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ABSTRACT 

An Analysis of Using Error Metrics to Determine the Accuracy of Modeled Historical 
Streamflow on a Global Scale 

Elise Katherine Jackson 
Department of Civil and Environmental Engineering, BYU 

Master of Science 
 

Streamflow data is used throughout the world in applications such as flooding, 
agriculture, and urban planning.  Understanding daily and seasonal patterns in streamflow is 
important for decision makers, so that they can accurately predict and react to seasonal changes 
in streamflow for the region.  This understanding of daily and seasonal patterns has historically 
been achieved through interpretation of observed historical data at stream reaches throughout the 
individual regions. Developing countries have limited and sporadic observed stream and rain 
gage data, making it difficult for stakeholders to manage their water resources to their fullest 
potential. 

 
In areas where observed historical data is not readily available, the European Reanalysis 

Interim (ERA-Interim) data provided by the European Center for Medium-Range Weather 
Forecasts (ECMWF) can be used as a surrogate. The ERA-Interim data can be compared to 
historic observed flow to determine the accuracy of the ERA-Interim data using statistical 
measures such as the correlation coefficient, the mean difference, the root mean square error, R2 
coefficients and spectral angle metrics. These different statistical measures determine different 
aspects of the predicted data’s accuracy. These metrics measure correlation, errors in magnitude, 
errors in timing, and errors in shape.  
 

This thesis presents a suite of tests that can be used to determine the accuracy and 
correlation of the ERA-Interim data compared to the observed data, the accuracy of the ERA-
Interim data in capturing the overall events, and the accuracy of the data in capturing the 
magnitude of events. From these tests, and the cases presented in this thesis, we can conclude 
that the ERA-Interim is a sufficient model for simulating historic data on a global scale. It is able 
to capture the seasonality of the historical data, the magnitude of the events, and the overall 
timing of the events sufficiently to be used as a surrogate dataset. The suite of tests can also be 
applied to other applications, to make comparing two datasets of flow data a quicker and easier 
process.  
  
 
 
 
 
 
 
 
 
 
Keywords: correlation, streamflow modelling, statistical analysis, ERA-Interim  
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1 INTRODUCTION 

Observed data are a necessary component for planning and developing water resources 

projects. It is an essential element for any study such as flood forecasting and mapping, 

hydropower exploration, agriculture and municipal planning, and any other hydrologic project. 

Improvements in data availability and communication of information derived from these data to 

decision-makers and stakeholders has many benefits (Pappenberger, et al., 2015). Developing 

countries however, have limited and sporadic observed stream and rain gage data, making it 

difficult for stakeholders to manage their water resources to their fullest potential.  

 Past Research and Background 

Where historical data does not exist, simulations from retrospective meteorological data 

can be done to provide estimates for historical data. This is done in areas where resources are 

not, or have not been sufficient to characterize historical precipitation or flow data. Generating 

artificial data via numerical and hydrologic modeling to fill in the historical gaps then allows 

these areas to better develop their water resources. The European Center for Medium-Range 

Weather Forecasts (ECMWF) is an independent, intergovernmental organization supported by 

many European countries, and is the world’s largest archive of modeled weather prediction data 

(ECMWF, 2017). The ECMWF provides an ensemble of 52 medium-range weather forecasts out 

to 15 days, and seasonal forecasts out to 12 months, based on a gridded runoff prediction dataset 

(Basalmo et al., 2009). These forecasts are provided to national weather services and are used as 
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a complement to their respective short-range and climatological studies (Wetterdienst, 2014). 

The ECMWF forecasts are also used as an early warning system of severe weather, such as 

hurricanes and flooding (Roulstone & Norbury, 2013).  

The ECMWF produces these forecasts by assimilating meteorological data from satellites 

and earth observations. This data assimilation serves as the initial state for a computer model, 

which uses the resulting atmospheric model to forecast the weather. These ensemble forecasts 

are computed by a medium-resolution forecasting system operating at a 16-kilometer resolution. 

The high-resolution forecasting system operates at an 8-kilometer resolution, giving the forecasts 

better range with high quality.  

Using the same basic atmospheric model, the ECMWF also produces a historical 

meteorological dataset based on global atmospheric reanalysis. This historical meteorological 

data known as the European Reanalysis Interim (ERA-Interim) data can be used as a 35-year 

historical record for sites where observed data do not exist (Dee et al., 2011). The ECMWF then 

validates this 35-year simulated record against available observed data and further calibrates the 

ERA-Interim data as necessary.   

1.1.1 ERA-Interim Data 

The ECMWF’s ERA-Interim forecast was created to address difficulties with data 

assimilation related to the representation of the hydrological cycle, the quality of the 

stratospheric circulation, and time consistency of reanalyzed geophysical fields. The ERA-

Interim data is paired with the Hydrology-Tiled ECMWF Scheme for Surface Exchanges over 

Land (H-TESSEL), a land surface numerical scheme to create the ERA-Interim/Land, a global 

land-surface dataset. The ERA-Interim/Land dataset preserves the closure of the water balance, 
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and includes the defining equations of the land surface scheme with respect to the original ERA-

Interim precipitation data (ECMWF, 2017).  The ERA-Interim/Land dataset is compared with 

ground-based and remote sensing observations to assess the quality of the dataset. Effects of this 

calibration have been verified in monthly and seasonal forecasts used by the ECMWF (Balsamo, 

et al., 2012). The ECMWF uses the Root Mean Square Error (RMSE) metric for different vectors 

and variables, to further calibrate the ERA-Interim/Land dataset (Uppala, Dee, Kobayashi, & 

Simmons, 2008). Others have analyzed the effect of climate variables, and the ability of the 

ERA-Interim dataset for capturing monthly variability (Simmons, Willet, Jones, Thorne, & Dee, 

2010).  

This reanalyzed, calibrated data can be used to provide a multivariate, spatially complete, 

and coherent record of global atmospheric circulation (Dee, et al., 2011). The ERA-Interim/Land 

data provides a global estimate of weather patterns, and can be used as the initialization for 

numerical weather prediction and climate models.  

1.1.2 Modeled Historical Streamflow Data 

To use the ERA-Interim/Land data with respect to streamflow, the modeled historical 

precipitation data must be routed through stream networks to develop flow predictions. The 

Routing Application for Parallel computatIon of Discharge (RAPID), uses the ERA-

Interim/Land data on the ECMWF grid to generate streamflow data for stream reaches on a 

global scale (Snow, 2015). The RAPID process creates a modeled historical streamflow (MHS) 

dataset, with a daily streamflow value for every date within a 35-year period. This data set can 

then be changed by calibrating the RAPID model and used as surrogate data where historical 

data do not exist.  
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The MHS data has been improved by performing RAPID stream routing on a higher 

density stream network. This increases the number of locations where simulated historical data 

can be accessed and analyzed. The Streamflow Prediction Tool (SPT), available on the Tethys 

platform makes these data available through a web interface (Snow, 2015). An example of using 

the SPT is shown in Figure 1-1.  

 

Figure 1-1: Using the SPT to find data at Camu Bayacanes, Dominican Republic. 

 The SPT allows us to view the MHS data, as well as the monthly and daily averages over 

the 35-year period, for any specified stream reach. An example of the dialog box, showing the 

MHS data, is shown in Figure 1-2. 

 

Figure 1-2: MHS data for Camu Bayacanes, Dominican Republic. 
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 The data from the SPT can be merged with historical observed data and downloaded as 

a .csv file of the two different data series. Once the MHS data are made accessible, the data can 

be validated through the library of statistical analysis tools.  

1.1.3 Statistical Analysis 

Validating and calibrating modeled data is important to understand associated limitations 

and applications for the given model. Researchers have developed methods for defining 

hydrologic trends in hydrologic variables such as streamflow and climate (Burn & Hag Elnur, 

2002). These same types of analysis can be used to characterize the correlation between observed 

streamflow, and simulated streamflow. The correlation between the observed and predicted 

stream flow is a measure of the model accuracy and can be used to determine the quality of the 

simulated data. Correlation measures can be affected by the resolution of the predicted data and 

the variability in the streamflow, so acceptable correlation metric values are site or region 

specific, rather than absolute. Some researchers have used regionalization to determine the 

accuracy of models, allowing predictions to be better calibrated for the specific region (Post & 

Jakeman, 1999).  

There are a very large number of metrics or tests that can be used to determine the 

correlation between two time-series datasets, some more useful than others for streamflow data.  

Reich, et al. (2016) analyzed different error metrics such as the correlation coefficient R2, the 

mean difference, and the variance of the difference to assess their applicability. Tornquist, Vartia 

and Vartia (1985) have investigated indicators of relative change between two datasets, and the 

effect of log transformations on error statistics. Also of interest are lag correlation metrics for the 

predicted model which can show timing or offset errors. These metrics are often calculated by 
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using the R2 value and the spectral angle over a range of lagged values (i.e., data set offsets). 

Hyndman and Khandakar (2008) used these lag correlation measures to better understand how 

the dataset has captured specific events, even if the timing is slightly off. 

 Research Objectives 

The purpose of this research is to develop a library of statistical analysis tools that allows 

investigators to quickly and easily conduct a statistical analysis of the modeled historical 

streamflow (MHS) data as compared to historical data and determine the appropriateness of 

using the MHS data for water resources planning and development. These statistical analysis 

tools specifically determine: 

1) The accuracy and correlation of the MHS data compared to the observed data. 

2) The accuracy of the MHS dataset in capturing the overall events shown by the observed 

data. 

3) The accuracy of the MHS dataset in capturing the magnitude and timing of events shown 

by the observed data.  

These analysis tools are available through a Python or MATLAB library, making them easily 

accessible to water resources agencies to aid in the development of water resources applications.  

This thesis will also present a case study using the MHS data in a hydropower case study in 

the Dominican Republic. Using the MHS data as surrogates for observed data has the potential to 

expand the ability of countries to analyze potential hydropower sites and improve current 

estimates of hydropower capacity. The MHS data can also be used as a resource for agricultural 

and other water supply applications. 
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2 METHODS 

Several different statistical tests were developed to determine the accuracy of the modeled 

historical streamflow (MHS) data. Specifically, the accuracy and correlation of the MHS data 

compared to the observed data overall, as well as with respect to timing of specific events and 

magnitude of specific events. Examples of the different methods using data from stations in 

Nepal are included in this section as examples. 

 To begin the analysis, the MHS data corresponding with an observed data station were 

obtained using the SPT. Both the MHS data and the observed data were then transformed using a 

natural log scale, and statistically analyzed. Because flow data in a time series are not normally 

distributed, the log scale is used to account for any outliers and skew in the data. The paired, 

logged dataset was used to determine the accuracy of the MHS data.  

 Visual Tests 

The first and most basic method for gauging the accuracy of any simulated dataset is to 

visually inspect the data. Most simulated data show one or more of the following trends: over 

prediction, under prediction, or a time shift. Figure 2-1 shows both an over predicted and an 

under predicted series for a base series.  
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Figure 2-1: Example of over and under-prediction on a base series. 

For these realizations, the timing of the flow event is correct for both the under predicted 

and over predicted series, but the magnitude of the event is incorrect. Figure 2-2 shows a 

realization with time shift from the same base series, without any under or over prediction.  

 
Figure 2-2: Example of time shift on a base series. 
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For this realization, the magnitude of the flow event is correct, but the timing of the event 

is incorrect. Figure 2-3 shows two time-shifted realizations with over prediction and under 

prediction compared to the base series.  

 

Figure 2-3: Example of time shift with over and under-prediction on a base series. 

These types of errors are the most common for simulated hydrologic time series data. The 

simulated data usually model the overall trends relatively well with errors in the timing and 

magnitude of flow events.  

