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a b s t r a c t

The main goal of this work is to study the role played by the
helicity in the two-dimensional Klein tunneling for massive Dirac
fermions. To this end, we consider the cases in which massive
Dirac fermions with a defined helicity are scattered by step
and barrier electrostatic potentials. For each potential, we first
calculate the contributions of fermion states with conserved and
inverted helicity to the reflection and transmission coefficients,
analyzing how the potential (V0), fermion’s mass, energy (E) and
angle of incidence affect them. In the step potential case, we
find that the transmission probability for fermion states with
inverted helicity is small when V0 < E, but becomes dominant
when V0 > E. In the barrier potential case, this probability is
always null. This behavior is explained by the breaking of the
helicity conservation by the mass term, allowing the reflection of
states with inverted helicity in both potentials, and transmission
of inverted helicity states only in the step potential. Finally, we
give some insights on the consequences of our results in materi-
als with Dirac-like quasiparticles, such as graphene, topological
insulators and Weyl semimetals.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

When Klein, in 1929, studied the transmission of electrons through electrostatic potentials in the
relativistic formalism of Dirac’s equation, he found a non-negligible transmission probability even
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in the limit of very high potentials [1], in contrast to the exponentially suppressed transmission in
non-relativistic quantum mechanics. The origin of this counterintuitive result, which is known as
Klein paradox or Klein tunneling (KT), was explained by the presence of non-negative energy states
inside the potentials [1,2]. However, it is very difficult to test this effect experimentally on free
electrons. In order to observe KT, Bohr and Sauter formulated that a potential difference comparable
to the electron’s rest energy has to be achieved in a spatial length of the order of the electron’s
Compton wave length [3], yielding an electric field of the order of 1018 V/m [4,5]. This corresponds
to Schwinger’s limit of electron–positron pair creation [6], which is unattainable with the current
technology.

On the other hand, the discovery of graphene opened the possibility of testing the KT in a
condensed matter system [7]. In single-layer graphene, the charge carriers behave as massless spin
1/2 quasiparticles described by an effective Dirac’s equation in (2+1) dimensions [8]. In this material,
the experimental realization of step and barrier electrostatic potentials are p-n and n-p-n junctures,
respectively, requiring electric fields of the order of 107 V/m to observe KT, routinely achieved
in such systems [7]. In this context, KT manifests as the perfect transmission of normal-incident
charge carriers through the juncture, independently of the barrier’s spatial length or potential value,
explained by the fact that the pseudospin is conserved in the transmission process [7]. Subsequently,
KT in graphene was demonstrated experimentally by Young et al. [9] and Stander et al. [10],
moreover, recent experimental studies on the transmission probability dependence upon the angle
of incidence have been reported [11]. Furthermore, the observation of KT is expected in materials
with Dirac-like quasiparticles, such as topological insulators and Weyl semimetals [12–15].

Nevertheless, KT is an undesirable effect in the design of graphene-based electronic compo-
nents [16], most notably, it implies a difficulty to turn off a graphene-based transistor [10,16]. Hence,
a way to limit the KT is necessary, and can be done by targeting the two related causes for the perfect
transmission, namely, the massless nature of the charge carriers and the pseudospin conservation
in the scattering process [7]. In graphene, the charge-carriers obtain a mass by opening a gap in the
band structure, which can be achieved by breaking the inversion symmetry in graphene’s A and B
sublattices [17–19], or in other words, breaking the pseudospin symmetry. However, experimental
evidence on how the band gap affects the behavior of reflected and transmitted particles with
respect to their pseudospin degree of freedom is lacking. On the other hand, theoretical studies on
two-dimensional KT for massive fermions are available [20–22], but only for the barrier potential
the helicity contribution to the reflection and transmission coefficients is explicitly obtained [20],
and, similarly as in the experimental case, it is not clear how the mass allows changes of helicity
in the scattering process.

In this paper, we present the results of KT for spin 1/2 fermions with a given helicity state
being scattered first by a step electrostatic potential and second by a barrier electrostatic potential,
considering arbitrary angles of incidence. To perform the calculations, we use bispinors that are
simultaneously eigenfunctions of Dirac’s Hamiltonian and the helicity in each region defined by the
potential, and considering continuity conditions on them we find the contribution of helicity conser-
vation and helicity inversion to the reflection and transmission coefficients. In contrast to previous
studies [20–26], we focus on the helicity role in the KT, studying how the potential, the fermion’s
mass, energy, and angle of incidence affect the reflection and transmission coefficients, and what is
the contribution of the helicity inverted states on them. Our analysis is done considering the three
energy zones (namely, the diffusion, evanescent and Klein zones) defined by the parameters of the
problem [20], finding distinctive behavior in each of them. In the massless case, we find that helicity
is conserved in the process, as expected. However, for massive fermions in both potentials, helicity
inversion is present in the reflection probabilities, concluding that the mass term breaks the helicity
conservation. Furthermore, when V0 > E, helicity inverted states dominate the transmission in the
step potential, but in the barrier potential we find that this contribution is completely absent in
accordance with previous results [20,21].

