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a b s t r a c t

The generation of nonclassical multiphoton has aroused and
renewed interest in recent years. Here, we theoretically propose
a new method to generate a temporal triplet correlation via
a spontaneous six-wave mixing process. In the dressed-state
picture at atomic ensemble, we forecast two or more different
resonant dispersion modes of each generated photons. With
energy conservation condition, these resonant dispersion modes
compose multiple six-wave mixing processes, and the different
processes could beat with each other. When we only consider
the nonlinear optical response, the coincidence counts of triplets
perform as a damped Rabi oscillation (three conditional two-
photon correlations with four or six periods) because of the
destructive interference among the possible six-wave mixing
processes. The coherent time in the system is determined by the
effective dephasing rate. Furthermore, we study the triphoton
correlation with the fifth-order nonlinear susceptibility and the
phase matchings mixing.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

In the last decades, quantum mechanics has made great progress in science, but many mysteries
remain unsolved. In this regard, the nonclasscial multiphoton provides a powerful tool to probe
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the foundations of quantum theory and can be applied in quantum computing [1], quantum
communication [2], quantum imaging technology [3] and many other fields. It is known that the
most common method to generate entangled photon pairs is the spontaneous parametric down-
conversion (SPDC) [4]. Some scientists have obtained photon triplets by using the cascaded SPDC
process [5,6]. Since the SPDC process occurs in a nonlinear crystal and satisfies the phase-matching
condition, the bandwidth of the generated photon pairs reaches several THz, and the coherent
time is very short. In contrast, with the SPDC, the correlated photons generated from the atomic
ensemble via a spontaneous parametric multiple-wave mixing process have many advantages,
such as the narrow bandwidth, long coherent time, and high conversion efficiency. Many attempts
have been made in the last ten years. The Harris group [7,8] obtained entangled photon pairs by
using the electromagnetically induced transparency (EIT) [9] and spontaneous parametric four-wave
mixing process. Wen [10] theoretically obtained photon triplets via two cascaded four-wave mixing
processes. Many useful methods have been reported in both theoretical [11–19] and experimental
studies [20–22]. In addition, some researchers combined a spontaneous Raman scattering process
in a hot Rb atomic cell with an SPDC process and realized the hybrid-cascaded photon triplets [23].
Despite such rapid progress, no methods that demonstrate the generation of photon triplets in one
single physical progress have been reported.

In this paper, we propose a new method to create photon triplets via a single six-wave mixing
process in an atomic ensemble. Since we only use one spontaneous six-wave mixing (SSWM)
process with no secondary step (like in the cascaded methods), the photon triplets should have
a higher emission efficiency without post selection and long coherence. Furthermore, since the
nonlinear susceptibility of the optical response plays a dominant role in determining the wave
packet of the photon triplets and destructive interference among multiple modes of the spontaneous
six-wave mixing processes, the coincidence counts of triplets perform as a damped Rabi oscillation.
The outcome has a wide range of application prospects.

The paper is organized as follows. In Section 2, we calculate the triphoton wave function and
derive the third-order intensity correlation function. In Section 3, we discuss the optical responses,
which contain two situations: nonlinear response and linear response. In Section 4, we show the
mechanism of triphoton generation via the nonlinear response and explain the frequency modes
of the generated fields in the presence of the dressing field. In Section 5, we show the numerical
simulation picture. In Section 6, we summarize the methods and present the outlook.