Another visual analysis tool that can be used to determine the accuracy of the data is a 

quantile-quantile or Q-Q plot. The Q-Q plot is a graphical tool that helps researchers determine 

the distribution of the data, whether it is normally or otherwise distributed. There are two types 

of Q-Q plots, those that compare data to a specific distribution, or those that compare two 

datasets together to determine how the two datasets correlate.  
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The Q-Q plot of a distribution plots the data versus a normal distribution, and if the data 

falls along a 45° line, the data is normally distributed (University of Virginia Library, 2018). The 

quantiles can be thought of as percentiles, or the points in your data below which a certain 

proportion of the data falls. In a normal distribution, half of the data should fall below the 50th 

percentile, or 0. An example of the synthetic hydrograph without any changes is shown in Figure 

2-4.  

 

Figure 2-4: Q-Q plot of synthetic hydrograph. 

The synthetic hydrograph shows a skew in the data, especially on the tails. This is typical 

of hydrographs as they naturally are rarely normally distributed due to outliers in the high flow 

seasons, as well as differing base flows in the stream reach throughout the year. The data must be 

transformed using a log transformation to better approximate a normal distribution in the data. 

The Q-Q plot is used to justify using the log transformation of the data. This same procedure can 
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be done by plotting two datasets against each other, as shown in Figure 2-5.  In this type of Q-Q 

plot, quantiles are not used to describe the data.  

 Distribution Tests 

Different types of statistical tests can be used to describe and quantify errors in the 

distribution of the simulated data compared to distribution of the observed data. The distribution 

of the data refers to how the different data points within the datasets are spread across the time 

period in question. The distribution of the data is dependent on the timing of events within the 

dataset. Correlation tests are most sensitive to the effects of timing errors, while error tests are 

sensitive to the effects of magnitude changes, caused by either timing or under- and over-

prediction. Lag correlation tests can quantify timing errors and can be used in conjunction with 

the correlation and error tests to determine the accuracy of the simulated data.  

2.2.1 Visual Tests 

Visual tests can be used as a precursor to statistical metrics to determine the need of any 

error metrics. They also can give researchers an initial idea of the differences in the datasets, and 

their distributions.  

Figure 2-5 shows an X-Y scatterplot of the observed flow compared to the predicted flow 

at Marsyangdi, Nepal. This differs from the Q-Q plot in Figure 2-4 in that we are comparing the 

predicted and observed flows, rather than the data to a statistical distribution.   
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Figure 2-5: X-Y scatterplot of predicted flow vs. observed flow for Marsyangdi, Nepal. 

 The X-Y scatterplot shows that the distributions of the two data are not the same, and that 

there is significant difference between the two datasets. This conclusion can also be seen by 

creating an X-Y scatterplot by plotting the predicted flow versus the observed flow, as well as 

the log predicted flow versus the log observed flow. If the predicted flow were the same as the 

observed flow, the data would fall along the black line. The plot for the log transformed data is 

shown in Figure 2-6.  

 

Figure 2-6: X-Y Scatterplot of log predicted flow vs. log observed flow. 
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 From these two plots, the differences between the two flows can be seen. The comparison 

between the predicted and the observed flow is somewhat distributed along the match line for 

flows below 500 cubic meters per second. As the flow values increase, they fall farther from the 

match line. From Figure 2-6, the data are more similar. The log transformation removes any 

outliers from the datasets, removing the error shown in Figure 2-5. Both of these figures show 

the differences between the MHS data and the observed data, which must then be further 

explained using statistical metrics. A paired t-test was performed on the transformed data to 

quantify the correlation between the datasets by each month. An example result of a paired t-test 

is shown in Figure 2-7.  

 

Figure 2-7: Paired t-test for Marsyangdi, Nepal for the month of May. 

The paired t-test shows the overall trend between the observed and predicted data. The 

correlation value for the datasets can also be analyzed. The paired t-test graph consists of a 

diamond which encloses all data points when the range of the differences is greater than half the 

range of the data. The black, horizontal line defines the points where the observed streamflow is 

equal to the predicted streamflow. A perfectly correlated series would follow this line perfectly, 

while a negative correlation would be oriented vertically. From this graph, we can see the slight, 
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positive correlation between the predicted flow and the historical flow, as most of the points are 

plotted horizontally, with some outliers. This slight, positive correlation shows that the predicted 

data are similar to the observed data with respect to the actual values. The paired t-test also 

generates the mean difference value between the two datasets, which will be explained in the 

next section.  

The paired t-test is more commonly used by statisticians, and requires previous 

knowledge of statistics to understand completely. As a result, hydrologists and researchers more 

commonly use the Q-Q plot, or an X-Y scatterplot as an initial test to understand the distribution 

of datasets.  

2.2.2 Correlation Coefficient  

The anomaly correlation coefficient is a measure for describing the linear association, or 

one-to-one comparison between any two variables. The correlation coefficient ignores any 

potential or biases, minimizing the seasonal effect (Stevenson, 2006). The equation for 

calculating the correlation coefficient is shown in Equation 2-1.  

𝑟𝑟𝑋𝑋𝑋𝑋 =
∑ (𝑋𝑋𝑖𝑖−𝑋𝑋�)(𝑋𝑋𝑖𝑖−𝑋𝑋�)

(𝑛𝑛−1)�𝑛𝑛
𝐼𝐼=1

𝑠𝑠𝑥𝑥𝑠𝑠𝑦𝑦
         (2-1) 

Where sx and sy are the sample standard deviations. The sample correlation coefficient is 

dimension free, ranging from -1 to +1, where the extremes correspond to cases of perfect, 1:1 

correlation between the datasets. A positive correlation means that as the values in one dataset 

increase, the values in the other dataset also increase. A negative correlation means that as the 

values in one dataset increase, the values in the other dataset decrease. A correlation coefficient 

of zero corresponds to situations where there is no linear association (Ramsey & Schafer, 2013).  
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 P-values can be calculated for each error metric, including the correlation coefficient. The 

p-value is a measure of the probability associated with finding an error metric larger than the one 

observed. In other words, a small p-value is associated with a high confidence in the test statistic, 

while a p-value greater than 0.10 gives no evidence of confidence. A p-value less than 0.001 

indicates that the error metric is accurate. However, because the p-value is dependent on the 

number of samples, large datasets will generally have very small p-values for each error metric. 

As the datasets used in this paper contain many different data points, p-values are not used as 

measures of significance for each error metric, but can be calculated to show the relative 

importance of an error metric between different stations.  

2.2.3 Example of Correlation Tests 

The correlation coefficient, as well as the mean difference value and variance value are 

summarized below in Table 2-1 for the Marsyangdi station in Nepal.  

Table 2-1: Correlation Test Summary by Month for Marsyangdi, Nepal 

Month 
Correlation 
Coefficient 

Mean 
Difference  

 
Variance 

January 0.2400 2.2845 0.0944 
February -0.0516 1.7557 0.2172 
March 0.1428 1.3343 0.5241 
April 0.1882 1.6437 0.6049 
May 0.3765 1.8576 0.6141 
June 0.4993 1.9650 0.8413 
July 0.2066 2.2853 0.5882 

August 0.2661 2.4303 0.4160 
September 0.4347 2.2842 0.3132 

October 0.4511 2.5001 0.2307 
November 0.3934 2.5797 0.0849 
December 0.2810 2.5305 0.0887 
Average 0.2857 2.1209 0.3848 
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The mean difference value is the geometric mean of the two datasets. The Marsyangdi 

mean difference value of 2.2845 for the month of January signifies that the observed value is 

2.2845 times larger than the predicted value, with a confidence interval for the mean difference 

between 2.2362 and 2.3339. The variance value for January of 0.0944 signifies that the average 

data point for the month of January is 0.0944 greater or lesser than the average mean value for 

the station. The average correlation coefficient for Marsyangdi is 0.2857, signifying a slightly 

positive correlation between the predicted and observed flow data.  

2.2.4 Error Tests 

Calculating error can be done by considering the relative differences between observed 

and predicted data. Most flow data are transformed using a logarithmic function to account for 

the non-normal distribution, and any outliers that may occur. The most common terms used to 

define forecast error are the Root Mean Square Error (RMSE) and the Mean Squared Error 

(MSE). The equation for the MSE is shown below in Equation 2-2. 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∑ (𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖)2𝑛𝑛
𝑖𝑖=1          (2-2) 

Where yi represents the observed value, and xi represents the predicted value (Lehmann & 

Casella, 1998). The mean squared error measures the average of the squares of the standard 

deviations, or rather the variance in the differences between the observed values and the 

predicted values. An MSE of zero signifies a perfect predicted dataset.  
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The RMSE is a function of the MSE, and is the square root of the mean square error. It is 

simply the average distance of a data point from the observed data point measured along a 

vertical line. The equation for the RMSE is found in Equation 2-3. 

𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀 = �1
𝑛𝑛
∑ (𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖)2𝑛𝑛
𝑖𝑖=1           (2-3) 

Figure 2-8 shows an example of the RMSE between an observed base series and an under 

predicted dataset. 

 

Figure 2-8: Visual depiction of RMSE for observed and under predicted data. 

The RMSE is very sensitive to magnitude changes, as shown in Figure 2-8. Changes in 

timing have a very small effect on the RMSE, as shown in Figure 2-9.  
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Figure 2-9: Visual depiction of RMSE for a time-shifted predicted dataset. 

The RMSE is adaptable to situations when large errors are undesirable. The RMSE does 

not increase with the variance of the errors, but rather with the variance of the frequency of the 

error magnitude. This means that as the same error reappears in the dataset, the RMSE increases. 

The RMSE of the log error (RMSLE) can also be used to analyze the data where the variance in 

the data has been reduced by the log transformation (Tornquist, Vartia, & Vartia, 1985). These 

two measurements of error are the most commonly used in hydrological analysis (Boyle, Guta, & 

Sorooshian, 2000). 

Table 2-2 shows an example of these error tests are shown for the Kankai station in 

Nepal. The standard error is the squared difference between the observed and predicted value 

divided by the number of data points. From these values, the MSE and RMSE can be calculated. 

These are tabulated in Table 2-3.  
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Table 2-2: Standard Error for Kankai, Nepal 

Month 
Observed 

Flow 
Predicted 

Flow 
Standard 

Error 
January 11.73 10.48 0.129 
February 9.98 8.33 0.227 
March 9.24 6.16 0.790 
April 10.01 6.65 0.945 
May 15.12 15.88 0.048 
June 38.21 51.69 15.140 
July 122.78 121.88 0.067 

August 124.71 124.72 0.000 
September 103.85 119.75 21.056 

October 48.03 65.70 26.044 
November 23.86 25.71 0.287 
December 14.60 14.31 0.007 

 

Table 2-3: RMSE and MSE values for Kankai, Nepal 

RMSE 8.046 
MSE 64.741 

 
These error tests constitute another method of determining the overall accuracy of the 

predicted dataset. The difference between these tests and the correlation tests is that the RMSE is 

a measure of unexplained variation, whereas correlation measures the positive association 

between the predicted and observed values.  

 A common measurement of error in hydrological models is the Nash-Sutcliffe model 

efficiency coefficient. The Nash-Sutcliffe efficiency (NSE) can be used to describe the accuracy 

of model outputs, and is shown in Equation 2-4. 

𝑀𝑀 = 1 − ∑ (𝑋𝑋𝑖𝑖−𝑋𝑋𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

∑ (𝑋𝑋𝑖𝑖−𝑋𝑋�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

          (2-4) 

Where Xi is the predicted flow, Yi is the observed flow, and Y�i is the average of the observed 

flows (Nash & Sutcliffe, 1970). The NSE can range from negative infinity to +1, where +1 
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corresponds to a perfect match of predicted to observed flows. A NSE of zero shows that the 

predicted data is as accurate as the average of the observed data, while a negative NSE shows 

that the mean of the observed data is a better predictor than the modeled data. In other words, a 

NSE value less than zero means that a better prediction of the data would be found by simply 

taking the average of the observed data, rather than using the modeled data. Figure 2-10 shows a 

visual depiction of the NSE.  

 

Figure 2-10: Visual depiction of NSE for observed and under predicted series. 

