the various bounds, and the difficulty to get any accurate lower
bound when one or several pairs do not support a bound state. In short, varying the attraction in a
pair that binds will modify both the exact energy and the HP bounds. Increasing the repulsion in a
pair, on the other hand, will lower the binding but keep unchanged the HP bounds written in terms
of 2-body energies.

6.1. Three unit charges

We restrict here to configurations of the type (M±,M±,m∓), which extend from H2
+ for M ≫ m

to H− for M ≪ m, including the positronium ion for M = m. For any M and m, these systems are
stable below the dissociation threshold (M±,m∓)+M± [39], whose energy is Ethr = −M m/(2(M +

m)). The naive and improved bounds are given by (12) and (39), respectively, with the prescription
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Fig. 13. Hall–Post bound for the energy of (M±,M±,m∓) as a function of x, where M−1
= 2 x and m−1

= 2 (1 − x), vs.
the threshold energy and an accurate estimate of the ground-state energy. The latter ones are distinguished in the second
panel.

E2 = 0 for pairs with equal charges. The optimized bound corresponds to a decomposition

H3 = (p1 + p2 + p3)(A p1 + A p2 + a p3)

+ x−1
12

(
p2 − p1

2

)2

+ x−1
13

[(
p1 − u p3

1 + u

)2

+ 1 ↔ 2

]
. (59)

After identification, one gets the effective masses x12 and x13 as a function of the parameter u. The
best lower bound is not an isolated maximum, but is obtained for x12 infinite, and x13 minimal in
the range of u that keeps x12 positive.

The various bounds are shown in the first panel of Fig. 13 as a function of the ratio x =

m/(M + m) with M−1
+ m−1

= 2, so that the threshold energy is constant. In the second panel,
an enhancement distinguishes the exact energy from the threshold. The numerical estimate of the
energy of (M±,M±,m∓) as a function of the mass ratio M/m will be used in the next subsection,
as an input to the lower bound of (M+,M+,m−,m−).

These bounds on (M±,M±,m∓) are rather poor, and even useless: for instance, a rigorous study
of the stability of the positronium and hydrogen-like molecules requires beforehand to establish
that the lowest threshold is made of two atoms, (M+,m−) + (M+,m−), and not of an ion and an
isolated charge, (M+,M+,m−)+m− or (M+,m−,m−)+M+, i.e., that none of these three-body ions
are bound by more than twice the (M+,m−) energy. This can be done [40], but not with the HP
bounds shown in Fig. 13.

6.2. Four unit charges

We now consider systems of four unit charges, restricting to mass configurations (M+,M+,m−,

m−). As for (M+,M+,m−), the two-body type of decompositions are rather disappointing. The naive
bound is

Enai = −
6mM
m + M

, (60)

which is 6 times the threshold energy

Ethr = −
mM

m + M
. (61)

The improved bound is slightly better,

Eimp = −
4mM
m + M

, (62)

but still much too far from an interesting approximation to the exact energy, which is just below
the threshold, even for M ≫ m.
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Fig. 14. Various HP lower bounds for the ground state of (M+,M+,m−,m−), compared to the threshold and to the
numerical estimate of the exact energy, which is magnified in the right panel.

In the case of the (M,M,m,m) mass distribution, the decomposition leading to the optimized
bound reads

H4 = (p1 + p2 + p3 + p4).(a p1 + a p2 + b p3 + b p4)

+
x
4
(p1 − p2)

2
+

1
r12

+
y
4
(p3 − p4)

2
+

1
r34

+

∑
i=1,2
j=3,4

[
z
4
(pi − pj + c p3−i − c ′ p7−j)

2
−

1
rij

]
. (63)

After identification, one gets the three effective inverse masses x, y, z (and a and b) as functions of
the parameters c and c ′, and the lower bound is given by

Eopt = max
c,c′

[
−

1
z(c, c ′)

]
, (64)

provided x(c, c ′) > 0 and y(c, c ′) > 0. These latter constraints fix the maximum at

Eopt = 8
[√

m + M
(√

m +
√
M
)

− (m + M) −
√
mM

]
. (65)

The various bounds are compared in Fig. 14, where the threshold and the exact energy are also
shown. The HP bounds are clearly very poor.

