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This paper presents an exact analytical approach to calculate the dynamic response of elastic beams with
periodically-attached resonators, generally referred to as locally-resonant beams. Showing that a typical
resonator is equivalent to an external constraint, whose reaction force on the beam depends on the de-
flection of the application point through a pertinent frequency-dependent stiffness, the beam-resonators
coupled system is handled using only the beam motion equation, with Dirac’s deltas modelling the shear-
force discontinuities associated with the reaction forces of the resonators. This is the basis to tackle the
dynamics of infinite as well as finite beams, the first by a transfer matrix method to calculate frequency
band gaps, the second by a generalized function approach. The dynamics of the finite beam is studied in
frequency and time domains deriving the exact frequency response and the exact modal response, includ-
ing modal frequency and impulse response functions. The proposed approach is formulated for arbitrary

Modal response

number of resonators and loads, and applies for both non-proportional and proportional damping.
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1. Introduction

Beams with periodically-attached resonators are an emerging
and challenging concept for vibration attenuation, with several po-
tential applications in mechanical and structural engineering [1-
10]. Typically, they are modelled as a continuous-discrete system,
where resonators are single- or multi-degree-of-freedom mass-
spring subsystems coupled with a continuous Euler or Timoshenko
beam. The continuous-discrete model has been applied to sand-
wich beams with embedded resonators [2], hollow aluminium
beams with an array of rubber-ring coated copper columns [3],
beams carrying beam-like resonators [4], elastic metamaterial
beams [5-10]. Beams with periodically-attached resonators are
referred to as locally-resonant (LR) beams [1]. Remarkably, the
resonators provide elastic wave attenuation over low-frequency
ranges named band gaps [1-10], whose number is equal to the res-
onator degrees of freedom (DOFs). Translational DOFs are generally
considered for resonators [1-10], to be activated by the beam dis-
placement at the application point.

Most frequently, solutions for LR beams have been sought in
the frequency domain using the spectral element method [3-4],
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the transfer matrix method [11] and the finite element method
[12]. Also, homogenization techniques defining an equivalent mass
per unit length [2] or the Galerkin technique in presence of non-
linearity [9] have been used.

The present study aims to introduce a comprehensive frame-
work to calculate frequency and time responses of elastic LR
beams. The key is to show that the mass-spring subsystem mod-
eling a resonator can be reverted to an equivalent constraint with
reaction force depending on the deflection of the application point
through a suitable frequency-dependent stiffness. Indeed, a per-
tinent stiffness will be derived for single- or multi-degree-of-
freedom resonators generally considered in the literature [1-10].
Starting from this basis, a transfer matrix method will be adopted
to calculate band gaps of the infinite beam, while the exact fre-
quency and time responses of a finite beam subjected to arbitrary
loads will be obtained, in closed analytical form, extending an ap-
proach recently introduced by some of the authors [13-15] using
the theory of generalized functions [13-20].

The paper is organized as follows. Section 2 derives the
frequency-dependent stiffness of typical resonators and formulates
the transfer matrix method for infinite beams. Frequency and time
domain solutions for finite beams are presented in Section 3. A nu-
merical application is discussed in Section 4. Finally, one Appendix
is included.

0093-6413/© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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Fig. 1. Elastic LR beam.
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Fig. 2. Examples of resonators: (a) 1-DOF; (b) 2-DOF; (c) laterally-resonant 2-DOF.

2. Local resonance via transfer matrix approach

Fig. 1 shows the simple model of a LR Euler beam. Local res-
onators are periodically attached to the beam at mutual distance
a (= cell length). Symbol “R” denotes a resonator, typically with
single or multiple DOFs as shown in Fig. 2.

In the frequency domain, the reaction force of resonators in
Fig. 2 can be expressed in terms of the deflection of the applica-
tion point by using the resonator motion equations. For instance,
the motion equations of the 2-DOF resonator in Fig. 2c are [10]:

myw?Uy — 1z (@)[Uz + AUy —V)/2] =0 (1a)

m@?Us — (@) (Ur = V) = Az (@)[Uz + AU =V)/2] =0 (1b)

where V = V(x;), A = H/D and n(w) = k + iwc;, for [ = 1,2. From
Egs. (1), the displacements U;, U, and the reaction force of the
resonator take the form:
B H2nz (0)myw? — 2D?1y (0) (12 (@) — myw?)