2. Schematic of the triphoton state function

The schematic of triphoton generation via a four-level ‘‘tri-Λ’’ atomic system is shown in Fig. 1(b).
The relevant energy levels are 5S1/2, F = 2 (|1⟩), 5S1/2, F = 3 (|2⟩), 5P1/2 (|3⟩) and 5P3/2 (|4⟩). A
simplified experimental setup of this process is illustrated in Fig. 1(a). In this setup, the SSWM
process occurs based on a medium of atomic vapor. With identical four-level atoms initially
prepared in their ground level |1⟩, the medium is confined in a long, thin cylindrical volume
with length L. In Fig. 1(a), a weak pump beam E1 (frequency ω1, wave vector k1, Rabi frequency
G1, wavelength 795 nm) is applied to the atomic transition |1⟩ → |3⟩ with a detuning ∆1.
∆i = Ωi − ωi is the detuning, which is defined as the difference between the resonant transition
frequency Ωi and laser frequency ωi of Ei. A strong coupling beam E2 (ω2, k2, G2, 780 nm) at
the near-resonant frequency of the atomic transition |2⟩ → |4⟩ with detuning ∆2 is introduced
and counterpropagates with E1. Another coupling beam E3 (ω3, k3, G3, 780 nm) propagates in the
E2 direction and is applied to the atomic transition |1⟩ → |4⟩ with detuning ∆3. All beams are
coupled to the center of the medium by optical lenses. Then, with the phase-matching condition
k1 + k2 + k3 = kS1 + kS2 + kS3 and low-gain limit, the SSWM process will spontaneously occur,
which can generate the correlated triphoton ES1, ES2 and ES3 satisfying the energy conservation:
ω1 + ω2 + ω3 = ωs1 + ωs2 + ωs3(ϖs1 + δ1 +ϖs2 + δ2 +ϖs3 + δ3), as illustrated in Fig. 1(c). Here,
the pump beam has a much smaller power than the coupling beams. Meanwhile, the pump beam is
used at far off resonance with a large detuning. Thus, the quantum atomic noise can be suppressed,
and the atomic population is primarily maintained at the ground state. In addition, the strong
coupling beams E2 and E3 with near-resonance contribute to form a Λ electromagnetically induced
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Fig. 1. (a) Spatial beams alignment of the generation triphoton in six-wave mixing; The generated photons are detected by
three single-photon counting modules (SPCM1–SPCM3) based on the avalanche photodiodes, and the distances between
the SPCMs and the center of the medium are uniform. (b) Mechanisms of the triphoton generation from a four-level
configuration. In the presence of pump ω1 and two coupling beams ω2 and ω3 , triphotons ωS1 , ωS2 and ωS3 are
spontaneously generated from the SSWM process in the low-gain regime. (c) Energy conservation of the multimode
triphoton.

transparency (EIT) scheme. Therefore, the coupling beams can assist the SSWM nonlinear process
and create a transparency window for photons ES2 and ES3 with slow-light effect. The generated
triphoton can be detected by three single-photon counting modules (SPCM). Moreover, because
our theory is based on the cool atomic ensemble, we do not consider the Doppler broadening,
polarization effects and quantum Langevin noise. We focus on the triphoton temporal correlation
and the interference of the multimode SSWM. Most biphotons generated from the four-wave mixing
processes are eliminated from the counting regime by placing the detectors at appropriate angles
using filters and Fabry–Perot cavities. However, some biphotons and uncorrelated single photons
remain, which constitute the background of the coincidence count of triphoton.

In the interaction picture, the effective interaction Hamiltonian for the six-wave mixing process
can be written as (we ignore the reflections from the system surfaces and use the rotating-wave
approximation):

HI = ε0

∫
V
d3zχ (5)E(+)1 E(+)2 E(+)3 E(−)S3 E(−)S2 E(−)S1 + H.c. (1)

where χ (5) is the fifth-order nonlinear susceptibility to the generated photon field defined by the
nonlinear polarization; V is the interaction volume illuminated by the input field together; H.c is
the Hermitian conjugate; E(+)1 , E(+)2 and E(+)3 are the positive-frequency parts of the strong input
classical fields, which are given as:

E(+)1 = E1ei(k1z−ω1t), E(+)2 = E2ei(k2z−ω2t), E(+)3 = E3ei(k3z−ω3t), (2)

where ki are the field wavenumbers; Ei = i
√
ℏωi/2ε0n2

i Vq, Vq is the quantization volume; and
ni =

√
1 + Re(χsi), which is the refractive index experienced by each weak field. The generated
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photons are given by the quantized fields,

E(+)S1 (z, t) =
1

√
2π

∫
dω

√
2ℏϖS1

cε0A
âS1 (ω) ei[k̂S1·ẑ−ωt], (3a)

E(+)S2 (z, t) =
1

√
2π

∫
dω

√
2ℏϖS2

cε0A
âS2 (ω) e−i[k̂S2·ẑ+ωt], (3b)

