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a b s t r a c t

We compare the thermal escape rates of a Brownian particle, ini-
tially trapped into one of the two wells of an asymmetric double-
well potential, for thermal Markovian and non-Markovian noise.
The Markovian treatment of this problem goes originally back to
the studies of Kramers in 1940 and is therefore often referred
to as ‘‘Kramers’ escape rate problem’’. We solve the generalized
Langevin equation for the trajectories of the particles numerically
and analytically for both limiting cases, Markovian and non-
Markovian thermal noise. We compute the escape rate and work
out the fundamental differences arising from finite correlation
times of the thermal noise.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Since the seminal development of the theory of Brownian motion by Einstein [1] and Langevin’s
formulation in terms of a stochastic process [2,3] this framework has found applications in a very
broad range of fields of physics, chemistry, engineering, and finance mathematics [4]. Of particular
interest are also semi-classical descriptions of the dynamics of open quantum systems [5–7] and
non-equilibrium relativistic quantum field theory with applications in (inflationary) cosmology and
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the early universe like thermalization, decoherence and structure formation (see e.g. Ref. [8] and
references within) and with applications in the description of the hot and dense strongly interacting
matter as created in ultrarelativistic heavy-ion collisions like the Markovian and non-Markovian
dynamics of disoriented chiral condensates, heavy quarks, the chiral phase transition, and baryon
diffusion [8–22].

The general concept of a Brownian particle initially trapped in a metastable state and being able
to escape from it via thermally activated fluctuations can describe a large variety of phenomena
from different fields of science as for example the transport of electrons in semiconductors,
the diffusion of impurities bound in a harmonic lattice, biophysical transport problems like the
migration of ligands in biomolecules, and chemical reactions [23–25]. After an empirical analysis
of various reaction-rate data in the late 19th century Svante Arrhenius concluded that the rate of
escape out of the metastable state obeys the following law:

k = ν exp
[
−

Eb
kBT

]
, (1)

where ν is some prefactor, which will be specified later in the course of this work, Eb is the energy
the Brownian particle must attain to escape, kB is the Boltzmann constant, and T denotes the
temperature. In the literature this general result for the rate of escape from a metastable state
is referred to as Van’t Hoff–Arrhenius law [26–28]. It should be noted here that in this work the
temperature remains constant during the evolution of the system as the thermal bath, the Brownian
particle is exposed to, is assumed to be in thermodynamic equilibrium. Subsequently, investigators
tried to determine the actual form of the prefactor ν in Eq. (1) using different approaches. One
of them was Hendrik Antonie Kramers in 1940 in his work on a diffusion model of chemical
reactions [29].

This work, based on B.S.’s Master’s thesis [30], is precisely focused on this diffusion model dealing
with the thermally activated rate of escape of a Brownian particle initially trapped in a potential
well. Kramers’ classical model, characterized by a Markovian thermal noise, will be extended to
the case of non-Markovian thermal noise terms. Thereby, the main objectives will be computing
Kramers’ escape rate for Markovian and non-Markovian noise numerically as a function of the
damping rate β and working out the differences between these two cases. Furthermore, an attempt
will be made to explain the occurring differences.

To this end, the generalized Langevin equation (GLE), Eq. (40), is solved for an asymmetric
double-well potential using a Markovian and three non-Markovian thermal noise variants.

This work is organized as follows. In Section 2 the algorithm for the generation of non-Markovian
noise used for the numerical simulations in this work is presented.

Section 3 is devoted to Kramers’ diffusion model. Besides the classical model, also extensions to
it will be introduced, before analytical results for the escape rate of the Markovian and one of the
non-Markovian thermal noise variants are reviewed.

Thereafter, Section 4 addresses the detailed numerical simulations and the comparison of
numerical with analytical results. After presenting the actual numerical setup, Kramers’ escape rate
as a function of the damping rate is presented for different correlation functions and correlation
times.

Finally, in Section 5 the results of this work are summarized. These results and methods are
applicable in various physical surroundings, however, motivated by high energy nuclear and particle
physics natural units are used, h̄ = c = kB = 1 and fmGeV = 0.197−1.

2. Generating colored noise

This section is devoted to the method for the generation of stationary Gaussian colored noise
the numerical simulations of this work are based on. The method was developed in Ref. [14] and
recently employed in Ref. [31], where a detailed instruction for the numerical implementation of
this method is indicated as well.

It is worth mentioning that the two terms white and colored noise, which will be frequently used
in the further course of this work, correspond to Markovian and non-Markovian noise, respectively.
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That terminology originates from considerations concerning the spectral density of the correlation
function of the stationary Gaussian noise. While the spectral density is constant for a δ-correlated
Markovian noise, it is dependent on the frequency for non-Markovian noise [32].

Before the actual method is presented, several preliminary considerations are needed. The
starting point is a very general expression for a centered, stochastic process ξ (t) which consists
of n random pulses in a time interval [0, T ′

] [33]:

ξ (t) =

n∑
i=1

aib(t − ti), t ∈ [0, T ′
], (2)

where ⟨ξ (t)⟩ = 0 ⇔ ⟨ai⟩ = 0. While n, ai, and ti denote random variables, b(t) designates an
arbitrary pulse shape. The number of pulses in the time interval [0, T ′

] is supposed to be Poisson-
distributed with mean n̄ = µT ′, whereby µ identifies with the mean rate of pulses in [0, T ′

].
Furthermore, ai is the random height of the ith pulse, and ti the random instant of time for the
occurrence of a pulse.

The next step is to find an expression for white noise. Since white noise is δ-correlated, a
reasonable choice for the pulse shape b(t) of white noise is [31]

b(t) =

√
D

µσ 2 δ(t), (3)

where D is an arbitrary positive real number whose meaning will later be specified in a physical
context, and σ 2 denotes the variance of the pulse height ai. With this pulse shape for white noise
the corresponding centered stochastic process ξw(t), where the subscript stands for white, reads

ξw(t) =
√
Dξ̄w(t), (4)

where

ξ̄w(t) =

n∑
i=1

ai
σ
√

µ
δ(t − ti)

=

n∑
i=1

āi
√

µ
δ(t − ti), āi :=

ai
σ

.

(5)

In the limit of a large rate of pulses µ (µ → ∞) and a small variance σ 2 of the distribution function
p(a) of the pulse height (σ 2

→ 0), the δ-correlated white stochastic process becomes Gaussian [14].
It should be noted that by use of the central limit theorem the distribution function for ai is optional
and by definition of the white noise (4) the prefactor D of the pulse shape b(t) (3) is identified with
the strength of the fluctuative force from the classical Langevin equation (LE) (see Ref. [32]).

A centered Gaussian process is uniquely determined by its first two moments:

⟨ξ (t)⟩ = 0, (6)⟨
ξ (t)ξ (t ′)

⟩
= µσ 2

∫ T ′

0
b(t − s)b(t ′ − s)ds := C(t, t ′). (7)

For the following considerations the correlation function C(t, t ′) of the Gaussian process needs to be
stationary, meaning the correlation function shall not be dependent on the times t and t ′ separately
but on the time difference |t − t ′|, i.e. C(t, t ′) = C(|t − t ′|) [31]. This can be attained by demanding
a symmetric correlation function [31]. In what follows the purpose is to determine the pulse shape
b(t) of a stationary Gaussian process, given a stationary correlation function. By use of the Wiener–
Khinchin theorem, stating that the spectral density Sξ (ω) of a stationary process is obtained by the
Fourier transform of its correlation function C(t, t ′) [32], one arrives at

Sξ (ω) = F[C] = µσ 2
|b̃(ω)|

2
. (8)
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Without loss of generality, b̃(ω) is set to be real and positive (b̃(ω) ≥ 0, ∀ω ∈ R). In this way Eq.
(8) can be simply solved for b̃(ω). Subsequent back-transform of b̃(ω) leads to

b̃(ω) =
1

σ
√

µ

√
Sξ (ω), (9)

⇒ b(t) = F−1
[
b̃(ω)

]
(t) =

1
σ
√

µ
G(t), G(t) = F−1

[√
Sξ (ω)

]
(t). (10)

From this, the general expression for a stationary Gaussian process (see Eq. (2)) is readily trans-
formed into the following form, using the definition (4) of a Gaussian white noise and relation (10)
for b(t)

ξ (t) =

n∑
i=1

aib(t − ti)

=

n∑
i=1

∫
∞

−∞

aib(t − t ′)δ(t ′ − ti)dt ′ =

∫
∞

−∞

b(t − t ′)
n∑

i=1

aiδ(t ′ − ti)dt ′

=

∫
∞

−∞

b(t − t ′)σ
√

µξ̄w(t ′)dt ′ =

∫
∞

−∞

G(t − t ′)ξ̄w(t ′)dt ′.

(11)

Hence, the method for generating stationary Gaussian colored noise, described in this section, is
primarily based on the determination of the underlying pulse shape b(t) of a stationary correlation
function C(|t − t ′|) and the subsequent convolution of this pulse shape b(t) with a sequence of
δ-correlated Gaussian white noise ξw(t).

In the course of this work various correlation functions are investigated which are listed below
together with their corresponding Fourier transforms,

C1(|t|) := ⟨ξ (t)ξ (0)⟩ =
D
2τ

exp
[
−

|t|
τ

]
, (12)

C2(|t|) := ⟨ξ (t)ξ (0)⟩ =
D

a
√

π
exp

[
−

(
|t|
a

)2
]

, (13)

C3(|t|) := ⟨ξ (t)ξ (0)⟩ =
g
4
kBTα2

(
1 −

α
√
m

|t|
)
exp

[
−

α
√
m

|t|
]

, (14)

and

F[C1] : =
D

1 + τ 2ω2 , (15)

F[C2] : = D exp−
α2ω2

4 , (16)

F[C3] : =
gkBTα3ω2

√
m
(
ω2 +

α2

m

)2 , (17)

where α is given by relation (C.3), g is a dimensionless coupling constant (see Appendix C), and the
following convention for the Fourier transform has been employed

Γ (t) =
1
2π

∫
∞

−∞

e−iωt Γ̃ (ω)dω, (18)

Γ̃ (ω) =

∫
∞

−∞

eiωtΓ (t)dt. (19)

For these correlation functions evidence of the validity of the indicated method is given in Fig. 1.
Herein, the correlation of the colored noise ⟨ξ (t)ξ (0)⟩, obtained by numerically averaging an
ensemble of particle trajectories , is compared to the appropriate analytical expression of the
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Fig. 1. Comparison of the numerical correlations ⟨ξ (t)ξ (0)⟩ for C1 , C2 , and C3 (red, blue, and green line), averaged over
8 · 105 runs, with the appropriate analytical expressions (12)–(14) (red long dashed line, blue dashed/dotted line, green
small dashed line), where m = 1.11GeV, T = 1GeV, D = 20GeV3 for correlation functions C1(t) and C2(t), and g = 20
for correlation function C3(t). The time is given in units of GeV−1 and can be converted to fm by means of relation
fmGeV = 0.197−1 . (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

correlation function. The first two correlation functions, C1 and C2, do have an immediate intuitive
interpretation, the first being an exponential decay and the second being a Gaussian distribution.
The interpretation of the third correlation function C3 is not as trivial. Obviously, C3 becomes slightly
negative in the past time, and the Fourier transform of C3 vanishes for ω → 0. Such a dissipative
kernel is rather typical in a quantum field theoretical setting in a self-interacting theory like a scalar
Φ4-theory (see e.g. Ref. [14]). Some peculiarities of this particular correlation function C3 are given
in Appendix C where for a free Brownian motion no full thermalization is observed.