It can be hoped that the repulsive character is somewhat ‘‘digested’’ in a decomposition in
terms of 3-body subsystems. For Ps2, the naive bound is Enai = E(e+, e+, e−) ≃ −0.786, while the
exact value is E ≃ −0.516. With the center-of-mass removed in the molecule and in the 3-body
subsystems, one gets a slightly better improved bound Eimp = 8 E(e+, e+, e−)/3 ≃ −0.699.

For the hydrogen like molecules (M+,M+,m−,m−), one can use the formalism of Section 4.3.
The result is

Eopt = max
M̃

E3(M̃+, M̃+, m̃−) , (66)

with

m̃−1
=

1
2

(
1 − 2/M̃ +

√
1 − 2/M̃

)
. (67)

The maximum is reached for very large M̃/m̃, perhaps M̃ → ∞, but the precise determination of
the maximum would require a detailed knowledge of the ground-state energy of (M̃+, M̃+, m̃−), for
which only numerical estimates are available. We avoid here to start a meticulous interpolation of
the energies computed by various authors, and restrict to an estimate based on the M → ∞ limit
of the hydrogen molecular ion

Eopt ≃ E(H∞

2
+) ≃ −0.6 . (68)
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It is intriguing that when optimizing the lower bound of the very symmetric Ps2, one reaches the
maximal asymmetry of the subsystems.

The exercise is now repeated for a hydrogen-like (M+,M+,m−,m−) with m = 1 and M = 3,
with threshold Ethr = −3/4 in our units. After a removal of the center-of-mass energy in the
molecule and subsystems, one gets

Eimp = E(m+

1 m
+

1 m
−

2 )/2 + E(m+

3 m
+

3 m
−

4 )/2 = −1.085 , (69)

with {mi} = {48/7, 16/7, 16/5, 48/5}. If one now uses Eq. (47) with u = 0, then, from a rough
estimate of the 3-body energy of the (M̃+, M̃+, m̃−) ions, one gets a maximum at Eopt = −0.907
with the masses {mi} = {110., 1.49, 6., 2.6}. If one freezes out these masses and introduces an
asymmetry in the potential, through the parameter u in (47), the 4-body energy is bounded below
by the energies of the systems (m+1

1 ,m+1
1 ,m−1−u

2 ) and (m−1
3 ,m−1

3 ,m1−u
4 ), whose maximum is about

−0.906 for u ∼ 0.2. Of course, a small gain could be expected by tuning the masses mi and the
asymmetry parameter simultaneously.

7. Application to baryons in the quark model

In simple quark models, there is a color factor λ̃i.λ̃j in front of the pair potential, which means
that the interaction is assumed to be mediated by the exchange of a color octet. Here λ̃ denotes the
set of eight SU(3) generators, the analogs of the Pauli matrices for SU(2). More precisely, when the
spin–spin term is included, the interquark potential reads

V = −
3
16

∑
i<j

λ̃i.λ̃j
[
vc(rij) + σ i.σ j vss(rij)

]
, (70)

where the normalization is such that the bracket is the quarkonium potential. The color factor is
twice larger for a quark–antiquark pair forming a color singlet than for a quark–quark pair forming
an antitriplet.

The simplest inequality is obtained when the spin–spin interaction is omitted. An obvious variant
of (9) is

E3(m; V/2) ≥
3
2
E2(m; V ) (71)

which immediately relates meson and baryon ground-states with a single quark mass. After adding
the constituent masses, one gets an interesting relation between the masses per quark of mesons
and baryons [7,8],

M(qqq)
3

≥
M(qq̄)

2
. (72)

For instance, baryon–antibaryon annihilation through quark rearrangement into three mesons is
energetically possible. The generalization to unequal quark masses is straightforward [41],

2M(q1q2q3) ≥ M(q1q̄2) + M(q2q̄3) + M(q3q̄1) . (73)

When the spin–spin interaction is restored, the relation also holds between a spin 3/2 baryon
and a spin triplet meson, if the spin–spin force contains a factor λ̃i.λ̃j σ i.σ j, as in the class of models
(70), since σ i.σ j = 1 for aligned spins. In the experimental spectrum, the relation is satisfied by the
Ω− and the φ (1604 MeV vs. 1020 MeV). To the extent that the spin–spin force is treated at first
order, one can compare the spin-averaged baryons and spin-averaged mesons.

