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a b s t r a c t

We consider, within the framework developed by Hannay for
classical integrable systems (Hannay, 1985), the geometric phases
that occur in semi-classical magnetic dynamics. Such geometric
phases are generically referred to as Hannay angles, and, in
the context of magnetic dynamics, may arise as a result of
both adiabatically-varying ellipticity and axis of magnetization
precession. We elucidate both effects and their interplay for
single-domain magnetic dynamics within a simple model with
time-dependent anisotropies and external field. Subsequently,
we consider spin waves and rederive, from our classical ap-
proach, some known results on what is commonly referred to
as the magnon Berry phase. As an aside, these results are used
to give an interpretation for geometric phases that occur in
superfluids. Finally, we develop a Green’s function formalism for
elliptical magnons. Within this formalism, we consider magnon
transport in a mesoscopic ring and show how it is influenced
by interference effects that are tuned by the Hannay angle that
results from a varying ellipticity. Our results may inform the field
of magnonics that seeks to utilize spin waves in applications.

© 2019 The Author(s). Published by Elsevier Inc. This is an open
access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Consider the following exercise, that could have featured as part of a classical-mechanics course
that you took: a particle is confined to move freely on an ellipse and set into motion with some
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given energy. As the particle moves on the ellipse, the ellipse itself is rotated once while keeping
the plane in which the particle moves the same. The angular velocity of the ellipse’s rotation is very
small compared to the angular velocity of the particle, so that the particle completes many circuits
while the ellipse rotates. How many extra circuits does the particle make if the ellipse is rotated
once, as compared to the case where the ellipse is not rotated?

The answer to this question, it turns out, does not depend on whether the ellipse is rotated with
constant angular velocity, nor does it depend on how fast the ellipse is rotated — provided it is
rotated slowly enough. It solely depends on the geometry of the ellipse, or, more specifically, on
the ratio of the lengths of its principal axes. When expressed in terms of an angle that parametrizes
the position of the particle on the ellipse, the excess amount of circuits is an example of a Hannay
angle [1].

Such angles occur in classical confined and integrable Hamiltonian systems whenever the
Hamiltonian is taken around a closed loop in parameter space. Integrability ensures the existence of
adiabatic invariants, called action variables, that are conjugate to so-called angle variables. Loosely
speaking, the integrability ensures periodic motion of some variable. As a result, it is parametrized
by an angle and that angle may acquire a geometric contribution when the Hamiltonian is taken
around a closed loop in the space of its parameters. In the example of the exercise above, the action
variable conjugate to the angle that parametrizes the position of the particle on the ellipse is simply
proportional to the energy of the particle.

The Hannay angle is an example of a geometric phase. Over the past few decades, geometric
phases have become part of the established vocabulary of physics [2]. An important contribution
to this development was the discovery of what is now known as the Berry phase. This best-
known example of a geometric phase is the phase that a quantum mechanical system picks up
when its Hamiltonian is taken around a closed loop in parameter space [3]. The Berry phase has,
for example, been important in the development of the theory of polarization [4], anomalous
transport [5,6], and topological insulators [7,8]. Less well-known examples of geometric phases, next
to the aforementioned Hannay angle, may occur in dissipative and stochastic classical systems [9].

In this article, we focus on the geometric phases that arise in the semi-classical spin dynamics
of ordered magnetic systems. An example of such a phase is the one picked up by a spin wave as
it travels through a magnetic texture with non-trivial topology. This phase is commonly referred to
as a magnon Berry phase, a magnon being a quantized spin wave, and was introduced by Dugaev
et al. [10]. Its momentum-space version has been used to develop the theory of anomalous magnon
transport [11].

Here, we consider these geometric phases using the approach of Hannay in terms of action and
angle variables. This approach does not rely on a formulation in terms of gauge fields, and provides
an alternative approach. That the magnon Berry phase is actually a classical Hannay angle can be
understood from the fact that it is, in principle, directly observable by measuring the magnetization
direction. This is contrary to a true quantum-mechanical Berry phase that can be observed only
through interference. That the terminology ‘‘Berry phase" is used for what are actually Hannay
angles in spin systems is understandable, as they can be similar. This is illustrated by the following
example: consider a quantum spin S in its ground state in a Zeeman field. Taking the direction of
this field around a loop on the unit sphere enclosing a solid angle Ω , gives rise to the perhaps
best-known example of a Berry phase, e−iSΩ [3]. In the semi-classical limit (S → ∞), however,
the spin undergoes circular precession around the magnetic field. Taking the field direction around
the same loop as before, while the spin precesses around it, leads to an extra angle of precession,
a Hannay angle, that is equal to Ω . Hence, both the Berry phase and Hannay angle are, for this
example, characterized by the solid angle Ω . For more details on the relation between Berry phases
and Hannay angles, and for a mathematically more rigorous treatment of adiabaticity in classical
mechanics, the reader may consult [2]. Here, we shall not be overly concerned with mathematical
rigor but will focus on physical examples instead.

The plan of this article is as follows. In Section 2 we will introduce a toy model that allows
us to discuss the Hannay angles that occur in the precession of a single-domain magnet in detail
and in what is hopefully a pedagogical manner. In particular, this model allows for a detailed
anatomy of the Hannay angles that occur. We shall see that there are both a Hannay angle due
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Fig. 1. (a) Elliptical magnetization precession of the magnetization direction m(t) around the equilibrium direction m0 .
The coordinates (x′, y′) label positions in the plane perpendicular to m0 . (b) The angle variable ϕ(t) is the angle between
the projection of m(t) onto the plane perpendicular to m0 and one of the principal axes of the ellipse. The angle ψ is
the angle between one of the principal axes of the ellipse and the x′-direction.

to the ellipticity of the precession, reminiscent of the exercise that was posed to the reader at the
beginning of this introduction, and a Hannay angle due to the changing direction of field that was
already briefly mentioned above in terms of the solid angle Ω . Using the understanding of single-
domain precessional dynamics, we consider the geometric phase picked up by single coherent spin
wave in Section 3 and rederive some of the results of Dugaev et al. [10] using the formulation in
terms of action and angle variables. Building upon these results, we present a brief intermezzo that
gives a simple interpretation of the geometric phases that occur in superfluids [12]. Going back to
magnetic systems, we consider in Section 5 a simple set-up to study how the Hannay angles due
to ellipticity influence transport of incoherent (thermal) magnons. We end with a brief conclusion,
discussion, and outlook.

2. Single-domain magnetization dynamics

We consider a single-domain ferromagnet well below the Curie temperature. Its direction of
magnetization m ≡ M/Ms, with Ms the saturation magnetization, obeys the Landau–Lifshitz
equation [13]

∂m(t)
∂t

= −γµ0m(t) × Heff(m(t)) , (1)

where γ > 0 is minus the gyromagnetic ratio, µ0 is the vacuum permeability, and Heff is the
effective field, which is, in general, a function of m and its spatial derivatives. The effective field is
proportional to the functional derivative of the so-called micromagnetic energy functional E[m]:

Heff(m) = −
1

µ0Ms

δE[m]

δm
. (2)

Specific examples of the micromagnetic energy and effective fields are discussed below. Usually, one
adds a Gilbert damping term αm(t)× ∂m(t)/∂t , proportional to the dimensionless constant α ≪ 1,
to the right-hand side of Eq. (1) [14]. The Gilbert damping term phenomenologically accounts for
relaxation of the magnetic energy so that the magnetization direction eventually reaches its lowest-
energy state with m pointing along Heff. Gilbert damping leads to finite time and length scales
above which the geometric angles that are the focus of this article are unobservable. Apart from
mentioning these time and length scales, we will, throughout this article, mostly ignore Gilbert
damping and take α = 0.

The Landau–Lifshitz equation describes counterclockwise precession of the magnetization di-
rection around the effective field as illustrated in Fig. 1. The length of m is preserved so that m
is restricted to the unit sphere. Let us first consider the case that the external magnetic field and
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other parameters entering E[m], such as anisotropy constants, are time-independent. The small-
angle linearized dynamics, referring to the angle between Heff and m, corresponds to an ellipse in
the plane perpendicular to m0. Here, the equilibrium magnetization direction m0 is determined by
solving m0 × δE[m0]/δm0 = 0 for m0, with the restriction that |m0| = 1. Both the shape of the
ellipse and the orientation of the plane in which it lies are time-independent if the micromagnetic
energy is time-independent. Let us consider linearized dynamics from now on and let ϕ be the angle
between the magnetization projected on the plane perpendicular to m0, with some fixed axis in the
same plane (see Fig. 1). This angle constitutes an angle variable in the spirit of classical integrable
systems: it is conjugate to a conserved quantity, the ‘‘action variable’’ I . In the present case of
linearized dynamics, the action variable is simply the area of the ellipse, which is proportional to
the energy that the small deviation of the magnetization from its equilibrium direction m0 costs.
In general, the equations of motion for the action and angle variables are

∂ I(t)
∂t

= −
∂E
∂ϕ

= 0 , (3a)

∂ϕ(t)
∂t

=
∂E
∂ I
, (3b)

where ∂E/∂ϕ = 0 follows from the definition of I and ϕ.
Let us now consider a time-dependent change, starting at t = 0, of the parameters in the energy

which therefore causes the instantaneous equilibrium magnetization direction m0 to depend on
time. We now consider this change to be adiabatically slow and to result in a closed loop in the
configuration space of m0 such that m0(0) = m0(T ), with T the time during which the adiabatic
excursion takes place. We take m0 independent of time for t < 0 and t > T . For adiabatic changes
in m0(t), the linearized magnetization dynamics corresponds to elliptical precession around the
instantaneous equilibrium magnetization direction m0(t). Due to the adiabatic time-dependence of
m0(t) the ellipse will adiabatically change its shape whereas the plane in which it lies will change
its orientation. We will consider the situation that the direction of both field and anisotropy can be
time-dependent, but not their magnitude, so that the energy is constant. In that case the area of the
ellipse remains the same. The angle variable is not constant, however, and Hannay pointed out that
there is, in addition to the dynamic contribution

∫ T
0 dt∂E/∂ I , generically a geometric contribution to

the angle variable when the system parameters are taken adiabatically around a loop in parameter
space.