At the end of the paper, we give some insights about the application of the present results in the
transport properties of p-n and n-p-n junctures of gapped single-layer graphene and materials with
massive Dirac-like quasiparticles. The interested reader may refer to Ref. [27], where we calculated
the conductance in gapped single-layer graphene as a function of the charge carrier density and the
band gap, considering incoming fermions with fixed (pseudo)helicity.
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2. Formalism

In the single-particle formalism, a relativistic spin 1/2 fermion in 2+1 dimensions, under an
external electrostatic potential, is described by the Dirac’s Hamiltonian

H = cσ · p̂ + σ3mc2 + V (x), (1)

where m is the fermion’s mass, c is the speed of light, p̂ = (p1, p2) is the momentum operator,
V (x) is the electrostatic potential which in our problem depends only on the x coordinate, and
σ = (σ1, σ2) and σ3 are the Pauli matrices. In 2+1 dimensions, Dirac’s Hamiltonian is represented by
a 2 × 2 matrix with complex components having associated spinor wave functions, instead of the
usual bispinors in 3+1 dimensions. However, the helicity operator ĥ = σ · p̂/p no longer commutes
with the Hamiltonian, losing the ability to label states by energy and helicity simultaneously. To
overcome this difficulty, we work with a Hamiltonian with extended dimensionality (the same as
in 3+1), which guarantees commutation with the helicity [28]:

H = cα · p̂ + βmc2 + V (x). (2)

The matrices α = (α1, α2) and β are

α1 =

(
0 σ1
σ1 0

)
, α2 =

(
0 σ2
σ2 0

)
, β =

(
σ0 0
0 −σ0

)
, (3)

with σ0 the identity matrix in 2 × 2 dimensions.
In graphene, the Hamiltonian describing the low energy excitations can be obtained from Eq. (2)

by making m = 0, V = 0, replacing c by the Fermi velocity of the charge carriers vF , and a rotation
of the Hamiltonian is performed obtain a block-diagonal form [27]. In that case, instead of the spin,
the Pauli matrices represent the two sublattices in graphene’s crystal structure [7], referred as the
pseudospin. From now on, we work with units c = h̄ = 1.

Since the potential only depends on x, the momentum in the y direction, p2, is conserved, and
the wave function for Dirac’s Hamiltonian is

Ψ (x, y, t) = ψ(x) ei(yp2−Et). (4)

Therefore, the wave function’s dependence upon x, and eventually upon other degrees of freedom,
is included in the term ψ(x).

In the free case (V (x) = 0), the eigenvalues of Dirac’s Hamiltonian represent the energy of a
relativistic fermion

E = s
√
p2 + m2, (5)

with p the magnitude of momentum, and the parameter s = sign(E) representing a particle
(antiparticle) state if s = 1 (s = −1). In the free case, the wave functions of Dirac’s Hamiltonian
are [28]

ψs(x) = N
(

χ
σ·p
E+mχ

)
eixp1 , (6)

being χ a two-component column vector, N a normalization factor, and p = (p1, p2) = (p cosφ,
p sinφ) the momentum’s eigenvalue, with φ the direction of this vector measured from the x-axis.
The subscript s indicates particle or antiparticle states depending on its value.

To further classify the wave functions, we use the helicity operator, defined as the projection
of the spin in momentum’s direction, ĥ = σ · p̂/p [28]. In a 4 × 4 representation, it is given by
ĥ4 = diag(ĥ, ĥ). The helicity operator commutes with Dirac’s Hamiltonian making it a good quantum
number [28], whose eigenstates are

χ↑
=

(
1

p1+ip2
p

)
, χ↓

=

(
−p1+ip2

p

1

)
, (7)

where the index ↑ (↓) denotes a helicity eigenstate with eigenvalue +1 (−1).
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The eigenstates in Eq. (7) are the natural candidates to be the column vectors in the Hamiltonian’s
wave function in Eq. (6), nevertheless, it is important to state an additional consideration. Since
the group velocity of the wave-packet is1 vgroup = ∇pE = p/(s|E|), which depends on the
particle/antiparticle parameter s, the direction of movement of antiparticles is opposite to their
momentum [1]. Therefore, if antiparticles must move in the same direction as particles (as in the
problem we consider later), then their momentum must be modified to p = (−p cosφ, −p sinφ)
[1,4]. In general, the linear momentum of a fermion is p = (sp cosφ, sp sinφ), valid for both particles
and antiparticles. This changes the helicity eigenstates to

χ↑
=

(
1

seiφ

)
, χ↓

=

(
−se−iφ

1

)
. (8)

Inserting them in Eq. (6), we obtain the final form of Dirac’s wave functions,

ψ↑

s (x) = N

⎛⎜⎝ 1
seiφ
P

sPeiφ

⎞⎟⎠ eixp1 , (9)

ψ↓

s (x) = N

⎛⎜⎝−se−iφ

1
sPe−iφ

−P

⎞⎟⎠ eixp1 , (10)

where the adimensional factor P was defined as

P =
p

E + m
. (11)

Again, the index ↑ or ↓ is associated to the eigenstates of helicity, such that ĥ4ψ
↑

= ψ↑, and
ĥ4ψ

↓
= −ψ↓. In Ref. [27] we used a slightly modified version of Eqs. (9) and (10), in such a way

that the helicity eigenvalue depends on the parameter s in the following way: ĥ4ψ
↑

s = sψ↑

s , and
ĥ4ψ

↓

s = −sψ↓

s . Therefore, in that study ψ↑

s (ψ↓

s ) has a negative (positive) helicity if antiparticle
states are considered, on the contrary as in the present work.

If the potential now takes a constant value V (x) = V0, Dirac’s equation changes according to
Eq. (2). The energy of the fermion now takes the value

E − V0 = s′
√
q2 + m2, (12)

where s′ = sign(E − V0), and q is the new magnitude of the fermion’s momentum. The wave
functions can be obtained from Eqs. (9) and (10), by doing the following changes

E → E − V0, s → s′

p → q, φ → θ

P → Q
(13)

where q = (q1, q2) = (s′q cos θ, s′q sin θ ) is the fermion’s linear momentum, θ the angle of the
momentum relative to the x axis, and Q is defined as

Q =
q

E − V0 + m
. (14)

For fermions in a constant electrostatic potential, s′ corresponds to the particle/antiparticle param-
eter. In this sense, if the potential energy V0 is greater than the fermion’s energy E, it is in an
antiparticle state.

1 Here, ∇p =

(
∂
∂p1
, ∂
∂p2

)
.
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3. Step potential

Now, we study the scattering of fermions through a step potential, of the form

V (x) =

{
0, if x < 0 (Region I),
V0, if x ≥ 0 (Region II).