If one has in mind a potential of Cornell type, V (r) = −a/r + b r , with the 1/2 rule relating the
meson and baryon potentials, the above relations are automatically satisfied. If one now replaces
for the linear part the 1/2 rule by the prescription of the string model,

Vmeson = −
a
r

+ b r

Vbaryon = −

∑
i<j

−
a

2 rij
+ b min

J
(r1J + r2J + r3J ) ,

(74)
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Fig. 15. Construction of the minimal distance Lmin entering the confinement of three-quarks in a baryon. The minimal
distance Lmin = PA + PB + PC is given by Lmin = AA′

= BB′
= CC ′ , where A′ makes an equilateral triangle external to the

quark triangle ABC , and so on. The Napoléon theorem states that the centers of the triangles BCA′ , CAB′ and ABC ′ form
an equilateral triangle.

the inequality (73) is reinforced as the Fermat–Torricelli minimal distance obeys [42]

Lmin = min
J

(r1J + r2J + r3J ) ≥ (r12 + r23 + r31)/2 . (75)

The confining potential (74) has been suggested more or less independently by several authors, so
we refrain from listing an exhaustive set of references. The first paper is seemingly due to Artru [43].
The motivations leading to the minimal cumulated length (74) are diverse: strong coupling regime,
flux-tube picture, adiabatic limit of the bag model, etc. The first explicit quark-model calculations
of baryon masses using this string potential suffered from the unjustified belief that one has first
to determine the location of the junction J and then compute Lmin = r1J + r2J + r3J . In fact, either
by elementary geometry or by the general Melzak algorithm,6 one can establish that Lmin is the
distance from say, the quark q1 to the auxiliary point q′

1 that makes an equilateral triangle q2q3q′

1
external to the quark triangle q1q2q3, as shown in Fig. 15. See, e.g., [44]. Amazingly, the point q′

1
and its analogs q′

2 and q′

3 constitute the basis of a famous theorem by Napoléon [45,46].
With the advent of the improved bound (19), the energy of a symmetric baryon with quark

masses m is bounded below by the energies of fictitious mesons with constituent masses 3m/4.
The increase of energy, from E2(m) to E2(3m/4) can be related to the observed excitation energy of
quarkonia, with mild assumptions on the quark–antiquark potential. See [47].

A baryon of spin 3/2 can be compared to vector mesons via (73) for unequal masses, which
reduces to (72) for equal masses. For a baryon with spin 1/2, one should make some averaging
among spin-singlet and spin-triplet pairs. Consider for instance the ground state of Λ(uds), in

6 The special case when one of the angles of the q1q2q3 triangle is larger than 120◦ should be treated separately.
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the isospin limit, i.e., with two constituent masses mq and ms. Then one can write (73) with a
pure singlet for the pair {1, 2}, and for each of the {1, 3} and {2, 3} pairs, a fictitious meson with
g = ⟨σ i.σ j⟩ = 0, and use the convexity inequality

M(g = 0) ≥
1
2
[M(g = −3) + M(g = 1)] , (76)

leading to

M(uds) ≥
1
2
[M(qq̄)S=0 + M(qs̄)S=0 + M(qs̄)S=1] . (77)

But this is not fully rigorous: if the spin–spin term of (70) is treated non perturbatively in the
Schrödinger equation, the energy of (uds) contains a small component with ud in a state of spin
S = 1 and orbital momentum ℓ = 1, which lowers its energy.

8. Tetraquarks in simple quark models

We now consider the Hamiltonian

H =

4∑
i=1

p2
i

2mi
−

3
16

∑
i<j

λ̃i.λ̃j V (rij) , (78)

where V (r) can be taken for example as a Cornell-type of potential V (r) = −a/r + b r + c , or some
ad-hoc power-law V (r) = A rα or logarithmic form V (r) = A ln(r/r0).

There are two independent ways of building a color singlet out of two quarks and two antiquarks.
If one chooses the diquark–antidiquark basis, the states are

T = (3̄, 3) , M = (6, 6̄) , (79)

where the notation T (true) and M (mock) is inherited from color chemistry [48]. One can also use
the singlet–singlet or octet–octet states in the (q1q̄3)-(q2q̄4) basis or in the other quark–antiquark
pairing, or use the non-orthogonal basis made of the two possible singlet–singlet states.