In the case of magnetization dynamics this geometric contribution results from two effects. First,
the orientation of the plane changes as m0 changes. Second, the principal axes of the ellipse may
change as m0 varies, and, in particular, the ellipse may rotate. In the next subsection, we discuss a
toy model that illustrates both effects. We first discuss them separately, finishing with a discussion
of their interplay.

2.1. Toy model

The micromagnetic energy for our toy model of a single-domain magnet consists of contri-
butions due an external field Hext = Hextn in the direction n and anisotropies. Here, n =

(sin θ cosφ, sin θ sinφ, cos θ ) is a unit vector that we parameterize with the angles θ and φ. The
angle θ corresponds to the angle between n and the z-direction, whereas φ is the angle between
the x-direction and the projection of n onto the x − y-plane. (See Table 1 for an overview of the
various vectors and angles.) The anisotropy that we consider corresponds to the situation that the
energy cost for deviations of the magnetization directions away from n depends on the direction
of deviation. In total, the energy is

E[m] = −µ0MsHextm · n

+
K1

2

[
m ·

(
e′

x cosψ − e′

y sinψ
)]2

+
K2

2

[
m ·

(
e′

x sinψ + e′

y cosψ
)]2

. (4)
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Table 1
Notation and meaning of various angles and vectors used in this article.

Symbol

Magnetization direction m
Equilibrium magnetization direction m0
Angle variable that parametrizes the precession ϕ

Angle that parametrizes direction of anisotropy ψ

Direction of external magnetic field n
Angles that parameterize direction of external
field as n = (sin θ cosφ, sin θ sinφ, cos θ )

θ, φ

In this expression, K1 > 0 and K2 > 0 are the two constants that determine the anisotropy,
with K1 ̸= K2 so that the precession is, as we shall see, elliptical. The unit vectors e′

x and e′
y are

perpendicular to each other and the n-direction so that they span the plane perpendicular to n.
We choose e′

x = (cos θ cosφ, cos θ sinφ,− sin θ ) and e′
y = (− sinφ, cosφ, 0), so that e′

x and e′
y

correspond, respectively, to the x and y-direction when θ = φ = 0. The angle ψ is the angle that
one of the principal axes of the ellipse of precession makes with the e′

x-axis [see Fig. 1 (b)].
Consider first the situation that θ = φ = ψ = 0. In this case, n and the equilibrium

magnetization direction m0 point along the z-direction. We write m = (mx,my, 1−m2
x/2−m2

y/2),
with mx,my ≪ 1, which after insertion into Eq. (4) and expansion up to quadratic order in mx and
my yields

E0[m] =
µ0MsHext

2

(
m2

x + m2
y

)
+

K1

2
m2

x +
K2

2
m2

y , (5)

where we have omitted a constant that is irrelevant for our purposes. The contours of constant
energy corresponds to ellipses in the (mx,my)-plane of which the principal axes are aligned with
the mx and my-direction. The ratio between the length of the principal axes in these respective
directions is

√
(µ0MsHext + K1)/(µ0MsHext + K2), i.e., when K1 is larger (smaller) than K2, the

principal of the ellipse is shorter (longer) in the mx-direction than in the my-direction. When the
external field is large, µ0MsHext ≫ K1, K2, the precession becomes circular. Throughout this article
we consider K1, K2,Hext larger than zero so that the magnetic precession is stable.

The linearized equations of motion follow from inserting the approximation for m for small mx
and my into the Landau–Lifshitz–Gilbert Eq. (1), which yields

−ṁx(t) =
γ

Ms

∂E0[m]

∂my
= ω2my , (6a)

ṁy(t) =
γ

Ms

∂E0[m]

∂mx
= ω1mx , (6b)

with the frequencies ω1 = γ (µ0Hext + K1/Ms) and ω2 = γ (µ0Hext + K2/Ms). These equations are
most conveniently solved by rewriting them in terms of a radial coordinate r(t) and an angle ϕ(t)
according to

mx(t) =

√
√
ω1ω2

ω1
r(t) cosϕ(t) , (7a)

my(t) =

√
√
ω1ω2

ω2
r(t) sinϕ(t) , (7b)

which parametrizes the elliptical motion in the mx − my-plane, and where the overall factor
(ω1ω2)

1/4 is included to make r(t) dimensionless. Inserting Eqs. (7) in the energy in Eq. (5) yields

E0[r] = µ0Ms

√
ω1ω2

2
r2 , (8)
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whereas the equations of motion for r(t) and ϕ(t) are found by inserting the parameterization
Eqs. (7) into Eqs. (6). These equations of motion are

ṙ(t) = 0 , (9a)

ϕ̇(t) =
√
ω1ω2 =

1
µ0Ms

∂E0[r]
∂
( 1
2 r

2
) , (9b)

which, after comparison to Eqs. (3) shows that ϕ is indeed an angle variable that is conjugate to the
action variable I ∝ r2. The latter action variable corresponds, as expected, up to prefactors, to the
area of the ellipse in the mx − my-plane, and is proportional to the energy as well. From the above
equations of motion it is found directly that the frequency of precession is

√
ω1ω2.

Next we consider the case that ψ is still time-independent – but nonzero – so that the elliptical
trajectories (in the mx − my-plane) are rotated as well (see Fig. 1), but with n still pointing in the
z-direction. Up to quadratic order in mx and my, the energy changes into

Eψ [m] =
µ0MsHext

2

(
m2

x + m2
y

)
+

1
2

(
K1m2

x + K2m2
y

)
cos2 ψ

+
1
2

(
K2m2

x + K1m2
y

)
sin2 ψ

+
1
2
(K2 − K1)mxmy sin (2ψ) , (10)

while the equations of motion become

−ṁx(t) =
γ

Ms

∂Eψ [m]

∂my
, (11a)

ṁy(t) =
γ

Ms

∂Eψ [m]

∂mx
. (11b)

These latter equations of motion contain considerably more terms than the ones in Eqs. (6).
Physically, the magnetization dynamics corresponds to the same elliptical precession as for ψ = 0,
but with the ellipse now rotated around the z-direction by an angle ψ . The equations of motions
are therefore most straightforwardly solved by parametrizing mx and my with the rotated version
(over an angle ψ) of Eqs. (7), i.e., by

mx(t)

(ω1ω2)
1
4

= r(t)
[
cosψ

cosϕ(t)
√
ω1

+ sinψ
sinϕ(t)
√
ω2

]
, (12a)

my(t)

(ω1ω2)
1
4

= r(t)
[
cosψ

sinϕ(t)
√
ω2

sinψ
cosϕ(t)
√
ω1

]
. (12b)

Inserting this parameterization into the energy Eψ and the equations of motions in Eqs. (11) yields
equations of motion for r(t) and ϕ(t) that are the same as Eqs. (9), as expected. In both the
parameterization in Eqs. (7) and (12) the angle variable ϕ(t) corresponds to the angle between
the vector (mx,my) and one of the principle axes of the ellipse. In terms of its relation to the fixed
laboratory coordinates, its definition has, however changed. In the next section, we will see that
this change in angle variable may lead to a geometric contribution to the angle variable for an
adiabatically-slowly varying ψ .