This statistic works best when the coefficient of variation is large, and model bias 

produced by calibration is low (McCuen, Knight, & Cutter, 2006). It is possible to calculate a 

high efficiency value when the variance in the data is very high, even when the fit of the model is 

relatively poor (Jain & Sudheer, 2007). The efficiency coefficient is sensitive to outliers, so data 
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must be transformed to a normal distribution before testing. An example of the Nash-Sutcliffe 

Efficiency, as well as the observed and predicted flow, is shown in Table 2-4.  

Table 2-4: Nash-Sutcliffe Efficiency for Kankai, Nepal 

Month 
Observed 

Flow 
Predicted 

Flow 
 

Variance 
Nash-Sutcliffe 

Efficiency 
January 11.73 10.48 0.120 -1.277 
February 9.98 8.33 0.187 -2.071 
March 9.24 6.16 0.238 -4.263 
April 10.01 6.65 0.507 -3.202 
May 15.12 15.88 0.895 -1.472 
June 38.21 51.69 0.894 -0.195 
July 122.78 121.88 0.821 -0.087 

August 124.71 124.72 0.628 0.075 
September 103.85 119.75 0.635 -0.465 

October 48.03 65.70 0.500 -0.684 
November 23.86 25.71 0.198 -0.517 
December 14.60 14.31 0.115 -0.283 
Year Total 27.37 26.82 0.529 0.590 

 

From the Nash-Sutcliffe efficiency values, it can be determined that the predicted data is a 

satisfactory predictor of flow on a yearly basis. The station had a yearly Nash-Sutcliffe 

efficiency of 0.59, and a variance of 0.529. In other words, the MHS data is a satisfactory 

predictor on a yearly basis, however the monthly predictions are not as accurate as the observed 

data. The negative values for the monthly values are due to the subdivision of the data into 

months, changing the values of data that were being compared.  The low values of variance for 

the station may also explain how the months are less accurate than the overall year values, as the 

NSE works best with datasets with large variances.  
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 Population Metrics 

Population metrics determine if the magnitude of data values are similar or different. The 

mean difference is a population metric that measures the difference in magnitude relative to the 

mean of the data. The mean difference is generated by the paired t-test as the geometric mean 

difference between the transformed predicted data and transformed observed data. The equation 

for the mean difference is shown below in Equation 2-5.  

𝑋𝑋�𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = �∏ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝑛𝑛 =  �𝑥𝑥1 ∗ 𝑥𝑥2 ∗ … ∗ 𝑥𝑥𝑛𝑛𝑛𝑛        (2-5) 

Where x is the difference between the observed streamflow and the predicted streamflow value. 

Each mean difference metric must then by transformed from the natural log value to the actual 

value by using the exponential transform. Figure 2-11 shows a visual depiction of the mean 

difference for observed and under predicted datasets. 

 

Figure 2-11: Visual depiction of mean difference. 
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 The mean difference of the geometric mean emphasizes any large values within the 

datasets. For hydrological data, this is optimal as researchers generally are more interested in 

large events and magnitudes rather than base flow values. The mean difference is not affected by 

any timing shifts within the data, but is affected by any subdivision of the data into months or 

seasons, as this changes the populations being compared.  

 The variance on the mean difference can also be calculated, and used as a standard of 

comparison. The variance is an estimate of the deviation of a variable from its mean. In other 

words, the variance measures the spread of the variable from the average value.  

 Timing Tests 

Another aspect of analyzing the accuracy of the MHS data is determining how well the 

MHS data captures time events, such as high flow months and days. This analysis was conducted 

in two parts, by calculating the R2 coefficient and the spectral angle while changing the lag time 

for the predicted dataset in case there were timing errors associated with the input or routing of 

the flows through the watershed. This analysis can be done with any error metric, however the R2 

and spectral angle coefficient were chosen to specifically analyze the shape of the hydrograph 

with respect to timing. To generate the lagged time series, additional points were interpolated for 

the datasets between the initial daily values using a cubic spline. These interpolated points 

created 6-hour time steps for the MHS and observed datasets, which can then be used as lag 

times to determine the best lag time for the predicted data. 

2.4.1 R2 Analysis 

The R2 coefficient, or the coefficient of determination, is a measure of the correlation 

between the original or observed data and the modeled values (Everitt, 2002). The R2 value 



24 
 

ranges between 0 and +1, where +1 signifies a perfect 1:1 correlation between the datasets, and 

zero signifies absolutely no correlation. By lagging the predicted dataset by a time step of six 

hours, and then calculating the R2 value, the optimal lag time can be predicted.  

The optimal lag time helps determine the accuracy of the predicted dataset in simulating 

events such as storms and dry seasons. The R2 analysis determines the absolute difference 

between each data point. This helps researchers understand the overall accuracy of the predicted 

dataset. Figure 2-12 shows the trend in R2 values as the time series is lagged both forward and 

backwards 15 time steps.   

 

Figure 2-12: R2 comparison with time lag for Narayani, Nepal. 

This graph shows the trend in the R2 values as the time series is lagged. The maximum R2 

value occurs when the time series is lagged forward five time steps, or 30 hours.  
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The number of time lags indicates the original accuracy of the predicted data set, as well as the 

necessary time shift for a maximum R2 value.  

2.4.2 Spectral Angle Metric 

The spectral angle metric is most often used in applications that deal with wave 

functions, as the analysis determines the accuracy of the shape, not the magnitude of the waves. 

For hydrographs and extreme events such as floods, this statistical analysis is important to gauge 

if the simulated data is able to catch the event itself. If a hydrograph has a similar shape, even if 

the magnitude is not captured perfectly, we can say that the event is being modeled. For 

example, if a modeled hydrograph can consistently predict the shape of events, resources can 

then be allocated to prepare for large events. The process of calculating the spectral angle relies 

on measuring the similarities between the different series, and producing the spectral angle 

coefficient, which measures the actual angle between the two vectors. The equation for this the 

coefficient is shown in Equation 2-6. 

𝑀𝑀𝑆𝑆𝑒𝑒𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐 𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝑒𝑒(𝑥𝑥,𝑦𝑦) = 𝑐𝑐𝑐𝑐𝑐𝑐−1 � (𝑥𝑥 ∙ 𝑦𝑦)
‖𝑥𝑥‖2‖𝑦𝑦‖2

�       (2-6) 

 Or the arccosine of the dot product of x and y (Robila & Gershman, 2005). The spectral 

angle coefficient ranges from zero to +1, where +1 corresponds to a perfect match in shape of the 

datasets. Figure 2-13 shows an example of the spectral angle coefficient for the Narayani station 

in Nepal corresponding to different numbers of time lags.   
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Figure 2-13: Spectral Angle Coefficient comparison with time lag for Narayani, Nepal. 

In this case, the spectral angle coefficient increased with a time lag of 30 hours. This 

indicates that the correlation between the observed data and the MHS data could be improved by 

lagging the data by 30 hours.  

 Generalized Application 

To define the tests best suited for analyzing different types of events and error, the suite of 

statistical tests was first tested on a series of synthetic hydrographs describing trends like under 

and over-prediction, timing shifts, outliers, and combinations of each. An example of the 

pertinent results from two of these tests, as well as the optimum results, is summarized in Table 

2-5.  
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Table 2-5: Select Metrics for Synthetic Hydrograph 

Metric 
Under predict 

by 5% 
Over predict 

by 5% 
Perfect 
Match 

Mean Error -2.2498 2.2498 0 
Mean Absolute Error 2.2498 2.2498 0 
Mean Squared Error 7.5931 7.5931 0 

Root Mean Square Error 2.7556 2.7556 0 
Root Mean Squared Log Error 0.0369 0.0354 0 
Mean Absolute Scaled Error 45.6208 45.6208 0 

R2 1.0000 1.0000 1 
Anomaly Correlation Coefficient 1.0000 1.0000 1 
Mean Absolute Percentage Error 3.4185 3.4185 0 

Nash-Sutcliffe Efficiency 0.9925 0.9925 1 
Modified Nash-Sutcliffe Efficiency 0.9215 0.9215 1 
Relative Nash-Sutcliffe Efficiency 0.9960 0.9960 1 

Spectral Angle  0.9999 0.9999 1 
 
From this example, researchers can compare the calculated metric with the optimal value, 

to determine the accuracy of the synthetic data based on the metric. For the synthetic hydrograph 

shown above (under predicted by a specific scale) the R2 value, as well as the correlation 

coefficient for both the under and over predicted hydrograph were determined as 1.0, showing 

that the shape of the hydrograph was identical to the original hydrograph. The error tests for the 

hydrograph showed variations in error, with an RMSE of 2.756, and a RMSLE of 0.0369 for the 

under predicted hydrograph and an RMSE of 2.756 and a RMSLE of 0.0354 for the over 

predicted hydrograph.  

Once the tests had been run on each series, the best statistical tests for each trend was 

summarized in a table. The results for the different metrics varied with the different synthetic 

hydrographs, which made it possible to determine the best metrics for different hydrograph 

scenarios. This table can be found in the results chapter of this thesis.  



28 
 

 Global Application 

As part of this analysis, both a MATLAB and Python library were created that could 

perform the statistical analysis for any given station, provided that sufficient observed data could 

be obtained at the station. The MHS data was obtained through the SPT, and then merged with 

the observed data in a .csv file. The Python library was then used to conduct the paired t-test and 

correlation tests, the error tests, the R2 and spectral angle coefficient analysis, and generated 

graphs of the average predicted and observed stream flows by month. 

The MHS data was compared to observed historical data at sites within the Dominican 

Republic, Nepal and East Africa to give both a nation-wide and world-wide comparison between 

the datasets. The statistical analysis was conducted monthly to determine the accuracy of the 

MHS data. The correlation values between the predicted and observed flows, as well as the mean 

difference were then tabulated and analyzed to determine the overall correlation between the two 

datasets. The timing tests and error tests were also conducted on each nations’ dataset to 

determine the overall accuracy of the MHS data compared with observed data.  
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3 RESULTS 

The analysis was conducted in the Dominican Republic, Nepal, and Tanzania. The results are 

summarized by type as well as by country. This allowed the results to be analyzed at different 

resolutions; both nation-wide and world-wide level. Figure 3-1, Figure 3-2, and Figure 3-3 show 

the spread of stations across the different countries. 

 
Figure 3-1: Observed streamflow stations in Nepal. 
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Figure 3-2: Observed streamflow stations in Tanzania. 

 

Figure 3-3: Observed streamflow stations in the Dominican Republic. 
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The stations were chosen by the respective water management agencies within the 

countries. As the stations are spread across the countries, the results of the statistical analysis can 

be applied throughout the country. This spread of observed data also validates the findings of the 

statistical analysis by determining any trends that exist across the country, rather than trends that 

are centralized at specific locations.  

 Distribution and Population Metrics 

The correlation coefficient values and mean difference values for each country can be 

found in Appendix A. Correlation coefficient values for each country are shown in Table 0-1, 

Table 0-2, and Table 0-3. The mean difference values are shown in Table 0-4, Table 0-5, and 

Table 0-6. The correlation coefficients and mean difference values are summarized by station 

and by month.  

From the correlation and mean difference tables, both the correlation coefficients and mean 

differences for each country can be determined at a monthly and overall level. The different 

countries had different trends in average correlation coefficient and mean difference 

corresponding to high flow seasons and low flow seasons. Using a statistical method known as a 

Student’s t-test, the correlation coefficients and mean difference values were compared by month 

to see any trends. The Student’s t-test compares the differences in means to determine where 

significant differences occur.  The correlation coefficients for all three countries increased during 

high flow seasons, and decreased during low flow seasons. The error in mean difference values 

for the three countries followed similar trends. For Tanzania, the mean difference value 

decreased during the high flow seasons, and increased during low flow seasons, but were closest 

to one during the high flow seasons. Nepal did not show an appreciable difference in the mean 
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difference between the different months. Table 3-1 summarizes the correlation statistics for the 

three countries by month. 