(15)

Defining x < 0 as the region I, and x ≥ 0 as the region II.
We assume that the incoming fermions from region I are helicity-polarized, with positive helicity

without loss of generality. The incident wave function takes the form of Eq. (9), with a normalization
factor2 N = 1.

Given that the potential only depends on x, the momentum p2 is conserved in all regions [21],
implying that only the ψ(x) term of the wave function Ψ (x, y, t) changes throughout the space. Also,
as a result of the interaction with the potential, the reflected fermions at x = 0 may get an inversion
in their helicity degree of freedom, which must be taken into account by means of the corresponding
wave function. Therefore, the wave function in region I is constructed as a superposition of the
incident wave function, and the reflected ones with positive and negative helicity, as follows,

ψI(x) = ψi + ψr + ψr ′

=

⎛⎜⎝ 1
seiφ
P

sPeiφ

⎞⎟⎠ eixp1 +

⎡⎢⎣r

⎛⎜⎝ 1
−se−iφ

P
−sPe−iφ

⎞⎟⎠+ r ′

⎛⎜⎝ seiφ
1

−sPeiφ
−P

⎞⎟⎠
⎤⎥⎦ e−ixp1 ,

where ψi is the incident wave, ψr (ψr ′ ) is the reflected wave function with positive (negative)
helicity, and r (r ′) the reflection probability amplitude for positive (negative) helicity. The reflected
wave functions were found from Eqs. (9) and ((10)) by changing the sign of p1 [20,21], or
equivalently, by changing the angle from φ to π − φ.

The transmitted fermions at x = 0 are represented also as a superposition of both helicity states,
however, since at x ≥ 0 the potential takes the value V0, we must consider the changes in the wave
functions mentioned in Eq. (13). The wave function in region II is

ψII(x) = ψt + ψt ′

=

⎡⎢⎣t

⎛⎜⎝ 1
s′eiθ
Q

s′Qeiθ

⎞⎟⎠+ t ′

⎛⎜⎝−s′e−iθ

1
s′Qe−iθ

−Q

⎞⎟⎠
⎤⎥⎦ eixq1 , (16)

with ψt (ψt ′ ) the transmitted wave function with positive (negative) helicity, and t (t ′) the
transmission probability amplitude for helicity conservation (inversion).

To find a relation between φ and θ , it is considered the conservation of the p2 component of the
momentum, yielding a Snell law for the fermion’s in this system [21]

p2 = q2
sp sinφ = s′q sin θ. (17)

It is observed that if s and s′ have different values, meaning that the scattering is between
particles on one hand, and antiparticles on the other hand, the ‘‘refraction index’’ yields a negative
value, in the same way as Veselago lenses in electrodynamics [29] and charge carrier lensing in
graphene [30].

The reflection and transmission amplitudes are found by imposing continuity conditions at x = 0,
such that ψI(x = 0) = ψII(x = 0). This leads to the following linear system of equations in matrix

2 Since we are interested in the reflection and transmission coefficients, which are relative quantities with respect to
the amplitude of the incident wave function, then N can take an arbitrary value.
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form ⎛⎜⎝ 1 seiφ −1 s′e−iθ

−se−iφ 1 −s′eiθ −1
P −sPeiφ −Q −s′Qe−iθ

−sPe−iφ
−P −s′Qeiθ Q

⎞⎟⎠
⎛⎜⎝ r
r ′

t
t ′

⎞⎟⎠ =

⎛⎜⎝ −1
−seiφ
−P

−sPeiφ

⎞⎟⎠ .
It is straightforward to solve this system, obtaining the following results for the probability
amplitudes

r =
ieiφ

[
(P2

+ Q 2) sinφ − 2ss′PQ sin θ
]

P2 + Q 2 + 2ss′PQ cos(φ + θ )
, (18)

r ′
=

s(P2
− Q 2) cosφ

P2 + Q 2 + 2ss′PQ cos(φ + θ )
, (19)

t =
(P2

+ PQ ) cosφ (eiφ + ss′e−iθ )
P2 + Q 2 + 2ss′PQ cos(φ + θ )

, (20)

t ′ =
s(P2

− PQ ) cosφ (1 − ss′ei(φ+θ ))
P2 + Q 2 + 2ss′PQ cos(φ + θ )

. (21)

To find the reflection and transmission coefficients, we must consider the probability density current
j , and the fact that its normal component with respect to the potential interface (i.e. the vertical
line x = 0) must be conserved. The probability density current is defined as j = (j1, j2) =

(Ψ †α1Ψ , Ψ
†α2Ψ ). Therefore, the conservation of the x component of j leads to

ji,1 + jr,1 + jr ′,1 = jt,1 + jt ′,1 (22)

or equivalently,

−
jr,1
ji,1

−
jr ′,1
ji,1

+
jt,1
ji,1

+
jt ′,1
ji,1

= 1 (23)

where ji,1 = Ψ
†
i α1Ψi is the probability current density associated to the incident wave function

Ψi(x, y, t) = ψi(x)ei(p2y−Et), and ψi(x) was defined implicitly in Eq. (16). Similar equations for the
reflected current densities jr,1 and jr ′,1, and the transmitted current densities jt,1 and jt ′,1 hold.
Eq. (23) defines the transmission and reflection coefficients as

R =

⏐⏐⏐⏐⏐−Ψ †
r α1Ψr

Ψ
†
i α1Ψi

⏐⏐⏐⏐⏐ , R′
=

⏐⏐⏐⏐⏐−Ψ
†
r ′α1Ψr ′

Ψ
†
i α1Ψi

⏐⏐⏐⏐⏐ , (24)

T =

⏐⏐⏐⏐⏐Ψ †
t α1Ψt

Ψ
†
i α1Ψi

⏐⏐⏐⏐⏐ , T ′
=

⏐⏐⏐⏐⏐Ψ
†
t ′α1Ψt ′

Ψ
†
i α1Ψi

⏐⏐⏐⏐⏐ . (25)