2.1.1. Time-dependent anisotropy
We now consider the situation that n remains fixed to point in the z-direction, while ψ is taken

to be time-dependent, i.e., the anisotropy varies in time. In particular, we take ψ = ψ0(t) to result
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in a loop in the space of parameters which determine the anisotropy, so with ψ0(0) = ψ0(T ) =

0 (mod 2π ) and

ψ0(t) =
2π t
T

for 0 ≤ t ≤ T , (13)

with T the time over which ψ changes. We consider the adiabatic limit, which in this particular
case means that ψ changes so slowly that

√
ω1ω2 ≫ 1/T . Physically, this implies that there are

many cycles of precession during the time when the anisotropy is varied.
In the case of a time-dependent angle ψ , the equations of motion are still given by Eqs. (10)

and (11), with ψ → ψ0(t). It is again convenient to parameterize mx and my by action and angle
variables, using Eqs. (12) with ψ → ψ0(t):

mx(t)

(ω1ω2)
1
4

= r(t)
[
cosψ0(t)

cosϕ(t)
√
ω1

+ sinψ0(t)
sinϕ(t)
√
ω2

]
, (14a)

my(t)

(ω1ω2)
1
4

= r(t)
[
cosψ0(t)

sinϕ(t)
√
ω2

− sinψ0(t)
cosϕ(t)
√
ω1

]
. (14b)

This means that at each time t , the instantaneous angle variable is indeed ϕ because the instan-
taneous energy does not depend on it. Inserting the above parameterization in the equations of
motion generates, however, extra terms as compared to Eqs. (9) because of the time-dependence
of ψ0(t) on which the time derivative acts. These extra terms give, ultimately, rise to the geometric
contributions that we are after. In the first instance, we find, by inserting the above ansatz into
Eqs. (10) and (11) with ψ → ψ0(t), that

ṙ(t) =
(ω2 − ω1)
√
ω1ω2

r(t) cosϕ(t) sinϕ(t)ψ̇0(t) , (15a)

ϕ̇(t) =
√
ω1ω2 +

1
2

(√
ω1

ω2
+

√
ω2

ω1

)
ψ̇0(t) +

(ω2 − ω1)

2
√
ω1ω2

cos (2ϕ(t)) ψ̇0(t) . (15b)

In the adiabatic limit, ϕ(t) depends approximately linearly on time, so that sinϕ(t) and cosϕ(t)
oscillate. Denoting the time average over such oscillations by ⟨· · ·⟩, we have that

⟨ṙ(t)⟩ = 0 , (16a)

⟨ϕ̇(t)⟩ =
√
ω1ω2 +

1
2

(√
ω1

ω2
+

√
ω2

ω1

)
ψ̇0(t) . (16b)

The second equation in this result is integrated from 0 to T to find the change in precession
angle after the adiabatic change of the anisotropy parameters is performed and the anisotropy has
returned to its initial configuration. We find that ∆ϕ ≡

∫ T
0 ⟨ϕ̇(t)⟩dt = ∆ϕdyn +∆ϕgeo, with

∆ϕdyn =
√
ω1ω2T , (17a)

∆ϕgeo =
1
2

(√
ω1

ω2
+

√
ω2

ω1

)∫ T

0
ψ̇0(t)dt . (17b)

The first of these contributions, i.e., ∆ϕdyn, is the usual dynamic contribution that is not geometric.
The other contribution, ∆ϕgeo, is geometric in the sense that it does not depend on the time-
dependence of the loop in parameter space along which the system is taken adiabatically, but only
on the geometry of the loop. In this particular case, this means that ∆ϕgeo does not depend on the
path ψ0(t), but only on its end points, i.e.,

∆ϕgeo =
1
2

(√
ω1

ω2
+

√
ω2

ω1

)∫ T

0
ψ̇0(t)dt

= π

(√
ω1

ω2
+

√
ω2

ω1

)
, (18)

where we used that ψ0(T ) − ψ0(0) = 2π . The above result shows that when the anisotropy is
varied adiabatically in such a way that the ellipse on which the magnetization precesses rotates n
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times, the precession angle picks up a geometric contribution πn
(√
ω1/ω2 +

√
ω2/ω1

)
. In case the

precession is circular, i.e., when ω1 = ω2, this angle is 2πn, and thus zero (mod 2π ). This result
is a relation between the geometric angle and the ratio of the lengths of the principal axes of the
ellipse on which the precession takes place. It is similar to the example of elliptical particle-motion
in phase space considered by Hannay [1], and provides the answer to the exercise that this article
started out with in the introduction.

At this point, we mention a subtlety that arises from the parameterization in Eqs. (14). Namely,
the energy Eψ [m] is invariant when ψ → ψ + π whereas the parameterization in Eqs. (14) is not.
As a result, when ψ0(t) is taken to vary adiabatically from e.g. 0 to π , the energy returns to its value
at t = 0 but there appears to be a geometric contribution to the angle ∆ϕgeo = π ̸= 0 even when
ω1 = ω2. This is, however, not a true geometric angle but rather a result of the parameterization
not being invariant under ψ0 → ψ0 + π . To isolate the true geometric contribution, paths that
take ψ0(t) from some value ψ̃ to ψ̃ + 2πn should be considered, such that the parameterization in
Eqs. (14) ‘‘makes a full loop’’ in the parameter space of ψ0. The geometric angle in Eqs. (17) should
be computed using only such paths. To compute the geometric contribution to the angle that is
acquired when ψ0(t) is taken to vary adiabatically from ψ̃ to ψ̃ + π , this result should be divided
by two, after taking mod 2π .

Finally, note that we can always redefine the angle variable by adding a constant to it, i.e., by
replacing ϕ(t) → ϕ(t) + ϕ0 with ϕ0 independent of time in Eqs. (14). This redefinition is similar to
a gauge transformation, and leaves the geometric angle that the system picks up after it is taken
along a close path in parameter space invariant.

2.1.2. Circular precession in a time-dependent magnetic field
Next, we consider the situation without ellipticity, i.e., K1 = K2 ≡ K , but take the direction of the

external field to be arbitrary. Let R(θ, φ) be the rotation matrix that rotates the n-direction to the
direction of ez , i.e., R(θ, φ)n = ez , with ez the unit vector in the z-direction. Then, by construction,
inserting m(t) = R−1(θ, φ) · (r(t) sinϕ(t), r(t) cosϕ(t), 1) into the Landau–Lifshitz equation leads
to the equations of motion (9) for small r(t) (taking K1 = K2 = K ) which shows that ϕ(t) is an
appropriate angle variable. Physically, this angle variable corresponds to the angle between the
magnetization direction m(t), projected on the plane perpendicular to n, and the e′

x-direction. The
variable r(t) is the radius of the – in this case circular – precession.

We now take the direction of the external field to be time-dependent, i.e., n(t) = (sin θ (t)
cosφ(t), sin θ (t) sinφ(t), cos θ (t)). Insertion of m(t) = R−1(θ (t), φ(t)) · (r(t) sinϕ(t), r(t) cosϕ(t), 1)
into the Landau–Lifshitz equation (1) yields in the first instance the equations of motion

ṙ(t) = −
[
cosϕ(t)θ̇ (t) + sinϕ(t) sin θ (t)φ̇(t)

]
, (19a)

ϕ̇(t) = ω1 +
sinϕ(t)θ̇ (t) + cosϕ(t) sin θ (t)φ̇(t)

r(t)
− cos θ (t)φ̇(t) . (19b)

The adiabatic limit physically corresponds to the case that the precession completes many cycles
while the direction of the field changes slowly, so that |dn/dt| ≪ ω1 where ω1 = ω2 = γ (µ0Hext +

K/Ms) for the case that K1 = K2 = K . In this limit, we then average over the oscillating terms in
the above equation which yields

⟨ṙ(t)⟩ = 0 , (20a)

⟨ϕ̇(t)⟩ = ω1 − cos θ (t)φ̇(t) . (20b)

Like before, we consider that the system is taken adiabatically along a loop in parameter space,
i.e., we consider the direction n of the field to make a loop on the surface of the unit sphere starting
at time t = 0 and ending at t = T . Integrating the second equation in (20) over time, we find that
the first term gives a dynamic contribution ∆ϕdyn = ω1T . The second term gives the geometric
contribution

∆ϕgeo = −

∫ T

0
cos θ (t)φ̇(t)
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=

∫ T

0
[1 − cos θ (t)] φ̇(t) = Ω . (21)

In going from the first to second line in the above, we added a multiple of 2π , which is allowed
because ∆ϕgeo is defined modulo 2π . This allows us to rewrite the geometric contribution as the
area Ω enclosed by the path n(t) on the unit sphere. This result is understood as follows: the
geometric contribution to the angle variable is the same as the angle over which a vector, that
is transported parallel on the unit sphere, rotates, which is well known to be Ω .

2.1.3. Elliptical precession in a time-dependent magnetic field
We now consider the geometric contribution to the precession angle that results from a time-

dependent adiabatic excursion of both the ellipticity and the direction of the external field. To this
end, we consider the energy of our toy model in Eq. (4) in the most general case K1 ̸= K2, and
arbitrary and time-dependent direction of field n(t), and direction of anisotropy as parametrized
by ψ(t). The magnetization direction is now written in terms of action and angle variables r(t)
and ϕ(t) by combining the transformation of the previous section with Eqs. (20), i.e., by using
m(t) = R−1(θ (t), φ(t)) · (mx(t),my(t), 1), with mx(t) and my(t) given by Eqs. (14). Inserting this in
the Landau–Lifshitz equation gives, after averaging over oscillatory terms, the equations of motion

⟨ṙ(t)⟩ = 0 , (22a)

⟨ϕ̇(t)⟩ =
√
ω1ω2 +

1
2

(√
ω1

ω2
+

√
ω2

ω1

)
×
[
ψ̇0(t) − cos θ (t)φ̇(t)

]
. (22b)

The geometric angle after a cyclic adiabatic excursion from t = 0 to t = T is found from this latter
result as

∆ϕgeo =
1
2

(√
ω1

ω2
+

√
ω2

ω1

)
×

∫ T

0
dt
[
ψ̇0(t) − cos θ (t)φ̇(t)

]
, (23)

which is the sum of a contribution due to time-dependent ellipticity and the time-dependent
direction of the field. This result shows that the ellipticity of the precession affects the geometric
angle resulting from adiabatically changing the direction of field, i.e., the second term in the above,
making it impossible to express it in terms of the path enclosed by the area on the unit sphere. One
way to understand this is as follows. The anisotropy breaks spin conservation and therefore leads
to nutation. This makes it not straightforward to view the adiabatic dynamics as parallel transport.
Note that the contribution due to adiabatic variation of the ellipticity, the first term in Eq. (23), is
the same as found in Section 2.1.1.