Table 3-1: Statistical Summary by Country 

 
Correlation 
Coefficient 

Mean 
Difference 

Observed 
Flow 

Predicted 
Flow Variance 

Dominican 
Republic      

January 0.4749 5.0277 9.5761 2.2071 0.6095 
February 0.3162 4.6258 8.9512 2.2047 0.6893 

March 0.2526 4.0193 10.0038 2.3280 0.7961 
April 0.4394 2.7016 11.5027 4.1789 0.9772 
May 0.6120 2.1101 21.0807 11.2307 1.1555 
June 0.4088 3.2992 25.0217 6.2043 0.7772 
July 0.4583 3.5605 12.2170 3.2653 0.5314 

August 0.4826 2.9119 10.1645 3.4701 0.5494 
September 0.4328 2.8910 12.1085 4.2783 0.6447 

October 0.4434 3.4898 15.3880 4.1328 0.7910 
November 0.4387 4.3554 14.6662 3.5718 0.7646 
December 0.5765 5.8011 10.7269 2.2306 0.6657 
Average 0.4447 3.7328 13.4506 4.1085 0.7460 

Nepal       
January 0.3318 1.6518 127.3038 83.2350 0.4692 

February 0.3612 1.5274 110.9548 78.0137 0.5028 
March 0.2896 1.5757 108.4400 85.2476 0.5538 
April 0.3278 1.6316 132.8855 130.8335 0.6776 
May 0.3591 1.9959 226.5781 220.3405 0.8475 
June 0.6048 2.2649 489.7523 284.2585 1.0511 
July 0.4732 1.9014 1239.9085 740.7930 0.6755 

August 0.3388 1.8960 1541.8047 941.7744 0.5533 
September 0.5160 1.6160 1050.8243 728.8233 0.4591 

October 0.5392 1.7700 475.1222 316.7528 0.4524 
November 0.4558 1.6578 246.2587 155.9685 0.4983 
December 0.3603 1.5666 163.0488 103.1103 0.8351 
Average 0.4131 1.7517 492.7401 322.4292 0.6313 

Tanzania       
January 0.4537 0.9391 9.4184 17.3918 1.6794 

February 0.4394 0.9193 13.1232 24.5919 1.6435 
March 0.3487 0.8617 17.2920 30.3960 0.9963 
April 0.3196 1.1688 19.6769 31.5737 0.8837 
May 0.3896 2.1778 11.8760 15.1235 0.7152 
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Table 3-1: Statistical Summary by Country (cont.) 

 
Correlation 
Coefficient 

Mean 
Difference 

Observed 
Flow 

Predicted 
Flow Variance 

June 0.4099 2.7092 6.8937 8.1914 0.5179 
July 0.3452 3.0951 4.7592 4.9940 0.8430 

August 0.3923 3.5907 3.6117 3.1539 0.7695 
September 0.3357 4.2366 2.6998 2.0466 0.6262 

October 0.2637 3.8218 2.0630 1.4828 0.9618 
November 0.3534 2.7423 1.9614 1.9125 2.0161 
December 0.5556 1.3339 4.3820 8.4403 2.1012 
Average 0.3839 2.2997 8.1465 12.4415 1.1461 

Grand Total 0.4101 2.4561 191.1951 126.6037 0.8530 
 

Nepal showed an overall correlation coefficient of 0.4131, Tanzania showed an overall 

correlation coefficient of 0.3839, and the Dominican Republic showed an overall correlation 

coefficient of 0.4447.   

The mean difference values varied between months and between countries. In Nepal, the 

months with the mean difference closest to one were the months of neither high nor low 

traditional flows. In Tanzania, the months with the mean difference closest to one were the 

months of April, January and February. These months are near the end of the high flow season. 

In the Dominican Republic, the smallest mean difference values occurred during the months of 

April and May, which mark the beginnings of the high flow season.  

From this analysis, we can see that worldwide the modeled historical streamflow (MHS) 

data is positively correlated with the observed values with an average correlation coefficient of 

0.41. The mean difference values for all three countries show that, on average, the MHS is under 

predicting the actual flow by a factor of 2.46. This means that the MHS data is modeling around 

half of the actual flow on a global scale. Some stations, such as Chimala in Tanzania show the 

opposite result, that the MHS data is over predicting, sometimes twice as much as the observed 
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flow. This over-prediction by the MHS, while not standard throughout the world, could be a 

result of dams on the river reaches, something that the RAPID routing procedure does not 

account for. In the case of Chimala, this discrepancy is a result of the MHS data not being 

available at the exact site of the observed data, but rather further downstream. These over-

predicted streams must then be calibrated in the RAPID model, in order to correctly estimate the 

statistical tests for the stream reaches.   

 Error Tests 

The error analysis for the different stations show the relationship between the different 

error metrics and the variance of the mean difference. The RMSE and the RMSLE were both low 

for the three countries, while the Nash-Sutcliffe efficiency was found to be negative for all three 

countries on average. These negative values for the Nash-Sutcliffe efficiency could be due to the 

small variance in the data for all three countries, but also indicate that there are errors in the 

model. Table 3-2 summarizes the error analysis for Nepal.  

Table 3-2: Error Summary for Nepal 

Station Variance RMSE RMSLE 
Nash-Sutcliffe 

Efficiency 
Asaraghat 0.2817 7.2069 0.0143 -5.0404 

Babai 0.3800 2.6620 0.0589 -3.5777 
Bheri 0.2636 11.2160 0.0450 -31.1788 

Kaligandaki 0.2996 8.7285 0.0274 -9.8843 
Kamali 0.2433 18.4823 0.0152 -2.9693 
Kankai 0.4782 1.4437 0.0179 -1.2034 

Marsyangdi 0.3848 4.5470 0.0298 -18.6078 
Narayani 0.2311 24.2055 0.0209 -7.4208 

Rapti 0.3445 3.5240 0.0300 -1.4779 
Saptakosi 0.1435 17.3572 0.0107 -1.6789 

Seti 0.3652 13.8719 0.1050 -18.8570 
Tinaukhola 4.1601 7.3230 0.0634 -0.2429 

Total Average 0.6313 10.0473 0.0365 -8.5116 
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The average RMSE for Nepal was 10.0473, with a RMSLE of 0.0365. The Nash-

Sutcliffe efficiency for Nepal was -8.5116; implying that variance in the mean difference is 

smaller than the variance of the observed data. In other words, when the Nash-Sutcliffe 

efficiency is negative, we can conclude that there are large differences between the predicted and 

observed flows. Table 3-3 summarizes the error statistics for the Dominican Republic. 

Table 3-3: Error Analysis for the Dominican Republic 

Station Variance RMSE RMSLE 
Nash-Sutcliffe 

Efficiency 
Cacique 0.5191 0.0869 0.0283 -0.0792 

Camu Bayacanes 1.2695 0.1682 0.0608 -1.9039 
Cenovi 0.5384 1.4096 0.4298 -15.7397 

Guazumal 1.1852 1.1853 0.0618 -1.9821 
Jinamagao 0.2970 1.3047 0.4147 -28.1913 
Manabao 0.2713 1.9932 0.4286 -22.1422 

Pinar Quemado 0.4900 19.2785 0.4149 -3.6382 
Puente San Rafael 1.3974 0.0538 0.0577 -0.1401 

Santa Ana 0.5191 0.0869 0.0283 -0.0792 
Cacique 1.2695 0.1682 0.0608 -1.9039 

Camu Bayacanes 0.5384 1.4096 0.4298 -15.7397 
Cenovi 1.1852 1.1853 0.0618 -1.9821 

Total Average 0.7460 3.1850 0.2371 -9.2271 
 

This table shows the same trends as in Nepal for the different error statistics. The RMSE 

and RMSLE were both quite low, with a negative efficiency coefficient. The difference between 

the RMSE and RMSLE between Nepal and the Dominican Republic is due to the difference in 

flow between the two regions.  To compare these metrics between the different regions, they 

must first be normalized by maximum flow.  Table 3-4 summarizes the error statistics for 

Tanzania. 

  



36 
 

Table 3-4: Error Analysis for Tanzania 

Station Variance RMSE RMSLE 
Nash-Sutcliffe 

Efficiency 
Chimala at Chitakelo 1.2683 0.2013 0.0825 -3.9336 

Igawa 0.2660 0.4686 0.0277 -2.8317 
Ihimbu 0.7005 0.6483 0.0569 -8.0842 
Ilongo 0.9786 0.2263 0.0490 -2.1382 

Ipatagwa 1.5920 0.1303 0.0882 -3.7825 
Kimani 0.3849 0.1993 0.0275 -1.1565 

Mawande 0.7004 0.5236 0.0387 -1.1329 
Msembe 2.6170 3.7412 0.1614 -3.7779 
Mswisi 2.5617 0.1422 0.1024 -3.8806 

Mtandika 1.0073 0.8285 0.0982 -61.5474 
Mtitu 1.0860 0.1370 0.0871 -51.3613 

Ndiuka 0.5912 0.5697 0.0511 -9.8578 
Total Average 1.1461 0.6513 0.0726 -12.7904 

 
The Tanzania stations showed similar values for the error statistics as those in the 

Dominican Republic and Nepal. The RMSE and RMSLE were the lowest in Tanzania, while the 

Nash-Sutcliffe efficiency was the most negative. The overall negative values of the Nash-

Sutcliffe efficiency indicate that there are differences between the predicted and observed values. 

However, the efficiency coefficient is sensitive to extreme values, and works best if the variance 

in the data is large. The low variance for the stations may explain the negative efficiency 

coefficients.  

From these statistical analysis, the RMSE and RMSLE shown to be the most accurate tests 

for this data. The Nash-Sutcliffe efficiency does not perform as well for this dataset, due to the 

small variance in the data. Both the RMSE and RMSLE can be used to determine the overall 

error between the MHS data and the observed data.  
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 Timing Tests 

The R2 analysis and spectral angle coefficient analysis for Nepal and Tanzania showed no 

overall trends for the countries with respect to time lag. Table 3-5 summarizes the maximum R2 

coefficient, the maximum spectral angle coefficient and the respective time lags for the 

maximum coefficients for each station in Nepal. Each time lag is equal to a period of six hours.  

Table 3-5: R2 and Spectral Angle Analysis for Nepal 

Station 
R2 

Coefficient 

Number of 
Time Lags  

(R2) 

Spectral 
Angle 

Coefficient 

Number of 
Time Lags 

(Spectral Angle) 
Asaraghat 0.4710 3 0.8215 3 

Babai 0.1387 5 0.4888 5 
Bheri 0.5422 10 0.8301 10 

Kaligandaki 0.5134 6 0.8114 6 
Kamali 0.5703 10 0.8534 10 
Kankai 0.2153 2 0.5483 2 

Marsyangdi 0.3638 1 0.7308 1 
Narayani 0.5161 5 0.8196 5 

Rapti 0.2261 7 0.5686 7 
Saptakosi 0.6340 9 0.8845 9 

Seti 0.4935 2 0.7892 2 
Tinaukhola 0.0199 16 0.2418 16 

Total Average 0.3920 6.3333 0.6990 6.3333 
 

The R2 coefficient for the Nepal stations ranged from 0.0199 to 0.6340, with an average 

value of 0.3920. Each station’s R2 increased as the time series was shifted, with an average time 

shift of 6.333 lag steps, or 38 hours. The spectral angle coefficient for Nepal stations ranged 

from 0.2418 to 0.8845, with an average value of 0.6990. The time steps for the R2 values match 

those for the spectral angle coefficients.  
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Table 3-6 summarizes the same analysis for the stations in the Dominican Republic 

where sufficient data was provided.  