H2n, (0)myw? — 2D2 (11 (@) — myw?) (2 (@) — myw?)

U
(2)
DHny (w)my w?

U, = 1%
H?173 (@) my@? = 2D2 (11 (@) — my@?) (12 (@) — mpw?)
3)

R(w) = -k (w)V (4)

where «(w) is the frequency-dependent stiffness

(@) = miw? [ 2D (@) (n2(@) — maw?) — H2myw?ny (w) ]

H2my 02 (@) = 2D2 (11 (0) — mi0?) (12 (@) — myw?)
(5)
Likewise, the reaction force of the 2-DOF resonator in Fig. 2b is
given as Eq. (4), being
M2 (@) (Uy = Up) + myw?Us = 0 (6a)

M2 (@) Uz = Up) — (@) Uy —V) + mo?*U; =0 (6b)

B M (@)[n2(@) (M + my)w? — mymyw?]

n3 (@) — (m (@) + n2(©) — m?) (n2(w) — myw?)

Next, consider the nth cell of the LR beam shown in Fig. 1. Be-
ing EI the flexural stiffness and p the mass density per unit length,
for a given frequency w the motion equation within the nth cell
reads (w-dependence is omitted for brevity)
d4v (x)

dx4
where V(x) is the deflection

K (w)

El —pw?V(x)=0 (8)

V(x) = Ay cos (ax') + By sin (ax') + G, cosh (ax') + Dy sinh (ax')
(9)

for ¥ = x—(n — 1)a and a* = pw?/EL. Now, enforcing appropriate
matching conditions for deflection, rotation, bending moment and
shear force at the connection point between nth and (n — 1)th cells
leads to the following equation [21]

W, =TV, ; = K 'HV, , (10)

where T = K ~ 'H is the transfer matrix,

1 0 1 O
0 1 0 1
K=117 0 1 o (1)
| F -1 F 1
[ cos (aa) sin(oa) cosh (wa) sinh (xa)
H- —sin(aa) cos (cxa) sinh (wa)  cosh (xa) (12)
~ | —cos(axa) —sin(aa) cosh(aa) sinh(xa)
| sin(aa) —cos (axa) sinh(xa) cosh(aa)
F = i (w)(a®El) (13)

Now, to investigate wave propagation in an infinite periodic LR
beam, assume no damping in every resonator. According to the
Bloch theorem [21], it is known that W,=el9%W¥, ;, where q is
the wave vector in x direction and i = imaginary unit. Combining
W, =el9%%, ; and Eq. (10) leads to the following standard eigen-
value problem of the transfer matrix T:

det (T — €') = 0 (14)

where I is the 4 x 4 unit matrix. Eq. (14) gives the values of q for
specified w: if q is real the corresponding wave propagates through
the beam, i.e. the frequency ranges associated with real q are pass
bands. On the contrary, there is a band gap over a specific fre-
quency range for which no real q exists and, in this case, the imag-
inary part of g indicates the wave attenuation through one cell of
the beam. For convenience, roots of the characteristic Eq. (14) will
be sought setting y = iqa.

Regarding a finite LR beam, it is known that its frequency band
gaps are described effectively by the frequency response function
(FRF) [22]. Therefore, the remainder of the paper will derive the
exact FRF for a LR finite beam and, in addition, the exact modal
response in frequency and time domains.
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3. Dynamics of LR finite beam

Assume that the LR beam in Fig. 1 is finite. The vibration re-
sponse can be represented in the general form

y(x.t) = Yel' u;(t) = Uje* (15)
vomsylYy={ve Ms), u = {y" uy®. . V) and
U; = {UD U2)..U{ )T collect the response variables of the beam

and the Q-DOF resonator applied at x = x; (e.g., U{(V=Uy, UD=U,
in Fig. 2). Eq. (15) will be used as general form to represent:

where y =

(a) FRF under an harmonic load with frequency w, i.e. Y =
and U; = Uj(w);

(b) free- v1brat10n response, being w=w; an eigenvalue and
Y = Yi(x), U = U;; the corresponding eigenfunctions. Eigenval-
ues and eigenfunctions may be either real or complex depend-
ing on damping in the system.