While, in principle, the geometric contribution to the precession angle could be measured di-
rectly, this may be very hard to do in practice because it would involve time-resolved measurements
of small deviations of the magnetization. Often, one would rely on some form of interference set-
up. To perform this interference in the time domain, however, may again be very hard because
the precession relaxes on a time scale 1/α

√
ω1ω2. In the next section, we therefore discuss a

generalization of the geometric angles to the position domain and, in particular, the geometric
angles that can be acquired by a spin wave.

3. Spin waves

In this section, we consider a different context in which the Hannay angles discussed in the
previous section may arise. Namely, we consider the propagation of a spin wave. Such a wave may,
e.g., pick up a geometric angle when the parameters in the energy change as a function of position.
This geometric angle may be used to manipulate the spin wave. Manipulation of spin waves is the
goal of the field that is nowadays dubbed magnonics [15]. From now on, we focus on the Hannay
angle due to adiabatically-varying ellipticity. This particular geometric angle was first discussed in
Refs. [10,16]. In general, geometric phases for spin waves are often referred to as magnon Berry
phases.
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To consider spin waves, the expression that we used for the energy until now needs to be
modified to include exchange. Starting from the expression in Eq. (5), we have that up to quadratic
order

Eex
0 [m] =

∫
dx
[
µ0MsHext

2

(
m2

x + m2
y

)
+

K1

2
m2

x

+
K2

2
m2

y −
Js
2

(
mx∇

2mx + my∇
2my

)]
, (24)

where the deviations mx and my are now a function of both time t and position x, and Js is the ex-
change stiffness. The linearized equations of motion follow analogously to Eqs. (6) and are given by

− ṁx(x, t) =
γ

Ms

δExc
0 [m]

δmy

= γ

[
µ0Hext +

1
Ms

(
−Js∇2

+ K2
)]

my , (25)

and

ṁy(x, t) =
γ

Ms

δExc
0 [m]

δmx

= γ

[
µ0Hext +

1
Ms

(
−Js∇2

+ K1
)]

mx . (26)

Spin waves correspond to plane-wave solutions of these latter two equations. In keeping with our
discussion in terms of Hannay angles of the previous section, we write these plane wave solutions
in terms of action and angle variables r(t) and ϕ(t) that are now defined as

mx(x, t) =

√
√
ω1(k)ω2(k)
ω1(k)

r(t) cos [ϕ(t) − k · x] , (27a)

my(x, t) =

√
√
ω1(k)ω2(k)
ω2(k)

r(t) sin [ϕ(t) − k · x] , (27b)

in which the frequencies ω1(k) = γ
(
µ0Hext + K1/Ms + Jsk2/Ms

)
and ω2(k) = γ

(
µ0Hext + K2/Ms

+ Jsk2/Ms
)
now incorporate exchange, and where k is the wave vector of the spin wave. The

resulting equations are ṙ(t) = 0, as expected, and ϕ̇(t) =
√
ω1(k)ω2(k) ≡ ωsw(k) which gives

the spin-wave dispersion ωsw(k).
The spin-wave solutions in Eqs. (27) correspond to elliptically-precessing spin waves. If the

anisotropy varies in space, the direction of the principal axes of the ellipse of this precession will
also vary in space. To explore how this gives rise to geometric angles we consider the model of
Eq. (10) and generalize it to the case of position-dependent anisotropy ψ = ψ(x). For simplicity we
take the anisotropy to vary in the x-direction only, and will take the spin wave to propagate in this
direction as well. The energy is then given by

Eex
ψ [m] =

∫
dx
[
µ0MsHext

2

(
m2

x + m2
y

)
+

1
2

(
K1m2

x + K2m2
y

)
cos2 ψ

+
1
2

(
K2m2

x + K1m2
y

)
sin2 ψ

+
1
2
(K2 − K1)mxmy sin (2ψ)

−
Js
2

(
mx∇

2mx + my∇
2my

)]
, (28)
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which yields the equations of motion

− ṁx(x, t) =
γ

Ms

δExc
ψ [m]

δmy
, (29a)

ṁy(x, t) =
γ

Ms

δExc
ψ [m]

δmx
, (29b)

that contain considerably more terms than Eqs. (25) and (26) and are not written out explicitly. To
accommodate for the position-dependent anisotropy and resulting ellipticity, we attempt solutions
of the form

mx(x, t)

(ω1(k)ω2(k))
1
4

= r(t)
[
cosψ(x)

cos [ωt + ϕ(x)]
√
ω1(k)

+ sinψ(x)
sin [ωt + ϕ(x)]

√
ω2(k)

]
, (30)

and
my(x, t)

(ω1(k)ω2(k))
1
4

= r(t)
[
cosψ(x)

sin [ωt + ϕ(x)]
√
ω2(k)

− sinψ(x)
cos [ωt + ϕ(x)]

√
ω1(k)

]
, (31)

which generalize Eqs. (12) to incorporate exchange and a position-dependent anisotropy, because
the ellipse of precession is locally rotated over the angle ψ(x) to the ellipse favored by the
anisotropy. In Fig. 2 these spin waves are illustrated. The ellipses in this figure indicate the
precession that is favored by the local anisotropy. The solid arrows illustrate the spin wave with
geometric phase shift. The dashed arrows correspond to the spin wave without the geometric phase.

Since the position-dependent anisotropy breaks translation invariance, the trial solution is
labeled by a frequency ω. The wave number k is still to be determined and should be interpreted as a
function of this frequency. We expect that these trial solutions are valid in the adiabatic limit when
|ψ ′(x)| ≪ k, where the prime indicates a derivative with respect to x. Note that ψ(x) is assumed to
be a given function that is determined by how the anisotropy varies in space.

Using the above trial solutions, ϕ(x) is computed by inserting them into the equations of motion
(29). This yields, after averaging as before over oscillations in time, that ⟨ṙ(t)⟩ = 0 to lowest
order in ϕ′(x) and ψ ′(x). We define ⟨ϕ′(x)⟩ = −k + δϕ, where δϕ is the lowest nonzero order
in ψ ′(x). To zeroth order in ψ ′(x) we find that the possible values of k are determined by solving
for k in the equation ω = ωsw(k). One of these wave vectors is imaginary and corresponds to an
evanescent wave. We consider only the propagating wave, and call its wave vector κ(ω). [For an
explicit expression, see Eq. (45), and use that κ = k+ when α = 0.] We find to lowest order in ψ ′(x)
that

⟨ϕ′(x)⟩ = −κ(ω) +

⎛⎜⎜⎝ ω
γ√

(K1−K2)2

4M2
s

+
ω2

γ 2

⎞⎟⎟⎠ψ ′(x) . (32)

The first term in the above then gives the usual phase κ(ω)x of a wave, whereas the second term
is the geometric contribution. From this result it is clear that a constant can be added to the phase,
and that this does not affect the geometric contribution.

Using the above result, we find that a spin wave that travels from x = xi to x = xf through a
region in which the direction of anisotropy changes adiabatically slowly in space, which is within
our model parametrized by ψ(x), acquires a geometric angle, or phase difference

∆ϕgeo =

⎛⎝ 2√
ω1(κ)
ω2(κ)

+

√
ω2(κ)
ω1(κ)

⎞⎠∫ xf

xi

ψ ′(x)dx , (33)

where we rewrote the prefactor of the integral in a different form to connect to the result in Eq. (18),
and where it should be kept in mind that κ = κ(ω). Interestingly, the prefactor of the integral in
the above result is the reciprocal of the prefactor in Eq. (18). This difference between the cases of
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Fig. 2. Illustration of a spin wave that travels through a region in which the anisotropy axes vary with position. The
ellipses correspond to the ellipse of precession that is favored by the local anisotropy. The solid arrows illustrate a
snapshot of a spin wave that has acquired the geometric phase shift. The phase shift is illustrated by comparing to the
spin wave without geometric phase shift, as indicated by the dashed arrows.

time-dependent and position-dependent anisotropy is attributed to the relative minus sign between
the temporal and spatial derivates in one of the equations of motion [see Eqs. (25) and (26)].