E(+)S3 (z, t) =
1

√
2π

∫
dω

√
2ℏϖS3

cε0A
âS3 (ω) ei[k̂S3·ẑ−ωt], (3c)

where A is the single-mode cross-section area. âS1, âS2 and âS3 are the photon annihilation operators
of output modes S1, S2 and S3, respectively; c is the speed of light in vacuum; ε0 is the vacuum
permittivity; and ϖi is the central frequency of the generated photons. Substituting the electric
fields in Eqs. (2) and (3) into Eq. (1) gives:

∧

H I = W1

∫
dωS1dωS2dωS3κ sin c(

∆kL
2

)â†
S1â

†
S2â

†
S3e

−i∆ωt
+ H.c. (4)

where κ = −i
√
ϖS1ϖS2ϖS3/c3χ (5)(ωS1, ωS2, ωS3)E1E2E3 is the nonlinear parametric coupling

coefficient; W1 = i
√
ℏ3/π3ε30A3 is a constant; ∆ω = ω1 + ω2 + ω3 − ωS1 − ωS2 − ωS3; ∆k =

kS1 + kS2 + kS3 − k1 − k2 − k3 is the phase mismatching along the z axis. When ∆k = 0, the
phase-matching condition perfectly holds.

According to the first-order perturbation in the interaction picture, the photon state at the output
surface is approximately a linear superposition of |0⟩ and |Ψ ⟩, where |0⟩ is the vacuum state. Since
the vacuum is not detectable, we may ignore it. The photon triplets state |Ψ ⟩ can be expressed as:

|ψ⟩ =
−i
ℏ

∫
+∞

−∞

dt
∧

HI |0⟩ (5)

Combining with Eqs. (4) and (5), e−i∆ωt becomes 2πδ (∆ω), which indicates the energy conser-
vation of the SSWM process and causes the frequency entanglement of the triphoton state. Eq. (5)
can be rewritten as:

|ψ⟩ =

∫
dωS1dωS2dωS3κ sin c(

∆kL
2

)â†
S1â

†
S2â

†
S3δ (∆ω) |0⟩

=

∫
dωS1dωS2dωS3κ (ωi) sin c(

∆kL
2

)â†
S1â

†
S2â

†
S3 |0⟩ (6)

From Eq. (6), we can predict that the triphoton state is entangled in frequency and wavenumber.
κ(ωi) = κ(ωS1,∆ω + ωS2, ωS3) shows the entanglement in the frequency space, which is the
result of the energy conservation condition. Sin c(∆kL/2) indicates the wavenumber entanglement
because it cannot be factorized into three independent functions, which only contain kS1, kS2 and
kS3, respectively.

To discuss the optical properties of the generated photons from a four-level system, we begin to
consider the triphoton coincidence counting rate. We suppose that detectors SPCM1, 2 and 3 detect
photons with frequencies ωS1, ωS2 and ωS3, respectively. Assuming perfect detection efficiency, the
averaged triphoton coincidence counting rate is defined by

Rcc = lim
T→∞

1
T

∫ T

0
dtS1

∫ T

0
dtS2

∫ T

0
dtS3G(3)M1(tS2 − tS1)M2(tS3 − tS1), (7)

where M1 (tS1 − tS2) and M2 (tS3 − tS2) are the coincidence window functions, and we consider
Mi = 1 for M1(tS1 − tS2) |tS1 − tS2| < tcc and M2 (tS3 − tS2) |tS3 − tS2| < tcc ; otherwise, Mi = 0. G(3)

is the third-order intensity correlation function of the triphoton, which can be written as:

G(3) =

⏐⏐⏐⟨Ψ | E(−)S1 E(−)S2 E(−)S3 E(+)S3 E(+)S2 E(+)S1 |ψ⟩

⏐⏐⏐ =

⏐⏐⏐⟨0| E(+)S3 E(+)S2 E(+)S1 |ψ⟩

⏐⏐⏐2 = |B (τS1, τS2, τS3)|2 , (8)
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where τSi = tSi − rSi/c and rSi is the optical path of the ith photon from the output surface of the
medium to the detector. For simplicity, we consider rS1 = rS2 = rS3. B (τs1, τs2, τs3) is called the
triphoton amplitude. By using Eqs. (3) and (6), we obtain:

B (τS1, τS2, τS3) = W2

∫
dωS1dωS2dωS3κ (ωi)Φ(∆kL)e−i(ωS1τS1+ωS2τS2+ωS3τS3), (9)

where W2 is a constant that absorbs all constants and slowly varying terms and Φ(∆kL) =

Sin c(∆kL/2)eiL(kS1+kS2+kS3)/2 is the longitudinal detuning function that determines the natural
spectral width. From Eq. (9), the pattern of the triphoton amplitude is determined by both nonlinear
parametric coupling coefficient k and longitudinal detuning function Φ .

3. Optical responses of the SSWM process

As presented in Eq. (9), the pattern of the triphoton amplitude is determined by both fifth-order
nonlinear susceptibility and longitudinal detuning function. Therefore, in this section, we examine
the linear and nonlinear optical responses to the generated fields.

3.1. Nonlinear optical responses

According to the theory of perturbation chain [24], the fifth-order nonlinear susceptibilities for
the generated fields are

χ
(5)
S1 =

N0

d30d00d20d20d′

30
, χ

(5)
S2 =

N0

d31d01d′

31d
′

01d21
, χ

(5)
S3 =

N0

d′

20d
′

10d
′′

30d
′

00d
′′′

30
, (10)

where N0 = 2Nµ02µ13µ03µ21µ30µ30/ε0ℏ5 is the constant; µij are the electric dipole matrix
elements; d30 = Γ30 + i∆3, d00 = Γ00 + iδ3, d20 = Γ20 + iδ3 + i∆2, d10 = Γ10 − iδ1, d′

30 =

Γ30 − iδ1 + i∆1, d31 = Γ31 + i∆1, d01 = −Γ01 + iδ1, d′

31 = −Γ31 + iδ1 + i∆3, d′

01 = Γ01 + iδ1 + iδ3,
d21 = Γ21 + iδ1 + iδ3 + i∆2, d′

20 = Γ20 + i∆2, d′

10 = Γ10 − iδ1 − iδ3, d′′

30 = Γ30 − iδ1 − iδ3 + i∆1,
d′

00 = Γ00−iδ3, and d′′′

30 = Γ30−iδ3+i∆3; Γij is the dephasing rate of coherence |j⟩ → |i⟩,∆i = Ωi−ωi
is the detuning, which is defined as the difference between resonant transition frequency Ωi and
laser frequency ωi of Ei.

3.2. Linear optical responses

The linear susceptibilities of the generated photons are

χs1 =
N1µ

2
14

ḋ41
, χs2 =

N1µ
2
23

ḋ23
, χs3 =

N1µ
2
14

d̈41
, (11)

where N1 = 2N/ε0ℏ is the constant, ḋ30 = Γ30 + i(∆1 − δ1), ḋ12 = Γ12 + i(∆2 − δ2), and
d̈30 = Γ30 + i(∆3 +δ1 +δ2). The complex wavenumbers of the generated photons are obtained from
the relations ksi = (ϖsi + δi)/vsi and vsi = c/[ni + ωsi (dni/dωsi)], which are the group velocities of
generated photons through the medium. From the above description, we obtain

vS1 =
c

1 +
ω31
2

d(Re[χS1(ω)])
dω

=
c
(
Γ 2
03 +∆2

1

)2(
Γ 2
03 +∆2

1

)2
− ω31N1µ

2
03Γ03

, (12a)

vS2 =
c

1 +
ω41
2

d(Re[χS2(ω)])
dω

=
c
(
Γ 2
12 +∆2

2

)2(
Γ 2
12 +∆2

2

)2
− ω41N1µ

2
02Γ12

, (12b)

vS3 =
c

1 +
ω41
2

d(Re[χS3(ω)])
dω

=
c
(
Γ 2
03 +∆2

3

)2(
Γ 2
03 +∆2

3

)2
− ω03N1µ

2
03Γ03

. (12c)
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Since ∆1 is a large detuning,
(
Γ 2
03 +∆2