From them, it is straightforward to obtain the following results

R = |r|2, R′
= |r ′

|
2
,

T =

⏐⏐⏐⏐Re(Q cos θ
P cosφ

)⏐⏐⏐⏐ |t|2, T ′
=

⏐⏐⏐⏐Re(Q cos θ
P cosφ

)⏐⏐⏐⏐ |t ′|2, (26)

with Re the real part of the argument. The real part of the term is added ad hoc in the calculations,
because otherwise, in the case when Q is imaginary, the probability conservation R+R′

+T +T ′
= 1

is violated.
Some conclusions can be obtained from the reflection and transmission coefficients. First, it is

observed that in a general scenario, helicity inversion is present in both transmission and reflection
probabilities. One of our objectives is to study the extent of the contributions of helicity inversion
in both reflection and transmission, and what is the role of fermion’s mass on it. On the other hand,
by definition the reflection and transmission coefficients conserve the probability:

R + R′
+ T + T ′

= 1. (27)
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Fig. 1. Behavior of R, R′ , T y T ′ as a function of the incidence angle φ, for several values of potential V0 and energy E,
normalized to the fermion’s mass m. (a) Massless case in the Klein zone, with V0/E = 2.5. The reflection (transmission) is
entirely by states with conserved (inverted) helicity. (b) Similar as before, but with massive fermions, such that V0/E = 2.5
and E/m = 2.0. R′ and T are non-zero, but T ′ dominates over T . Since V0 > 2E no angles of total reflection are observed.
(c) E/m = 2.0 and V0/m = 0.9, thus the diffusion and evanescent energy zones are shown. The presence of angles of total
reflection marks the transition form the diffusion to the evanescent zone, with a critical angle φcrit = 15.34◦ calculated
from Eq. (28). There is transmission probability for helicity inversion states (T ′), but it is small compared to T . (d) Klein
and evanescent zones, with E/m = 2.0 and V0/m = 3.5. Since V0 < 2E, a transition from the Klein to the evanescent
zone is present at an angle φcrit = 40.2◦ . The transmission probability for inverted helicity states is dominant over T .

As a consistency check, we examine the normal incidence case, φ = 0. In this case, we have

R = 0, R′
=

⏐⏐⏐⏐ P2
− Q 2

(P + ss′Q )2

⏐⏐⏐⏐2
T =

|PQ ||P + Q |
2
|1 + ss′|

|P + ss′Q |
2 , T ′

=
|PQ | |P − Q |

2
⏐⏐1 − ss′

⏐⏐
|P + ss′Q |

2 .

The result R = 0 means that for head-on collisions, the reflected fermions can only present
inverted helicity when compared to the incident ones [20]. In graphene and Dirac materials with
massless charge carriers, this has a more profound implication. In this context, m = 0 implies
that the dimensionless parameters take the values P = s and Q = s′, where s and s′ now
represent the conduction/valence bands in each spatial region rather than particles/antiparticles.
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The helicity is replaced with the pseudospin in graphene, or with chirality in Dirac materials [31].
It is straightforward to prove that R′

= 0, and either T or T ′ is zero, depending on the value ss′. For
instance, if 0 < E < V0, then ss′ = −1, implying that T = 0 and T ′

= 1, regardless of the energy
and potential values, meaning that total transmission is always expected for head-on collisions [7].
Total transmission at normal incidence is the manifestation of Klein tunneling in graphene and
Dirac materials, and as can be observed, it is a consequence of the helicity conservation in the
reflection process (or equivalently, the restriction of reflection with inverted helicity). In graphene,
this translates into conservation of pseudospin, [7], and the conservation of chirality in topological
insulators [31].

In fact, for m = 0, the helicity conservation in the reflected fermions is not only manifested at
normal incidence, but for arbitrary angles of incidence as well. Since in the massless case P = s
and Q = s′, the term P2

− Q 2 in the numerator of r ′ is equal to zero, implying r ′
= 0 for massless

particles. Additionally, either T or T ′ are null depending on the values of E and V0, specifically,
T = 0 if E < V0, or T ′

= 0 if E > V0. Fig. 1(a) shows this situation in the case V0 > E, where the
transmission is entirely through inverted helicity states.

Now, we analyze the transmission and reflection coefficients as a function of E, V0, and arbitrary
angles of incidence φ. The analysis is done in the different energy zones as defined in [20], namely,

V0 < E −

√
m2 + p22 (diffusion zone)

E −

√
m2 + p22 ≤ V0 ≤ E +

√
m2 + p22 (evanescent zone)

E +

√
m2 + p22 < V0 (Klein zone)

They are defined considering the momentum q1 =

√
(E − V0)2 − m2 − p22, and evaluating the values

at which it is real or imaginary. For instance, in the diffusion and Klein zones, q1 is real, and
therefore, plane wave solutions for the wave function in region II are valid, while in the evanescent
zone,3 q1 is imaginary, implying that the transmission in region II is through evanescent waves. In
the diffusion zone, the transmitted states in the potential region are particles, whereas in the Klein
zone they are antiparticles.

Fig. 1(a) shows the behavior of the reflection and transmission coefficients in the Klein energy
zone, in the case m = 0. As already mentioned, the reflection (transmission) is entirely through
conserved (inverted) helicity states. However, this situation changes for massive fermions. Fig. 1(b)
is similar as the previous one, in the sense that the ratio V0/E is the same, but now the mass is
different to zero. At normal incidence, the transmission gets reduced by the reflection through states
with inverted helicity. Additionally, although the transmission coefficient for states with conserved
helicity is non-zero, it is around two orders of magnitude lower than T ′. This is a consistent trend:
T ′ is dominant over T when V0 > E, but T dominates over T ′ when V0 < E.