Y(x,w)

Since Eq. (4) provides the resonator reaction force in terms of
the deflection V(x;), the response of the beam-resonators coupled
system can be obtained from the motion equation of the beam
only, generalizing the approach recently proposed by some of the
authors in frequency and time domains [13-14].

3.1. Exact frequency response

Be the beam in Fig. 1 subjected to a harmonic load f{x)el®!, so
that the FRF takes the form (15). The motion equation reads

4 V(x)

ZR 8(x —x;) — pw®V (x) = f(x) (16)

where bar means generalized derivative, symbol §(x—x;) denotes a
Dirac’s delta at x = x;, R; is the reaction force of the j™ resonator,
i.e. (see Eq. (4))

Rj=—kj(@)V(x;) j=12.N (17)

for N = number of resonators. Following ref. [13], it can be written
that

Y(x, 0) = W(x, w)d + YD (x, w) (18)

where d = {d; d, d; d4)7 is a vector of integration constants,
W(x,w) is a 4 x 4 matrix depending on the solution to the homo-
geneous equation associated with Eq. (16), while ¥(x,w) is a 4 x 1
load-dependent vector. Elements in W and ¥/ are available in an
exact analytical form, see Appendix A.

Vector d in Eq. (18) is obtained enforcing the beam B.C,, i.e.

Bd=r—>d=Br (19)

where B and r are a 4 x 4 matrix and a 4 x 1 vector, built from
W and ¥ computed at x = 0 and x = L.

The inverse matrix B~! is available in a closed analytical form,
as shown in ref. [15]. Hence, replacing Eq. (19) for d in Eq. (18) pro-
vides a closed analytical expression for the FRF Y(x,w) of the beam
in Fig. 1. Remarkably, Eq. (18) for Y(x,w) holds for any number of
resonators along the beam. The frequency response Uj(w) in the
jth resonator can be obtained from the deflection V(x;) of the ap-
plication point, e.g. using Eqs. (2)-(3) for the resonator in Fig. 2c.

Eq. (18) holds for homogeneous B.C. Non-homogeneous B.C. as-
sociated with resonators applied at the beam end can be still
treated as homogeneous, considering an end resonator as an in-
ternal resonator located at x = 0T or x = L.

It is noteworthy that Eq. (18) can be applied to calculate also
the transmittance of the beam, which is typically used to assess
effectiveness of band gaps in a LR finite beam [8,21]. For this, the
reaction force of every resonator shall be set equal to

Rj = —kj(@)(V(x;) + Up) (20)

where Uy is the displacement of the ground, while the B.C. are

V(0) = V/(0) =0
V7(0)=0 V”(0)=0

being V(x) the deflection relative to the ground.

(21a-d)

3.2. Exact modal response

Next, be the beam in Fig. 1 subjected to an impulsive load-
ing flx)(t), where §(t) is a Dirac’s delta in time and f(x) a space-
dependent function. Adopting the approach in ref. [13], the im-
pulse response function (IRF) h(x,t) = {hy hy hm hs}T of the beam
can be represented by modal superposition as

hx.t) =) h(x.t) =) g ()Y () (22)
k=1 k=1
g (t) = gpelk=1,2... (23)

being §, a complex coefficient, while wj and Y.(x) are eigen-
value and vector of eigenfunctions associated with the kth mode.
Namely, w; and Y, are complex if damping is not proportional, real
if damping is proportional. The eigenvalue problem is B(w)d = O,

i.e. Eq. (19) with r=0.
Based on ref. [13], §; can be obtained as
G=xx (i 1) ™! (24)
L
Xe= [ Feoveeoa (25)
nk_zzuj(wk)vk X; +2p/ V2 (x)dx (26)

j=11=1

Terms in Eq. (26) depend on the type of resonator. Specifi-
cally, pj(wy) is obtained from the following limit that involves the
frequency-dependent stiffness of the resonator
@n (5 (@n) = K5 (@) _

(wy — wn)
For instance, for the resonator in Fig. 2¢

lim

Wn—> i

Wik (@) (27)

2m1 3
wi(wy) = @) ;fs(wk) (28)

f] = H4m§wﬁn§ (a)n) + 2D4 (2](% + 4ia)nc1 k] —C1 6()% (2C1 +iwnm1 ))

x (n2(@n) = mye?)’ (29)
fo = D*H?*my? [—4k1 N2 (wn) (02(@wn) — Mywy)