8.1. Tetraquarks with frozen color wave function

8.1.1. Color state T = 3̄3
In the approximation of a frozen T-color wave function with the two quarks in a color 3̄ state,

the Hamiltonian (78) reduces to

HT =

4∑
i=1

p2
i

2mi
+

1
2
[V (r12) + V (r34)] +

1
4

∑
i=1,2
j=3,4

V (rij) , (80)

to which the Hall–Post type of techniques are directly applicable. HT is purely confining, and, as
such, does not exhibit any threshold. The question is whether the coupled-channel Hamiltonian
(78), when treated at the approximation (80) of a frozen T color wave function, can bind below the
energy corresponding to two mesons.

In the case of equal masses mi = m, the decomposition

HT =
1
2
(h12 + h34) +

1
4

∑
i=1,2
j=3,4

hij , hij =
p2
i

2m
+

p2
j

2m
+ V (rij) , (81)

where hij is the quarkonium Hamiltonian, provides the constraint

ET ≥ 2 E2(m) , (82)
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which prohibits binding from HT alone. This can be easily improved by removing the center-of-mass
motion of the subsystems. The identity

H̃T =
1
2

[
h̃12(m) + h̃34(m)

]
+

1
4

∑
i=1,2
j=3,4

h̃ij(m/2) , h̃ij(m) =
1
m

(
pj − pi

2

)2

+ V (rij) , (83)

gives the lower bound

ET ≥ E2(m) + E2(m/2) , (84)

which is better than (82), due to the decreasing character of E2(m). But it is not perfect, as it is not
saturated in the case of harmonic forces. For m = 1 and V (r) = r2, it gives 3 (1 + 21/2) ≃ 7.243 vs.
the exact ET = 3 (31/2

+ 2−1/2) ≃ 7.317. To get saturation, one should improve the decomposition
as

H̃T =

[(
x
4
(p1 − p2)

2
+

1
2
V (r12)

)
+ (1, 2) ↔ (3, 4)

]
+

{[(
y
4
(p1 − p3 + c p2 − c p4)

2
+

1
4
V (r13)

)
+ 1 ↔ 2

]
+ 3 ↔ 4

}
, (85)

and in the harmonic-oscillator case, saturation is reached for a somewhat exotic looking c =

5 − 2
√
6.

In the case of a linear potential V (r) = r , the threshold corresponds to 2 E2, where E2 ≃ 2.3381.
The naive bound 2 E2 indicates the absence of binding. The improved version pushes the lower
bound to (1 + 21/3) E2 ≃ 2.260 E2. The more flexible (85) gives ET > 2.282 E2 ≃ 5.336, to be
compared to the exact ET ≃ 5.342.

In the case of two different masses, say (Q ,Q , q̄, q̄) = (M,M,m,m), the naive decomposition
gives

ET(M,M,m,m) >
1
2
E2(m) +

1
2
E2(m) + E2(µ) ,

1
µ

=
1
M

+
1
m
, (86)

which is below the threshold Eth = 2 E2(µ), an illustration of a theorem by Bertlmann and Martin,
and Nussinov, stating that, for a given (flavor independent) potential, the 2-body ground-state
energy is a concave function of the inverse reduced mass [8,49]. Thus the naive bound does not
prohibit binding for any M > m, and stability is, indeed, reached for large enough M/m, the critical
value of M/m depending on the potential.

The improved bound prohibits binding near M = m, till M ≃ 9.55m in the case of HO (binding
occurs actually at x ≃ 304m). It reads

H̃T =
1

4 (M + m)

[
(p1 − p2)

2
+ (p3 − p4)

2
+

V12 + V34

2

]
+

∑
i=1,2
j=3,4

[
2 (M + m)

mM

(
m pi − M pj

M + m

)2

+
Vij

4

]
, (87)

with the somewhat surprising occurrence of the same effective mass for the (M,M) and (m,m)
pairs, which penalizes this bound for very asymmetric tetraquarks with large M/m.

The optimized bound makes use of the decomposition

p2
1 + p2

2

2M
+

p2
3 + p2

4

2m
+

[
V12

2
+ · · ·

]
− (p1 + p2 + p3 + p4).(a p1 + a p2 + b p3 + b p4)

=
x
4
(p1 − p2)

2
+

V12

2
+

y
4
(p3 − p4)

2
+

V34

2

+

∑
i=1,2
j=3,4

[
z
4
(pi − pj + c pi′ − c ′ pj′ )

2
+

Vij

4

]
, (88)
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Fig. 16. Variational energy vs. two variants of the Hall–Post lower bounds for the Hamiltonian HT of a tetraquark with
frozen color T = 3̄3, a decomposition into pairs, and a decomposition in 3-body clusters, namely (88). Also shown is the
threshold corresponding to two mesons. The light mass is taken as m = 1.