In Fig. 1(c), the energy and potential take the values E/m = 2 and V0/m = 0.9, such that the
case of diffusion and evanescent zones is shown. In this situation, the transmission coefficients are
equal to zero from a certain angle φ. This happens because as φ increases, the value of p22 increases
as well (p2 = sp sinφ), taking the system from the diffusion zone to the evanescent zone. This can
be seen more clearly if we consider the normal incidence case p2 = 0, where the condition for the
diffusion zone V0/m < E/m −

√
1 + p22/m2 is met. Increasing φ lowers the value at the right hand

side of the inequality, taking the system to the evanescent zone after some critical value of φ, found
to be

φcrit = sin−1

√
(E − V0)2 − m2

E2 − m2 , (28)

3 In Ref. [20] this zone is denoted as the ‘‘tunneling zone’’, however, as we will show, there is no tunneling here in
the potential step or the potential barrier.
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Fig. 2. Behavior of φcrit as a function of the potential V0/m, for several values of E/m. If the condition E−m < V0 < E+m
holds, then φcrit = 0 implying total reflection for all angles of incidence. In that situation, the system is always in the
evanescent energy zone. On the contrary, if V0 > 2E then no critical angles are found, therefore total reflection is absent.
E/m = 2.0 corresponds to the case shown in Fig. 1(b)–(d).

obtained by finding the values of p2 that turn q1 into an imaginary quantity. Focusing our analysis
in the diffusion zone, it is noticed that for low angles, T and R′ are the dominant terms, however,
as the angle increases, R starts to play a role in the total reflection. The transmission with inverted
helicity, T ′, is found to be small compared to T , being only comparable to it in the case of angles
close to φcrit , where T is dropping to zero. On the other hand, for large incidence angles the reflection
is dominated by R, while R′ drops to zero. This behavior is consistent in all energy zones. Finally,
the fact that the transmission coefficients T and T ′ are zero in the evanescent energy zone, along
with the probability conservation condition, implies that R + R′

= 1.
Fig. 1(d) depicts a transition from the Klein to the evanescent zone. Here, q1 goes from being real

to imaginary, where the critical angle is still φcrit given in Eq. (28). In this situation T ′ dominates
over T , as mentioned.

The behavior of the critical angle φcrit of total reflection as a function of V0 is shown in Fig. 2.
It can be noticed that for the considered energies, there exists a range of V0 values at which φcrit
is zero, implying that the system is in the evanescent energy zone for all angles of incidence, and
total reflection is always expected. This situation is observed if the condition E−m < V0 < E+m is
met. Additionally, no angles of total reflection are observed if V0 > 2E, as it is the case of Fig. 1(a)
and (b).

A more clear dependence of the transmission coefficients upon the mass is shown in Fig. 3(a)–(d).
In those graphs, T and T ′ are plotted as a function of both V0/E and m, for a fixed φ. Fig. 3(a) and
(b) represent the transmission coefficient T at angles of incidence φ = 0 and φ = 20◦, respectively.
In both cases, it can be observed that T is only dominant if V0 < E, and that a region of no
transmission around V0/E = 1 is present in Fig. 3(b), compared to Fig. 3(a). This is a result of
finding the system in the evanescent energy zone, in close relation to the critical angle argument
discussed previously. Fig. 3(c) and (d) show a similar situation for T ′, noticing that it is only relevant
if V0 > E. The appearance of greenish colors instead of yellow in Fig. 3(d), corresponding to φ = 20◦,
implies a lower transmission probability compared to normal incidence. Again, no transmission
around V0/E = 1 is an indication that the system is in the evanescent zone, however, if V0/E > 2
no transition to the evanescent zone is present, implying that T ′ is non-null for all mass values.
Negative values of V0 were included, such that the electrostatic potential is now attractive for
positive-charged fermions, that is, the barrier potential changes to a potential well.
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Fig. 3. Behavior of T and T ′ for fixed φ, as a function of m/E and V0/E. High to low transmission are plotted in yellow-
ish to green-ish colors, respectively, while zero transmission is in dark blue. (a) Transmission coefficient for conserved
helicity states T at normal incidence, φ = 0. Notice that it is relevant only when V0 < E. (b) Transmission coefficient T
at φ = 20◦ . For small mass, zero transmission is obtained around V0/E = 1 compared to the previous case, in accordance
to the critical angle condition marking the transition to the evanescent zone. (c) Transmission probability for inverted
helicity states at normal incidence, φ = 0. On the contrary to Fig. (a), T ′ is dominant when V0 > E. For a fixed V0 , it can
be observed that the transmission coefficient decreases as m increases. (d) Transmission coefficient T ′ at φ = 20◦ . Green
colors instead of yellow in the graph imply a lower value of T ′ , compared to the case of normal incidence. Negative
potential values were included, meaning that the electrostatic potential is attractive (potential well) for the incoming
fermions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

As a closing remark, we study the case V0 ≫ E. Under this condition, it follows that Q ≈ −1
and θ ≈ 0, from which it is obtained

RV0≫E =

⏐⏐⏐⏐ (P2
+ 1) sinφ

P2 + 1 + 2sP cosφ

⏐⏐⏐⏐2 (29)

R′

V0≫E =

⏐⏐⏐⏐ (P2
− 1) cosφ

P2 + 1 + 2sP cosφ

⏐⏐⏐⏐2 (30)
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TV0≫E =

⏐⏐⏐⏐ (P + 1)(1 − seiφ)
P2 + 1 + 2sP cosφ

⏐⏐⏐⏐2 (31)

T ′

V0≫E =

⏐⏐⏐⏐ (P − 1)(1 + seiφ)
P2 + 1 + 2sP cosφ

⏐⏐⏐⏐2 (32)

The non-null transmission of fermions through very high potentials was the original version of the
Klein tunneling for free relativistic fermions, proposed in 1929 by Klein [1].

4. Barrier potential

Now we study the scattering of fermions on a barrier potential of spatial length L. The results
and methods shown in the following paragraphs are equivalent to those found by De Leo and Rotelli
in Refs. [20,21]. However, we introduce useful notation, generalization for antiparticle states via the
parameters s and s′, and further analysis which we believe will contribute to the literature of the
field.