+ 4cq (cza)ﬁ - ikza)n) (172 (wn) — mzwﬁ)]
f3 = D*H?mymywp [ 2k3 + diwnCaky — 203 (2¢; + iwnmy) ]
g = {2D?[(m (@n) — m17) (n2(@n) — mye7) |

_ H2m2w§n2(a)n)}2 (29)

Now it is known that, for typical damping levels in engineer-
ing applications, modes contributing to the beam response occur
in complex conjugate pairs, i.e. g(t) in Eq. (23) may be g.el®k!
as well as g *e~@k!, with §,* complex conjugate of §. The result
is the following real form of the modal IRFs for the kth mode in
Eq. (22):

hi (%, t) = @ () [ |2 (£) + Y ()2 (1) (30)
where
Pc(X) = GPr(%) — /1= E2A (%) (31)



4 G. Failla, R. Santoro and A. Burlon et al./Mechanics Research Communications 103 (2020) 103460

iot

le
A,
Ol % o[3HO Of% 31O
—a
L =Na

Fig. 3. Elastic LR beam with resonators in Fig. 2c.

V() = 2Re[§ Y (x) |; A (x) = 2Im[§Y, (%) ] (32ab)

Z(t) = w%ke’5k|“’k‘fsin(wpkt);a)D,< = |l /1 - ¢? (33a.b)

being ¢, = Im[w]/|lwk| the modal damping ratio. Finally, the
modal FRF Hy, = {Hy,;; Hg.x Hm.x Hs.}T of the beam is [13]
Hy (x, @) = @ (%) |y |H (@) + Y (X)iwH; () (34)

1

Hy(w) = -
lo|® — w2 + 128 |y |w

(35)

Eq. (34) approximates the exact FRF (18) providing an insight
into the single modal contributions, i.e.

M
Y(x.0) ~ Y Hi(x. ) (36)
k=1

where M is the number of modes retained for practical purpose.
The IRF and FRF in every resonator follow from Eq. (22) and
Eq. (36), provided that Y is replaced with U;,, i.e. the vector of
eigenfunctions associated with the kth mode for the response in
the jth resonator. Specifically, U; ; can be calculated from the de-
flection Vi (x;) of the application point (e.g. using Eqs. (2)-(3) for
the resonator in Fig. 2¢).

Eq. (22) for IRF and Eq. (36) and FRF hold for any number
of resonators along the beam. Every modal contribution (30) and
(34) is exact and readily obtainable in analytical form once the
eigenvalues are calculated. For practical purposes, a sufficient num-
ber of modes M shall be retained in Eq. (22) and Eq. (36) to obtain
accurate expressions for IRF and FRF.

Finally, it is noteworthy that Eq. (22) for IRF and Eq. (36) for
the FRF hold a similar form also for proportional damping [15]

h(x,t) = %e‘“wk%in(wmt)n(){) (37)
K
2
H (%, ) = T (@)Y () (38)
K

where ¢ is the modal damping ratio, wp is given by Eq. (33b)
and H(w) by Eq. (35) on replacing |wy| with the real frequency wy
of the kth mode.

4. Numerical application
4.1. Example A

Consider the cantilever aluminium beam in Fig. 3 carrying the
laterally-resonant 2-DOF resonators in Fig. 2c [10]. Parameters are:
E = 70 GPa, I = 785 x 10~2 m* (corresponding to a circular
cross section of radius = 0.01 m), p = 0.88 kg m~!, N = 8,
a=002m H=D =001 m m = 001 kg, my = 0.005 kg,
ki = k; =10° Nm~', ¢; = ¢; = 0.1 Nsm~! (see Fig. 2c). The beam

1
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Fig. 4. Band gaps of the LR beam in Fig. 3.
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Fig. 5. Transmittance of the beam in Fig. 3: with resonators (blue) and without
resonators (red). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

may be thought of as the elastic support for a machinery/structure
exerting transverse loads.

In order to have a preliminary insight into the elastic wave at-
tenuation properties, the band gaps of the infinite beam with no
damping are calculated using Eq. (14). Fig. 4 shows that two band
gaps exist in the frequency ranges 426-480 Hz and 840-933 Hz,
where no real wave vectors are found.