3. Kramers’ escape rate problem

3.1. Classical model

In 1940 Kramers established a model for chemical reactions in his paper on ‘‘Brownian motion
in a field of force and the diffusion model of chemical reactions’’ (see Ref. [29]). Herein, Kramers
describes a chemical reaction by two metastable states divided by an intermediate state. The transi-
tion from one to the other state shall be thermally activated. This situation is then approximated by
a classical Brownian particle of mass m inside a one-dimensional, asymmetric double-well potential
[28,29] (see Fig. 2). The two metastable states, corresponding in this model to the two wells of the
asymmetric double-well potential, constitute the reactant and product state located at xa and xc ,
respectively. The intermediate state, represented by the maximum of the barrier between these
two wells at x = xb, is designated as transition state [28]. The position coordinate x of the particle,
describing the course of a chemical reaction, is fittingly referred to as reaction coordinate [28].
Furthermore, the Brownian particle moving in the potential V (x) is thought to be surrounded
by a thermal environment in form of a heat bath at temperature T . This heat bath, constituting
a stochastic force ξ (t) and a friction force Fr = −γ v, has to be understood as a consequence
of the residual degrees of freedom of the system [28]. The appropriate LE, describing the above
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Fig. 2. Asymmetric double-well potential V (x) of Kramers’ classical escape rate problem, consisting of the A-well with
frequency ωa located around xa and the C-well with frequency ωc located around xc . Both wells are separated by a barrier
around xb with barrier height Eb and frequency ωb .
Source: Original figure from Ref. [28].

characterized dynamics of the Brownian particle, is given by the classical LE complemented by the
external potential field V (x),

ẋ = v,

v̇ = −
1
m

dV (x)
dx

− βv +
ξ

m
, ⟨ξ (t)⟩ = 0, ⟨ξ (t)ξ (0)⟩ = Dδ(t),

(20)

where ξ (t) denotes a centered, δ-correlated and Gaussian-distributed noise, and β = γ /m. The
strength D of the stochastic force ξ (t) and β in Eq. (20) are linked by the fluctuation–dissipation
relation,

β =
γ

m
=

D
2kBTm

, (21)

which states that both frictional and stochastic force originate from the same source.
Dealing with an ergodic system, Kramers considers an ensemble of particles, meaning an entirety

of many similar particles, all evolving independently from each other [29]. Each of these particles
is supposed to be initially trapped in the potential well near the reactant state xa. Induced by many
subsequent, thermally activated collisions with the solvent molecules, constituting the thermal
environment, the Brownian particle will potentially, yet rarely, be able to surmount the potential
barrier at some point.

Kramers’ escape rate problem is then to determine the probability for this Brownian particles to
overcome the barrier whereby the barrier height Eb is supposed to be large compared to the energy
Eth = kBT supplied by the thermal bath [29]:

kBT ≪ Eb. (22)

In this way, the Brownian particle will thermalize before escaping from the initial well. Condition
(22), furthermore, leads to a clear-cut separation of time scales for τa := 2πω−1

a and the escape time
τe ≈ τa exp

[
Eb
kBT

]
≫ τa, which always needs to hold when dealing with rate problems [28]. Since

under this condition the escape from the initial well is very slow, Kramers assumes the diffusion
process to be quasi-stationary [29] which will be important for later calculations (see Section 3.3).

Thus, the quasi-stationary current from the initial well over the barrier is given by the probability
rate for the Brownian particles to leave the well, kA→C , multiplied with the number of particles, na,
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Fig. 3. Position as a function of time for several Brownian particles and Markovian noise, Eq. (132), moving in the
potential V(x), Eq. (130), where Eb = 2.5GeV, ωb = 5GeV, m = 1.11GeV, T = 1GeV, β = 0.03375GeV in the (very)
weak- (left figure) or β = 9GeV in the strong-friction regime (right figure), and xa denotes the initial position of the
Brownian particle, respectively. The above-mentioned potential V(x) is depicted in Fig. 6, where the barrier top is located
at xb = 1.6xa .

being located in this well [29]:

jb = kA→Cna. (23)

The coupling strength of the considered Brownian particles, the thermal bath, and potential other
degrees of freedom are completely determined by the friction coefficient β [28]. Depending on its
actual value Kramers differentiates between two regimes, the weak- and strong-friction regime [29].
While the weak-friction regime is governed by an almost frictionless oscillation of the respective
Brownian particle in the bottom of the well, the high-friction regime is determined by the spatial
diffusive dynamics of the Brownian particle around the barrier top [28,29].

To visualize the processes connected to the different limiting regimes, Fig. 3 shows typical
trajectories of several Brownian particles, one for weak and three for strong friction, being subjected
to an asymmetric double-well potential (see Figs. 2 and 6). Note that not only the shape of the
curves but also the time scale of escape, i.e. the time that elapses until a Brownian particle crosses
the barrier located at xb, is significantly different for both limiting regimes.

In the weak-friction regime a particle oscillating in the A-well loses almost no energy due to
friction loss during the time of an oscillation [29]. The energy loss ∆E in this limiting regime can
be expressed in terms of the action I [28],

∆E = βI(E), (24)

where I(E) defines the action at energy E given by

I(E) =

∮
pdx. (25)

Using relation (24) the weak-friction regime occurs whenever the energy loss during an oscillation
is much smaller than the thermal energy provided by the heat bath [28], i.e.

βI(E) ≪ kBT . (26)

A particle eventually reaching the barrier top by successive accumulation of small amounts of
energy will relax towards the C-well. Hence, in this limiting regime the rate of escape is controlled
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by energy diffusion [28], described by the following diffusion equation [28,29]:

∂P(E, t)
∂t

= β
∂

∂E
I(E)

[
1 + kBT

∂

∂E

]
ω(E)
2π

P(E, t). (27)

This diffusion equation can be derived by performing a canonical transformation from position and
momentum coordinates to action and angle coordinates, (x, p) → (I, φ), and subsequently averaging
over the angle φ to obtain the diffusion equation for the probability density of the action, starting
from the Klein–Kramers equation [28,29],

∂P(I, t)
∂t

= β
∂

∂ I
I
[
1 +

2πkBT
ω(I)

∂

∂ I

]
P(I, t). (28)

Thereby, energy and action are related through the angular frequency ω(I) by [28]
∂E
∂ I

=
ω(I)
2π

. (29)

Using relation (29) differential Eq. (28) is readily transferred into the appropriate differential
equation for the energy, Eq. (27). The corresponding steady-state escape rate kA→C is then given
by [28]

kA→C = β
I(Eb)
kBT

ωa

2π
exp

[
−

Eb
kBT

]
, β → 0,

kBT
Eb

≪ 1, βI(Eb) ≪ kBT . (30)

Gradually increasing the damping rate β finally leads to a point where condition (26) is no longer
valid. This limit, which is characterized by the fact that the energy loss ∆E during the time of an
oscillation is greater than the thermal energy, i.e.

βI(E) > kBT , (31)

is referred to as intermediate-to-strong-friction regime [28]. Here, the rate-determining mechanism
is the dynamics around the top of the barrier and the escape becomes controlled by spatial diffusion,
described by the Klein-Kramers equation [32],

∂P(x, v, t)
∂t

=

[
−v

∂

∂x
−

∂

∂v

(
−

γ

m
v −

V ′(x)
m

)
+

D
2m2

∂2

∂v2

]
P(x, v, t), (32)

which is a special Fokker–Planck equation (FPE). Hereby, it should be emphasized that a particle
crossing the top of the barrier xb will not necessarily be trapped into the neighboring well. Instead,
it can recross the barrier again and will, therefore, reduce the escape rate.

The steady-state escape rate in the intermediate-to-strong-friction regime, which will be explic-
itly derived in Section 3.3, is given by [28]:

kA→C =
λM

ωb

ωa

2π
exp

[
−

Eb
kBT

]
, βI(Eb) > kBT , (33)

where

λM =

√
β2

4
+ ω2

b −
β

2
, (34)

and the subscript M denotes the classical Markovian case. The expression (34) for the quantity λM
will be motivated later (see Section 3.3). For large damping rates β , that is β ≫ ωb, Eq. (33) can be
expanded with respect to x :=

ωb
β

around x ≈ 0, yielding

kA→C =
ωb

β

ωa

2π
exp

[
−

Eb
kBT

]
, β → ∞. (35)

Altogether, it is to be stated that concerning β there are two limiting regimes, the weak- and the
strong-friction regime, whereby the escape rate kA→C is proportional to β in the weak- and inversely
proportional to β in the strong-friction regime.
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Fig. 4. Classical-rate phase diagram for the two dimensionless parameters kBT
Eb

and β

ωb
. The red area denotes the region

of weak and the blue area represents the region of intermediate-to-strong friction.
Source: Original figure from [28].

The range of validity of formulas (30), (33) and (35) can be combined into one single diagram,
the classical-rate phase diagram, depicting the different regimes as a function of the dimensionless
parameters kBT

Eb
and β

ωb
[28] (see Fig. 4). The separating region, also often referred to as turnover

region, of weak- and intermediate-to-strong-friction regime can be pointed out by considering
condition (31). While the intermediate-to-strong formula (33) is certainly valid for (31), for the
limiting case of kBT = βI(Eb) ≈ β

Eb
ωa

or equivalently for kBT
Eb

=
β

ωa
, neither (30) nor (33) and (35)

are applicable.
Furthermore, given these two formulas it is not difficult to see that both tend to zero in the

limits of β going to zero or β going to infinity, respectively. From this, Kramers concluded that
the steady-state escape rate must possess a maximum between these two limiting regimes [28,29].
The appearance of the escape rate as a function of β would therefore exhibit a bell-shaped form
as depicted in Fig. 5. Ever since Kramers published his paper, researchers in this area tried to
find a way to join together the two limiting regimes within one single formula which yields the
above-described bell-shaped form [34–37]. A very simple and intuitive approach to give a bridging
formula, only using the already known formulas, Eqs. (30) and (33), reads [28]:

kA→C =
(
k−1(low damping) + k−1(moderate-to-strong damping)

)−1
, ∀β ∈ R+

0 . (36)

Before turning to the extensions of the classical model, special attention has to be given to a
term common to Eqs. (30), (33) and (35) for the escape rate in the different limiting regimes. This
expression, given by

kTST =
ωa

2π
exp

[
−

Eb
kBT

]
, (37)

where the subscript, TST, stands for transition-state theory, denotes the escape rate for the TST. The
TST-rate is very similar to Kramers’ escape rate. The substantial difference between these two rates
is, however, that TST assumes that a trajectory overcoming the potential barrier will never return
to the initial well [28]. Hence, the TST-rate has to be always an upper bound to Kramers’ escape
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Fig. 5. Schematic representation of the bell-shaped curvature of the steady-state escape rate kA→C , normalized to the
transition-state rate kTST (see Eq. (37)), as a function of the dimensionless parameter β

ωb
. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article.)
Source: Original figure from Ref. [28].

rate [28]. This implies that kTST is an adequate scale to normalize the steady-state escape rate kA→C
(see Fig. 5),

kA→C = κkTST, κ ≤ 1. (38)

3.2. Extensions of the classical model

Ever since Kramers published his work a great variety of extensions were carried out for his
classical model. Among other things Kramers’ classical one-dimensional treatment was extended to
a multidimensional system for both limiting regimes of the damping rate β [38,39]. Furthermore,
corrections of the escape rate in the spatial-diffusion regime arising from anharmonicities of the
potential [40–42], the influence of a non-Gaussian white noise [43–45], and quantum effects like
quantum tunneling [46,47] were investigated [23].

All these extensions are of Markovian nature, meaning that there is a clear-cut separation
between the angular frequency ωa in the initial potential well and the correlation time τcorr [23],
related to the thermal bath, of the form,

τcorr ≪
2π
ωa

. (39)

If there exists such a clear separation between the relevant time scales, the classical Markovian
LE, Eq. (20), is appropriate to describe the time-evolution of a Brownian particle being subjected
to an external potential V (x). However, this might not be the case for various applications [23].
Whenever τcorr is of the order of 2πω−1

a or even larger, the classical escape rates kA→C for weak
and strong friction β (see Eqs. (30), (33), (35)) derived by Kramers are no longer applicable. In this
case a non-Markovian treatment of Kramers’ escape rate problem is required [23]. In contrast to
the classical model (see previous subsection) the Brownian motion in the asymmetric double-well
potential (see Fig. 2) is described by the GLE [48], complemented by the external potential field
V (x),

ẋ = v,

v̇ = −
1
m

dV (x)
dx

−
1
m

∫ t

0
Γ (t − t ′)v(t ′)dt ′ +

ξ

m
, ⟨ξ (t)⟩ = 0,

(40)
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whereby it should be recalled that the centered noise ξ (t) and the dissipation kernel Γ (t) are related
by the second fluctuation–dissipation theorem

Γ (|t|) =
1

kBT
⟨ξ (0)ξ (t)⟩ . (41)

As a note, Eq. (20) results from Eq. (40) if Γ (t − t ′) = 2γ δ(t − t ′).
Again, there are two limiting regimes as a function of the damping rate β , the weak- and the

strong-friction regime. As in the classical treatment the weak-friction regime is governed by energy
diffusion – or equivalently action diffusion – described by [49]

∂P(I, t)
∂t

=
∂

∂ I

{
2πϵ(I)

[
2πkBT

∂

∂ I
+ ω(I)

]
P(I, t)

}
, (42)

where ω(I) is specified by the potential V (x) and ϵ(I) is defined as [34,50].