1

)2
≫ N1µ

2
03Γ03. The group velocity of ES1 is approximately

equal to c. Therefore, the wavenumber mismatch can be written as

∆k = kS1 + kS2 + kS3 − k1 − k2 − k3 = (
1
vS2

−
1
vS3

)δ2 −
1
vS3
δ1, (13)

The bandwidth resulting from the group delay can be estimated as ∆ωgi ∼ vSi/L. We consider two
cases here: (a) vS2 > vS3 and (b) vS2 < vS3. In case (a), ∆ωg2 > ∆ωg3. In case (b), ∆ωg2 < ∆ωg3.
These two cases are equivalent in principle, so we only consider case (a) and write ∆ωg2 as ∆ωg .
According to the relationship T (ω) = e−Im(χsi)kL(i = 1, 3), we know that the transmission spectral
widths limit the propagations of the generated fields, whereas the imaginary part of the linear
susceptibility determines this transmission spectral width. Therefore, the transmission profile serves
as the control field, which controls the transmission of the ES2 and ES3 photons.

The wave function of the triphoton is generally a convolution of nonlinear and linear optical
responses, and the properties of the triphoton amplitude can be determined by either response. In
our paper, with the strong dressing field, the effective coupling Rabi frequency Ωe and linewidth
γe from the nonlinear optical response are smaller than the phase-matching bandwidth ∆ωg of
the linear optical response. In addition, the group speed of fast light is close to the speed of light
with a strong dressing effect. In this case, we can calculate the phase-matching ∆k ≈ 0. Thus,
the longitudinal detuning function Φ (∆kL) that represents the linear optical response can be
approximated as 1; considering the nonlinear susceptibility, it plays a major role in determining
the spectral width. For another case, with the weak dressing field, the nonlinear susceptibility can
be approximated as constant. Meanwhile, Ωe and γe are larger than ∆ωg , the group speeds of
photons are slower than the speed of light, so ∆k ̸= 0, and linear susceptibility plays a major
role in determining the spectral width. In this paper, we mainly discuss the case of the strong
dressing effect and focus on the nonlinear susceptibility. In this case, the coincidence counts of
triplets perform as a damped Rabi oscillation.

4. Multi-mode SSWM process

In this section, we will discuss the effect of leading into the dressing field. By enhancing the
power of E1, we introduce a dressing field.

χ
(5)
S1 =

N0

d30dd00d20d10d
′

30
=

N0

(Γ30 + i∆3)P1(δ1, δ3)
, (14)

χ
(5)
S2 =

N0

d31d01d′

31d
′d
01d21

=
N0

(Γ31 + i∆1) P2(δ1, δ2)
, (15)

χ
(5)
S3 =

N0

d′

20d
′d
10d

′′

30d
′d
00d

′′′

30

=
N0

ε0ℏ (Γ20 + i∆2) P3(δ2, δ3)
, (16)

where P1(δ1, δ3) = (δ3 − ∆1/2 − Ωe1/2 + iΓe1)(δ3 − ∆1/2 + Ωe1/2 + iΓe1)(δ3 + ∆2 + iΓ20)(δ1 +

iΓ10)(δ1 −∆1 + iΓ30),

P2(δ1, δ2) = (δ1 + iΓ01) (δ1 +∆3 + iΓ31) (δ2 −∆1/2 −Ωe2/2 + iΓe2)

× (δ2 −∆1/2 +Ωe2/2 + iΓe2) (δ2 −∆2 + iΓ21) ,

P3(δ2, δ3) = (δ2 −∆1/2 −Ωe3/2 + iΓe3)(δ2 −∆1/2 +Ωe3/2 + iΓe3) (δ3 −∆3 + iΓ30)

× (δ2 − iΓ10) (δ3 +∆1/2 −Ωe4/2 + iΓe4)(δ3 +∆1/2 +Ωe4/2 + iΓe4),

dd00 = G2
1/(Γ12 + iδ3 − i∆1), d

′d
01 = G2

1/(Γ42 + iδ1 + iδ3 − i∆1),

d
′d
10 = G2

1/(Γ41 − iδ1 − iδ3 − i∆1), d
′d
00 = G2

1/(Γ22 − iδ3 − i∆1),

Ωe1 = (∆2
1 + 4(G2

1 + Γ10Γ00))1/2, Γe1 = (Γ00 + Γ10) /2,



S. Zhang, W. Li, K. Li et al. / Annals of Physics 412 (2020) 168000 7

Fig. 2. (a) Resonances in the fifth-order nonlinear susceptibility |χS1
(5)

| with dressing field |G1|
2; (b) resonances in the

dimension of δ3; (c) resonances in the dimension of δ1; (d) resonances in the dimension of δ2 .