Table 2
Comparison of the HP bounds for the T-tetraquark with masses m = 1 and M = 5 in the potential
(89). The mij are the effective masses of the pairs. For the decomposition HP-2, they are obtained
directly. For the decomposition in terms of 3-body clusters, the 3-body subsystems are, in turn,
decomposed in 2-body clusters, and the mij that are shown correspond to an average of the
inverses, as each pair enters two 3-body clusters. The exact energy is 1.0020.
HP type EHP m12 m34 m13

HP-2-imp 0.8721 6.00 6.00 3.33
HP-2-opt 0.9926 5.97 1.62 4.45

HP-3-imp 0.9744 5.90 2.19 4.05
HP-3-opt (u = 0) 0.9837 6.74 1.69 4.24
HP-3-opt (u ̸= 0) 0.9881 6.61 1.77 4.16

with, again, i + i′ = 3 and j + j′ = 7. Saturation is obtained in the HO case. For instance, for m = 1
and M = 5, this corresponds to effective masses x−1

= 7.5, y−1
= 1.5, z−1

= 4.2, instead of 6,
6 and 10/3 for the improved bound. The decrease of the second effective mass explains why the
optimized bound is significantly higher than the improved one.

For illustration, we use a simple quark model, which reads

V (r) = −
0.4
r

+ 0.2 r , (89)

with V in GeV and r in GeV−1. With a suitable additive constant, and heavy-quark massesmc = 1.46
and mb = 4.85GeV, it fits the first levels of cc̄ and bb̄. In Fig. 16 are shown the energy of the
threshold 2 (Q q̄), the variational energy obtained with 8 generalized Gaussians,7 and the optimized
Hall–Post bounds obtained from a decomposition either in 2-body or 3-body systems with u = 0
in Eq. (48). The three energies are very close, and thus the exact result is very much under control.

Note that the HP bound in terms of 3-body clusters is slightly below the one in terms of 2-body
clusters, contrary to what happens for equal masses with a symmetric interaction. If one restores
the possibility of u ̸= 0, then the 3-body HP bound is improved. In Table 2, we concentrate on the
case M/m = 5, with various degrees of sophistication for the HP bounds. The 3-body decomposition
suffers from the fact that the quark–antiquark pairs appear in different clusters, (QQ q̄), and (q̄q̄Q ),
with somewhat different effective masses for the (Q q̄) pairs. A comparison is done of these effective
masses.

7 A generalized Gaussian is an exponential in the most general quadratic polynomial of the Jacobi coordinates,
supplemented by terms deduced by symmetry.
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8.1.2. Color state M = 66̄
For a M = 66̄ color state, the Hamiltonian is

HM =

4∑
i=1

p2
i

2mi
−

1
4
[V (r12) + V (r34)] +

5
8

∑
i=1,2
j=3,4

V (rij) (90)

As explained, e.g., in [50], for equal masses mi = m, the above HM is more favorable than HT,
due to the larger spread of the color coefficients around the same average value. For double flavor
configurations (M,M,m,m) with large M/m, the color state M, unlike T, does not benefit from the
heavy–heavy attraction and gives a higher energy.

As HM contains negative color coefficients, any decomposition in terms of 2-body sub-
Hamiltonians would lead to a trivial EM > −∞. So one has to rely on a decomposition with 3-body
subsystems. The simple identity

HM =

[
p2
1

6m1
+

p2
2

6m2
+

p2
3

6m3
−

1
8
V12 +

5
16

V13 +
5
16

V23

]
+ · · · (91)

with a summation over the missing quark or antiquark, leads to a ‘‘naive’’ bound

EM > E3(3m1, 3m2, 3m3; −1/8, 5/16, 5/16) + · · · , (92)

where E3(m1, . . . ; g12, . . .) denotes the ground state of H3 =
∑

p2
i /(2mi) +

∑
gij Vij. In the case of

harmonic confinement, this naive bound allows binding for any M/m, even for M = m, in which
case, in units where m = 1, Enai ≃ 5.968 vs. Eth = 6. The improved bound, that uses the effective
masses (49), prohibits binding near M = m. If one uses the Cornell type of potential (89), one gets,
in the case of four equal masses M: for M = mc = 1.46, a lower bound to the tetraquark mass
MHP = 6.973 very close to the exact MM = 6.978; for M = mb = 4.85, they become MHP = 19.725
and MM = 19.735.