The potential has the following form

V (x) =

⎧⎨⎩
0, if x < 0 (Region I)
V0, if 0 ≤ x ≤ L (Region II)
0, if L < x (Region III).

(33)

As in the step potential, we consider helicity-polarized fermions incoming from region I, with
positive helicity without loss of generality, and helicity inversion is permitted in the transmitted
and reflected fermions.

In region I, the wave function is a superposition of the incident wave and the reflected ones with
conserved and inverted helicity, such that it is given by Eq. (16). In region II, the wave function is
superposition of the transmitted waves at x = 0, and the reflected ones at x = L

ψII(x) =

⎡⎢⎣a

⎛⎜⎝ 1
s′eiθ
Q

s′Qeiθ

⎞⎟⎠+ a′

⎛⎜⎝−s′e−iθ

1
s′Q iθ

−Q

⎞⎟⎠
⎤⎥⎦ eixq1

+

⎡⎢⎣b

⎛⎜⎝ 1
−s′e−iθ

Q
−s′Qe−iθ

⎞⎟⎠+ b′

⎛⎜⎝ s′eiθ
1

−s′Qe−iθ

−Q

⎞⎟⎠
⎤⎥⎦ e−ixq1 . (34)

Where a (a′) is the transmission amplitude at x = 0 for positive (negative) helicity states, and b (b′)
is the reflection amplitude at x = L for positive (negative) helicity states.

Finally, the wave function in region III is the superposition of waves with both helicity states

ψIII(x) =

⎡⎢⎣t

⎛⎜⎝ 1
seiφ
P

sPeiφ

⎞⎟⎠+ t ′

⎛⎜⎝−se−iφ

1
sPe−iφ

−P

⎞⎟⎠
⎤⎥⎦ eixp1 . (35)

The transmission and reflection amplitudes are found by solving the linear system of equations
resulting from the continuity conditions ψI(x = 0) = ψII(x = 0), and ψII(x = L) = ψIII(x = L).
Defining α = spL cosφ and β = s′qL cos θ , the following equations are obtained

U

(1
r
r ′

)
= M1

⎛⎜⎝a
a′

b
b′

⎞⎟⎠ (36)

M2

⎛⎜⎝a
a′

b
b′

⎞⎟⎠ = V
(
t
t ′

)
(37)
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with

U =

⎛⎜⎝ 1 1 seiφ

seiφ −se−iφ 1
P P −sPeiφ

sPeiφ −sPe−iφ
−P

⎞⎟⎠ , (38)

M1 =

⎛⎜⎝ 1 −s′e−iθ 1 s′eiθ

s′eiθ 1 −s′e−iθ 1
Q s′Qe−iθ Q −s′Qeiθ

s′Qeiθ −Q −s′Qe−iθ
−Q

⎞⎟⎠ , (39)

M2 = M1

⎛⎜⎝eiβ 0 0 0
0 eiβ 0 0
0 0 e−iβ 0
0 0 0 e−iβ

⎞⎟⎠ , (40)

V = eiα

⎛⎜⎝ 1 −se−iφ

seiφ 1
P sPe−iφ

sPeiφ −P

⎞⎟⎠ . (41)

The Appendix shows briefly how to solve them. The resulting transmission and reflection ampli-
tudes are

r =
−eiφ sinβ [(P2

+ Q 2) sinφ − 2ss′PQ sin θ ]
f

, (42)

r ′
=

is sinβ cosφ(P2
− Q 2)

f
, (43)

t =
2ss′PQ e−iα cosφ cos θ

f
, (44)

t ′ = 0, (45)

with

f = (P2
+ Q 2)i sinβ − ss′PQ [eiβ cos(θ − φ) + e−iβ cos(θ + φ)]. (46)

In the barrier potential, the squared norm of the probability amplitudes does yield the correct
reflection and transmission coefficients, as can be proven by applying the definitions in Eqs. (24) and
(25) to the corresponding wave functions of this problem. Therefore, the reflection and transmission
coefficients yield

R =
sin2 β |(P2

+ Q 2) sinφ − 2ss′PQ sin θ |2

|f |2
(47)

R′
=

sin2 β cos2 φ|P2
− Q 2

|
2

|f |2
, (48)

T =
4 cos2 φ cos2 θ |PQ |

2

|f |2
, (49)

T ′
= 0. (50)

Few remarks must be mentioned in regard to this result. First, the transmission coefficient for
helicity inverted fermions is always zero, regardless of the incidence angle of the incoming fermions
or other parameters, as was obtained by De Leo and Rotelli in [20,21]. This can be contrasted with
the result for the step potential, where it was observed that when V0 > E, the transmission is
dominated by states with inverted helicity. It is expected that the transmission of helicity inverted
states exist inside the barrier, however, the consequence outside it is the suppression of such states.
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Fig. 4. Behavior of R, R′ , and T as a function of the incidence angle, for several values of E, V0 , L and m. (a) Massless
case m = 0, with values of V0 and L normalized with respect to the energy E. In this case, the reflection probability for
helicity inverted states, R′ , is always zero, and total transmission is expected at normal incidence (φ = 0). Our results
correspond to the reported by Katsnelson et al. in Ref. [7] for pristine graphene, using the natural units h̄ = v = 1, being
v the Fermi velocity. The remaining figures represent the massive case, with E, V0 and L being normalized with respect
to m. (b) Similar situation as before but with massive fermions, in the sense that V0/E and LE have the same values as
in Fig. 4(a). Now, the reflection probability R′ is non-zero, and T is suppressed at normal incidence. For comparison, T

for m = 0 is plotted. (c) The system is initially in the diffusion zone, as the condition V0 < E −

√
m2 + p22 is met. The

transition to the evanescent zone is evident by the suppression of T at some values of φ. (d) The system is initially in

the Klein zone V0 > E +

√
m2 + p22 and again, the transition the evanescent zone is observed by the suppression of T .