Ωe2 = (∆2
1 + 4(G2

1 + Γ10Γ00))1/2, Γe2 = (Γ11 + Γ10) /2,

Ωe3 = (∆2
1 + 4(G2

1 + Γ10Γ30))1/2,

Γe3 = (Γ30 + Γ10) /2, Ωe4 = (∆2
1 + 4(G2

1 + Γ11Γ00))1/2, and Γe4 = (Γ11 + Γ00) /2. We obtain
the specific value of δ by minimizing the denominator of χ (5). Ωei represent the periods of Rabi
oscillation; Γei is the decay rate; and Γij and ∆i are similarly used.

The parameters used here are P1 = 30 mW, P2 = 5 mW, P3 = 15 mW, ∆1 = ∆3 = 2π ×

700 MHz, ∆2 = 2π × 700 MHz, Γ20 = Γ30 = 2π × 3 MHz, Γ00 = Γ10 = 0.01Γ20 and OD = 10.
According to Eq. (14), we can predict the specific value of δi: δ1 = 0, ∆1; δ3 = −∆2, ∆1/2 + Ωe1/2,
∆1/2 −Ωe1/2. Due to satisfying the equation ω1 + ω2 + ω3 = ϖs1 + δ1 +ϖs2 + δ2 +ϖs3 + δ3(δ1
+ δ2 + δ3 = 0), we can predict that the number of specific value of δ2 is six, which indicates six
types of SSWMs appearing in the interaction. Accordingly, we obtain Fig. 2, and correspondingly,
six types of triphotons can be generated from these SSWM processes in the spontaneous emission.
Every type of SSWM process should satisfy the conservation of energy. Fig. 2 shows six types of
SSWMs. Similarly, we use this method to analyze P2(δ1, δ2) and P3(δ2, δ3). There are six types of
SSWMs behind P2(δ1, δ2) and nine types of SSWMs behind P3(δ2, δ3).

The above analysis indicates that the fifth-order nonlinear susceptibilities χ (5) control the
parametric conversion efficiency of three input beams. The triphoton wave packet is determined
by the nonlinearities and phase matchings. Correspondingly, the temporal coherence properties of
the triplets are governed by both nonlinearities and phase criterion. In other words, we should focus
on two regimes: the damped Rabi oscillation regime, which is determined by the nonlinear optical
properties, and the group-delay regime, which is determined by the phase matchings. Comparing
the triphoton spectral width governed by the nonlinear optical response with the width of the phase
dispersion, the narrow one will play a major role in the triphoton wave packets.

The strong dressing field results in the coherence states in the ‘‘dressed-state’’ picture of the
generated photons. The value of δi represents the resonance position of the ‘‘dressed-state’’ picture.
Furthermore, the photon states of ES1, ES2 and ES3 that satisfy the energy conservation of δ1 +

δ2 + δ3 = 0 can form one coherent channel of the SWM process. With the destructive interference
among these coherent channels (Fig. 2), the triphoton coincidence counting rate is demonstrated as
a coherent Rabi oscillation.
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Fig. 3. Multimode triphoton coincidence counting rate in directions τ21 = t1 − t2 and τ23 = t3 − t2 of the damped Rabi
oscillation regime. (a) ∆1 = 120 MHz; (b) ∆1 = 400 MHz.

5. Triphoton counting measurement

Section 3 indicates that the wave function of the triphoton is a convolution of nonlinear and
linear optical responses, and the properties of the triphoton amplitude is determined by either
response. Until now, we also know that the wave function results from the competition between
linear and nonlinear optical responses. Here, we only discuss the nonlinear susceptibility. In this
condition, the effective coupling Rabi frequency Ωe make the multimode SWM channels occur,
which can generate the multimode triphoton. With the multimode triphoton beating or destructive
interference with each other, the wave function of the triphoton appears as a damped Rabi
oscillation.