8.2. Tetraquarks with color mixing

In the quark model (78), the wave function has two components, say

Ψ = ψT |T⟩ + ψM |M⟩ , (93)

and in this basis the potential reads⎛⎜⎜⎝
V12 + V34

2
+

V13 + V14 + V23 + V24

4
3

4
√
2
(V13 − V14 − V23 + V24)

3

4
√
2
(V13 − V14 − V23 + V24) −

V12 + V34

4
+

5 (V13 + V14 + V23 + V24)
8

⎞⎟⎟⎠ . (94)

The Hamiltonian now contains a continuum of states made of two well-separated color-singlets,
starting from the threshold energy Eth = 2 E2(M,m), hence the HP lower bounds should satisfy
EHP ≤ Eth. In other words, there is no hope to derive a lower bound that would exclude any binding.
We shall get, however, a lower bound close below the threshold, that excludes the possibility of any
deeply-bound state.

We restrict the illustration to the case of equal masses, which corresponds to the speculations
about bbb̄b̄, or its analog with charm quarks. This configuration is interesting, as it could be reached
with a ΥΥ or Υ ηb trigger, one of the quarkonia being virtual if the state is bound. Contrary to
some naive belief, the heavy mass of the b does not guarantee stability. Increasing the constituent
mass decreases the algebraic energy of both the tetraquarks and its dissociation products, and
the net result is not obvious. In current potential models, bbb̄b̄ is unstable [51–53], contrary to
some claims which suffer from an incorrect treatment of the 4-body problem, such as the use of a
diquark–antidiquark approximation.

There are two ground-state solutions of (93). The first one is symmetric under the exchange
of quarks or antiquarks in the M sector, the second one in the T sector. For the former case, the
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variational solution of the coupled equations leads to a mass Mvar = 19.513, slightly above the
thresholdMthr = 19.501, because we have not pushed the calculation far enough. The state is clearly
unbound, and indeed, the percentages of T and M components correspond to an almost exact singlet–
singlet structure of color. More interesting, after some optimization, the lower bound is obtained
at about MHP = 19.459. This means that 3-body calculations exclude any 4-body binding exceeding
40 MeV. For the other state, symmetric in the T sector, one gets, of course the same threshold Mthr,
the variational Mvar = 19.514 and the lower bound MHP = 19.480. The results in the case where
M = mc are very similar. To our knowledge, this is the first use of HP inequalities with coupled
channels.

9. Miscellaneous

Obviously, the survey of Hall–Post type of lower bounds could be developed in many aspects.
Let us sketch two examples.

9.1. Excited states

In this review and in the literature, the Hall–Post inequalities were mainly discussed for the
ground state, or in the case of fermions, the lowest state compatible with the requirements of
statistics. But there are a few exceptions.

In [54], Hall noticed that (16) provides a lower bound to excited states. If ϵ0, ϵ1, . . . , are the
energy of the 2-body Hamiltonian with effective mass 2(N−1)m and coupling g/2, then the ground
state of the N-boson system is bounded below by N(N − 1)ϵ0 (as already noticed, this coincides
with the naive HP bound), the first excited state by N min[(N − 2)ϵ0 + ϵ1], the second one by
N min[(N − 2)ϵ0 + ϵ2, (N − 3)ϵ0 + 2ϵ1], etc.

In a more recent paper, Hill [55] devised a set of n coupled integral equations, whose solution,
as n increases, improves the lower bound of the ground state, and provides also more and more
stringent lower bounds for the excited states. The example of the 3-body harmonic oscillator in 1
or 3 dimensions is treated in this paper, and a hard-core model was considered in [56]. Clearly more
study is needed for excited states.