ϵ(I) =
1

ω2(I)

∫
∞

0
Γ (t) ⟨v(0)v(t)⟩ dt. (43)

Hereby, v(t) is to be obtained by solving (40) without dissipation kernel Γ (t) and noise ξ (t) [34]
for constant energy E(I) and ⟨v(0)v(t)⟩ corresponds to the average over the initial phase φ0, where
as in Section 3.1 relation (29) applies.

From the diffusion equation for the action, Eq. (42), the mean first passage time τMFP(I0, I) to
reach a final action I , starting from an initial action I0 can be derived ([49] and references therein),

τMFP(I0, I) =
1

kBT

∫ I

I0

⎧⎨⎩exp
[
E(x)
kBT

]
ϵ(x)

∫ x

0
exp

[
−

E(y)
kBT

]
dy

⎫⎬⎭ dx. (44)

The steady-state escape rate kA→C in the weak-friction regime is then obtained by averaging the
mean first passage time τMFP(I, Ib) with regard to the steady-state distribution PSS(I) inside the initial
well [49]

kA→C =

[∫ IB

0
PSS(I)τMFP(I, Ib)dI

]−1

. (45)

Supposing the well is deep enough, it can be assumed that PSS(I) is Boltzmann distributed. Inserting
the Boltzmann distribution together with Eq. (44) in Eq. (45) a very compact approximate formula
for the steady-state escape rate kA→C in the weak-friction regime is obtained [49]:

kA→C =
ωaϵ(Ib)ω(Ib)

kBT
exp

[
−

Eb
kBT

]
, (46)

where ϵ(Ib) is to be computed via Eq. (43).
In the intermediate-to-strong-friction regime the corresponding diffusion equation is referred

to as generalized Fokker–Planck equation (GFPE) and given by Eq. (87), which will be discussed in
detail in Section 3.3. The associated escape rate kA→C is [23]

kA→C =
λNM

ωb

ωa

2π
exp

[
−

Eb
kBT

]
, (47)

where λNM is defined as

λNM =

√
β̄2

4
+ ω̄2 −

β̄

2
(48)

and the subscript NM represents the non-Markovian case. The meaning of β̄ and ω̄ and the relation
(48) will be specified in Section 3.3. This result for the steady-state escape rate kA→C in case of
a non-Markovian treatment of Kramers’ classical escape rate problem is formally identical to the
appropriate result for the classical model (see Eq. (33)). One only needs to exchange λM with λNM
or the bare damping β and frequency ωb with their non-Markovian analogues β̄ and ω̄ [23]. For
correlation function C1, Eq. (12), the computation of λNM is indicated in Appendix B.
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3.3. Derivation of Kramers’ escape rate in the spatial-diffusion regime (intermediate-to-strong friction)

In this subsection the appropriate quasi-steady-state escape rate kA→C from the reactant well A
to the product well C (see Fig. 2) in the intermediate-to-strong-friction regime, also referred to as
spatial-diffusion regime, will be explicitly derived, following what was done in Ref. [28,29] in the
Markovian case and Ref. [23] in the non-Markovian case.

For the following considerations it is possible to handle the quasi-steady-state rate as a real
steady-state rate without influencing the underlying physics, provided that the condition Eb ≫ kBT
holds [34]. To that end, the initial A-well is provided with a source, feeding it with particles at
energies much smaller than the barrier height Eb and the B-well with a sink, removing particles
that traversed the barrier [28,34].

Before starting with the actual derivation, it should be emphasized that the steady-state escape
rate in the spatial-diffusion regime is essentially characterized by the dynamics around the top of
the barrier at xb [23]. In both cases the main task will be to determine the stationary probability
density ρ(x, v), obeying various boundary conditions – which will be specified later – for the
stationary current j. For a given probability density ρ(x, v) it is then easy to compute the population
na of the Brownian particles in the initial A-Well, given by

na =

∫ xb

−∞

ρ(x, v)dxdv (49)

and the current jb with respect to the barrier top at x = xb, obtained by

jb =

∫
∞

−∞

vρ(xb, v)dv. (50)

Inserting the appropriate solutions of (49) and (50) into Eq. (23) the steady-state escape rate kA→C
from the A- to the C-well is readily calculated.

MarkovIan case The Markovian Brownian motion in an external potential field V (x) is de-
scribed by the LE, Eq. (20). This equation can be transformed into its corresponding FPE, Eq. (32).
As already mentioned above, the essential dynamics of the spatial-diffusion regime is restricted to
the vicinity of the barrier top. Expanding the potential V (x) around xb, i.e.

V (x) ≈ V (xb) −
1
2
mω2

b(x − xb)2, x ≈ xb, (51)

the corresponding FPE reads[
−v

∂

∂x
−

∂

∂v

(
−

γ

m
v + ω2

b(x − xb)
)

+
D

2m2

∂2

∂v2

]
ρ(x, v) = 0, x ≈ xb, (52)

where the in general dynamic probability density P(x, v, t) is replaced by the stationary probability
density ρ(x, v) in search of a stationary escape rate.

To determine a general solution ρ(x, v) for Eq. (52) Kramers then used the ansatz [28,29]

ρ(x, v) =
1
Z

Ξ (x, v) exp

[
−

1
2mv2

+ V (x)
kBT

]
. (53)

Following what Kramers did, two limiting cases for ρ(x, v), leading to several boundary conditions
for Ξ (x, v), have to be considered. Inside the well in a small area around the bottom located at
xa (see Fig. 2) the particles are assumed to be thermalized. This is a reasonable requirement given
that Eb ≫ kBT . Hence, the probability density around x ≈ xa is well approximated by a Boltzmann
distribution,

ρ(x, v) =
1
Z
exp

[
−

1
2mv2

+ V (x)
kBT

]
, x ≈ xa. (54)

Comparing both expressions, Eqs. (53) and (54), the first boundary condition for Ξ (x, v) is identified
as

Ξ (x, v) ≈ 1, x ≈ xa. (55)
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Furthermore, the probability density ρ(x, v) is supposed to vanish beyond the barrier at x = xb, i.e.

ρ(x, v) ≈ 0, x > xb, (56)

since the particles are removed by a sink leading to

Ξ (x, v) ≈ 0, x > xb. (57)

For Ξ (x, v) to obey these two limits (Eqs. (55) and (57)) Kramers assumed it to be only dependent
on a linear combination of position and velocity [28,29], i.e.

Ξ (x, v) = Ξ (z), z = v − b(x − xb), (58)

where b denotes a yet undetermined constant. By inserting the general expression for the prob-
ability density ρ(x, v), Eq. (53), into the FPE of ρ(x, v) around xb, Eq. (52) the appropriate FPE for
Ξ (x, v) is obtained:[

−v
∂

∂x
−

( γ

m
v + ω2

b(x − xb)
) ∂

∂v
+

D
2m2

∂2

∂v2

]
Ξ (x, v) = 0. (59)

Using furthermore relation (58) the FPE for Ξ (x, v), Eq. (59), can be converted into the correspond-
ing FPE for Ξ (z),[((

b −
γ

m

)
v − ω2

b(x − xb)
) ∂

∂z
+

D
2m2

∂2

∂z2

]
Ξ (z) = 0, (60)

where the relations
∂Ξ

∂x
=

∂Ξ

∂z
∂z
∂x
=−b

= −b
∂Ξ

∂z
, (61)

∂Ξ

∂v
=

∂Ξ

∂z
∂z
∂v
=1

=
∂Ξ

∂z
, (62)

∂2Ξ

∂v2 =
∂

∂v

(
∂Ξ

∂v

)
=

∂

∂v

(
∂Ξ

∂z

)
=

∂

∂z

(
∂Ξ

∂v

)
=

∂

∂z

(
∂Ξ

∂z

)
=

∂2Ξ

∂z2
(63)

have been applied. To proceed further, by requiring that(
b −

γ

m

)
v − ω2

b(x − xb) = λz, (64)

Kramers transformed Eq. (59) into the ordinary differential equation[
λz

∂

∂z
+

D
2m2

∂2

∂z2

]
Ξ (z) = 0, ∀x ≈ xb, v. (65)

Eqs. (64) and (58) determine the two constants b and λ:(
b −

γ

m

)
v − ω2

b(x − xb) = λz = λ(v − b(x − xb)), (66)

⇒

(
b −

γ

m

)
v − ω2

b(x − xb) = λv − λb(x − xb). (67)

Therefore, by comparison of coefficients one finds

λ = b −
γ

m
, (68)

λb = ω2
b (69)

which leads to a quadratic relation for b by insertion of Eq. (68) into Eq. (69)

b2 −
γ

m
b − ω2

b = 0. (70)
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Calculating the roots results in

b± =
β

2
±

√(
β

2

)2

+ ω2
b, (71)

where β =
γ

m . Replacing then b by b± in Eq. (68) λ± is obtained by

λ± = −
β

2
±

√(
β

2

)2

+ ω2
b . (72)

Now that λ± are well defined, the next objective is to solve the ordinary differential equation, Eq.
(65), for Ξ (z). Using the ansatz

ζ =
∂Ξ

∂z
, (73)

differential equation (65) can be transformed into

∂ζ

∂z
= −

λz
A

ζ , (74)

where A =
D

2m2 . By integration of Eq. (74) the solution for ζ is given by

ζ = ζ0 exp
[
−

λz2

2A

]
. (75)

To obtain Ξ another integration has to be performed

Ξ (z) = ζ0

∫ z

−∞

exp
[
−

λs2

2A

]
ds. (76)

Due to boundary conditions (55) and (57) the integration of Eq. (76) over all z has to be equal to
one which therefore determines the integration constant to be

ζ0 =

√
λ+

2πA
, (77)

where λ in Eq. (76) is identified with the positive root λ+ for the integral to be convergent [28].
Finally, Ξ is given in the following form:

Ξ (z) =

√
λ+

2πA

∫ z

−∞

exp
[
−

λ+s2

2A

]
ds. (78)

The next objective will be to determine the population of the A-well na and the current jb over the
barrier top to subsequently derive Kramers’ result for the spatial-diffusion regime. Insertion of the
result for Ξ , Eq. (78), in Kramers’ ansatz for the probability density ρ(x, v) (53) and expanding the
potential V (x) around xa, i.e.

V (x) ≈ V (xa) +
1
2
mω2

a (x − xa)2, x ≈ xa, (79)

na is readily obtained calculating (49) using Eqs. (54) and (79):

na =

∫
∞

−∞

ρ(x, v)dxdv, x ≈ xa

≈
1
Z
kBT
m

2π
ωa

exp
[
−

V (xa)
kBT

]
.