Next, Fig. 5 shows the transmittance of the cantilever beam in
Fig. 3. It is noticed that the wave attenuation properties of the in-
finite beam hold also for the finite beam, as indeed the transmit-
tance within the band gaps is lower than that over the remaining
frequency domain by more than one order of magnitude. Notice
that the transmittance is equal to 1 for zero frequency, as expected
for a static unit ground displacement. For comparison, Fig. 5 shows
the transmittance of the beam without resonators, which exhibits
a single peak but larger than the peaks of the beam with res-
onators.

For a further insight into the dynamics of the beam in Fig. 3.
Fig. 6 shows the FRF for the tip deflection under a unit harmonic
force applied at the free end, obtained by the exact Eq. (18) and
the approximate Eq. (36) using M = 7 modes (pertinent complex
eigenvalues are in Table 1). The modal FRFs (34) are also reported
in Fig. 6 to highlight the contribution of every mode.
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Table 1
Eigenvalues and damping ratios for modes of beam in Fig. 3.

Mode Eigenvalue Damping ratio
1 + 2143.994 + 1.076253i 0.000502
2 + 2672.508 + 3.545824i 0.001326
3 + 3570.584 + 4.171392i 0.001168
4 + 5229.014 + 13.43045i 0.002568
5 + 6338.494 + 17.59552i 0.002776
6 + 21,786.56 + 6.095178i 0.000279
7 + 60,345.95 + 5.750229i 0.000095

1
1071
1072
1073
104
1072
107°
1077
1078
107°

10—10

10—11

0 200 400 600 800
Frequency (Hz)

FRF amplitude for lateral mass displacement (m)

1000 1200 1400

Fig. 7. FRF for the displacement of the lateral mass within the resonator at the free
end of the beam in Fig. 3, under a unit harmonic force applied at the free end:
Eq. (18) (blue); Eq. (36) with M = 7 modes (black dots); Eq. (34) for modal FRFs
(color dashes). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Further, Fig. 7 shows the FRF for the displacement of the lateral
masses within the resonator placed at the free end. Interestingly,
the peak values of the FRF are all outside the band gaps. This is
evidence that the resonators ensure wave attenuation properties
vibrating within a limited displacement range, which is obviously
desirable for a consistent design of the LR beam.

Next, consider again Fig. 6. It is noticed that the FRF, within the
band gaps, is generally well lower than the corresponding one of
the beam without resonators. The only exception is at the right

4.1076
3.107°
— J0—8
g 2.10
.g 1.10°¢
;g 0
o -6
'9_—140
4
—2.107
—3.107°
—4.10—6
Bl 0.004 0.008 0.012 0016 0.02
Time (s)

Fig. 8. Time response for the tip deflection of the beam in Fig. 3 under a 920-
Hz unit sine force at the free end, for increasing number of modes M in Eq. (22):
M = 1 (blue dashes), M = 3 (yellow dashes), M = 5 (pink dashes) M = 7 (black).
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

51076

4.107° H
3107
21070
110—6ﬂ “

0

—11076
—2106
—3-10°
—4107°
—5107°

Tip deflection (m)

0 0.004 0.008 0.012

Time (s)

0.016  0.02

Fig. 9. Time response for the tip deflection of the beam in Fig. 3 without res-
onators, under a 920-Hz unit sine force at the free end.

end of the second band gap, where the FRFs of the beam with and
without resonators are very close to each other. This behaviour is
essentially attributable to the 3rd and 5th modes, whose modal
FRFs are significant within that frequency range (see pink and yel-
low lines in Fig. 6).

To further investigate this issue, Figs. 8 and 9 report the time
responses for tip deflection under a 920-Hz unit sine force applied
at the tip, for the beam in Fig. 3 with and without resonators
(920 Hz is chosen as a forcing frequency close to the right end
of the second band gap in Fig. 6). Consistently with the results
in Fig. 7, it is found that the beam response is mainly dominated
by 3rd and 5th modal contributions and, due to these modes, the
responses of the beam with resonators (black line in Fig. 8) and
without resonators (Fig. 9) have almost the same order of magni-
tude. This is a crucial information for design purposes because, e.g.,
once mass and stiffness of the resonators are calibrated, damping
coefficients might be selected so as to minimize the contribution
of the 3rd and 5th modes.
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Fig. 11. Band gaps of the LR beam in Fig. 10.