9.2. Bounds for semi-relativistic Hamiltonians

The naive decomposition (8) is independent of the form of the kinetic energy operator p2
i /(2mi)

associated with each particle. We already mentioned the remark by Calogero and Marchioro [30],
that it remains valid if each one-body term is supplemented by an interaction with a fixed center,
and becomes p2

i /(2mi) + g ′ U(ri).
Hall and Lucha [57,58] studied the case where the non-relativistic energy operator is replaced

by (m2
i + p2

i )
1/2. It is straightforward to obtain (let us restrict for simplicity to the case of identical

bosons, though some results are easily generalizable to unequal masses)

H3 =
1
2

∑
i<j

[√
m2 + p2

i +

√
m2 + p2

j + 2 V (rij)
]
. (95)

It is notorious that such relativistic form of energy does allow for an explicit separation of the
center-of-mass kinetic energy, unlike the König theorem in the non-relativistic case. Nevertheless,
as pointed out by Hall and Lucha, the relativistic energy is minimal in the rest frame where pi = −pj,
so that there is a lower bound expressed in terms of the eigenvalues of the single-variable operator
(m2

+ p2)1/2 + g V (r).
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10. Outlook

We have presented a survey of the lower bound to the ground state energy of N-body systems
given as a sum of energies of subclusters. In many cases, they offer a good approximation to
the exact value. The techniques were developed first for three identical bosons, and extended
to more particles and to unequal masses. In the latter case, an essential progress was the so-
called optimized bound. It is based on a decomposition of the Hamiltonian where, instead of a
mere removing of the kinetic energy of the center-of-mass, one sets apart a more general term
(p1 +p2 +· · ·).(a1 p1 + a2 p2 +· · ·) which also vanishes in the center-of-mass of the N-body system
of interest. This provides more flexibility, and leads to inequalities that are saturated in the case of
harmonic potentials. We have shown that the method of optimized bound gives better results than
the ones in the literature.

The decomposition of a N-body system in terms of N ′ < N subsystems with N ′
̸= 2 was just

a curiosity in the early literature. We have given examples of useful inequalities for N ′
= 3, in

cases where N ′
= 2 is either useless or ill defined. This concerns hydrogen-like molecules in atomic

physics or, in some quark models, tetraquarks with two quarks in a color-sextet state. The full
treatment of tetraquarks in such models requires an extension of the HP formalism to include
coupled channels. It provides useful restrictions on the possibility of binding full-heavy tetraquarks.

The case of fermions remains much more difficult than the one of bosons. Some progress
has been achieved for an interaction close to the harmonic oscillator, thanks to subtle convexity
inequalities. Another direction consists of analyzing the structure of the N-body wave function
in terms of representations of the permutation group for its subsystems. In the same vein is the
extension of HP to radial excitations: the art of estimating a lower bound becomes more intricate
than summing up sub-energies. The formalism will hopefully become more tractable in the future.

To end up, we like to stress that deriving a good lower bound gives interesting insight on the N-
body structures: how the interaction is shared among the clusters? which effective mass is acquired
by each constituent inside each subcluster? The same questions are of course raised when one tries
to design an efficient and physically meaningful trial function for variational calculations. What can
perhaps be looked for in the future is a parallel and convergent development of a variational method
in terms of clusters and a Hall–Post type of decomposition.
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Appendix. Exact solution of the asymmetric oscillator

We briefly recall the solution of the asymmetric oscillator, with different masses and strengths.
Sometimes, one finds papers [59,60], where unnecessary approximations are done. Let

H =

∑
i

p2
i

2mi
+

∑
{i,j,k}

gk r2ij , (96)

with, again, {i, j, k} being an even permutation, and rij = |r j − r j|. A first change of variables,
xi =

√
2mi r i, leads to an operator

H = −

∑
i

∂2

∂x2i
+ P (97)
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with a symmetric form for the kinetic energy and a potential P that is a second-order polynomial
in the xi. One then introduces three Jacobi coordinates with coefficients on the xi. The third Jacobi
variable corresponds to the center-of-mass R ∝

∑
xi m

1/2
i . For the two first ones, one simply

imposes that the transformation {xi} → {u, v,R} is orthogonal. The potential is independent of
R and is a definite-positive function of u and v. Thanks to a further orthogonal transformation, it is
rewritten P = α u′2

+ β v′2. Then the energy is 3(α1/2
+ β1/2).

A less pedestrian method consists of writing the potential as r̃.A.r , where r̃ = {r i} and A11 =

g2 + g3, A12 = −g3, etc., and describing the transformation toward a symmetric form of kinetic
energy by the diagonal matrix B = diag{(2mi)−1/2

}. Then the energy is simply

3 Tr(B̃.A.B)1/2 , (98)

and there is no need for removing explicitly the center of mass, as it corresponds to a vanishing
eigenvalue. Most modern mathematical softwares include the computation of the square root and
the trace of a matrix.
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