According to Sections 2 and 3, we obtain χSi
(5) and Φ = 1. After some mathematical calculations,

the triphoton coincidence counts can be written as

Rc3 = |B3|
2

= W2[e−2Γ10τ12 + e−2Γ30τ12 − 2e−(Γ10+Γ30)τ12 cos (∆1τ12)]e−2Γe1τ23 [Ω2
e1e

−2(Γ20−Γe1)τ23

+
Ω2

e1

2
e−2Γe1τ23 (1 − cos (Ωe1τ23))

−Ωe1 (Γ20 − Γe1) sin (Ωe1τ23)+Ωe1 (Γ20 − Γe1) sin (M1τ23)− D1 cos (M1τ23)

+Ωe1 (Γ20 − Γe1) sin (M2τ23)− D2 cos (M2τ23)], (17)

where D1 = Ω2
e1/2 + (∆1/2 +∆2) e−(Γ20−Γe1)τ23 , D2 = Ω2

e1/2 − (∆1/2 +∆2) e−(Γ20−Γe1)τ23 , M1 =

Ωe1/2 + ∆1/2 + ∆2, M2 = Ωe1/2 − ∆1/2 − ∆2, τ12 = τS1 − τS2 and τ23 = τS2 − τS3. Obviously,
the Rabi oscillation has one oscillation period that results from 2π/∆1 in direction τ12 and multiple
oscillation periods that result from several sine functions in direction τ23.

Here, we change the frequency of ∆1 as shown in Fig. 3. With increasing frequency, the
oscillation period in direction τ21 decreases. In addition, the counting rate decays with the effective
dephasing rate, and the coherent time is determined by the effective dephasing rate. As shown in
Fig. 3, we adopt two directions τ21 and τ23 to calculate the coincidence counts.

Next, we focus on the different method of coincidence counts. We use photon Es2 as the trigger
photon and other photons as the stop photons to complete the count ends from Eq. (17).

By changing the trigger photon and using different fifth-order susceptibilities and mathematical
calculations, we obtain the triphoton coincidence counts with photons Es3 and Es1 as the trigger
photons, respectively.

Rc3 = |B3|
2

= W2[e−2Γ10τ13 + e−2Γ31τ13 − 2e−(Γ10+Γ31)τ13 cos (∆3τ13)]e−2Γe2τ23 [Ω2
e2e

−2(Γ21−Γe2)τ23

+
Ω2

e2

2
e−2Γe2τ23 (1 − cos (Ωe2τ23))−Ωe2 (Γ21 − Γe2) sin (Ωe2τ23)

+Ωe2 (Γ21 − Γe2) sin
(
Ṁ1τ23

)
− Ḋ1 cos

(
Ṁ1τ23

)
+Ωe2 (Γ21 − Γe2) sin

(
Ṁ2τ23

)
− Ḋ2 cos(Ṁ2τ23)], (18)
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where Ḋ1 = Ω2
e2/2 + (∆1/2 −∆2) e−(Γ21−Γe2)τ23 , Ḋ2 = Ω2

e2/2 − (∆1/2 −∆2) e−(Γ21−Γe2)τ23 , Ṁ1 =

Ωe2/2 +∆1/2 −∆2, Ṁ2 = Ωe2/2 −∆1/2 +∆2.

Rc3 = |B3|
2

= W2[
Ω2

e3

2
e−2Γe3τ12 (1 − cos (Ωe3τ12))− D sin (Ωe3τ12)− D̈2 cos

(
M̈2τ12

)
+ D sin

(
M̈1τ12

)
− D̈1 cos

(
M̈1τ12

)
+ D sin

(
M̈2τ12

)
]

e−2Γe3τ12e−2Γe4τ13 [
Ω2

e4

2
e−2Γe4τ13 (1 − cos (Ωe4τ13))− D′ sin (Ωe4τ13)− D̈4 cos

( ...
M2τ13

)
+ D′ sin(

...
M1τ13) − D̈3 cos(

...
M1τ13) + D′ sin(

...
M2τ13)], (19)

where D and D′ are the constants. D̈1 = Ω2
e3/2 + (∆1/2) e−(−Γ10−Γe3)τ12 , D̈2 = Ω2

e3/2 −

(∆1/2) e−(−Γ10−Γe3)τ12 , D̈3 = Ω2
e4/2 + (−∆1/2 −∆3) e−(Γ30−Γe4)τ13 , D̈4 = Ω2

e4/2 − (−∆1/2 −∆3)

e−(Γ30−Γe4)τ13 , M̈1 = Ωe3/2 + ∆1/2, M̈2 = Ωe3/2 − ∆1/2,
...
M1 = Ωe4/2 − ∆1/2 − ∆3, and...