Table 3-6: R2 and Spectral Angle Coefficients for the Dominican Republic 

Station 
R2 

Coefficient 

Number of 
Time Lags 

(R2) 

Spectral 
Angle 

Coefficient 

Number of 
Time Lags 

(Spectral Angle) 
Cacique 0.0882 4 0.4774 4 

Camu Bayacanes 0.1452 -3 0.4737 -3 
Cenovi 0.0910 -2 0.5885 -2 

Guazumal 0.1487 -1 0.6627 -1 
Jinamagao 0.1200 2 0.5017 2 
Manabao 0.2485 -1 0.7574 -1 

Pinar Quemado 0.4384 0 0.8274 0 
Puente San Rafael 0.2776 -1 0.7308 0 

Santa Ana 0.0156 0 0.2262 0 
Cacique 0.0882 4 0.4774 4 

Camu Bayacanes 0.1452 -3 0.4737 -3 
Cenovi 0.0910 -2 0.5885 -2 

Total Average 0.1748 -0.2222 0.5829 -0.1111 
 
For the stations in the Dominican Republic, the R2 values were significantly lower than 

for Nepal. The R2 values ranged from 0.0156 to 0.43842, with an average value of 0.1748. Five 

of the nine stations were shifted, one being back-shifted 3 time steps, or 18 hours. This 

backwards shift implies that the data for Camu Bayacanes is predicting flow events after they 

actually happen. Positive lag times signify that the MHS data is predicting events before they 

actually happen. The maximum spectral angle coefficient for the Dominican Republic ranged 

from 0.2262 to 0.8274, with an average value of 0.5829. This is lower than the maximum values 

for Nepal.   
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Table 3-7 summarizes the same analysis for Tanzania, and shows similar results to the 

earlier tables for Nepal and the Dominican Republic.  

Table 3-7: R2 and Spectral Angle Coefficients for Tanzania 

Station 
R2 

Coefficient 

Number of 
Time Lags 

(R2) 

Spectral 
Angle 

Coefficient 

Number of 
Time Lags 

(Spectral Angle) 
Chimala at Chitakelo 0.0692 0 0.5440 0 

Igawa 0.1826 0 0.5448 6 
Ihimbu 0.1546 0 0.5735 0 
Ilongo 0.1961 0 0.5880 11 

Ipatagwa 0.2278 11 0.5914 0 
Kimani 0.1160 0 0.6184 0 

Mawande 0.2579 0 0.6537 0 
Msembe 0.2472 0 0.6589 0 
Mswisi 0.3376 0 0.6794 0 

Mtandika 0.3179 0 0.6900 0 
Mtitu 0.3925 0 0.7365 0 

Ndiuka 0.3853 6 0.7735 0 
Total Average 0.2404 1.4167 0.6377 1.4167 

 

The R2 values for the Tanzania stations were slightly lower than those from Nepal, but 

higher than those from the Dominican Republic. The R2 values ranged from 0.0692 to 0.3925, 

with an average value of 0.2404. Only two of the twelve stations required any shift for a 

maximum R2 coefficient value or maximum spectral angle coefficient, with the maximum of 11 

time steps, or 66 hours. The spectral angle coefficients for the Tanzania stations were slightly 

higher than those from Nepal, and significantly higher than those from the Dominican Republic. 

The spectral angle coefficient values ranged from 0.5440 to 0.7735, with an average value of 

0.6377. The comparison between the Tanzania, Dominican Republic, and Nepal R2 values is 

shown in Figure 3-4.  
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Figure 3-4: Comparison of R2 values for the Dominican Republic, Nepal and Tanzania. 

This graph better illustrates the general spread of R2 values for Nepal, and the close 

clumping of R2 values for the Tanzania stations. The low values for the Dominican Republic, and 

the spread of the time lags for the three regions are also shown here. Nepal showed the largest 

range of time lags, ranging from one time lag to 30, or a time shift of six hours to several days, 

while the maximum values of R2 values for Tanzania mainly occurred at zero time lag, indicating 

no time shift was necessary in order to calculate the maximum R2 value.  Figure 3-5 below 

summarizes the spread and similarity between the spectral angle coefficients for the Dominican 

Republic, Nepal and Tanzania. 
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Figure 3-5: Spectral angle coefficients for the Dominican Republic, Nepal and Tanzania. 

This graph illustrates the similarity of spectral angle coefficients for the stations in Nepal 

and Tanzania, as well as the low values for the Dominican Republic. Both Nepal and Tanzania 

showed few outliers, with the majority of the maximums occurring with minimal time lag 

correction. However, the maximum values for the spectral angle coefficients occurred with some 

time lag in Nepal, with a few outliers around 10 or 16 time steps.   The negative values of time 

steps in the Dominican Republic indicate that the model is too slow, and must be sped up for 

optimal spectral angle coefficients. Figure 3-6 shows the relationship between the R2 coefficient 

and the spectral angle coefficient for both countries.  
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Figure 3-6: R2 and spectral angle coefficient comparison. 

 Figure 3-6 defines the positive correlation between the R2 values and the spectral angle 

coefficients. Generally, as the R2 values increase, so do the spectral angle coefficients. The R2 

value for the correlation is 0.7941, or a very high correlation between the two coefficients.  The 

correlation between the spectral angle and R2 values for Tanzania is a little higher than average, 

however the overall values of both the R2 values and the spectral angle coefficients imply that the 

MHS data is predicting the shape of flow events well over the course of the 35-year period, if not 

predicting the exact magnitude. The higher spectral angle coefficients support this conclusion as 

the spectral angle measures the overall direction of the data, rather than the absolute difference 

between data points.  
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 MHS Analysis Results 

Table 3-8 summarizes the error metrics for each of the three countries, as well as the 

perfect measure of error. The RMSE and RMSLE were both normalized by dividing by the 

observed flow to allow the metrics to be compared between countries.  

Table 3-8: Overall Summary of Error 

 Nepal Dominican 
Republic Tanzania Average 

Results Perfect 

Observed Flow 492.74 13.45 191.20 232.46 - 
Predicted Flow 322.43 4.11 126.60 151.05 - 

RMSE 10.05 3.19 0.65 4.63 0.00 
RMSLE 0.04 0.24 0.07 0.12 0.00 

Normalized 
RMSE 2% 24% 0.3% 9% 0% 

Normalized 
RMSLE 0.2% 9.4% 0.6% 3% 0% 

NSE -8.51 -9.23 -12.79 -10.18 1.00 
Correlation 
Coefficient 0.41 0.45 0.41 0.42 1.00 

Mean Difference 1.75 3.73 2.46 2.65 1.00 
R2 0.39 0.17 0.24 0.27 1.00 

Time Lag 
Difference 37.98 -1.33 8.50 15.05 0.00 

Spectral Angle 0.70 0.58 0.64 0.64 1.00 
Time Lag 
Difference 38.00 -0.67 8.50 15.28 0.00 

 

From these overall values, the errors were normalized and then color-coded to determine 

the overall performance of the MHS data in the three countries. The red cells indicate the metrics 

with the highest normalized error, while the green cells indicate the metrics with low normalized 

error.  These values are summarized in Table 3-9.  
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Table 3-9: Color-Coded Error Summary 

  Nepal 
Dominican 
Republic Tanzania 

Observed Flow 492.74 13.45 191.20 
Predicted Flow 322.43 4.11 126.60 

Normalized RMSE 0.09 1.00 0.01 
Normalized RMSLE 0.02 1.00 0.06 

NSE 0.69 0.74 1.00 
Correlation 
Coefficient 0.99 0.94 1.00 

Mean Difference 0.27 1.00 0.53 
R2 0.74 1.00 0.92 

Time Lag Difference 1.00 0.04 0.22 
Spectral Angle 0.72 1.00 0.87 

Time Lag Difference 1.00 0.02 0.22 
 

From Table 3-9, we can see that the Dominican Republic had the most error, while 

Tanzania had very low error. This error summary can be used to determine the overall accuracy 

of the MHS data, as well as help researchers determine the type of errors present in the data for 

the specific regions. The high error for the time lag difference, as well as the high error for 

correlation coefficient indicate that timing errors exist for the Nepal stations. The high errors for 

RMSE and RMSLE for the Dominican Republic, paired with high errors in the R2 and spectral 

angle coefficients indicate that the magnitude and timing of events need to be calibrated for those 

stations. The overall low error for Tanzania indicate that the MHS data accurately predicted both 

overall events, as well as correct magnitude and timing of individual events.  

 Generalized Application Results 

By calculating the metrics for each of the synthetic hydrographs, trends in the results and 

the metrics themselves can be determined. Table 0-7 in Appendix A. shows the summary for the 

different hydrographs, as well as the resulting error for the metric normalized by the maximum 
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error for the metric. A value of 1.0 signifies that the hydrograph had the largest error for that 

metric, while a value of zero signifies that there was no error for that metric. The results are also 

color-coded from low error (red) to high error (green) to better identify trends in both the metrics 

and hydrographs. The green cells indicate which metrics calculated significant error for each 

hydrograph, while the red cells indicate the metrics that calculated very little error for the 

different hydrographs.  From this table, it can be determined that a hydrograph that is over 

predicted, with shift, noise and outliers has the largest error metrics, while hydrographs that are 

simply over or under predicted have the smallest error metrics. The R2 metric and the correlation 

coefficient had the largest variance in errors, ranging from no error in the hydrographs that were 

only scaled to an error of 0.032 in the hydrograph with over prediction, shift, outliers, and noise.  

 The hydrographs without timing shifts had lower total errors than the hydrographs with 

timing shifts. Even the hydrographs with over or under prediction, noise, and outliers had less 

total error than the hydrographs with only a timing shift. The exception to this was the mean 

error metric, which showed the smallest error for the hydrograph with over prediction, time shift, 

noise and outliers, and the largest error for the hydrographs that were under predicted with noise 

and outliers.   

 From these results, specific metrics can be seen to be the most useful for different types 

of hydrographs. For hydrographs without timing shifts, all the metrics showed low error. 

Specifically, the R2 metric and the correlation coefficient showed very low error. For 

hydrographs with timing shifts, the spectral angle metric showed the lowest error. The Nash-

Sutcliffe efficiency also showed low error for hydrographs with timing shifts.  

 In conclusion, hydrographs without timing errors can be described using any of the 

metrics discussed here. The spectral angle metric is best used with hydrographs with timing 
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errors, but overall performance is similar for all hydrographs. The Nash-Sutcliffe Efficiency and 

correlation coefficient are also appropriate for all hydrographs. The R2 metric is best used with 

hydrographs without any timing shifts but can be used with hydrographs with outliers and noise 

as well.  

 MHS Analysis Package 

The Python library created for this analysis performs the statistical analysis for any given 

station, based on the SPT data and the observed data at the station. The merged .csv file is used 

as an input for the Python library, and a .csv file with the results for the station is given as an 

output. The Python library conducts the paired t-test and correlation tests, error tests, lag 

analysis, as well as generates a graph of the average predicted and observed stream flows by 

month.  

The graphical representation of the observed and predicted flows by month, such as the 

comparison shown in Figure 3-7 gives a first impression of the accuracy of the data on a monthly 

basis.   

 
Figure 3-7: Example of visual representation of flows generated by Python script. 
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The statistical analysis library also generates a summary file for all stations analyzed, where 

researchers can inspect specific statistics and stations to better understand the accuracy of the 

MHS data.  
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4 STATISTICAL ANALYSIS CASE STUDY 

Appropriately using statistical analysis to compare two datasets is a challenging topic for 

those who have not exclusively studied statistics. In this case study, the modeled historic 

streamflow (MHS) data for three stations chosen at random in Nepal was analyzed to determine 

the validity of using the MHS data as a surrogate for observed data for the region.  The stations 

chosen were Saptakosi, Bheri, and Marsyangdi. The three stations are shown in Figure 4-1.  

 

 
Figure 4-1: Station location in Nepal. 

The data was analyzed first using visual analysis, then using error metrics associated with 

distribution and population differences.  The results were then summarized to determine if the 

MHS data could be used as a surrogate for observed data where observed data does not exist in 

Nepal.  
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 Visual Analysis 

The first step in statistical analysis is always to plot the data and analyze it visually.  Figure 

4-2 shows the predicted and observed flows for Saptakosi for the entire 35-year historical period.   