(80)
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Computation of the integral (50), using the expansion of the potential V (x) around xb evaluated at
xb, Eq. (51), and Eq. (53), yields

jb =

∫
∞

−∞

vρ(xb, v)dv

=
1
Z

√
m′

π
exp

[
−

V (xb)
kBT

] √
π

2
√
m′

∫
∞

−∞

v exp
[
−kv2] dv  

=0

+
1
Z

√
m′

π
exp

[
−

V (xb)
kBT

] √
π

2
√
m′

∫
∞

−∞

v exp
[
−kv2] erf(v√

m′)dv  
=

√

m′

k
√

k+m′

=
1
Z
exp

[
−

V (xb)
kBT

] √
m′

2k
√
k + m′

,

(81)

where to the third equality sign k =
m

2kBT
and m′

=
λ+

2A have been substituted. Resubstitution of
A =

D
2m2 - making use of relation Eq. (21) -, k, and m′ in (81) yields

jb =
1
Z
kBT
m

λ+

ωb
exp

[
−

V (xb)
kBT

]
. (82)

Finally, Kramers’ result for the steady-state escape rate kA→C , indicated in Section 3.1, is obtained
by means of Eq. (23), using Eqs. (80) and (82) and defining λ+ := λM:

kA→C =
λM

ωb

ωa

2π
exp

[
−

Eb
kBT

]
, (83)

where Eb = V (xb) − V (xa).
Non-Markovian case In case of colored noise the non-Markovian Brownian motion around the

barrier in an asymmetric double-well potential V (x) can be described by the GLE (40), introducing
the new notation y = x − xb:

ẏ = ẋ = v,

v̇ = ω2
by −

1
m

∫ t

0
Γ (t − t ′)v(t ′)dt ′ +

ξ (t)
m

,
(84)

where V (x) is expanded around xb yielding

V (y) = V (xb) −
1
2
mω2

by
2, (85)

and ξ (t) is a centered stationary Gaussian process

⟨ξ (t)⟩ = 0, (86)

obeying the second fluctuation–dissipation theorem (see Eq. (41)). The corresponding GFPE around
x ≈ xb for the probability density P(x, v, t) of the system, described by (84), is given by [23,51]

∂P(x, v, t)
∂t

=

[
−v

∂

∂y
−

∂

∂v

(
−β̄(t)v + ω̄2

b(t)y
)
+ β̄(t)

kBT
m

∂2

∂v2

]
P(x, v, t)

+
kBT
mω2

b

(
ω̄2

b(t) − ω2
b

) ∂2P(x, v, t)
∂v∂y

(87)

with

β̄(t) = −
ȧ(t)
a(t)

, (88)
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ω̄2
b(t) = −

b(t)
a(t)

, (89)

where

a(t) = χy(t)χ̇v(t) − χ̇y(t)χv(t), (90)

b(t) = χ̇y(t)χ̈v(t) − χ̈y(t)χ̇v(t), (91)

and

χy(t) = 1 + ω2
b

∫ t

0
χv(τ )dτ . (92)

In the latter equation χv(t) is given by the inverse Laplace transform (LT)

χv(t) = L−1

[
1

s2 − ω2
b +

Γ̃
m s

]
, (93)

where Γ̃ (s) is the LT of the dissipation kernel Γ (t). For a detailed derivation reference is made to
Ref. [51]. Nonetheless, a brief motivation and explanation of distinct terms of the above GFPE shall
be given next. Comparing the classical FPE and the GFPE (Eqs. (32) and (87)) several similarities
are remarkable. Except for an additional diffusive term the GFPE corresponds to the classical FPE,
where the damping rate β and the frequency ωb are replaced by a time dependent damping rate
β̄(t) and a time dependent frequency ω̄b(t). Furthermore, both functions depend on the frequency
ωb and the dissipation kernel Γ (t) [51]. In the Markovian limit, where Γ (t) = 2γ δ(t), β̄(t) = β ,
and ω̄b(t) = ωb, the classical FPE is obtained.

The next step is to show where relation (92) is derived from. Given the GLE (84) and performing
its Laplace transform one obtains (using Eqs. (A.7), (A.8), (A.9))

sỸ − y0 = Ṽ , (94)

sṼ − v0 = ω2
b Ỹ −

Γ̃

m
Ṽ +

Ξ̃

m
, (95)

where capital letters with tilde denote the Laplace transforms of the corresponding quantities.
Inserting the first relation, Eq. (94), into the second one, Eq. (95), and subsequently solving the
resulting expression for Ỹ yields

s
(
sỸ − y0

)
− v0 = ω2

b Ỹ −
Γ̃

m

(
sỸ − y0

)
+

Ξ̃

m
, (96)

⇒ Ỹ =

y0
(
s +

Γ̃
m

)
+ v0 +

Ξ̃
m

s2 − ω2
b +

Γ̃
m s

. (97)

The inverse Laplace transform of Eq. (97) then leads to [51]

y(t) = y0χy(t) + v0χv(t) +
1
m

∫ t

0
χv(t − t ′)ξ (t ′)dt ′, (98)

where χy(t) and χv(t) are defined by

χy(t) = L−1

⎡⎣
(
s +

Γ̃
m

)
s2 − ω2

b +
Γ̃
m s

⎤⎦ =
⟨y(t)y0⟩⟨

y20
⟩ , (99)

χv(t) = L−1

[
1

s2 − ω2
b +

Γ̃
m s

]
=

⟨y(t)v0⟩⟨
v2
0

⟩ =
m
kBT

⟨y(t)v0⟩ . (100)

By an analogous procedure the solution for v(t) can be determined [51]

v(t) = y0χ̇y(t) + v0χ̇v(t) +
1
m

∫ t

0
χ̇v(t − t ′)ξ (t ′)dt ′, (101)
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where χ̇y(t) is given by

χ̇y(t) = ω2
bL

−1

[
1

s2 − ω2
b +

Γ̃
m s

]
(102)

and χ̇v(t) is defined as

χ̇v(t) = L−1

[
s

s2 − ω2
b +

Γ̃
m s

]
. (103)

Comparing Eqs. (100) and (102) the above connection between χy(t) and χv(t) (see Eq. (92)) is
obtained,

χ̇y(t) = ω2
bχv(t) ⇒ χy(t) = 1 + ω2

b

∫ t

0
χv(τ )dτ , (104)

where the relation χy(0) = 1 has been employed, which follows from Eq. (99).
Turning now again to the actual task of this section, namely the derivation of the steady-state

escape rate, the first objective will be to determine the stationary probability density ρ(x, v). As in
the original derivation Kramers’ ansatz

ρ(x, v) =
1
Z

Ξ (x, v) exp

[
−

mv2

2 + V (x)
kBT

]
(105)

is used, where the same boundary conditions apply (see Eqs. (55) and (57)). Inserting Eq. (105) into
the GFPE (87), the corresponding GFPE for Ξ is obtained,

v
∂Ξ

∂y
+ ω̄2

by
∂Ξ

∂v
=

kBT
m

β̄
∂2Ξ

∂v2 − β̄v
∂Ξ

∂v

+
kBT
mω2

b

(
ω̄2

b − ω2
b

) [mω2
by

kBT
∂Ξ

∂v
−

mv

kBT
∂Ξ

∂y
+

∂2Ξ

∂y∂v

]
,

(106)

whereby the time dependent functions β̄(t) and ω̄2
b(t) from Eq. (87) have been substituted by the

stationary quantities β̄ and ω̄2
b , defined by

β̄ = lim
t→∞

β̄(t), ω̄2
b = lim

t→∞
ω̄2

b(t). (107)

Again, Ξ (y, v) is demanded to depend on a linear combination of y and v,

Ξ (y, v) = Ξ (z), z = v − by, (108)

where b is again a yet undetermined constant. With
∂Ξ (z)

∂v
=

∂Ξ

∂z
∂z
∂v

=
∂Ξ

∂z
, (109)

∂Ξ (z)
∂y

=
∂Ξ

∂z
∂z
∂y

= −b
∂Ξ

∂z
, (110)

∂2Ξ (z)
∂v2 =

∂

∂v

(
∂Ξ

∂z

)
=

∂

∂z

(
∂Ξ (z)

∂v

)
=

∂

∂z

(
∂Ξ

∂z

)
=

∂2Ξ

∂z2
, (111)

∂2Ξ (z)
∂y∂v

=
∂

∂y

(
∂Ξ

∂z
∂z
∂v

)
=

∂

∂z

(
∂Ξ

∂y

)
=

∂

∂z

(
−b

∂Ξ

∂z

)
= −b

∂2Ξ

∂z2
(112)

the GFPE for Ξ (z) is given by(
−vb + ω̄2

by
) ∂Ξ

∂z
=

kBT
m

β̄
∂2Ξ (z)

∂z2
− β̄v

∂Ξ

∂z
+

kBT
mω2

b

(
ω̄2

b − ω2
b

) mω2
by

kBT
∂Ξ

∂z

+
kBT
m

c
[
mv

kBT
b
∂Ξ

∂z
− b

∂2Ξ

∂z2

]
,

(113)
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where c =
ω̄2
b−ω2

b
ω2
b

. Rearranging the terms provides

−
[
b(1 + c) − β̄

]
v
∂Ξ

∂z
+ ω2

by
∂Ξ

∂z
=

kBT
m

[
β̄ − cb

] ∂2Ξ

∂z2
. (114)

The next task will be to transform Eq. (114) into an ordinary differential equation by demanding[
b(1 + c) − β̄

]
v − ω2

by = λz = λ(v − by). (115)

By comparison of coefficients the two following relations are obtained:

b(1 + c) − β̄ = λ, (116)

ω2
b = bλ ⇒ λ =

ω2
b

b
. (117)

Inserting Eq. (116) into Eq. (117) results in a quadratic relation for b,

b(1 + c) − β̄ =
ω2

b

b
⇒ b =

ω2
b

b(1 + c) − β̄
. (118)

Computing the roots of the quadratic Eq. (118) using that

1 + c = 1 +
ω̄2

b − ω2
b

ω2
b

=
ω̄2

b

ω2
b
, (119)

results in

b± =
ω2

b

ω̄2
b

⎛⎝ β̄

2
±

√
β̄2

4
+ ω̄2

b

⎞⎠ (120)

or equivalently in

λ± = −
β̄

2
±

√
β̄2

4
+ ω̄2

b (121)

by inserting Eq. (120) into Eq. (117). Solving now the resulting ordinary differential equation, which
is formally identical to Eq. (74) in the Markovian case, using boundary conditions (55) and (57), Ξ (z)
is given by

Ξ (z) =

√
λ+

2πA

∫ z

−∞

exp
[
−

λ+s2

2A

]
ds, (122)

where

A =
kBT

(
β̄ − b+c

)
m

, (123)

and λ+ denotes the positive root of Eq. (118) which needs to be employed for the integral term to
be convergent. As soon as Ξ (z) and therefore ρ(z) is known, the population na in the A-well and
the stationary current over the potential barrier jb can be computed. Calculating the integral for na
in the non-Markovian case yields the same result as in the Markovian case (see Eq. (80)), since the
stationary probability density ρ(z) around xa is identical. In a region around the top of the barrier at
x = xb, however, the density ρ(z) is significantly different from its Markovian analog. Nonetheless
even for the computation of jb the results from the Markovian treatment can be used. Only the
quantity m′ needs to be replaced by n defined by

n =
m(b+(1 + c) − β̄)
2kBT (β̄ − b+c)

. (124)
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As in the Markovian case a temporary result is obtained by

jb =
1
Z
exp

[
−

V (xb)
kBT

] √
n

2k
√
k + n

. (125)

Reinserting relation (124) into the temporary result for jb, Eq. (125), yields

jb =
1
Z
kBT
m

λ+

ωb
exp

[
−

V (xb)
kBT

]
. (126)

Finally using Eq. (23) together with (80) and (126) the steady-state escape rate kA→C is given by

kA→C =
λNM

ωb

ωa

2π
exp

[
−

Eb
kBT

]
, (127)

where again Eb = V (xb) − V (xa) and λ+ was identified with λNM (see Eq. (48)). That is the desired
result for kA→C as indicated in Section 3.2.

Subsequently there are a number of comments to be made about the just derived escape rate
kA→C . It can be shown that the prefactor λNM of Eq. (127) corresponds to the largest positive root
of s2 − ω2

b +
Γ̃
m s [24,34], originating from the inverse Laplace transform χv(t) (see Eq. (100)). For

a derivation of this statement reference is made to Ref. [34]. The entire information about the
dissipation kernel Γ (t) is therefore completely contained in λNM. In Appendix B it is shown how to
derive λNM for correlation function C1, Eq. (12). For this correlation function the above expression,
s2 −ω2

b +
Γ̃
m s, becomes a cubic function of s. Thus, in order to compute λNM only the cubic roots are

needed.