The geometric phase difference considered here can be used to manipulate the spin waves,
e.g. in devices which exploit interference. Within the Gilbert damping phenomenology, the length
scale above which interference between spin waves is washed out is proportional to 1/α. More
precisely, it is on the order of (∂ωsw/∂k) (1/αωsw), where the first factor is the group velocity
of the spin waves and the second factor their lifetime. The maximum destructive interference
is reached when ∆ϕgeo = π (mod2π ). Taking for example

∫ xf
xi
ψ ′(x)dx = 2π , this situation is

achieved when
√
ω1(κ)/ω2(κ) is equal to 2 ±

√
3. Depending on the energy ω of the spin waves,

this puts a condition on the anisotropy. Before we consider in more detail a device that illustrates
this geometric phase, we discuss the relation between the Hannay angle due to ellipticity of the
precession and a geometric phase that occurs in the context of superfluidity and Bose–Einstein
condensation.

4. Intermezzo: Geometric phases in superfluids

Using the discussed formalism, one can give a simple derivation and interpretation for geometric
phases that are acquired by excitations that propagate on top of a flowing superfluid [12]. As we
shall see, the superfluid density gives rise to – using the language of magnetism – nonzero ellipticity.
Using the language that is more common for superfluidity and superconductivity, nonzero ellipticity
corresponds to nonzero anomalous averages of field operators. This couples particles and holes and
requires one to perform a Bogoliubov transformation to a new basis to find the proper excitations.
The resulting Bogoliubov quasiparticles may then pick up geometric phases in case the phase of the
superfluid order parameter is time-dependent or position-dependent. We consider for simplicity
only the latter case here as it maps one-to-one to the problem treated in Section 3. An interesting
generalization would be to consider a time-dependent spinor superfluid, as this situation could be
mapped to the cases of Section 2.

The simplest description of a homogeneous superfluid of particles with mass m is the Gross–
Pitaevskii equation for the superfluid order parameter Ψ (x, t) given by [17]

ih̄
∂Ψ (x, t)
∂t

=

[
−

h̄2
∇

2

2m
− µ+ g |Ψ (x, t)|2

]
Ψ (x, t) , (34)

with h̄ the reduced Planck’s constant, µ the chemical potential, and g > 0 a parameter that governs
the strength of the interactions between the particles. For a time-independent flowing superfluid
we have that Ψ0(x) =

√
neiϑ(x), where n = −µ/g is the superfluid density, and that the superfluid
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Fig. 3. Sketch of the model we consider in Section 5: A ferromagnetic ring (gray) with two metallic leads (red) attached
on opposite sides. The leads are kept at different temperatures T1 and T2 and may also have spin accumulations µ1 and
µ2 . The magnetization m0 is aligned parallel to an external magnetic field Hext pointing out of the ring plane. Magnons
moving along the ring in ξ -direction accumulate a geometric phase because the directions n1 and n2 of the in-plane
anisotropies K1 and K2 vary along the ring. This change is parametrized by the angle ψ that changes by 2π when moving
around the ring once. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

velocity vs(x) is related to the phase via vs(x) = h̄∇ϑ(x)/m. We linearize the Gross–Pitaevskii
equation around this time-independent situation via Ψ (x, t) = Ψ0(x) + δΨ (x, t), which yields the
Bogoliubov–de Gennes equations

ih̄
∂

∂t

(
δΨ (x, t)

−δΨ ∗(x, t)

)
=

(
−

h̄2∇
2

2m + gn gne2iϑ(x)

gne−2iϑ(x)
−

h̄2∇
2

2m + gn

)
·

(
δΨ (x, t)
δΨ ∗(x, t)

)
, (35)

for fluctuations on top of the superfluid. The Bogoliubov–de Gennes equations are equivalent to
a special case of Eqs. (28) and (29), as is found by substituting the linearized Holstein–Primakoff
transformation [18]

mx =
Ψ + Ψ ∗

2
√
n

, (36a)

my =
Ψ ∗

− Ψ

2i
√
n

, (36b)

and making the replacements γ /Ms → 1/2h̄n, Js → h̄2n/m, K1 → 4gn2 and taking Hext = K2 = 0.
We then find that the frequencies become ω2(k) = h̄k2/2m ≡ ϵ(k)/h̄ and h̄ω1(k) = ϵ(k) + 2gn that
yields the famous Bogoliubov dispersion relation E(k) = h̄

√
ω1(k)ω2(k) =

√
ϵ(k)(ϵ(k) + 2gn) that is

gapless and linear at long wavelengths.
Using the results in Eqs. (32) and (33) we immediately find that a Bogoliubov quasi-particle with

energy h̄ω that propagates on top of a superfluid that flows with velocity vs(x) in the x-direction
acquires the geometric phase

∆ϕgeo =
m
h̄

(
h̄ω√

(gn)2 + (h̄ω)2

)∫
dxvs(x) . (37)

Note that this geometric phase vanishes (mod 2π ) for large energies h̄ω ≫ gn, and energies h̄ω → 0,
and will be most pronounced for energies h̄ω ∼ gn. The prefactor in our result Eq. (37) is different
from the prefactor of Ref. [12]. While a direct comparison between our approach and the formalism
of this work is hard, it is probably because in Ref. [12] a wave packet rather than a single wave is
considered.
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5. Magnon transport

We have considered the Hannay angle acquired by single coherent spin waves due to position-
dependent anisotropy, resulting in position-dependent ellipticity, in Section 3. For a thermal, and,
therefore, incoherent distribution of spin waves this geometric angle will also have consequences.
In the incoherent case we find it more appropriate to refer to linear excitations of the magnetic
order as magnons rather than spin waves. To illustrate the effects of the geometric phase on
incoherent magnon transport, we consider a mesoscopic electrically-insulating magnetic ring of
circumference L as depicted in Fig. 3. In this system, the magnetization is aligned parallel to a static
external magnetic field normal to the ring plane, while the direction of the in-plane anisotropies,
characterized by the same angle ψ as before, slowly varies from ψ(0) = 0 to ψ(L) = 2π along the
ring, with ψ

( L
2

)
= π . Here, the position coordinate on the ring is denoted as ξ so that ψ = ψ(ξ ).

(Throughout this section, we use ψ ′(ξ ) ≡ dψ(ξ )/dξ .) Because of this change in the direction of the
anisotropy axes, and hence of the principal axes of the elliptical spin-wave precession, the magnons
will accumulate a geometric phase when moving along the ring. We expect that this phase will give
rise to interference effects that affect the magnon spin transport. As mentioned, such interference
may be washed out by relaxation. To account in the simplest manner for such relaxation we include
Gilbert damping in this section.

At ξ = 0 and ξ =
L
2 , there are metallic leads attached to the ring that enable electrical injection

and detection of the spin current in the ring. Such non-local electrical injection and detection was
developed by Cornelissen et al. who used Pt contacts on top of the magnetic insulator yttrium–iron
garnet [19]. For simplicity, we further assume that the ring is narrow enough so that the magnons
are essentially confined to one-dimensional propagation along the circumference of the ring, and
long enough that we can ignore the curvature of the ring. Therefore we consider the Hamiltonian

Hex
ψ =

∫
dξ
[
−

Js
2s2

s · ∂2ξ s − h̄γµ0Hextsz

+
1
2s2

(
K1s2x + K2s2y

)
cos2 ψ

+
1
2s2

(
K2s2x + K1s2y

)
sin2 ψ

+
1
4s2

(K2 − K1)
(
sxsy + sysx

)
sin (2ψ)

]
, (38)

which is the quantum-mechanical generalization of the classical energy (28) that describes spin
waves in the presence of spatially-varying anisotropy axes. Furthermore, s is the local spin density
operator; it is related to the classical magnetization direction used in the preceding sections via
m = ⟨s⟩/s, where s = Ms/h̄γ . Magnons are introduced via a linearized Holstein–Primakoff
transformation (see e.g. [18]):

s+ = s†− =
√
2s
[
a + O(s−1)

]
, (39a)

sz = s − a†a, (39b)

where s± = sx ± isy, and the magnon creation operators a†(x) satisfy the bosonic commutation
relation [a(ξ ), a†(ξ ′)] = δ(ξ−ξ ′). In terms of these magnon operators, the Hamiltonian (38) becomes

Hex
ψ = h̄γ

∫
dξ
[
a†

(
µ0Hext +

K1 + K2

2Ms
−

Js
Ms
∂2ξ

)
a +

K1 − K2

4Ms

(
a2e2iψ + (a†)2e−2iψ)], (40)

where we dropped a constant contribution corresponding to the classical ground-state energy. Two
remarks are now in order. First, from the above result one can explicitly see that only when the
magnons are elliptical, i.e., when K1 − K2 ̸= 0, there are anomalous terms [∼ a2 and (a†)2]
in the above Hamiltonian. These anomalous terms give rise to the nonzero anomalous averages
that were already mentioned in Section 4. The anomalous Green’s functions that are introduced
below are examples of such anomalous averages. The second remark is that we have adopted a
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quantum-mechanical approach. We find this convenient because it allows us to develop a theory
for the magnon spin transport based on the non-equilibrium Green’s function formalism [20], that
straightforwardly incorporates the incoherent magnon distribution. This approach is, however, in
the linear regime equivalent [21] to a stochastic generalization of the Landau–Lifschitz–Gilbert
equation that incorporates the incoherent magnon distribution via noisy magnetic fields. The
geometric phases that are considered are therefore still classical. This is understood as they are,
within the current formulation, phases of the magnon creation and annihilation operators that
create respectively destroy excitations on top of the magnetically-ordered classical groundstate.
These phases are therefore directly observable. For example, the complex phase of ⟨a⟩ determines
the angle of the magnetization in the x − y-plane.