 

Figure 4-2: Predicted and observed flows for Saptakosi for the 35-year historical period. 

Figure 4-2 shows the daily streamflow value for both the predicted and observed datasets.  

From this figure, some outliers and over prediction for the MHS dataset can be seen, however it 

is difficult to view any specific trends in the data.  To better understand the trends in the data, the 

35-year dataset is then summarized by month to generate an average yearly hydrograph for the 

station. Figure 4-3, Figure 4-4, and Figure 4-5 show the difference between the observed flow 

and the flow from the MHS, or predicted data on a monthly basis.   
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Figure 4-3: Observed vs. predicted flow for Station Marsyangdi, Nepal 

 
Figure 4-4: Observed vs. predicted flow for Station Saptakosi, Nepal. 
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Figure 4-5: Observed vs. predicted flow for Station Bheri, Nepal. 

From these figures, the difference between the observed data, and the MHS predicted flow 

can be seen.  For all three stations, the MHS data under predicted the flow.  Saptakosi had the 

best correlation between the two datasets, while Bheri and Marsyangdi both were under 

predicted, but both showed similar timing trends.  To better understand the relationship and error 

between the MHS and observed flow, error metrics must be calculated.  

 Distribution Tests 

To determine the accuracy of the MHS data, the error metrics related to the distribution of 

the two datasets must be calculated.  The different error metrics vary as the magnitude of the 

predicted flow changes, or if there exists any timing error.  These effects are summarized in the 

following sections.  

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12

Fl
ow

 (c
m

s)

Month

Observed vs. Predicted

Observed Flow Predicted Flow



52 
 

4.2.1 Effects of Magnitude and Timing Change 

To first quantify the effect of magnitude change on distribution metrics, synthetic 

hydrographs were used to simulate different levels of magnitude change.  These synthetic 

hydrographs were generated as variations of a basic sine wave to simulate the basic trends found 

in hydrographs such as noise, weighted noise, outliers, over and under prediction, time shifts, 

and combinations of these trends.  To determine the effect of magnitude shifts, the magnitude of 

over and under prediction was varied at ±50% to simulate different levels of under and over 

prediction.  Figure 4-6, Figure 4-7, Figure 4-8, Figure 4-9, Figure 4-10, and Figure 4-11 show the 

effects of magnitude on specific error metrics.  

 
Figure 4-6: Change in RMSE with magnitude change. 
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Figure 4-7: Change in RMSLE with magnitude change. 

 
Figure 4-8: Change in correlation coefficient with magnitude change. 
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Figure 4-9: Change in Nash-Sutcliffe Efficiency with magnitude change. 

 
Figure 4-10: Change in spectral angle coefficient with magnitude change. 
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and under prediction factors increase, with the lowest errors occurring when the over and under 

prediction factor is at a minimum.  The correlation coefficient and spectral angle coefficients 

showed little to no variation in error, even as the over and under prediction factor changed from -

50% to 50%.  From this analysis, researchers can see that the effects of magnitude shifts are best 

shown by the RMSE, RMSLE, and NSE.  

To quantify the effect of timing change on distribution metrics, the same synthetic 

hydrographs were used to simulate different levels of timing shift. Figure 4-11, Figure 4-12, and 

Figure 4-13 show the changes in the different error metrics as the timing shift magnitude was 

changed between -10 days and +10 days while holding the other factors constant.  

 
Figure 4-11: Change in correlation coefficient with timing shift. 
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Figure 4-12: Change in spectral angle coefficient with timing shift. 

 
Figure 4-13: Change in R2 with timing shift. 

These figures show that for different levels of timing shift, such as those shown in the 

visual analysis, the correlation coefficient, R2 coefficient, and the spectral angle coefficient react 

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

- 1 5 - 1 0 - 5 0 5 1 0 1 5

ER
R

O
R

SCALE FACTOR

SPECTRAL ANGLE
Over predict with noise Under predict with shift

Under predict with noise and shift Over predict with noise and shift

Under predict with weighted noise and shift Over predict with weighted noise and shift

Under predict with shift, noise, and outliers Over predict with shift, noise and outliers

0.965
0.97

0.975
0.98

0.985
0.99

0.995
1

1.005

- 1 5 - 1 0 - 5 0 5 1 0 1 5

ER
R

O
R

SCALE FACTOR

R2

Under predict with noise Over predict with noise

Under predict with shift Under predict with noise and shift

Over predict with noise and shift Under predict with weighted noise and shift

Over predict with weighted noise and shift Under predict with shift, noise, and outliers

Over predict with shift, noise and outliers



57 
 

to the change in timing shift, however the magnitude of these changes is very small.  The RMSE, 

RMSLE, and NSE showed no change in error as the timing shift changed.  

4.2.2 Results 

Based on the results from changing the magnitude and timing, specific metrics were 

shown to be more effective than others when it comes to timing and magnitude changes.  The 

anomaly correlation coefficient, RMSE, RMSLE, and Nash-Sutcliffe Efficiency were calculated 

for the three stations on both a monthly and yearly basis.  The monthly values were calculated by 

subdividing the data into monthly increments, while the yearly value was calculated using the 

full datasets. Table 4-1,  

Table 4-2, and Table 4-3 summarize the error metrics based on distribution for the three 

stations. 

Table 4-1: Metrics Summary for Marsyangdi, Nepal 

Month Observed 
Flow 

Predicted 
Flow Correlation RMSE RMSLE 

Nash-Sutcliffe 
Efficiency 

January 50.989 22.319 0.250 1.010 0.030 -43.049 
February 44.876 25.560 -0.052 0.776 0.023 -23.188 

March 44.420 33.292 0.143 0.919 0.023 -16.439 
April 53.754 32.704 0.188 1.098 0.026 -13.458 
May 87.215 46.952 0.377 1.778 0.027 -4.830 
June 217.098 110.481 0.499 5.244 0.031 -2.856 
July 547.681 239.650 0.207 12.490 0.033 -8.085 

August 655.973 269.912 0.266 14.443 0.033 -16.245 
September 429.553 188.057 0.435 9.253 0.031 -7.566 

October 179.540 71.813 0.451 4.076 0.033 -10.150 
November 96.412 37.374 0.393 2.101 0.033 -26.366 
December 64.955 25.669 0.281 1.376 0.032 -51.062 

Yearly 129.439 61.910 0.812 1.343 0.009 0.052 
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Table 4-2: Metrics Summary for Saptakosi, Nepal 

Month Observed 
Flow 

Predicted 
Flow Correlation RMSE RMSLE 

Nash-Sutcliffe 
Efficiency 

January 377.255 299.771 0.433 2.622 0.008 -3.195 
February 329.465 276.956 0.390 2.373 0.008 -2.358 

March 328.017 287.843 0.435 2.840 0.009 -2.527 
April 400.235 436.944 0.563 5.791 0.011 -2.534 
May 668.020 780.399 0.478 11.646 0.014 -0.855 
June 1636.301 1253.126 0.525 25.078 0.016 -0.447 
July 3770.640 2816.260 0.424 55.166 0.016 -3.185 

August 4257.869 3317.010 0.398 48.739 0.012 -1.970 
September 3248.639 2719.062 0.644 30.440 0.009 -0.358 

October 1491.013 1321.225 0.751 13.799 0.008 0.047 
November 774.756 609.332 0.799 5.850 0.008 -0.692 
December 502.272 384.242 0.633 3.942 0.009 -2.073 

Yearly 941.774 804.642 0.917 4.955 0.003 0.805 
 

Table 4-3: Metrics summary for Bheri, Nepal 

Month Observed 
Flow 

Predicted 
Flow Correlation RMSE RMSLE 

Nash-Sutcliffe 
Efficiency 

January 92.436 57.943 0.454 3.270 0.043 -72.083 
February 83.719 55.459 0.489 2.428 0.037 -71.900 

March 78.933 55.319 0.384 2.157 0.034 -64.673 
April 83.362 64.471 0.259 4.241 0.054 -81.034 
May 102.265 51.283 0.402 3.797 0.056 -15.578 
June 177.610 89.422 0.750 12.500 0.066 -2.038 
July 660.108 397.785 0.586 25.658 0.045 -0.794 

August 1071.834 579.767 0.183 36.900 0.047 -5.841 
September 634.971 424.802 0.586 25.649 0.040 -1.047 

October 283.168 155.720 0.732 11.250 0.049 -2.640 
November 143.241 91.415 0.302 3.859 0.034 -11.939 
December 107.073 65.648 0.146 2.884 0.034 -44.579 

Yearly 196.819 119.480 0.867 3.576 0.013 0.433 
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From these tables, the accuracy of the MHS data can be determined based on distribution 

metrics.  All three stations had typical values of error for the metrics calculated.  Bheri had the 

highest correlation coefficient, while Saptakosi had the lowest RMSE error.  All three stations 

had very low RMSLE and Nash-Sutcliffe Efficiency errors on a yearly basis.  For the individual 

months, the Nash-Sutcliffe efficiency error was very large, especially for the months outside of 

the high flow season.  However, the error for all three metrics was less for the yearly value.  This 

trend occurs because the data was not subdivided for the yearly calculation, allowing the metric 

to account for falling and rising limbs of the hydrograph that would otherwise be cut out of the 

monthly increment. This trend between the monthly and the yearly values justify calculating the 

metrics on both a monthly and yearly basis, to better understand any trends or errors in the data.   

 Population Metrics 

To determine the accuracy of the MHS data based on population metrics, the mean 

difference and mean variance were calculated both per month, and for the total dataset.  These 

population metrics were used to discount the effects of timing changes from the MHS data 

compared to the observed data points.  The population metrics also help researchers to 

understand how the population of the predicted flow compares to the population of the observed 

flow. Table 4-4, Table 4-5, and Table 4-6 summarize the results from the population metric tests 

for the three stations.  
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Table 4-4: Population Metrics Summary for Marsyangdi, Nepal 

Month Observed 
Flow 

Predicted 
Flow 

Mean 
Difference 

Mean 
Variance 

January 50.989 22.319 1.617 0.110 
February 44.876 25.560 1.527 0.083 

March 44.420 33.292 1.461 0.180 
April 53.754 32.704 1.387 0.573 
May 87.215 46.952 2.079 0.317 
June 217.098 110.481 2.297 0.860 
July 547.681 239.650 1.685 0.352 

August 655.973 269.912 1.871 0.285 
September 429.553 188.057 1.511 0.227 

October 179.540 71.813 1.835 0.097 
November 96.412 37.374 1.569 0.035 
December 64.955 25.669 1.638 0.044 

Yearly 129.439 61.910 1.705 0.292 
 

Table 4-5: Population Metrics Summary for Saptakosi, Nepal 

Month 
Observed 

Flow 
Predicted 

Flow 
Mean 

Difference 
Mean 

Variance 
January 377.255 299.771 1.267 0.062 
February 329.465 276.956 1.194 0.059 

March 328.017 287.843 1.150 0.112 
April 400.235 436.944 0.934 0.211 
May 668.020 780.399 0.868 0.283 
June 1636.301 1253.126 1.318 0.309 
July 3770.640 2816.260 1.360 0.273 

August 4257.869 3317.010 1.291 0.157 
September 3248.639 2719.062 1.200 0.100 

October 1491.013 1321.225 1.136 0.093 
November 774.756 609.332 1.275 0.032 
December 502.272 384.242 1.309 0.030 

Yearly 941.774 804.642 1.176 0.163 
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Table 4-6: Population Metrics Summary for Bheri, Nepal 

Month 
Observed 

Flow 
Predicted 

Flow 
Mean 

Difference 
Mean 

Variance 
January 92.436 57.943 1.617 0.110 
February 83.719 55.459 1.527 0.083 

March 78.933 55.319 1.461 0.180 
April 83.362 64.471 1.387 0.573 
May 102.265 51.283 2.079 0.317 
June 177.610 89.422 2.297 0.860 
July 660.108 397.785 1.685 0.352 

August 1071.834 579.767 1.871 0.285 
September 634.971 424.802 1.511 0.227 

October 283.168 155.720 1.835 0.097 
November 143.241 91.415 1.569 0.035 
December 107.073 65.648 1.638 0.044 

Yearly 196.819 119.480 1.705 0.292 
 
The mean difference and mean variance for the three stations were very small.  Each 

station had a different value for mean difference.  Overall, the mean difference was greater than 

one, signifying that the MHS data consistently under predicted the flow for the station. However, 

the error for the mean difference was the smallest during the high flow months.  The small values 

for mean variance signify that there is very little variation between the values of mean difference 

for the two datasets.  The same trend in the yearly values of the distribution metrics occurred for 

the population metrics.  Taking the metric of the full dataset avoids cutting off the rising and 

falling limbs of the hydrograph as they fall on monthly division lines.  