Second, by considering Eqs. (24) and (25), along with Eq. (22), the probability conservation condition
R + R′

+ T = 1 holds true by definition.
Another consequence is that, as a result of the sinβ dependence in the reflection coefficients,

total transmission is present when β = nπ (with n an integer number). For this reason, the barrier
is transparent when the condition

s′qL cos θ = nπ (51)

holds [20,21]. Therefore, for a fixed value of L there can be several θ values, and accordingly, φ values
for which total transmission is expected, reaching a resonance condition. This can be observed in
Fig. 4(a), (b) and (d), where T , R and R′ as a function of φ are represented in the different energy
zones.
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The behavior of the transmission and reflection coefficients is shown in Fig. 4(a)–(d). In Fig. 4(a)
we study the case m = 0, because of the interest in reproducing the case of graphene and other
materials with Dirac-like quasiparticles. In Ref. [7], the transmission through an L = 100 nm wide
barrier in a graphene system is considered, such that the parameters of charge carrier density
outside (inside) the barrier are n1 = 0.5 × 1012 cm−2 (n2 = −1 × 1012 cm−2). By knowing
that the energy and potential of the quasiparticles is calculated as E = sign(n1)

√
π h̄2v2F |n1|, and

V0 = E − sign(n2)
√
π h̄2v2F |n2|, with vF = c/300 the Fermi velocity, the energy and potential are

E = 82.44 meV and V0 = 199 meV. Translating this into dimensionless quantities normalized
with respect to the energy, we obtain V0/E ≈ 2.4, and a dimensionless length parameter of
value EL/(h̄vF ) ≈ 12.5, being those the values used for the plot in Fig. 4(a). It is observed that
our transmission coefficient matches the one obtained for graphene in Ref. [7], and that perfect
transmission is expected for normal incidence. Most importantly, it is observed that the reflection
coefficient for inverted helicity states is always zero, meaning that the reflection and transmission
process conserves the helicity of the massless fermions, even at arbitrary incidence angles.

Fig. 4(b) shows a similar situation as Fig. 4(a), but in the case of massive fermions. Here, the
energy–mass ratio is E/m = 2, and the other parameters are V0/m = 4.8 and Lm = 6.25, such
that V0/E and LE have the same values as in the massless case considered before. In the figure,
graphene’s massless case is represented by TKatsnelson, with V0/E = 2.4 and EL = 12.5. The most
important conclusion is that the mass term implies a non-zero reflection coefficient for states with
inverted helicity, specially at normal incidence where the reflection probability is entirely made
out of it. It can be concluded that the mass term breaks the helicity conservation in the system,
allowing the reflection of states with inverted helicity and limiting the transmission probability at
normal incidence.

The analysis of the diffusion, evanescent and Klein energy zones applies to the potential barrier
as well, because the momentum q1 inside the barrier is still given by q1 =

√
(E − V0)2 − m2 − p22.

Fig. 4(a) and (b) represent the Klein energy zone, specially, the case where V0 > 2E where no
transition to the evanescent zone is present.

Fig. 4(c) and (d) represent the diffusion and Klein zones, respectively. Since V0 < 2E, a transition
to the evanescent zone possible, as it is evident when noting zero transmission from some incidence
angles. The critical angle analysis also applies for this system, however, it is noticed that T does not
abruptly go to zero. Angles of total transmission also occur in those energy zones, and in a similar
way as in the step potential, the reflection is dominated by inverted helicity states at small incidence
angles, and by conserved helicity states at large ones.

Finally, we examine the behavior of the reflection and transmission coefficients in the massless
case. In this limit we have that P = s and Q = s′, thus Eqs. (47)–(49) change to

R =
4 sin2 β |sinφ − sin θ |2

|2i sinβ − [eiβ cos(θ − φ) + e−iβ cos(θ + φ)]|2
, (52)

R′
= 0, (53)

T =
4 cos2 φ cos2 θ

|2i sinβ − [eiβ cos(θ − φ) + e−iβ cos(θ + φ)]|2
. (54)

The reflection coefficient in Eq. (52) is equal to the one found by Katsnelson et al. for pristine
graphene in Ref. [7], when using the natural units h̄ = vF = 1. In that reference, the appearance
of the band indices s and s′ in the corresponding formula for the probability amplitude r (and in
consequence, the reflection coefficient R) is explicit, while in ours it is not. This discrepancy is
explained by the fact that the authors do not consider negative angles in their formulas, while in
ours their sign depends on s and s′, and with this consideration both results are equivalent in all
scenarios. Fig. 4(a) shows the perfect agreement between them.

To end our discussion, we analyze the behavior of T as a function of V0/E and m, for fixed values
of L and φ. In Fig. 5(a) we show the normal incidence case, considering LE = 12.5 as in the previous
examples, while the remaining quantities are normalized with respect to the energy. It is observed
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Fig. 5. Behavior of T for the barrier potential, for fixed LE and φ, as a function of m/E and V0/E. As in Fig. 3, high
to low transmission is plotted in yellow to blue colors, with dark blue representing zero transmission. (a) Transmission
coefficient for conserved helicity states T at normal incidence, φ = 0. At fixed m/E, it is observed the presence of regions
with high and low transmission, consistent with the resonance condition in Eq. (51). (b) Transmission coefficient T at
φ = 20◦ . Absence of transmission around V0/E = 1 corresponds to the transition of the system to the evanescent zone.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

that for fixed medium to high mass values, there is an oscillatory behavior of T , corresponding to
the transmission resonance condition in Eq. (51). We have included negative values of the potential,
which represent an electrostatic attractive potential for positive charged fermions, i.e. a potential
well. Qualitatively, it can be seen that the behavior for negative V0 is somewhat similar compared
to a positive one, but overall there is higher transmission in the former case. In Fig. 5(b) the same
situation is shown but for φ = 20◦, and as in the step potential, the region of zero transmission
around V0/E = 1 explained by the fact that the system is in the evanescent energy zone.