The spin current transmitted from the lead at ξ = 0 to the lead at ξ =
L
2 in a stationary

state can be calculated with the non-equilibrium Green’s function technique [20]; the details of
the computation are relegated to the Appendix. The final result is

I1→2 =

∫
∞

−∞

dω
2π

T1→2(ω) ×

[
fB

(
h̄ω − µ2

kBT2

)
− fB

(
h̄ω − µ1

kBT1

)]
, (41)

where fB(x) = 1/(ex − 1) is the Bose function, T1/2 and µ1/2 are the temperature and spin
accumulation in each lead, and the transmission function is given by

T1→2(ω) = 2αsp
1 α

sp
2 (h̄ω − µ1)

×

[
(h̄ω − µ2)

⏐⏐⏐⏐gR
(
L
2
, 0;ω

)⏐⏐⏐⏐2 − (h̄ω + µ2)

⏐⏐⏐⏐g̃R
(
L
2
, 0;ω

)⏐⏐⏐⏐2
]
. (42)

Here, αsp
1/2 characterizes the interfacial coupling of magnons and lead electrons and is proportional to

the spin-mixing conductance [22]. When the spin accumulation in the leads is zero, the interfacial
coupling gives rise to an enhancement, localized at the interface, of the Gilbert damping of the
homogeneous mode. This enhancement is characterized by αsp

1/2. Furthermore, gR
( L
2 , 0;ω

)
and

g̃R
( L
2 , 0;ω

)
are the Fourier transforms of the normal and anomalous retarded magnon Green’s

functions that describe the propagation of magnons from the lead at ξ = 0 to the lead at
ξ =

L
2 . Taking into account both the interfacial lead couplings and bulk Gilbert damping α, the

retarded Green’s functions satisfy the Bogoliubov–de Gennes equations in frequency space that are
explicitly stated in the Appendix. In the adiabatic limit of slowly varying ψ(ξ ), a solution of these
Bogoliubov–de Gennes equations (68) is obtained with the ansatz

gR(ξ, 0;ω) = u(ω)e−iψ(ξ )+iϕ(ξ,ω), (43a)
g̃R(ξ, 0;ω) = v(ω)eiψ(ξ )+iϕ(ξ,ω), (43b)

where ϕ(ξ, ω) = k(ω)ξ+δϕ(ω)ψ(ξ ), with δϕ denoting the coefficient of the geometric phase of the
magnon. To zeroth order in ψ ′, one finds the dispersion relation of damped, elliptical spin waves:

(1 + α2)ω2
+ 2iαγω

(
µ0Hext +

K1 + K2

2Ms
+

Js
Ms

k2
)

= ω2
sw(k), (44)

where ωsw(k) =
√
ω1(k)ω2(k), with ω1(k) = γ

(
µ0Hext + K1/Ms + Jsk2/Ms

)
and ω2(k) = γ

(
µ0Hext

+ K2/Ms + Jsk2/Ms
)
as found previously in Section 3. The dispersion equation (44) may be solved

to obtain the possible magnon wave-vectors:

Js
Ms

k2
±
(ω) = ±

√
(K1 − K2)

2

4M2
s

+
ω2

γ 2 − µ0Hext −
K1 + K2

2Ms
+ iα

ω

γ
. (45)

Note that only the k+ solutions are traveling spin waves, whereas the k− solutions are evanescent.
To first order in ψ ′, one finds

δϕ±(ω) = ±

ω
γ√

(K1−K2)2

4M2
s

+
ω2

γ 2

(46)
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for the additional geometric correction to the magnon phase, which is again in agreement with
the classical, single spin-wave result (32). Thus, the general solution of the Bogoliubov–de Gennes
equations (68) is in the adiabatic limit and for ξ ̸= 0, L

2 given by

gR(ξ, 0;ω) =

∑
p=±

e−[1−δϕp(ω)]ψ(ξ ) [Ap,1(ω)eikp(ω)ξ + Ap,2(ω)e−ikp(ω)ξ
]
, (47)

g̃R(ξ, 0;ω) =

∑
p=±

vp(ω)e[1+δϕp(ω)]ψ(ξ ) [Ap,1(ω)eikp(ω)ξ + Ap,2(ω)e−ikp(ω)ξ
]
, (48)

where v± = −
K1−K2
2Ms

[
ω
γ

±

√
(K1−K2)2

4M2
s

+
ω2

γ 2

]−1

to zeroth order in ψ ′. The remaining coefficients

A±,1/2(ω) are determined by the boundary conditions in the regions 0 < ξ < L
2 and L

2 < ξ < L that
are detailed in the Appendix. The final result for the Green’s functions is

gR
(
L
2
, 0;ω

)
=

⎡⎢⎢⎣1 +

ω
γ√

(K1−K2)2

4M2
s

+
ω2

γ 2

⎤⎥⎥⎦ 2 Js
Ms

k+(ω) cos [πδϕ+(ω)] sin
[
k+(ω)L

2

]
D (k+(ω), ω)

+

⎡⎢⎢⎣1 −

ω
γ√

(K1−K2)2

4M2
s

+
ω2

γ 2

⎤⎥⎥⎦ 2 Js
Ms

k−(ω) cos [πδϕ+(ω)] sin
[
k−(ω)L

2

]
D (k−(ω), ω)

, (49a)

g̃R
(
L
2
, 0;ω

)
= −

K1 − K2

2Ms

√
(K1−K2)2

4M2
s

+
ω2

γ 2

2 Js
Ms

k+(ω) cos [πδϕ+(ω)] sin
[
k+(ω)L

2

]
D (k+(ω), ω)

+
K1 − K2

2Ms

√
(K1−K2)2

4M2
s

+
ω2

γ 2

Js
Ms

k−(ω) cos [πδϕ+(ω)] sin
[
k−(ω)L

2

]
D (k−(ω), ω)

, (49b)

where

D(k, ω) =

[
4
(

Js
Ms

k
)2

+

(
αspω

γ

)2
]
cos (kL)− 4

(
Js
Ms

k
)2

cos [2πδϕ+(ω)]

− αspω

γ

[
αspω

γ
+ 4i

Js
Ms

k sin (kL)
]
. (49c)

From the above solution (49) for the Green’s functions, we find that the effect of the geometric
phase on magnon transport through the ring is twofold: First, as long as the interface damping
enhancement αsp ω

γ
is small compared to Js

Ms
k, which is the typical experimental situation, the

magnon scattering resonances will be split from kL = 2πn to kL = 2π [n ± δϕ+(ω)], where n
is an integer. Because there is no similar phase shift in the sin

[
k+(ω)L

2

]
term in the numerator,

transmission at the original resonances kL = 2πn is strongly suppressed. Second, the prefactor of
cos [πδϕ+(ω)] leads to additional destructive interference when δϕ+(ω) < 1, i.e., for frequencies
|ω| on the order of γ |K1 − K2| /2Ms. Both effects are clearly visible in Fig. 4 which shows the
result for the transmission function as a function of frequency. The transmission function at a
fixed frequency determines the propagation of a single spin wave at that frequency. This implies
that for single coherent spin waves, the geometric phases that occur via the position dependent
anisotropies in the device in Fig. 3 can lead to – depending on the energy – destructive interference
between spin waves that propagate clockwise and counterclockwise between the two leads. For
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Fig. 4. Transmission function (42) as function of frequency ω with (solid line) and without (dashed line) geometric
phase. The shaded area denotes the region |ω| ≤ γ |K1 − K2| /2Ms of destructive interference. External magnetic field
and anisotropy constants are µ0Hext = 0.1 T, K1/Ms = 0.2 T, and K2/Ms = −0.09 T, and the circumference of the ring
is L = 1.07µm. The interface couplings are set to α

sp
1 = α

sp
2 = αsp

= 10.7 nm, and the lead spin accumulations
are set to zero, µ1 = µ2 = 0. For the remaining material parameters, values of yttrium–iron garnet are used [23]:
h̄γ Js/Ms = 8.458 × 10−40 J m2 , h̄γ = 2µB (where µB is the Bohr magneton), and α = 10−4 .

a homogeneous anisotropy this destructive interference would be absent. If one would be able to
experimentally switch between the inhomogeneous and homogeneous anisotropy, one could switch
the propagation of spin waves at some specific energies on or off.