4. Numerical studies

This section is devoted to the core of this work: Kramers’ escape rate problem, which was
presented in the previous two sections, will be numerically investigated for both white and
colored thermal noise. To that end, the colored noise is generated by means of the numerical
implementation of the algorithm, indicated in Section 2, which is given in the Appendix of Ref. [31]
and the GLE, Eq. (40), is solved using the explicit three-step Adams–Bashforth algorithm [52]:

y0 = a0, y1 = a1, y2 = a2, (128)

yi+1 = yi +
h
12

[23f (ti, yi) − 16f (ti−1, yi−1) + 5f (ti−2, yi−2)] , (129)

where i = 2, 3, . . . ,N − 1 and the local and global error are O(h4) and O(h3), respectively.
Furthermore, y stands representative for position and velocity in the GLE, f (t, y) corresponds to
its right-hand side, respectively, and h is the step-size. The three values y0, y1 and y2, where y0
corresponds to the initial conditions and y1 and y2 are to be evaluated using Euler’s method, are
required to apply the above indicated three-step Adams–Bashforth method.

In what follows, a first step will be to present the details of the numerical simulations regarding
the used potential V (x), correlation functions, initial conditions, and the algorithm which is em-
ployed to compute the escape rate . Afterwards, it will be illustratively shown that the numerical
simulations are able to fit the approximate analytic formulas properly to validate the numerical
algorithm. For that purpose, the numerical parameters have been adjusted in a region where the
approximate formulas are accurate.

Subsequently, Kramers’ steady-state escape rate as a function of the friction rate β will be
investigated for different correlation functions and compared to the appropriate analytic formulas.

4.1. Numerical setup

In contrast to Kramers’ classical model, for the numerical simulations a slightly idealized
potential will be used. This potential (see Fig. 6) is composed of two parabolic potentials of the
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Fig. 6. Potential V (x), Eq. (130), used for the following numerical simulations. Here m = 1.11GeV, T = 1GeV, ω = 5GeV,
Eb = 2.5GeV, xa = 1GeV−1 , and xb = 1.6xa .

same frequency ωa = ωb = ω, smoothly connected at some intermediate point xm,

V (x) =

{
mω2

a
2 (x − xa)2 for x < xm,

Eb −
mω2

b
2 (x − xb)2 for x > xm,

(130)

where xm is defined as

xm =
xb + xa

2
. (131)

This idealized potential is to be understood as an asymmetric double-well potential, whereby the
right potential well is supposed to be infinitely deep. In doing so, anharmonic corrections [40–42],
naturally arising from more realistic potentials, can be largely neglected.

As indicated before, the simulations are performed for white and colored noise, which are
connected to an appropriate correlation function, respectively (see Section 2). For the studies of
this work the usual correlation function for white noise will be used:

C0 := ⟨ξ (t)ξ (0)⟩ = Dδ(t). (132)

In addition to that, for colored noise, the three correlation functions C1, C2 and C3 (see Section 2)
are covered:

C1(|t|) =
D
2τ

exp
[
−

|t|
τ

]
, (133)

C2(|t|) =
D

a
√

π
exp

[
−

(
|t|
a

)2
]

, (134)

C3(|t|) =
g
4
kBTα2

(
1 −

α
√
m

|t|
)
exp

[
−

α
√
m

|t|
]

. (135)

By use of the algorithm, described in Section 2, a sequence of the respective colored noise can be
generated from the above given correlation functions.

4.2. Simulations

The starting situation of the simulations is as follows: In each simulation, computing the
evolution of a whole ensemble, consisting of a large number of about 106 realizations of the
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stochastic processes x(t) and v(t), respectively, the particles are initialized at the bottom of the
left well at x0 = xa with velocity v0 = 0. The remaining relevant parameters are given as follows:

Eb = 2.5GeV, ωb = 5GeV, m = 1.11GeV, T = 1GeV, τcorr = {0.2, 0.4, 1}GeV−1, (136)

where different correlation times τcorr are employed for the non-Markovian correlation functions,
Eqs. (133), (134) and (135), as also effects of growing correlation times shall be investigated in the
following sections. The choice of magnitude of τcorr is justified due to condition (39), according to
which a non-Markovian description requires τcorr ≈ 1GeV−1 for the above parameters:

τcorr =
2π
ω

≈ 1GeV−1. (137)

Vividly speaking, expression (137) implies that there is the fifth part of an oscillation in about
0.2GeV−1 up to about one oscillation in 1 GeV−1. Hence, the three cases for τcorr are representative
for medium (τcorr = 0.2GeV−1 and τcorr = 0.4GeV−1) and strong (τcorr = 1GeV−1) non-Markovian
situations.

Concerning the parameters (136) the attentive reader will immediately notice that m ≈ T , which
implies relativistic velocities1 by virtue of the equipartition theorem. However, since the Brownian
particles used in these simulations are not ‘‘aware’’ of relativity - as they are governed by classical
Newtonian dynamics (see Eqs. (20) and (40))- the size of the velocity has no relevance. A relativistic
treatment of non-Markovian Brownian motion is left for future work; for the Markovian case, see
[16].

Given the solutions for x(t) and v(t) for every realization of the simulation the rate of particles
overcoming the potential barrier is readily obtained.

There are two possible ways to numerically determine the steady-state rate. Both include a
certain absorptive barrier xabs which coincides with the sink described in Section 3.3. This absorptive
barrier has to be chosen far away from the top of the potential barrier in the right potential well to
ensure that particles that have reached the absorptive barrier will never return to the initial well.
The two ways of numerical determination of the steady-state current now depend on what happens
after reaching this absorptive barrier.

The first method, usually referred to as flux-over-population method [28], is based on the re-
initialization of particles which have overcome the absorptive barrier. This leads to a nearly constant
population in the initial well. Thereby, it needs to be ensured that these re-initializations are not
taken into account as real backscattering which would affect the current over the barrier. The
steady-state escape rate is then obtained determining the current over the barrier located at xb.

The second method on the other hand gets along without any re-initialization. Here, the
current is calculated concerning the absorptive barrier. Numerically, the steady-state escape rate
is computed as follows [53]:

kA→C =
1

Ntot − Nabs

∆Nabs

∆t
, (138)

where Ntot denotes the total number of initialized particles, Nabs is the total number of particles
that have already reached the absorptive border, and ∆Nabs designates the number of particles being
absorbed in the course of the time interval ∆t . It turns out that both methods yield the same results.
The second method, however, seems to be numerically more stable as the first method requires
smaller time steps ∆t for the escape rate to be convergent. Hence, for the following numerical
discussion the second method will be used.

Fig. 7 indicates the typical outcomes of two non-Markovian simulations (correlation function
C1, Eq. (12)) for different correlation times, applying the second numerical method. Basically, the
escape rate as a function of time consists of three successive stages. After an initial phase of
a not quantifiable escape rate, during which the considered ensemble thermalizes, a transient

1 The numerical parameters have been adjusted such that the approximate analytical formulas become very accurate
to test and validate the numerical method. Though the situation should be treated relativistically from a physical point
of view, this does not invalidate the numerical test of the non-relativistic Langevin simulation.
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Fig. 7. Escape rate k as a function of time for correlation function C1 , Eq. (12), averaged over 8 · 106 realizations, where
m = 1.11GeV, β = 9GeV, Eb = 2.5GeV, T = 1GeV, and ω = 5GeV.

phase occurs. In this regime the escape rate begins to rise moderately until in the end it takes
a constant mean value, Kramers’ steady-state escape rate. In case of the non-Markovian noise and
large correlation times (i.e. τ ≫

2π
ω
) a special feature occurs in the transient phase. After an initial

rise, the current significantly decreases until it eventually starts to rise again and finally converges
to its mean value (see Fig. 7). This effective backscattering in the transient phase is an example for
the memory effects, arising from finite correlation times [31]. The mean value of Kramers’ escape
rate is evaluated by averaging over the quasi-stationary third stage. Dividing the evolution of rate
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Fig. 8. Steady-state escape rate k as a function of the barrier height Eb , where β = 9GeV, ωb = 5GeV, and T = 1GeV.
Red: Markovian simulations, Eq. (132) (triangles), and analytical solution, computed with Eq. (33) (dashed line). Blue:
Non-Markovian simulations for correlation function C1 , Eq. (12), with τ = 0.2GeV−1 (squares) and analytical solution,
computed with Eq. (47) with λNM given in Appendix B (dotted dashed line).

k into n bins of width ∆t and taking only into account the last m steps of the third stage, Kramers’
escape rate and the corresponding standard error are evaluated, using the following equations [53]:

kA→C =
1
m

n∑
i=n−m

kA→C (ti), (139)

σk =

√ 1
m(m − 1)

n∑
i=n−m

(kA→C (ti) − kA→C )
2. (140)

4.3. Parametrical dependencies

In order to show that the used code and the algorithm to generate colored noise, contained
therein, actually work properly, it is useful to numerically examine the occurring parametrical
dependencies related to the steady-state escape rate for the δ-correlated Markovian correlation
function C0 and the non-Markovian correlation function C1 and compare them to the approximate
analytical results.

For this purpose the further procedure will be the following: While one parameter is varied,
all remaining parameters will be kept constant to see if the isolated parameters obey the correct
scaling behavior. The parameters to be studied are the temperature T , the barrier height Eb, and the
frequency ωb. The dependence on the coupling constant β will be investigated separately later on.

Illustratively in what follows a comparison of numerical with analytical results, Eqs. (33) and
(47) with λNM given in Appendix B, for the above-named parameters will be presented to justify
the validity of the underlying numerical algorithm. It should be recalled that λNM from Eq. (47) is
to be identified with the largest positive root of s2 − ω2

b +
Γ̃
m s. As can be seen in Figs. 8–10 the

expected analytical behavior (see Eqs. (33) and (47)) could be recovered almost perfectly in each
case. Only for small barrier heights Eb compared to the temperature T a deviation from the analytical
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Fig. 9. Steady-state escape rate k as a function of the temperature T , where β = 9GeV, ωb = 5GeV, and Eb = 2.5GeV.
Red: Markovian simulations, Eq. (132) (triangles), and analytical solution, computed with Eq. (33) (dashed line). Blue:
Non-Markovian simulations for correlation function C1 , Eq. (12), with τ = 0.2GeV−1 (squares) and analytical solution,
computed with Eq. (47) with λNM given in Appendix B (dotted dashed line).

results is visible in Fig. 8. However, this deviation is expected as with decreasing barrier height Eb
and simultaneous constant temperature T the approximative analytic formulas, Eqs. (33) and (47)
start to lose their validity due to the violation of condition (22). Certainly, this deviation would also
eventually appear in Fig. 9 for higher temperatures T .

4.4. Steady-state rate as a function of the damping rate β

In the present section it will be investigated how Kramers’ escape rate behaves as a function
of the coupling strength or damping rate β for correlation functions C0, C1 and C2, Eqs. (132),
(12) and (13) (see also Ref. [34]), and as a function of the dimensionless coupling strength g in
case of correlation function C3, Eq. (14). Since in this context the coupling strengths β or g are
the only varying quantities, it is sufficient to restrict the investigation of the Kramers’ rate to the
coefficient κ of Eq. (38) as it is solely responsible for differences in the behavior of the escape rates
regarding different correlation functions. To that end, all rates will be normalized to the transition-
state rate kTST, which is always an upper border to Kramers’ escape rate kA→C as already mentioned
in Section 3.1 (see Fig. 5). Doing this in case of white noise, it turns out that κ is a function of
the dimensionless parameter β

ω
in the weak-friction and of ( β

ω
)−1 in the strong-friction regime (see

Fig. 5), which as already discussed in Section 3.1 also comes into play concerning the range of
validity of the different regimes (see Fig. 4). This will become important for the comparison of
numerical and analytical results.