 Timing Tests 

To account for the change in shape of the MHS data, and to determine the effect of any 

timing changes, the R2 and spectral angle coefficient were calculated for the data.  The results for 

the three stations are summarized in Table 4-7. 
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Table 4-7: Timing Metrics Summary for Nepal Stations 

Error Metric Marsyangdi Saptakosi Bheri 

R2 0.364 0.634 0.542 
Correlation Coefficient 0.812 0.917 0.867 

Spectral Angle 
Coefficient 0.731 0.884 0.830 

 

This table shows that although the three stations had low R2 coefficients, the correlation 

coefficients and spectral angle coefficients were very high.  This shows that the MHS dataset had 

a very similar shape to the observed data, even if the timing of the events was inaccurate, or if 

the base flow for the stream reach was inaccurate.  

 Summary 

The MHS data is an appropriate model for streamflow data in the Nepal watersheds 

analyzed.  While the ultimate decision on how to use the model lies with the individual agencies, 

the values of the error metrics can be used to determine the next steps in model calibration.  

Understanding the values of the different error metrics allows users to determine the next step in 

using the MHS data.  

  The high values of spectral angle coefficient prove that the MHS data retains a similar 

shape to the observed data for the entire dataset.  The distribution metrics show that the MHS 

data is accurate overall, but especially during the high flow months.  The error is larger during 

the months of little flow.  The mean difference for the three stations also support this conclusion, 

as the mean difference measures the error between the two time-series on a population basis, not 

on a timing basis.  The mean difference also shows that the MHS data is under predicted for each 
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of the stations, which could be used to better calibrate the ERA-Interim data to improve the base 

flow in each stream reach.   

To fully interpret the results of the statistical analysis, all the metrics must be used.  Using 

one metric does not fully explain the trends and errors in the data.  For example, a high spectral 

angle may indicate a good shape match, however if the R2 coefficient is very low, that indicates a 

low overall match in the data.  By using a combination of distribution, population and timing 

metrics, researchers can have a complete understanding of any errors in the data, and how to 

better calibrate the data.  
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5 CONCLUSION 

The modeled historical streamflow (MHS) data model has the potential to be used worldwide 

as a surrogate for historical data where no observations exist. The data can be analyzed using 

correlation, error, and timing tests to define the accuracy and appropriateness of the MHS data 

when compared to observed data. By comparing the MHS and the observed data at different 

stations worldwide, researchers can better understand the overall accuracy and any bias of the 

MHS data. These tests can be performed quickly and easily at distinct stations, and researchers 

can then identify the specific tests that will help define the appropriateness of using the MHS 

data as a surrogate historical dataset.  

The different metrics were calculated on both a monthly and yearly basis.  The monthly 

values were calculated by subdividing the overall dataset into specific months, and then 

calculating the metric on the data values.  This was done to identify any seasonal trends within 

the separate months, as well as allow researchers to identify the different high and low flows for 

each country.  The yearly metrics were calculated on the entire dataset, which resulted in lower 

error for the different metrics.  The yearly metrics resulted in lower error, as the data was not 

subdivided, meaning that the different metrics were able to capture the entire hydrographs of 

events.  

Certain metrics are sensitive to different trends in the data.  The RMSE, RMSLE, and NSE 

are all sensitive to changes in over and under prediction.  The correlation coefficient, R2 
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coefficient and spectral angle coefficients are relatively immune to changes in magnitude, while 

being slightly sensitive to shifts in timing.  Understanding these trends, and other trends allows 

researchers to understand when to use specific metrics, as well as interpret the results from the 

different metrics.  

The ultimate decision of whether to use the MHS data as a surrogate or not lies with the 

individual regions and agencies, however these error metrics can be used to determine whether 

the MHS data is accurate enough for the specific regions.  For example, the data had correlation 

coefficients ranging from -0.6594 to 0.5751 worldwide, with mean differences ranging from 

0.00115 to 17.8446.  The MHS data was most accurate in Tanzania, with the lowest overall 

values of error. Overall, the MHS data had a RMSE error from 0.0071 to 74.8256.  Different 

agencies may have distinct cutoffs and thresholds for these common types of metrics, which 

determine whether the model has performed well or poorly, however multiple metrics should be 

used to give a complete picture of the correlation in the datasets.  

The statistical methods discussed in this thesis, along with other metrics, will be made 

available as a web application hosted on the Tethys development platform.  This web application 

will allow countries and regions to upload their own observational data, access the MHS data 

from the SPT, and conduct the statistical analysis necessary to determine the overall accuracy of 

the MHS data for the region.  This application will include the four analysis methods discussed 

in this thesis; visual, distribution, population, and timing tests.  The metrics available through the 

application will include the metrics discussed in this thesis, as well as other metrics found in 

research and industry.  

Using this statistical analysis method, the next step in the research would be change the MHS 

data by calibrating the RAPID model. This calibration of the RAPID model would correct the 
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errors defined by the error metrics, such as minimize the mean difference, maximize the spectral 

angle coefficient, and minimize the RMSE value. The calibration of the RAPID model would 

also correct for any bias in the MHS data due to timing errors or shifts. Further research could be 

done to analyze the 15-day forecasts produced by the MHS, and determine the forecast skill, as 

well as the significance in terms of flood events.  

 In conclusion, statistical analysis can be used to determine the accuracy of the MHS data 

as compared to observed data worldwide.  The different metrics describe different trends and 

errors between the two datasets and using multiple metrics can give a better description of the 

data rather than using a single metric.  Some metrics, such as the RMSE, RMSLE and NSE 

describe changes in magnitude in the distribution of the datasets, while others such as the 

correlation coefficient, R2 coefficient and spectral angle coefficient describe any timing errors 

within the dataset.  Researchers and users of the statistical analysis methods described here 

should calculate multiple metrics to best understand the data. The statistical analysis should also 

be done for each individual region, before agencies determine how to use the MHS data in the 

region.  Once these metrics have been calculated, the MHS data can then be used to better 

understand streamflow trends throughout the individual regions.  
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Table 0-1: Correlation Coefficient Summary for Nepal 

Station Jan Feb March April May June July Aug Sept Oct Nov Dec 
Yearly 

Correlation 
Asaraghat 0.5199 0.4444 0.4016 0.6880 0.3931 0.4828 0.4934 0.2669 0.5427 0.6040 0.5474 0.6347 0.8240 

Babai 0.1933 0.5686 0.2295 0.3292 0.6055 0.7635 0.4160 0.2837 0.3736 0.5123 0.3770 0.4307 0.8406 
Bheri 0.4536 0.4892 0.3837 0.2586 0.4017 0.7501 0.5859 0.1833 0.5861 0.7316 0.3022 0.1463 0.8675 

Kaligandaki 0.5483 0.4396 0.1879 0.3424 0.4724 0.7089 0.4931 0.5085 0.5716 0.6662 0.5516 0.5414 0.8674 
Kamali 0.4343 0.5502 0.5016 0.6399 0.4733 0.6137 0.5645 0.1849 0.5243 0.6606 0.5639 0.5661 0.8622 
Kankai 0.2174 0.1556 0.1862 0.4224 0.4344 0.4655 0.4192 0.4420 0.1651 0.2960 0.2972 0.2829 0.8289 

Marsyangdi 0.2497 -0.0516 0.1428 0.1882 0.3765 0.4993 0.2066 0.2661 0.4347 0.4510 0.3934 0.2810 0.8122 
Narayani 0.4377 0.3039 0.3188 0.4216 0.4799 0.6410 0.4274 0.3992 0.6340 0.7562 0.7671 0.6538 0.8775 

Rapti 0.3682 0.5163 0.5256 0.4117 0.6604 0.7535 0.5870 0.3664 0.5633 0.4901 0.4867 0.4036 0.8869 
Saptakosi 0.4330 0.3904 0.4353 0.5634 0.4780 0.5250 0.4240 0.3975 0.6444 0.7512 0.7993 0.6327 0.9168 

Seti 0.5517 0.6578 0.2569 -0.2317 -0.3445 0.8343 0.6940 0.3660 0.7439 0.4820 0.5178 0.0325 0.7557 
Tinaukhola -0.4260 -0.1302 -0.0945 -0.1004 -0.1213 0.2205 0.3678 0.4005 0.4080 0.0691 -0.1345 -0.2815 0.3427 
Average of 
Correlation 0.3318 0.3612 0.2896 0.3278 0.3591 0.6048 0.4732 0.3388 0.5160 0.5392 0.4558 0.3603 0.8068 

 

Table 0-2: Correlation Coefficient Summary for Tanzania 

Station Jan Feb March April May June July Aug Sept Oct Nov Dec 
Yearly 

Correlation 
Chimala at 
Chitakelo -0.0274 0.3397 0.2634 0.1679 0.0731 0.0354 -0.1101 -0.1053 -0.1776 0.0950 0.0016 0.1722 0.3058 

Igawa 0.6951 0.5595 0.5179 0.3881 0.4438 0.3198 0.2072 0.2278 0.2642 0.2013 0.4261 0.7360 0.8338 
Ihimbu 0.4536 0.4636 0.3015 0.3243 0.4339 0.4469 0.4291 0.5226 0.3942 0.0961 0.4409 0.5691 0.7799 
Ilongo 0.4756 0.4728 0.3460 0.2493 0.3892 0.4198 0.5666 0.5876 0.6022 0.5478 0.3876 0.5642 0.7946 

Ipatagwa -0.0428 0.2776 0.1775 0.0946 0.0217 0.0322 -0.0943 -0.0797 -0.2185 0.1370 -0.0288 0.1547 0.2684 
Kimani 0.6121 0.6309 0.4065 0.3991 0.4275 0.4861 0.6101 0.5555 0.5071 0.2872 0.5338 0.7608 0.8624 

Mawande 0.6593 0.5112 0.4498 0.3963 0.6963 0.5404 0.5405 0.3695 0.3091 0.2988 0.2919 0.7055 0.7832 
Msembe 0.6018 0.4335 0.5248 0.3462 0.6297 0.5596 0.6110 0.6727 0.3363 0.2344 0.6023 0.6070 0.7441 
Mswisi 0.3466 0.0191 0.0349 0.2922 0.2673 0.4785 0.0348 0.1668 0.5634 0.2640 -0.1231 0.3245 0.5311 

Mtandika 0.6373 0.6234 0.4437 0.5486 0.4822 0.6642 0.4587 0.7259 0.5406 0.3727 0.6887 0.7155 0.6715 
Mtitu 0.5935 0.4504 0.3688 0.3509 0.4360 0.4870 0.4507 0.6034 0.4728 0.4125 0.5879 0.6812 0.7642 

Ndiuka 0.4398 0.4908 0.3489 0.2783 0.3746 0.4486 0.4382 0.4608 0.4350 0.2175 0.4322 0.6766 0.8151 
Average of 
Correlation 0.4537 0.4394 0.3487 0.3196 0.3896 0.4099 0.3452 0.3923 0.3357 0.2637 0.3534 0.5556 0.6795 
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Table 0-3: Correlation Coefficient Summary for the Dominican Republic 