For incoherent magnons, the effects resulting from the geometric phase decrease the overall
magnon conductance as we discuss now. When the differences in temperature between the two
leads and their respective spin accumulations are small compared to the average temperature
T =

1
2 (T1 + T2), we may approximate the spin current (41) as

I1→2 = σ (µ2 − µ1)+ L (T2 − T1) , (50)

with the spin and spin Seebeck conductances

σ =
1

kBT

∫
∞

−∞

dω
2π

T1→2(ω)

4 sinh2
(

h̄ω
2kBT

) , (51a)

L =
h̄

kBT 2

∫
∞

−∞

dω
2π

ωT1→2(ω)

4 sinh2
(

h̄ω
2kBT

) . (51b)

Plots of these conductances with and without geometric phase effects are shown in Fig. 5 as function
of temperature. While the geometric phase does not add any new qualitative features to these
conductances, it leads to an overall decrease, in agreement with the preceding discussion. Because
the magnon conductances are the result of averaging over a thermal magnon distribution, the
geometric-phase effects are not as prominent as for a single spin wave. The fact that the energy
scales set by anisotropies are typically much smaller than the thermal energy implies that the
geometric phases resulting from anisotropy will typically not strongly affect the magnon transport.

6. Conclusion, discussion, and outlook

In this article we have discussed the geometric phases that arise in semi-classical magnetic
dynamics using the framework developed by Hannay [1]. In doing so, we have, as part of our
discussion, rederived some known results for the so-called magnon Berry phase [10], as well as
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Fig. 5. (a) Spin conductance (51a) and (b) sin Seebeck conductance (51b) as functions of temperature, with (solid lines)
and without (dashed lines) geometric phase. Parameters are the same as in Fig. 4.

the geometric phase of quasi-particles in a superfluid [12]. Finally, we have developed a framework
for magnon transport in heterostructures consisting of metallic leads connected to a ferromagnetic
insulator, that incorporates magnon ellipticity. This formalism is therefore able to incorporate the
Hannay angle due to varying magnon or spin-wave ellipticity, and we have applied it to a simple
device. We found that, while the Hannay angle due to position-dependent ellipticity could be used
to engineer destructive interference between two coherent spin waves, it does not dramatically
affect the transport of thermal magnons.

Experimentally engineering time- or position-dependent anisotropies may be challenging. The
latter can perhaps be achieved by varying the thickness of a film of material with a perpen-
dicular magnetic interface anisotropy [24], such that for small thicknesses the anisotropy is
out-of-plane, whereas for larger thickness it becomes in-plane due to magnetostatic effects. Time-
dependent anisotropies could perhaps be achieved via magnetoelastic effects and the application
of time-dependent strain [25].

Let us mention several possible extensions and follow-ups of the work presented here: First,
one could consider a general micromagnetic energy functional, rather than the specific toy model
that we focused on for pedagogical purposes. One would then proceed by finding, at each instance
in time, the equilibrium magnetization direction m0(t). Subsequently, one would have to apply
the transformation of Section 2.1.3 with n replaced by m0(t) to proceed along the same lines as
highlighted in that section. While straightforward, these developments can be somewhat cumber-
some because m0(t), and thus the angles φ and θ , as well as the energy that describes quadratic
fluctuations around m0(t), all have to be found from minimizing the energy and expanding around
this minimum at each time t . Moreover, an arbitrary adiabatic variation of the parameters in
the energy does not need to conserve the energy so that the area of the ellipse of precession
changes. The action variable r(t) then needs to be chosen differently to accommodate for this
change in area. A second interesting generalization of the theory presented here would be to
consider spatially two-dimensional situations in which one would expect Hall-like effects in, e.g., the
magnon transport [11]. Finally, the discussion of the Hannay angles that occur in single-domain
magnetization dynamics and for spin waves could be extended to the nonlinear regime provided
damping is neglected. In view of this, a useful development would be to extend the theory to the
case of spin–torque nano-oscillators [26] as well. This would, however, require the proper inclusion
of dissipative effects, which is beyond the scope of this paper.

Finally, we mention that most of the approaches presented here can be extended to other sys-
tems involving semi-classical spin dynamics. These include antiferromagnets [27], magnetoelastic
systems [28], and magnetomechanical systems [29]. We hope that this article provides a useful
starting point for undertaking such excursions.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relation-
ships that could have appeared to influence the work reported in this paper.



A. Rückriegel and R.A. Duine / Annals of Physics 412 (2020) 168010 19

Acknowledgments

It is a pleasure to thank Miguel Lammers for doing his bachelor research project on this topic,
and Alexander Serga for discussions. This work is supported by the European Research Council via
Consolidator Grant Number 725509 SPINBEYOND. RD is member of the D-ITP consortium, a program
of the Netherlands Organisation for Scientific Research (NWO) that is funded by the Dutch Ministry
of Education, Culture and Science (OCW), Netherlands.

Appendix. Non-equilibrium green’s functions for elliptical magnons

A.1. Derivation of Bogoliubov–de Gennes equations

In this Appendix, we briefly outline the main ingredients of the non-equilibrium Green’s function
technique for elliptical magnons that we used to obtain the spin current (41). For that purpose, it
is convenient to write the magnon Hamiltonian (40) in the form

Hex
ψ =

1
2

∫
dξ
∫

dξ ′
(
a†(ξ ), a(ξ )

)
Ĥ(ξ, ξ ′)

(
a(ξ ′)
a†(ξ ′)

)
, (52)

with a 2 × 2 Hamiltonian matrix Ĥ(ξ, ξ ′). Similarly, we collect the normal and anomalous retarded
magnon Green’s functions into a 2 × 2 matrix:

ĜR(ξ, t; ξ ′, t ′) =

(
gR(ξ, t; ξ ′, t ′)

[
g̃R(ξ, t; ξ ′, t ′)

]∗
g̃R(ξ, t; ξ ′, t ′)

[
gR(ξ, t; ξ ′, t ′)

]∗) . (53)

The microscopic definition of these retarded Green’s functions is

gR(ξ, t; ξ ′, t ′) = −
i
h̄
Θ(t − t ′)

⟨[
a(ξ, t), a†(ξ ′, t ′)

]⟩
, (54a)

g̃R(ξ, t; ξ ′, t ′) = −
i
h̄
Θ(t − t ′)

⟨[
a†(ξ, t), a†(ξ ′, t ′)

]⟩
. (54b)

The corresponding advanced Green’s function matrix is ĜA(ξ, t; ξ ′, t ′) =

[
ĜR(ξ ′, t ′; ξ, t)

]†
. Retarded

and advanced Green’s function matrices satisfy the Dyson equation [20]

σ̂3ih̄∂t ĜR/A(ξ, t; ξ ′, t ′) −

∫
dξ1Ĥ(ξ, ξ1)ĜR/A(ξ1, t; ξ ′, t ′)

=

∫
dt1

∫
dξ1Σ̂R/A(ξ, t; ξ1, t1)ĜR/A(ξ1, t1; ξ ′, t ′), (55)

with the retarded and advanced self-energies Σ̂R/A(ξ, t; ξ ′, t ′), and the Pauli matrix σ̂3 = diag
(1,−1). While retarded and advanced Green functions contain the information about the magnon
propagation, the magnon distribution is encoded in the normal and anomalous Keldysh Green’s
functions:

gK (ξ, t; ξ ′, t ′) = −
i
h̄

⟨{
a(ξ, t), a†(ξ ′, t ′)

}⟩
, (56a)

g̃K (ξ, t; ξ ′, t ′) = −
i
h̄

⟨{
a†(ξ, t), a†(ξ ′, t ′)

}⟩
, (56b)

where {·, ·} is the anticommutator. Collecting the Keldysh Green’s functions into a matrix as well,

ĜK (ξ, t; ξ ′, t ′) =

(
gK (ξ, t; ξ ′, t ′) −

[
g̃K (ξ, t; ξ ′, t ′)

]∗
g̃K (ξ, t; ξ ′, t ′) −

[
gK (ξ, t; ξ ′, t ′)

]∗) , (57)
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one finds that they obey the following Dyson equations [20]:

σ̂3ih̄∂t ĜK (ξ, t; ξ ′, t ′) −

∫
dξ1Ĥ(ξ, ξ1)ĜK (ξ1, t; ξ ′, t ′)

=

∫
dt1

∫
dξ1

[
Σ̂K (ξ, t; ξ1, t1)ĜA(ξ1, t1; ξ ′, t ′) + Σ̂R(ξ, t; ξ1, t1)ĜK (ξ1, t1; ξ ′, t ′)

]
, (58a)

− σ̂3ih̄∂t ′ ĜK (ξ, t; ξ ′, t ′) −

∫
dξ1ĜK (ξ, t; ξ1, t ′)Ĥ(ξ1, ξ ′)

=

∫
dt1

∫
dξ1

[
ĜR(ξ, t; ξ1, t1)Σ̂K (ξ1, t1; ξ ′, t ′) + ĜK (ξ, t; ξ1, t1)Σ̂A(ξ1, t1; ξ ′, t ′)

]
, (58b)

where Σ̂K (ξ, t; ξ ′, t ′) is the Keldysh self-energy. Provided the self-energies are known in some
approximation, the Dyson equations (55) and (58) contain all information about the spectrum and
distribution of single-magnon excitations.