The main objective will be to find out about the peculiarities of a non-Markovian compared to a
Markovian correlation function in case of correlation functions C1 and C2. Not only the differences
between distinct correlation functions but also the differences, relating to changes in the correlation
time will be of interest. Therefore, Kramers’ escape rate is computed for every correlation function
and varying correlation times τcorr (0.2GeV−1, 0.4GeV−1, and 1GeV−1) within a fixed area of
β-values, covering the small- and the strong-friction regime (see also Fig. 4).
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Fig. 10. Steady-state escape rate k as a function of the frequency ωb , where β = 9GeV, T = 1GeV, and Eb = 2.5GeV.
Red: Markovian simulations, Eq. (132) (triangles), and analytical solution, computed with Eq. (33) (dashed line). Blue:
Non-Markovian simulations for correlation function C1 , Eq. (12), with τ = 0.2GeV−1 (squares) and analytical solution,
computed with Eq. (47) with λNM given in Appendix B (dotted dashed line).

In what follows, one after the other the correlation functions C1 and C2 are compared to
the Markovian case, starting with correlation function C1. For correlation function C3, however,
a comparison with the Markovian case will be omitted since no strict Markovian limit exists
(see also Section 4.4.3).

It should be noted that when talking about weak and strong friction this is always meant
in relation to the friction value, corresponding to the maximal escape rate. This should not be
confused with the weak- and strong-friction regimes of Kramers’ escape rate problem as these
regimes do not only depend on the actual friction value but also on the validity of certain conditions
(see also Section 3.1).

4.4.1. Correlation function C1
First of all, it should be recognized that the steady-state escape rate as a function of the coupling

strength β follows the bell-shaped course, already estimated by Kramers [28,29], in both the
Markovian and non-Markovian case (see Fig. 11). In the limit of β → 0 or β → ∞ the normalized
escape rate κ tends to zero, while for some intermediate value of β there exists a maximum. After
having clarified these qualitative similarities between the Markovian and the non-Markovian case,
attention should now be directed to the quantitative differences.

For increasing correlation times the respective curves are shifted to the right and the values
of the maxima gradually decrease. However, this decrease of the maximal value only appears for
higher correlation times. The shift to the right, on the one hand, consequently leads to systematically
higher escape rates for strong friction in case of increasing correlation times (see Fig. 11). On
the other hand, this leads to an effective decrease of the escape rate for weak friction. Both the
increase and decrease of the escape rate for strong and weak coupling β , are consequences of an
effective reduction of the friction rate β for increasing correlation times. This effect is mentioned in
Ref. [54], where the influence of a non-Markovian correlation function on the diffusion over an
inverse parabolic potential is investigated. In this context an ensemble of Brownian particles is
initialized at x0 < 0 to the left of a potential barrier, symmetrically located around x = 0. On
that basis an expression for the overpassing probability over the barrier for fixed initial conditions,
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Fig. 11. Comparison of the normalized steady-state escape rate κ as a function of the dimensionless parameter β

ωb
for

correlation functions C0 and C1 (Eqs. (132) and (12)), where Eb = 2.5GeV, ωb = 5GeV, m = 1.11GeV, and T = 1GeV.
Analytical results are computed, using Eqs. (30) and (46) in the weak-friction, Eqs. (33) and (47), with λNM given in
Appendix B, in the strong-friction regime and Eq. (36) for the bridging between strong- and weak-friction regime.

x0 and v0, in the limit of λMt ≫ 1 or λNMt ≫ 1 is derived for correlation functions C0 and C1 (Eqs.
(132) and (12)), respectively [31,54]:

F (t; x0, v0) =
1
2
erfc

(
ω

√
βλM

[√
B
T

−
λM

ω

√
K
T

])
, (141)

F (t; x0, v0) =
1
2
erfc

(
ω

√
1 + λNMτ

√
βλNM

[√
B
T

−
λNM

ω

√
K
T

])
. (142)

Hereby, K denotes the initial kinetic energy of a Brownian particle, i.e. K =
1
2mv2

0 , B is the height of
the barrier the Brownian particle needs to overcome, starting from position x0, i.e. B =

1
2mω2x20,

ω is the barrier frequency, and λM and λNM designate the quantities, indicated in the context
of the Markovian and non-Markovian model of Kramers’ escape rate problem (see Eqs. (34) and
(48)), where λNM is derived in Appendix B. Given these stationary overpassing probabilities, it
is straightforward to compute an initial kinetic energy the Brownian particle must possess to
overcome the potential barrier with a probability of 50%, setting the expressions in parentheses
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Fig. 12. Effective barrier height Eb,eff (Eqs. (145) and (146)) normalized to the barrier height Eb as a function of the
coupling β for different correlation times τ .

to zero. For correlation function C0 this is

K := Beff =

(
ω

λM

)2

B, (143)

and for correlation function C1 the appropriate initial kinetic energy K is given by

K := Beff =

(
ω

λNM

)2

B. (144)

To relate the results of Ref. [54] to the simulations of this work, B needs to be replaced by the barrier
height Eb of the composite potential, Eq. (130), the Brownian particle has to overcome, starting at
the bottom of the initial well (see Fig. 6), i.e.

Beff ≈ Eb,eff =

(
ω

λM

)2

Eb, (145)

Beff ≈ Eb,eff =

(
ω

λNM

)2

Eb. (146)

Certainly, this is just an approximation but it does not change the qualitative implications:
Comparing the ratio Eb,eff

Eb
in the Markovian and non-Markovian limit as a function of the coupling

β it can be concluded that the effective barrier height Eb,eff systematically reduces for increasing
correlation times and fixed β (see Fig. 12). This reduction of the effective barrier height for fixed β

and increasing correlation times in turn is equivalent to an effective reduction of the friction. Hence,
it can be assumed that the average behavior of a considered ensemble in case of a non-Markovian
noise is basically the same as in case of a Markovian noise, but with a friction rate β being effectively
reduced (see Fig. 12).

At least for the low-friction regime this effective reduction of the friction rate β can be directly
seen from the approximate analytical formula computed with Eq. (46), which will be explained in
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Fig. 13. Comparison of the normalized steady-state escape rate κ as a function of the dimensionless parameter β

ωb
for

correlation functions C0 and C2 (Eqs. (132) and (13)), where Eb = 2.5GeV, ωb = 5GeV, m = 1.11GeV, and T = 1GeV.

detail in Section 4.5. Taking now the formulas for the weak- and the strong-friction regime in case
of Kramers’ classical escape rate problem (see Eqs. (30) and (35)) it is straightforward to understand
how increasing correlation times lead to smaller escape rates for weak friction and higher escape
rates for strong friction. Furthermore increasing correlation times are responsible for the shift of
the curves, since for higher correlation times higher values for β are required for the strong-friction
regime to be valid.

4.4.2. Correlation function C2
Again, the depicted curves for correlation function C2 (Eq. (13)) exhibit the expected bell-shaped

form (see Fig. 13). As for correlation function C1, the above-mentioned effects of increasing correla-
tion times compared to the Markovian case are observed, i.e. the shift to the right, the decrease of
the maximum, smaller escape rates for weak friction and higher escape rates for strong friction. In
contrast to correlation function C1 the shift is comparatively tiny for smaller correlation times (a =

0.2GeV−1 and a = 0.4GeV−1), leading to less deviation from the Markovian case (see Fig. 13). For a
large correlation time (a = 1GeV−1), however, the shift is even greater than for a large correlation
time (τ = 1GeV−1) in case of correlation function C1 (see Figs. 11 and 13). Even though, because of
a lack of analytical results for correlation function C2, no exact information exists about the behavior
of β with regard to increasing correlation times, it is reasonable to assume a similar behavior as for
correlation function C1. However, this effective reduction of the friction for increasing correlation
times seems to be much more significant for higher correlation times (see Fig. 13).

4.4.3. Correlation function C3
The numerical studies for correlation function C3, Eq. (14), need to be considered separately

from the previous ones. Unlike before, the steady-state escape rate is not examined as a function
of the coupling β but of the dimensionless coupling g (see Fig. 14). For this particular correlation
function (see Eq. (14)) no strict Markovian limit exists as the Fourier transform vanishes in the
limit of ω → 0 (see Eq. (17)). For that reason, only correlation function C3 is investigated here for
different correlation times. A number of the peculiarities of correlation function C3 is discussed in
Appendix C.
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Fig. 14. Normalized steady-state escape rate κ as a function of the dimensionless coupling g for correlation function C3
(Eq. (14)) and different values of correlation time η (Eq. (C.3)), where Eb = 2.5GeV, ωb = 5GeV, m = 1.11GeV, and
T = 1GeV.

Although in many respects very different from correlation function C1 and C2 (see Appendix C),
even for correlation function C3 the different curves obey the above-mentioned bell-shaped behav-
ior. Furthermore, as for correlation functions C1 and C2, a shift of the curves for increasing correlation
times can be observed, connected to the same implications as for the other correlation functions.
Different from before the value of the maximum seems to reduce very slowly, as even for high
correlation times the maximum only lies slightly below the maxima for smaller correlation times
(see Fig. 14). It is remarkable that for small correlation times the steady-state escape rate comes
very close to the TST-rate, much closer than in case of correlation functions C1 and C2. Taking
all results together, it is again reasonable to assume that increasing correlation times lead to an
effective reduction of the actual friction β .

4.5. Comparison of analytical with numerical results

After having clarified that the numerical algorithm used in this work is accurate (see Section 4.3),
the aim of this subsection is to discuss the accuracy of the approximate analytical solutions (see
Eqs. (30), (33), (35), (36), (46), and (47) with λNM given in Appendix B), compared to the numerical
results, presented above. In doing so, the limits of validity of the approximate analytic formulas are
demonstrated. It should be recalled here that in the weak-friction regime the Brownian particle is
subject to an almost frictionless, deterministic oscillatory movement inside the initial potential well
(see Figs. 3 and 6) which corresponds to a harmonic oscillator. Therefore, the action I at energy Eb,
a term common to the approximate analytic formulas in the weak-friction regime, Eqs. (30) and
(46), is given by:

I(Eb) =
2πEb

ω
. (147)

Starting first with the comparison in the intermediate-to-strong-friction regime (see Fig. 11), for
a small correlation time, τ = 0.2GeV−1, the Markovian and the non-Markovian simulations
(correlation functions C0 and C1; Eqs. (132) and (12)) show very good consistency with the analytical
results (Eqs. (33), (35), and (47) with λNM given in Appendix B). Deviations from the analytical
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Fig. 15. Steady-state escape rate k as a function of the barrier height Eb , where β = 18GeV, m = 1.11GeV, and T = 1GeV.
The analytical solution is generated using Eq. (47) with λNM given in Appendix B.

results are not greater than 2% and within the error bars. The obtained accuracy could be further
improved by use of smaller time steps ∆t . For increasing correlation times, τ = 0.4GeV−1 and
τ = 1GeV−1, however, the accuracy is steadily decreasing. While the deviation of the numerical
and analytical results is about 10% for τ = 0.4GeV−1, the discrepancy is even greater (about 30%)
for τ = 1GeV−1. This growing divergence for increasing correlation times is most likely due to fact
that Eq. (47) is not longer applicable. In fact, it can be shown that Eq. (47) becomes valid again for
larger barrier heights Eb. As an example, Fig. 15 demonstrates how the accuracy of the numerical
results for a fixed choice of parameters is improved by increasing the barrier height Eb. Beginning
with a deviation of about 10% for Eb = 2.5 GeV the discrepancy reduces gradually to less than 1%
for Eb = 8.5 GeV.