5. Conclusions

In this paper, we have presented the transmission and reflection coefficients for helicity conser-
vation and inversion states, in step and barrier potentials, considering helicity-polarized incoming
fermions. For the step potential, we have found that states with conserved helicity dominate the
transmission if V0 < E, however, as V0 grows larger than E, the states with inverted helicity
become dominant by roughly two orders of magnitude in most cases. We have also shown that
at normal incidence, the reflection coefficient for conserved helicity is zero, even in the general
case of massive fermions. This means that for low incidence angles, the reflection is dominated by
states with inverted helicity. We have also discussed that this fact is important in graphene, because
the reflection coefficient for helicity inversion is always zero, implying helicity conservation and
total transmission at normal incidence. As a consequence, we have observed that the mass term
breaks the helicity conservation, limiting the transmission in the system by allowing the reflection
of inverted helicity states.

Additionally, by studying the behavior of the reflection and transmission in all the energy zones,
we have found conditions for total reflection in step and barrier potentials. We have shown that if
0 < V0 < 2E, there exists an incidence angle from which total reflection is expected, marking the
system’s transition from the Klein or diffusion zone to the evanescent zone. The case E −m ≤ V0 ≤

E + m is most interesting, because total reflection happens independent of the angle of incidence.
This fact can be used in the design of a filter in p-n junctures in graphene and Weyl semimetals,
which can serve to collimate charge carriers in the device. In a different study, we have found that



16 J. Navarro-Giraldo and C. Quimbay / Annals of Physics 412 (2020) 168022

this is linked to a conductance gap in p-n and n-p-n junctures of gapped graphene, and other solid
state systems with massive Dirac-like charge carriers [27].

In the barrier potential, we have found that the transmission coefficient for helicity inversion
states is always zero even in the case V0 > E, in accordance to Refs. [20,21]. This implies that the
helicity inversion process gets confined within the barrier, and the effect outside it is a total helicity
conservation in the transmitted fermions, even if this is not the case for the reflected ones. Again,
in the m = 0 limit the reflection coefficient for helicity inverted states is zero, and there is total
transmission for normal incidence.

As was mentioned, the mass term breaks the helicity conservation, limiting the transmission
in the system. This fact has important consequences in n-p-n junctures of graphene and Dirac
materials, because Klein tunneling is an undesirable effect in a graphene-based transistor, since
it implies that the device cannot be turned off, a fundamental feature of field effect transistors.
In Ref. [27], we have applied the results obtained in this work to the study of the conductance in
single-layer graphene and gapped single-layer graphene, where the charge carriers gain an effective
mass. This has allowed us to describe the transport properties of such systems, finding that the
effective mass opens up a conductance gap which depends quadratically on the bandgap [27].
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Appendix. Reflection and transmission amplitudes in the barrier potential

To solve the linear system of equations in Eqs. (36) and (37) and obtain the reflection and
transmission amplitudes, the idea is to find a relation between the amplitudes r and r ′ with t and
t ′, linked through the amplitudes a, a′, b, and b′. From Eq. (37) it follows that

M2M−1
1 M1

⎛⎜⎝a
a′

b
b′

⎞⎟⎠ = V
(
t
t ′

)
,

M2M−1
1 U

(1
r
r ′

)
= V

(
t
t ′

)
. (A.1)

Where the last equality is obtained from Eq. (36). It is straightforward to prove that M−1
1 is

M−1
1 =

1
4Q cos θ

⎛⎜⎜⎜⎝
Qe−iθ s′Q e−iθ s′

−s′Q Qeiθ s′ −eiθ

Qeiθ −s′Q eiθ −s′

s′Q Qe−iθ
−s′ −e−iθ

⎞⎟⎟⎟⎠ . (A.2)

Multiplying this matrix by M2 on the left, it follows that

M2M−1
1 =

⎛⎜⎜⎜⎝
G 0 0 H

Q

0 F H
Q 0

0 QH G 0
QH 0 0 F

⎞⎟⎟⎟⎠ , (A.3)

where it has been defined

F =
eiβeiθ + e−iβe−iθ

2 cos θ
, (A.4)
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G =
eiβe−iθ

+ e−iβeiθ

2 cos θ
, (A.5)

H =
is′ sinβ
cos θ

. (A.6)

Multiplying M2M−1
1 with U on the left, Eq. (A.1) changes to⎛⎜⎜⎜⎝

G +
sP
Q Heiφ G − s P

Q He−iφ sGeiφ +
P
Q H

sFeiφ +
P
Q H −sFe−iφ

+
P
Q H F − s P

Q Heiφ

sQHeiφ + GP −sQHe−iφ
+ PG QH − sPGeiφ

QH + sFPeiφ QH − sPFe−iφ sQHeiφ − PF

⎞⎟⎟⎟⎠
(1
r
r ′

)

= eiα

⎛⎜⎝ 1 −se−iφ

seiφ 1
P sPe−iφ

sPeiφ −P

⎞⎟⎠( t
t ′

)
. (A.7)

Finally, multiplying the first two rows of Eq. (A.7) by Q , and reorganizing the terms, we arrive at
the following system of equations,⎛⎜⎝ QG − sPHe−iφ sQGeiφ − PH −Qeiα sQe−iφeiα

−sQFe−iφ
+ PH QF − sPHeiφ −sQeiφeiα −Qeiα

−sQHe−iφ
+ PG QH − sPGeiφ −Peiα −sPe−iφeiα

QH − sPFe−iφ sQHeiφ − PF −sPeiφeiα Peiα

⎞⎟⎠
⎛⎜⎝ r
r ′

t
t ′

⎞⎟⎠

=

⎛⎜⎝−QG − sPHeiφ

−sQFeiφ − PH
−sQHeiφ − PG
−QH − sPFeiφ

⎞⎟⎠ . (A.8)

From which the reflection and transmission amplitudes in Eqs. (42)–(45) are obtained.
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