The local spin density can be expressed via the Keldysh Green’s function as

s(ξ, t) = s −
⟨
a†(ξ, t)a(ξ, t)

⟩
(59)

= s +
1
2
δ(0) −

ih̄
4
Tr ĜK (ξ, t; ξ, t), (60)

where the δ(0) term should be regularized as a−1
0 , with the microscopic lattice constant a0.

From the Keldysh Dyson equations (58), we thus obtain the equation of motion of the spin
density:

∂ts(ξ, t) =
1
4
Tr
∫

dξ1
[
σ̂3Ĥ(ξ, ξ1)ĜK (ξ1, t; ξ, t) − ĜK (ξ, t; ξ1, t)Ĥ(ξ1, ξ )σ̂3

]
+

1
4
Tr
∫

dt1

∫
dξ1

[
σ̂3Σ̂

K (ξ, t; ξ1, t1)ĜA(ξ1, t1; ξ, t)

−ĜR(ξ, t; ξ1, t1)Σ̂K (ξ1, t1; ξ, t)σ̂3
]

+
1
4
Tr
∫

dt1

∫
dξ1

[
σ̂3Σ̂

R(ξ, t; ξ1, t1)ĜK (ξ1, t1; ξ, t)

−ĜK (ξ, t; ξ1, t1)Σ̂A(ξ1, t1; ξ, t)σ̂3
]
. (61)

For a magnet in contact with two leads, we may split the self-energies into bulk and lead
contributions,

Σ̂R/A/K (ξ, t; ξ ′, t ′) = Σ̂
R/A/K
bulk (ξ, t; ξ ′, t ′) + Σ̂

R/A/K
1 (ξ, t; ξ ′, t ′) + Σ̂

R/A/K
2 (ξ, t; ξ ′, t ′), (62)

where 1 and 2 refer to the two leads. The total spin lost or gained at lead 2 is consequently given by

I2(t) =
1
4
Tr
∫

dt1

∫
dξ
∫

dξ1
[
σ̂3Σ̂

K
2 (ξ, t; ξ1, t1)Ĝ

A(ξ1, t1; ξ, t)

−ĜR(ξ, t; ξ1, t1)Σ̂K
2 (ξ1, t1; ξ, t)σ̂3

]
+

1
4
Tr
∫

dt1

∫
dξ
∫

dξ1
[
σ̂3Σ̂

R
2 (ξ, t; ξ1, t1)Ĝ

K (ξ1, t1; ξ, t)

−ĜK (ξ, t; ξ1, t1)Σ̂A
2 (ξ1, t1; ξ, t)σ̂3

]
. (63)

In a steady state, this reduces to

I2 =
1
4
Tr
∫

dω
2π

∫
dξ
∫

dξ1
[
σ̂3Σ̂

K
2 (ξ, ξ1;ω)Ĝ

A(ξ1, ξ ;ω) − ĜR(ξ, ξ1;ω)Σ̂K
2 (ξ1, ξ ;ω)σ̂3

]
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+
1
4
Tr
∫

dω
2π

∫
dξ
∫

dξ1
[
σ̂3Σ̂

R
2 (ξ, ξ1;ω)Ĝ

K (ξ1, ξ ;ω) − ĜK (ξ, ξ1;ω)Σ̂A
2 (ξ1, ξ ;ω)σ̂3

]
.

(64)

In this case, we can furthermore directly solve the Keldysh Dyson equations (58) in frequency space,
yielding

ĜK (ξ, ξ ′
;ω) =

∫
dξ1

∫
dξ2ĜR(ξ, ξ1;ω)Σ̂K (ξ1, ξ2;ω)ĜA(ξ2, ξ ′

;ω). (65)

The retarded and advanced self-energies corresponding to bulk Gilbert damping and spin pumping
from the electronic leads can be obtained from the Landau–Lifshitz–Gilbert phenomenology [21];
they are

Σ̂
R/A
bulk(ξ, ξ

′
;ω) = ∓iαh̄ω

(
1 0
0 1

)
δ(ξ − ξ ′), (66a)

Σ̂
R/A
1 (ξ, ξ ′

;ω) = ∓iαsp
1

(
h̄ω − µ1 0

0 h̄ω + µ1

)
δ(ξ )δ(ξ − ξ ′), (66b)

Σ̂
R/A
2 (ξ, ξ ′

;ω) = ∓iαsp
2

(
h̄ω − µ2 0

0 h̄ω + µ2

)
δ

(
ξ −

L
2

)
δ(ξ − ξ ′), (66c)

The Keldysh self-energies are then determined by the fluctuation–dissipation theorem, so that

Σ̂K
bulk(ξ, ξ

′
;ω) = −2iαh̄ω coth

(
h̄ω
2kBT

)(
1 0
0 1

)
δ(ξ − ξ ′), (67a)

Σ̂K
1 (ξ, ξ

′
;ω) = −2iαsp

1

⎛⎝(h̄ω − µ1) coth
(

h̄ω−µ1
2kBT1

)
0

0 (h̄ω + µ1) coth
(

h̄ω+µ1
2kBT1

)⎞⎠ δ(ξ )δ(ξ − ξ ′),

(67b)

Σ̂K
2 (ξ, ξ

′
;ω) = −2iαsp

2

⎛⎝(h̄ω − µ2) coth
(

h̄ω−µ2
2kBT2

)
0

0 (h̄ω + µ2) coth
(

h̄ω+µ2
2kBT2

)⎞⎠
× δ

(
ξ −

L
2

)
δ(ξ − ξ ′), (67c)

With these self-energies the Dyson equation (55) reduces to the Bogoliubov–de Gennes equations[
1 + iα
γ

ω +
Js
Ms
∂2ξ − µ0Hext −

K1 + K2

2Ms
+ δ(ξ )

iαsp
1

h̄γ
(h̄ω − µ1)+ δ

(
ξ −

L
2

)
iαsp

2

h̄γ
(h̄ω − µ2)

]
×gR(ξ, 0;ω) −

K1 − K2

2Ms
e−2iψ(ξ )g̃R(ξ, 0;ω) =

1
h̄γ
δ(ξ ), (68a)[

−
1 − iα
γ

ω +
Js
Ms
∂2ξ − µ0Hext −

K1 + K2

2Ms
+ δ(ξ )

iαsp
1

h̄γ
(h̄ω + µ1)

+δ

(
ξ −

L
2

)
iαsp

2

h̄γ
(h̄ω + µ2)

]
g̃R(ξ, 0;ω) −

K1 − K2

2Ms
e2iψ(ξ )gR(ξ, 0;ω) = 0. (68b)

These are solved in Section 5. We derive the spin current (41) from lead 1 to lead 2 by isolating
the contribution of lead 1 to the total spin lost or gained at lead 2, see Eq. (64).

A.2. Boundary conditions

The solutions on the ring have to be periodic, hence gR(0, 0;ω) = gR(L, 0;ω) and g̃R(0, 0;ω) =

g̃R(L, 0;ω). Furthermore, they must be continuous at ξ =
L
2 , i.e., g

R
( L
2 + 0+, 0;ω

)
= gR

( L
2 − 0+,
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0;ω
)
and g̃R( L2 +0+, 0;ω) = g̃R( L2 −0+, 0;ω). Integrating the Bogoliubov–de Gennes equations (68)

from ξ =
L
2 − 0+ to ξ =

L
2 + 0+ and from ξ = −0+

= L to ξ = 0+ additionally yields the following
spin pumping boundary conditions:

Js
Ms

[
∂ξgR (ξ , 0;ω)

⏐⏐
ξ=0 − ∂ξgR (ξ , 0;ω)

⏐⏐
ξ=L

]
+

iαsp
1

h̄γ
(h̄ω − µ1) gR (0, 0;ω) =

1
h̄γ
, (69a)

Js
Ms

[
∂ξgR (ξ , 0;ω)

⏐⏐
ξ= L

2 +0+ − ∂ξgR (ξ , 0;ω)
⏐⏐
ξ= L

2 −0+

]
+

iαsp
2

h̄γ
(h̄ω − µ2) gR

(
L
2
, 0;ω

)
= 0, (69b)

and
Js
Ms

[
∂ξ g̃R (ξ , 0;ω)

⏐⏐
ξ=0 − ∂ξ g̃R (ξ , 0;ω)

⏐⏐
ξ=L

]
+

iαsp
1

h̄γ
(h̄ω + µ1) g̃R (0, 0;ω) = 0, (70a)

Js
Ms

[
∂ξ g̃R (ξ , 0;ω)

⏐⏐
ξ= L

2 +0+ − ∂ξ g̃R (ξ , 0;ω)
⏐⏐
ξ= L

2 −0+

]
+

iαsp
2

h̄γ
(h̄ω + µ2) g̃R

(
L
2
, 0;ω

)
= 0. (70b)

Solving these boundary conditions in the limit |µ1/2| ≪ |h̄ω| and for αsp
1 = α

sp
2 = αsp, we obtain

analytical expressions for the relevant Green’s functions [Eq. (49)].
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