In the weak-friction regime the accuracy of the Markovian simulations compared to the analyt-
ical results, evaluated with Eq. (30), is worse than in the strong-friction regime. Here only the first
two points on the left side approximately match with the analytical result. The deviation of the first
point located to the outermost left is about 10%, the second point already deviates about 20%. This
higher deviation can be attributed to the fact that on the one hand the time step ∆t is too large
and on the other hand that the condition Eb ≫ kBT for Eq. (30) to be valid is not fulfilled properly.
Especially condition Eb ≫ kBT seems to have a stronger effect on the validity of Eq. (30) which
can be clarified by means of the classical-rate phase diagram (see Fig. 4). Apparently the range of
validity of Eq. (30) becomes smaller, the smaller the ratio kBT

Eb
. This explains the observation that

the analytical results only fit the numerical results for very small friction values.
In contrast to that, in the non-Markovian case the accordance between numerical and analytical

results (see Eq. (46)) improves for increasing correlation times (see Fig. 11). Growing correlation
times seem to enlarge the range of validity of Eq. (46) step by step, leading to a very good
consistency until close to the maximum of the rate. It should be noticed here that the approximate
analytical results (see Eq. (46)) were evaluated under the assumption that the initial well is an
ideal harmonic oscillator. This is a reasonable approximation for the potential field used for the
simulations (see Eq. (130)). In this case, computing ϵ(IB) (see Eq. (43)) and inserting it into Eq. (46)
results in

kA→C =
β

1 + τ 2ω2

I(Eb)
kBT

ωa

2π
exp

[
−

Eb
kBT

]
, (148)



B. Schüller, A. Meistrenko, H. van Hees et al. / Annals of Physics 412 (2020) 168045 31

where I(Eb) is again given by Eq. (147). This corresponds to the classical steady-state escape rate in
the weak-friction regime (Eq. (30)) but with the damping rate β being reduced by a factor of 1

1+τ2ω2 ,
which can be essentially identified with the Fourier transform of correlation function C1 (see Eq.
(15)). Basically, the effective damping in the weak-friction regime is obtained by substituting the
damping γ by Γ̃ (ω = ωa)/2 in the linear harmonic approximation as an effectively well-defined
Markovian description [11,13,14].

This in fact supports the statement, at least for correlation function C1 in the low-friction regime,
that the main difference between the Markovian and non-Markovian escape rate is the effective
reduction of the friction rate for increasing correlation times.

Summing up the results for the low- and the strong-friction regime, there obviously exist two
opposite effects on the validity of formulas (46) and (47) concerning increasing correlation times.
On the one hand rising correlation times lead to improving accordance between numerical and
analytical results in the weak-friction limit. On the other hand accordance becomes worse in the
intermediate-to-strong-friction regime. To obtain a comparably good consistency in both limiting
regimes either the barrier height Eb has to be increased (see also Fig. 15) or the temperature T has
to be decreased.

Finally, only the comparison of the bridging formula, Eq. (36) with the numerical results of
the Markovian simulations (i.e. using correlation function C0, see Eq. (132)) remains. First of all,
it should be mentioned that the simple ad hoc formula, Eq. (36), in fact yields the expected bell-
shaped curve. Furthermore good accordance in both limiting regimes can be seen as expected from
the construction of formula (36) (see Fig. 11). Even the points to the left of the maximum, which
were not fitted properly by the steady-state escape rate in the weak-friction limit, Eq. (30), are
approximately covered (see Fig. 11). The difference between analytical and numerical results here is
about 12%, which is the usual deviation between numerical and analytical results, obtained by other
researchers using different numerical approaches [28]. Moreover, the second point to the outermost
left is fitted more accurately by the bridging formula, Eq. (36), compared to the analytical equation
for the weak-friction escape rate, Eq. (30). While the discrepancy between numerical and analytical
results is about 20% for Eq. (30), the difference reduces to about 10% for Eq. (36). This in fact seems
to substantiate the above-mentioned assumption that Eq. (30) is not longer valid for the appropriate
damping rate.

5. Conclusions

In this work Kramers’ steady-state escape rate has been computed numerically as a function of
the damping rate β in the case of a Markovian noise C0, Eq. (132), and three non-Markovian noise
variants, C1, C2 and C3, cf. Eqs. (12)–(14), solving the appropriate Markovian or non-Markovian GLE,
Eq. (40), with the three-step Adams–Bashforth method, indicated in Section 4. Hereby the numerical
implementation [31] of the algorithm, depicted in Section 2, is used to generate the non-Markovian
noise, given a symmetric and exponentially decaying correlation function.

A first objective then has been to validate the numerical algorithm by adjusting the numerical
parameters such that the approximate analytic formulas for correlation functions C0 and C1, cf.
Eqs. (132) and (12) are accurate and comparing analytical with numerical results (see Section 4.3).
Furthermore the limits of validity of the approximative analytic formulas are discussed in Sec-
tion 4.5. Overall it appears that there is good consistency between numerical and analytical results.
Appearing deviations – in the weak-friction regime not larger than 10% and in the strong-friction
regime less than 2% – are the consequence of the invalidity of the approximative analytic formulas,
Eqs. (30), (33), (35), (46), and (47), where λNM is given in Appendix B, and not of the incorrectness of
numerical results. By suitable selection of the relevant parameters (barrier height Eb, temperature T ,
size of time steps ∆t) the accordance can be further increased at the expense of higher computation
times.

After having established that the numerical algorithm indeed works well, the main objective of
this work has been to identify the differences of Kramers’ steady-state escape rate for white and
colored noise for the different correlation functions and to provide a possible explanation for these
differences.
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It turns out that growing correlation times lead to a decrease of the steady-state escape rate
in the weak-friction regime and to an increase in the intermediate-to-strong-friction regime for
fixed values of the damping rate β for correlation functions C1 and C2, cf. Eqs. (12) and (13). In
the case of correlation function C1, for which analytical results exist, both effects are identified to
be the consequences of an effective reduction of the friction for increasing correlation times. Since
correlation function C2 qualitatively obeys the same behavior, it is reasonable to assume the same
explanation. However, this should be verified by an analytical treatment of correlation function
C2. Again, it should be emphasized that the temperature T is an external parameter which remains
constant during the evolution of the system since the thermal bath, the Brownian particle is exposed
to, is assumed to be in thermodynamic equilibrium. However, the numerical algorithm would also
apply to a background medium in local thermodynamic equilibrium for a spacetime-dependent
temperature.

Furthermore, special attention should be payed to correlation function C3, Eq. (14). Although
rather similar behavior of the steady-state escape rate as a function of the dimensionless coupling
g (not β for correlation function C3) for growing correlation times is obtained, correlation function
C3 obeys some special features, compared to correlations functions C1 and C2, which are discussed
in Appendix C. Next to a vanishing Fourier transform Γ̃ (ω) = 0 for ω = 0, solving the GLE for a
free Brownian particle, Eq. (40), where the potential term is neglected, with correlation function C3
yields different peculiarities: There is a non-vanishing retarded Green’s function Gret(t) for t → ∞,
the equipartition theorem becomes invalid and the equilibrium velocity distribution function seems
to obey a Boltzmann distribution but with a temperature being reduced by a certain factor (see
Appendix C). However, as is shown in Appendix C, the equipartition theorem becomes again valid
for a bound Brownian particle.

Altogether it can be stated that the numerical algorithm essentially based on the three-step
Adams–Bashforth method and the generation of a colored, non-Markovian thermal noise is perfectly
applicable to Kramers’ classical escape rate problem and can be, differently from the approximate
analytical formulas (30), (33), (35), (46), and (47), employed for arbitrarily shaped potentials and
correlation functions over the whole friction range – weak, strong and most importantly friction
values in between – without the need of any additional corrections, resulting for example from
anharmonicities of the potential [40–42] (see also Section 3.2).
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Appendix A. One-dimensional Laplace transform (LT)

Dealing with initial value problems the application of Laplace transforms is a very effective tool.
This section is devoted to the fundamental principles of the Laplace transform. Furthermore, several
useful Laplace transforms are indicated.

Definition. Given a mapping in the form of

f : [ 0, ∞) → C , t ↦→ f (t), (A.1)
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being at least piecewise continuous and of exponential order, where the latter means that regarding
to two constants M, α ∈ R the condition

|f (t)| ≤ Meαt (A.2)

holds [55]. Then the Laplace transform and its corresponding inverse are given by [55,56]:

L[f ](s) =

∫
∞

0
f (t) · e−st dt := F (s), s ∈ C, (A.3)

L−1
[F ](t) = lim

ω→∞

1
2π i

∫ s+iω

s−iω
F (s) · est ds =

{
0 t < 0
f (t) t ≥ 0.

(A.4)

The LT of function f exists for Re(s) > Re(α) due to condition (A.2)

Properties. In accordance with their definitions in Eqs. (A.3) and (A.4) the LT and its corresponding
inverse are linear transformations. Let there be two functions g(t) and f (t), for which both the
Laplace transforms and their corresponding back-transforms exist. Then for two arbitrary constants
a, b ∈ C the following relations hold:

L[a · f (t) + b · g(t)] = a · L[f ](s) + b · L[g](s), (A.5)

L−1
[a · F (s) + b · G(s)] = a · L−1

[F ](t) + b · L−1
[G](t). (A.6)

Useful transformations. Let there exist two Laplace transformable functions g(t) and f (t), then the
following applies:

1. Exponential function, a ∈ C (arbitrary)

L[eat ](s) =

∫
∞

0
e−(s−a)t dt =

1
s − a

, Re(s) > Re(a) (A.7)

2. Convolution

L
[∫ t

0
f (t − τ )g(τ ) dτ

]
(s) =

∫
∞

0

(∫ t

0
f (t − τ )g(τ ) dτ

)
e−st dt = F (s)G(s) (A.8)

3. Time derivative

L
[
d
dt

f (t)
]
(s) =

∫
∞

0

(
d
dt

f (t)
)
e−st dt = sF (s) − f0 (A.9)

Appendix B. λNM For correlation function C1

In this section the prefactor λNM of the escape rate in the spatial-diffusion regime (see Eq. (47))
will be derived for correlation function C1, Eq. (12). For this purpose the roots of the function

f (λ) = λ2
− ω2

b +
Γ̃ (λ)
m

λ (B.1)

have to be computed. Thereby, Γ is related to the correlation function C1 by the second fluctuation–
dissipation theorem (see Eq. (41)). Taking correlation function C1 (see Eq. (12)), Γ is readily obtained
as

Γ (|t|) =
D

2kBTτ
exp

[
−

|t|
τ

]
=

γ

τ
exp

[
−

|t|
τ

]
, (B.2)

where from the first to the second step the fluctuation–dissipation relation has been employed.
Performing the LT of Γ , using Eq. (A.7), one obtains

Γ̃ (λ) = L
[

γ

τ
exp

[
−

|t|
τ

]]
=

γ

τλ + 1
. (B.3)
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Subsequent insertion of Eq. (B.3) in function (B.1) leads to

f (λ) = λ2
− ω2

b +
βλ

τλ + 1
. (B.4)

To obtain λNM the next task will be to identify the roots of (B.4)

λ2
− ω2

b +
βλ

τλ + 1
= 0, (B.5)

using Cardano’s formula. To this end, the algorithm indicated in Ref. [57] is applied on the above
equation. First, however, Eq. (B.5) must be transformed into the form,

λ3
+ aλ2

+ bλ + c = 0, (B.6)

where

a =
1
τ

, (B.7)

b =
β

τ
− ω2

b, (B.8)

c = −
ω2

b

τ
. (B.9)

Dependent on the expression

D =

( q
2

)2
+

(p
3

)3
, (B.10)

where

p = b −
a2

3
(B.11)

and

q =
2a3

27
−

ab
3

+ c, (B.12)

there are three different cases for the solution of Eq. (B.5), supposing p ̸= 0 [57]:

1. D > 0: One real root and two complex conjugate roots,
2. D = 0: Three real roots (one double root),
3. D < 0: Three distinct real roots.

Subsequently, the solutions for the three different cases for D, using the above relations for a, b, c ,
p, and q (see Eqs. (B.7), (B.8), (B.9), (B.11), and (B.12)), are indicated:

D > 0:

λ1 = A + B −
a
3
,

λ2,3 = −
A + B
2

±
A − B
2

i
√
3 −

a
3
,

(B.13)

where

A =
3

√
−

q
2

+
√
D,

B =
3

√
−

q
2

−
√
D.

(B.14)

D = 0:

λ1 =
3
√

−4q −
a
3
,

λ2,3 =
3

√
q
2

−
a
3
.