Station Jan Feb March April May June July Aug Sept Oct Nov Dec 
Yearly 

Correlation 
Cacique 0.4749 0.4318 0.5083 0.6064 0.6432 0.6244 0.4555 0.4652 0.4799 0.4664 0.4401 0.6074 0.5973 
Camu 

Bayacanes 0.4558 0.5179 0.3931 0.3970 0.4707 0.5060 0.3085 0.3092 0.2754 0.4411 0.4372 0.3818 0.4053 

Guazumal 0.1776 -0.6594 -0.4691 0.3060 0.8295 0.2080 0.5112 0.3633 0.4361 0.2968 0.1998 0.4349 0.3210 
Jinamagao 0.2855 0.3849 0.4718 0.3053 0.5118 0.3624 0.2159 0.3239 0.4083 0.4762 0.2979 0.4496 0.4067 
Manabao 0.4707 0.5581 0.2329 0.4720 0.4897 0.3926 0.6553 0.6779 0.5701 0.4227 0.6704 0.8449 0.5726 

Pinar 
Quemado 0.7167 0.3114 0.3496 0.4191 0.6947 0.4229 0.2812 0.5547 0.5897 0.5893 0.4161 0.7073 0.6334 

Puente San 
Rafael 0.7478 0.4745 0.0530 0.5804 0.7270 0.3472 0.6487 0.5481 0.1484 0.3920 0.5252 0.6449 0.5676 

Santa Ana 0.4705 0.5104 0.4813 0.4289 0.5293 0.4067 0.5901 0.6185 0.5544 0.4623 0.5230 0.5411 0.4727 
Average of 
Correlation 0.4749 0.3162 0.2526 0.4394 0.6120 0.4088 0.4583 0.4826 0.4328 0.4434 0.4387 0.5765 0.4971 

 

Table 0-4: Mean Difference Summary for Nepal 

Station Jan Feb March April May June July Aug Sept Oct Nov Dec 
Yearly Mean 

Difference 
Asaraghat 1.3185 1.4514 1.2403 0.7458 0.7255 2.1489 1.4245 1.2014 1.1463 1.2342 1.2421 1.2773 1.2195 

Babai 1.6093 1.5567 2.0568 2.4772 2.9060 2.9377 1.8693 2.5009 1.9176 2.2617 1.9485 2.0834 2.1958 
Bheri 1.6168 1.5270 1.4615 1.3865 2.0790 2.2973 1.6855 1.8715 1.5110 1.8348 1.5694 1.6378 1.7055 

Kaligandaki 1.8278 1.7572 1.9273 1.4742 1.4287 1.9294 2.1183 2.1279 1.6565 1.6889 1.7361 1.7740 1.7768 
Kamali 1.4681 1.3675 1.2093 0.9914 1.0005 2.0930 1.5918 1.5285 1.3341 1.5013 1.5527 1.5701 1.4011 
Kankai 1.1270 1.2180 1.5502 1.6857 1.1207 0.7508 1.0021 0.9792 0.8551 0.7292 0.9286 1.0160 1.1226 

Marsyangdi 2.3134 1.8011 1.4340 1.7874 2.0113 2.1844 2.3775 2.5114 2.3458 2.5574 2.6023 2.5587 2.1800 
Narayani 2.0258 1.7358 1.3145 1.1623 1.4139 1.9876 2.2081 2.1932 1.9205 2.0911 2.2449 2.1692 1.8159 

Rapti 1.4822 1.3550 1.6857 1.7946 1.6967 1.4946 1.6312 1.9316 1.6178 1.5212 1.3804 1.3658 1.6031 
Saptakosi 1.2672 1.1937 1.1495 0.9342 0.8682 1.3184 1.3595 1.2914 1.2002 1.1363 1.2749 1.3087 1.1759 

Seti 1.9162 1.4943 1.6543 1.7198 5.4631 6.4516 3.3776 3.1841 2.9306 3.9255 2.8186 1.7024 2.6916 
Tinaukhola 1.6399 1.8325 2.2156 3.3939 3.1231 2.1827 2.1319 1.4222 0.9425 0.7325 0.5924 0.3368 1.4279 

Average of Mean 
Difference 1.6344 1.5242 1.5749 1.6294 1.9864 2.3147 1.8981 1.8953 1.6148 1.7678 1.6576 1.5667 1.6930 
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Table 0-5: Mean Difference Summary for Tanzania 

Station Jan Feb March April May June July Aug Sept Oct Nov Dec 
Yearly Mean 

Difference 
Chimala at 
Chitakelo 0.0971 0.0921 0.1119 0.2026 0.2953 0.5433 0.5602 0.7020 0.9053 1.1597 1.1111 0.2284 0.3541 

Igawa 1.2731 1.0283 0.7743 0.4481 0.3514 0.4290 0.5448 0.6469 0.7412 0.8074 0.9367 1.1247 0.7215 
Ihimbu 1.2208 1.1704 1.1426 1.3458 1.8619 2.3680 3.0123 3.7172 4.3145 3.9490 3.7036 2.5406 2.4562 
Ilongo 0.9524 1.2623 1.3439 1.4817 1.0452 0.6514 0.4870 0.4692 0.4154 0.2441 0.1856 0.3617 0.5300 

Ipatagwa 0.1328 0.1394 0.1758 0.4639 0.8899 1.9532 2.1439 2.8419 3.7939 4.4864 3.0810 0.3545 0.9584 
Kimani 1.5024 1.7514 1.5204 1.2244 0.9492 0.8306 0.7922 0.8571 0.9822 1.0793 0.9724 0.8778 1.0306 

Mawande 1.0308 0.8909 1.0345 1.2020 1.4364 1.6945 1.9097 2.2235 2.4916 2.1052 1.3732 1.1986 1.5586 
Msembe 0.0263 0.0841 0.1471 0.2409 0.3636 0.2548 0.1564 0.0784 0.0256 0.0042 0.0011 0.0077 0.0503 
Mswisi 0.2510 0.3741 0.6627 2.3284 4.5190 5.3837 1.0871 1.0468 4.7650 4.4008 2.9898 0.4244 1.5297 

Mtandika 1.2723 1.1447 0.8518 1.6744 7.6648 10.0309 15.4805 17.1574 17.8446 13.6583 8.3998 2.8335 5.7706 
Mtitu 1.9833 1.8280 1.2432 1.9025 4.6254 5.7359 7.8732 9.5683 10.4764 10.4537 7.6232 3.7960 5.0499 

Ndiuka 1.5271 1.2663 1.3323 1.5107 2.1316 2.6351 3.0945 3.7796 4.0834 3.5132 2.5301 2.2592 2.4841 
Average of 

Mean 
Difference 

0.9391 0.9193 0.8617 1.1688 2.1778 2.7092 3.0951 3.5907 4.2366 3.8218 2.7423 1.3339 1.8745 

 

Table 0-6: Mean Difference Summary for the Dominican Republic 

Station Jan Feb March April May June July Aug Sept Oct Nov Dec 
Yearly Mean 

Difference 
Cacique 0.7601 0.8872 0.9314 0.8928 0.7518 0.8700 1.1392 1.3504 1.2644 1.0027 0.6957 0.6854 0.9146 

Camu Bayacanes 4.6330 5.2912 4.7648 3.5205 2.3841 2.2537 1.9484 1.9924 1.6385 2.3353 3.2237 4.3726 3.0423 
Guazumal 7.1677 5.6683 3.5060 1.1387 1.0852 1.8252 4.7228 4.0301 4.5186 3.8564 5.2730 10.1906 3.7965 
Jinamagao 4.6960 4.0890 3.9705 2.2389 1.9589 3.4916 2.4957 1.7106 1.5743 2.7128 4.0500 4.7264 2.9603 
Manabao 9.5865 8.9122 7.2032 5.0262 4.0114 6.6732 7.4182 6.0697 5.9565 7.3191 8.6992 11.0656 7.2123 

Pinar Quemado 6.2033 6.2774 4.8351 3.8244 3.4663 4.3127 5.1898 4.0602 4.0860 5.0235 5.4378 7.4441 5.0118 
Puente San 

Rafael 4.0845 3.6683 4.5524 3.1977 1.9617 4.9350 4.2778 3.3152 3.2816 4.5924 4.7536 5.2511 3.9940 

Santa Ana 3.0904 2.2124 2.3910 1.7739 1.2614 2.0320 1.2921 0.7662 0.8080 1.0762 2.7101 2.6730 1.6840 
Average of Mean 

Difference 5.0277 4.6258 4.0193 2.7016 2.1101 3.2992 3.5605 2.9119 2.8910 3.4898 4.3554 5.8011 3.5770 
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Table 0-7: Color-Coded Synthetic Metrics Summary 

 

Over 
predict 

with 
shift, 
noise 
and 

outliers 

Over 
predict 

with 
noise 
and 
shift 

Under 
predict 

with 
shift, 
noise, 
and 

outliers 

Over 
predict 

with 
weighted 

noise 
and shift 

Under 
predict 

with 
shift 

Under 
predict 

with 
noise 
and 
shift 

Under 
predict 

with 
weighted 

noise 
and shift 

Over 
predict 

with 
noise 

Over 
predict 

with 
noise 
and 

outliers 

Under 
predict 

with 
noise 
and 

outliers 

Under 
predict 

with 
noise 

Under 
predict 

by 
scale 

Over 
predict 

by Scale 
Error 
Range 

Mean Error 0.9859 0.9966 1.0000 0.9923 0.9933 0.9903 0.9942 0.9933 0.9859 1.0000 0.9965 0.9933 0.9933 0.0141 
Mean 

Absolute 
Error 

1.0000 0.9876 0.9595 0.9810 0.9773 0.9472 0.9416 0.9365 0.4563 0.4514 0.4384 0.4040 0.4040 0.5960 

Mean 
Squared 

Error 
1.0000 0.9561 0.9251 0.9373 0.9263 0.8810 0.8657 0.8552 0.2507 0.2473 0.2051 0.1803 0.1803 0.8197 

Root Mean 
Square Error 1.0000 0.9778 0.9618 0.9681 0.9624 0.9386 0.9304 0.9248 0.5007 0.4973 0.4528 0.4246 0.4246 0.5754 

Root Mean 
Squared Log 

Error 
1.0000 0.9928 0.9800 0.9561 0.9541 0.9715 0.9390 0.9369 0.3655 0.3633 0.3463 0.2389 0.2294 0.7706 

Mean 
Absolute 

Scaled Error 
1.0000 0.9876 0.9595 0.9810 0.9773 0.9472 0.9416 0.9365 0.4563 0.4514 0.4384 0.4040 0.4040 0.5960 

R^2 1.0000 0.9441 1.0000 0.9225 0.9088 0.9441 0.9225 0.9088 0.0886 0.0886 0.0298 0.0000 0.0000 1.0000 

Anomaly 
Correlation 
Coefficient 

1.0000 0.9437 1.0000 0.9219 0.9081 0.9437 0.9219 0.9081 0.0879 0.0879 0.0296 0.0000 0.0000 1.0000 

Mean 
Absolute 

Percentage 
Error 

1.0000 0.9937 0.9269 0.9739 0.9719 0.9205 0.9032 0.9006 0.3543 0.3407 0.3437 0.2450 0.2450 0.7550 

Nash-Sutcliffe 
Efficiency 1.0000 0.9561 0.9251 0.9373 0.9263 0.8810 0.8657 0.8552 0.2507 0.2473 0.2051 0.1803 0.1803 0.8197 

Spectral 
Angle 1.0000 0.9876 0.9595 0.9810 0.9773 0.9472 0.9416 0.9365 0.4563 0.4514 0.4384 0.4040 0.4040 0.9584 

Error Total 21.815 21.451 20.937 20.721 20.634 20.527 19.958 19.857 7.876 7.776 7.252 5.605 5.508  
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