M2 = Ωe4/2 +∆1/2 +∆3.
Fig. 4(a–c) show the theoretical curves of the triphoton coincidence counting rate in the damped

Rabi oscillation regime by applying different trigger photons. When we employ Es3 as the trigger
photon, the Rabi oscillation only has one oscillation period in direction τ13, while there are multiple
oscillation periods in direction τ23. In addition, when we use Es1 as the trigger photon, there are
multiple oscillation periods in dimensions τ12 and τ13.

As shown in Fig. 4(a) and predicted from Eq. (17), there is only one oscillation period ∆1 in
direction τ12. However, three oscillation periods Ωe1, Ωe1/2 + ∆1/2 + ∆2 and Ωe1/2 −∆1/2 −∆2
exist in direction τ23. These outcomes correspond with the fifth-order nonlinear susceptibility in
Fig. 2. When we use Es2 as the trigger photon, there are two modes in direction τ12. Since there
is destructive interference between the two modes, there is only one oscillation period, and the
oscillation period is equal to the difference between the frequencies of the two modes (δ1 = 0, ∆1).
There are also three modes in direction τ23. Therefore, three oscillation periods in the direction
τ23 are due to the destructive interference among the three modes, whereas the oscillation periods
come from the difference in frequency of the three modes (δ3 = ∆1/2 + Ωe1/2, ∆1/2−Ωe1/2, -∆2).
In fact, the number of oscillation periods in directions τ23 and τ12 is ten, respectively, which can be
explained as follows. In Eq. (17), by replacing τ12 with τ13 − τ23, the number of oscillation periods
in direction τ23 becomes four. Similarly, we use τ13 − τ12 to replace τ23, and the oscillation periods
in direction τ12 become four. The reason why there are three oscillation periods in the τ23 direction
when using Es2 as the trigger photon is that seven periods are hidden in this coordinate system.
When we apply the same method to analyze Eqs. (18) and (19), there are four oscillation periods
in Eq. (18) and six oscillation periods in Eq. (19).

Finally, we premeditate the situation of the mixture of the fifth-order nonlinear susceptibility
and the phase matchings. As shown in Fig. 4(d), a sharp peak appears near the origin of the
coordinates and is the precursor of the triphoton correlation. When the counting time is gradually
away from the origin, the slow lights begin to regulate the wave packet of triphoton counting rates.

6. Conclusion

In conclusion, we discuss the optical responses of the generated fields in an atomic ensemble.
The fifth-order nonlinear susceptibility χ (5)S1 indicates the occurrence of six types of SSWMs in
this process after the dressing field has been introduced. To further explore the properties of
the generated photons, we calculate the triphoton coincidence counting rate using three different
trigger photons. The nonlinear optical response plays a major role in determining the triphoton
wave packet. The triphoton coincidence counting rate appears as a damped Rabi oscillation with the
multimode triphoton beating caused by the destructive interference. These results can be of great
significance to the fundamental tests of quantummechanics and quantum information technologies.
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Fig. 4. (a) Multimode triphoton coincidence counting rate in directions τ21 = t2 − t1 and τ23 = t2 − t3 of the damped
Rabi oscillation regime (using Eq. (17)). (b) Multimode triphoton coincidence counting rate in directions τ13 = t1 − t3 and
τ23 = t2 − t3 of the damped Rabi oscillation regime (using Eq. (18)). (c) Multimode triphoton coincidence counting rate in
directions τ12 = t1 − t2 and τ13 = t1 − t3 of the damped Rabi oscillation regime (using Eq. (19)). (d) Numerical simulation
of the triphoton coincidence counting rate in Eq. (9).
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