(B.15)
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D < 0:

λ1 = 2
√

−
p
3
cos

(
θ

3

)
−

a
3
,

λ2 = −2
√

−
p
3
cos

(
θ

3
−

π

3

)
−

a
3
,

λ3 = −2
√

−
p
3
cos

(
θ

3
+

π

3

)
−

a
3
,

(B.16)

where

θ = arccos

(
−

q
2

√
−

27
p3

)
. (B.17)

For a more detailed discussion of the roots of the particular function, Eq. (B.4), reference is made
to Ref. [54]. The quantity λNM is then given by the largest positive root λ1 of Eqs. (B.13), (B.15),
or (B.16), respectively. From the above expressions it can be furthermore concluded that λNM is a
function of β , ωb, and τ , i.e. λNM = λNM(β, ωb, τ ).

Appendix C. Peculiarities of correlation function C3

An interesting dissipation kernel, bearing very special features and being related to correlation
function C3, cf. Eq. (14), via the second fluctuation–dissipation theorem, Eq. (41), is written as

Γ (|t|) =
g
4
α2
(
1 −

α
√
m

|t|
)
exp

(
−

α
√
m

|t|
)

. (C.1)

Its Fourier transform is given by

Γ̃ (ω) =
gα3ω2

√
m
(
ω2 +

α2

m

)2 =
gα3ω2

√
m
(
ω +

iα
√
m

)2 (
ω −

iα
√
m

)2 , (C.2)

which was computed using Eq. (19). From Eq. (C.1) the correlation time for correlation function C3
is immediately obtained,

η :=

√
m

α
. (C.3)

The dissipation kernel Γ (t) and its Fourier transform Γ̃ (ω) are depicted in Fig. C.16. Relating to
this Fourier transform (C.2) the first particular property of the underlying correlation function
emerges: For ω = 0 the Fourier transform of Eq. (C.1) equals zero in contrast to the other two
correlation functions C1 and C2 (see Eqs. (12) and (13)). Additionally, the dissipation kernel Γ (t)
of correlation function C3 drops significantly below zero until it reaches a minimum and increases
again, approaching zero for t → ∞. Such a dissipative kernel for the damping is rather typical
in a quantum field theoretical setting with a self-interacting theory like a scalar Φ4-theory (see
e.g. Ref. [14]). Further particularities arise by solving the GLE with dissipation kernel (C.1) for a free
Brownian particle, i.e.

v̇ +
1
m

∫ t

0
Γ (t − t ′)v(t ′)dt ′ =

ξ (t)
m

, (C.4)

using the method of Green’s functions. However, before applying the method of Green’s functions
to the latter equation several modifications of it have to be made, leading to

v̇ +
1
m

∫
∞

−∞

Γ (t − t ′)Θ(t − t ′)  
:=iΠret(t−t ′)

v(t ′)dt ′ =
ξ (t)
m

. (C.5)
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Fig. C.16. Dissipation kernel Γ (t) (upper figure; Eq. (C.1)) and its Fourier transform Γ̃ (ω) (lower figure; Eq. (C.2)), where
g = 5, m = 1.11GeV, and η = 0.2GeV−1 .

From Eq. (C.4) to (C.5) the upper integration border has been extended to ∞ by including the
Heaviside function into the integral. The lower integration border can be extended to −∞, assuming
that v(t) = 0 for t < 0.

Using now the method of Green’s functions the starting point is

Ġret(t) +
i
m

∫
∞

−∞

Πret(t − t ′)Gret(t ′)dt ′ = δ(t). (C.6)
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The Fourier transform of this equation reads

−iωG̃ret +
i
m

Π̃ret(ω)G̃ret(ω) = 1. (C.7)

Proceeding further, by solving Eq. (C.7) for G̃ret, the solution to the actual problem (see Eq. (C.6)) is
obtained by performing the inverse Fourier transform of

G̃ret =
i

ω −
1
m Π̃ret

. (C.8)

But before applying the inverse Fourier transform, first one has to determine Π̃ret, defined in Eq.
(C.5), as

iΠret(t) = Γ (t)Θ(t). (C.9)

By use of the convolution theorem, iΠ̃ret is given by

iΠ̃ret =
1
2π

∫
∞

−∞

Γ̃ (ω′)Θ̃(ω − ω′)dω′. (C.10)

Insertion of Eq. (C.2) into Eq. (C.10) then leads to

iΠ̃ret =
igα3

2π
√
m

∫
∞

−∞

ω′2(
ω′ +

iα
√
m

)2 (
ω′ −

iα
√
m

)2 1
ω − ω′ + iϵ  

:=f (ω′)

dω′. (C.11)

The integral on the right-hand side of Eq. (C.11) can be computed by means of the theorem of
residues,

iΠ̃ret =
gα3

√
m

lim
ω′→−

iα√
m

d
dω′

((
ω′

+
iα

√
m

)2

f (ω′)

)
. (C.12)

Evaluating Eq. (C.12) a compact form for Π̃ret is obtained:

Π̃ret =
gα2ω

4
(
ω +

iα
√
m

)2 . (C.13)

With Eq. (C.13) the Fourier transform of the retarded Green’s function (C.8) is given by

G̃ret =

i
(
ω +

iα
√
m

)2
ω

(
ω −

√
gα

2
√
m +

iα
√
m

)(
ω +

√
gα

2
√
m +

iα
√
m

) . (C.14)

Now that all ingredients are together, the retarded Green’s function Gret can be computed by inverse
Fourier transform of Eq. (C.14):

Gret(t) =
1
2π

∫
∞

−∞

G̃ret(ω) exp (−iωt) dω

=
1
2π

∫
∞

−∞

i
(
ω +

iα
√
m

)2
ω

(
ω −

√
gα

2
√
m +

iα
√
m

)(
ω +

√
gα

2
√
m +

iα
√
m

) exp (−iωt) dω

=
1
2π

(−2π i)
3∑

i=1

resωig(ω),

(C.15)

where the third equal sign follows making again use of the residue theorem.
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This finally leads to

Gret(t) =
1

4 + g

[
4 +

(g
2

+ i
√
g
)
e
−

α√
m
t
(
1+ i

√
g

2

)
+

(g
2

− i
√
g
)
e
−

α√
m
t
(
1− i

√
g

2

)]
. (C.16)

Once the retarded Green’s function of the system is known, the solution of the GLE (C.5) is straight
forwardly computed by the convolution of the retarded Green’s function and the inhomogeneity
ξ (t)
m of Eq. (C.5):

v(t) =

∫ t

0
Gret(t − t ′)

ξ (t ′)
m

dt ′  
:=vξ (t)

+Gret(t)v(0)  
:=va(t)

. (C.17)

Given this solution, another specialty of dissipation kernel (C.1) can be derived. By computing
⟨
v2(t)

⟩
in the limit t → ∞ it appears that the usual form of the equipartition theorem in one dimension,
given by

lim
t→∞

1
2
m
⟨
v2(t)

⟩
=

kBT
2

, (C.18)

no longer holds. Squaring and subsequently averaging of Eq. (C.17) leads to⟨
v2(t)

⟩
=
⟨
v2

ξ (t)
⟩
+
⟨
v2
a (t)

⟩
, (C.19)

where the mixed terms vanish as the initial velocity v0 and the noise ξ (t) are uncorrelated,
i.e. ⟨v(0)ξ (t)⟩ = 0. In what follows, the values of both terms on the right-hand side of Eq. (C.19) are
calculated separately.

Starting with
⟨
v2

ξ (t)
⟩
the following computations have to be performed:⟨

v2
ξ (t)

⟩
=

1
m2

∫ t

0
dt ′
∫ t

0
dt ′′Gret(t − t ′)Gret(t − t ′′)

⟨
ξ (t ′)ξ (t ′′)

⟩
=

kBT
m2

∫ t

0
dt ′
∫ t

0
dt ′′Gret(t − t ′)Gret(t − t ′′)Γ (|t ′ − t ′′|)

=
kBT
m2

∫ t

0
dτ ′

∫ t

0
dτ ′′Gret(τ ′)Gret(τ ′′)Γ (|τ ′′

− τ ′
|)

=
kBT
m2

∫ t

0
dτ ′

∫ t

0
dτ ′′Gret(τ ′)Gret(τ ′′)

×
[
Θ(τ ′

− τ ′′) + Θ(τ ′′
− τ ′)

]
Γ (|τ ′′

− τ ′
|)

= 2
kBT
m2

∫ t

0
dτ ′

∫ τ ′

0
dτ ′′Gret(τ ′)Gret(τ ′′)Γ (|τ ′

− τ ′′
|)

=
2kBT
m2

mg(8 + g)
2(4 + g)2

=
g(8 + g)
(4 + g)2

kBT
m

, t → ∞,

(C.20)

where τ ′
= t − t ′ and τ ′′

= t − t ′′.
Furthermore, for

⟨
v2
a (t)

⟩
the following expression is obtained in the limit of t → ∞:⟨

v2
a (t)

⟩
= G2

ret(t)
⟨
v2(0)

⟩
=

16
(4 + g)2

⟨
v2(0)

⟩
, t → ∞. (C.21)

Bringing together both solutions results in

lim
t→∞

⟨
v2(t)

⟩
= lim

t→∞

(⟨
v2

ξ (t)
⟩
+
⟨
v2
a (t)

⟩)
=

g(8 + g)
(4 + g)2

kBT
m

+
16

(4 + g)2
⟨
v2(0)

⟩
,

(C.22)
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Fig. C.17. Average kinetic energy ⟨Ekin(t)⟩ with harmonic potential V (x) =
1
2mω2

ax
2 (lower figure) and without potential

(upper figure) as a function of the time t and its limit for t → ∞ (blue dotted dashed line, see Eq. (C.18) or (C.23)),
where g = 4, m = 0.1GeV, kB = 1, T = 1GeV, v0 = 0, ωa = 10GeV (lower figure), and time step ∆t = 3.1 · 10−5 GeV−1 .

corresponding to the following mean kinetic energy in the limit of t → ∞

lim
t→∞

1
2
m
⟨
v2(t)

⟩
=

g(8 + g)
(4 + g)2

kBT
2

+
8m

(4 + g)2
⟨
v2(0)

⟩
. (C.23)

Fig. C.17 shows that the numerical simulations in fact yield the analytically expected behavior of
the kinetic energy in the limit of t → ∞.

Investigating furthermore the velocity distribution function it appears that thermal equilibrium
is established but with a temperature reduced by approximately a factor g(8+g)

(4+g)2
, which is the

coefficient of the first term in Eq. (C.23) (see Fig. C.18). Based on these considerations an effective
temperature Teff can be defined as

Teff =
g(8 + g)
(4 + g)2

T . (C.24)

This pathological behavior of insufficient thermalization directly stems from the fact that the Fourier
transform, Γ̃ (ω) (see Eq. (C.2)), of correlation function C3 vanishes in the limit of ω → 0. In contrast,
for a Brownian particle trapped in a standard oscillator potential, one can analytically prove that
the particle thermalizes for the kinetic as well as for the potential energy. Numerical simulations of
such a Brownian particle, originally trapped at the bottom of a harmonic potential V (x) =

1
2mω2

ax
2,
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Fig. C.18. Velocity distribution P(v) (red triangles) with harmonic potential V (x) =
1
2mω2

ax
2 (lower figure) and without

potential (upper figure) and the equilibrium distributions for temperature Teff (black line) (see Eq. (C.24)) and temperature
T (blue dotted dashed line), where g = 4, m = 0.1GeV, kB = 1, T = 1GeV, v0 = 0, ωa = 10GeV (lower figure), and time
step ∆t = 3.1 · 10−5 GeV−1 .

indeed show that the usual form of the equipartition theorem (see Eq. (C.18)) is again valid and
thermal equilibrium with temperature T instead of Teff is recovered (see Fig. C.18). In an analogous
manner the retarded Green’s function for the position x(t) will contain poles below the real axis at
ω = ±ωa. For weak coupling the effective damping is then obtained by Γ̃ (ω = ωa)/2 in the linear
harmonic (or quasi-particle) approximation [11,13,14].
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