4.2. Example B

Next, it is of interest to investigate the cantilever aluminium
beam in Fig. 3 of Example A, when the laterally-resonant 2-DOF
resonators in Fig. 2c are replaced with the 2-DOF resonators in
Fig. 2b, as shown in Fig. 10.

The resonators in Fig. 10 are given the same
mass/stiffness/damping properties of those in Fig. 3, with the
aim of assessing whether and to which extent the different
arrangement of masses/springs/dashpots within the two types
of resonators may affect band gaps and dynamics of the beam.
Therefore, following Example A, N = 8, a = 0.02 m, m; = 0.01 kg,
m, = 0.005 kg, k; = k; = 10° Nm~! and ¢; = ¢c; = 0.1 Nsm™!
(see Fig. 2b).

For the infinite beam with no damping, Fig. 11 shows two band
gaps in the frequency ranges 386-516 Hz and 930-942 Hz. It is ap-
parent that the band gaps of the beam with resonators in Fig. 2b,
see Fig. 11, are very different from those of the beam with res-
onators in Fig. 2¢c, see Fig. 4. Indeed, position as well as width of
the band gaps change, demonstrating that various arrangements of
masses/springs/dashpots may result in different elastic wave atten-
uation properties of the LR beam.

The proposed method is now applied to calculate transmittance
and FRF of the cantilever beam in Fig. 10. Fig. 12 shows that, as
expected, the transmittance is below 1 within the band gaps; how-
ever, values within the first band gap are significantly smaller than
those within the second band gap and, in this respect, the be-
haviour of the beam in Fig. 10 proves quite different from the be-
haviour of the beam in Fig. 3.

Further, Fig. 13 demonstrates that the FRFs for the tip deflection
under a harmonic load at the free end, as computed by the exact
Eq. (18) and the approximate Eq. (36) using M = 7 modes, are in a
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Fig. 12. Transmittance of the beam in Fig. 10: with resonators (blue) and without
resonators (red). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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Fig. 13. FRF for the tip deflection of the beam in Fig. 10 under a unit harmonic
force applied at the free end: Eq. (18) (blue); Eq. (36) with M = 7 modes (black
dots); Eq. (34) for modal FRFs (color dashes); beam without resonators (red). (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Table 2
Eigenvalues and damping ratios for modes of beam in Fig. 10.

Mode Eigenvalue Damping ratio
1 + 1835.184 + 0.822309i 0.000448
2 + 2404.434 + 2.852372i 0.001186
3 + 4386.564 + 5.289262i 0.001206
4 + 6029.053 + 17.46516i 0.002897
5 + 21,692.93 + 3.865147i 0.000178
6 + 60,314.17 + 3.808406i 0.000063
7 + 118,101.2 + 3.891800i 0.000033

perfect agreement (pertinent complex eigenvalues are in Table 2),
confirming once again the accuracy of the proposed method.

Considering again Fig. 13, it is recognized that, within the band
gaps, the FRF is generally well lower than the corresponding one of
the beam without resonators. However, the FRFs of the beam with
and without resonators are very close to each other at the right
end of the second band gap. This behaviour appears similar to that
of the beam in Fig. 3 but, in this case, is essentially attributable to
the 3rd and 4th modes.

This conclusion is confirmed by Fig. 14 showing the time re-
sponse of the beam to a unit sine force at the free end, with
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Fig. 14. Time response for the tip deflection of the beam in Fig. 10 under a 942-
Hz unit sine force at the free end, for increasing number of modes M in Eq. (22):
M = 1 (blue dashes), M = 3 (yellow dashes), M = 5 (pink dashes) M = 7 (black).
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

frequency equal to 942 Hz, i.e. the frequency at the right end of
the second band gap. In accordance with the results in Fig. 13,
the beam response is found to be mainly dominated by 3rd and
4th modal contributions, which cause the response of the beam
with resonators (black line in Fig. 14) to attain the order of magni-
tude of the beam response without resonators (Fig. 9). In this case,
therefore, the damping coefficients of the resonators should be ap-
propriately selected so as to minimize the contribution of the 3rd
and 4th modes. The conclusion is that the insight provided into
the contribution of single modes to the beam response, in both
frequency and time domain, is a most relevant advantage of the
proposed method.

5. Conclusions

This paper has presented a comprehensive framework for the
dynamic analysis of elastic LR infinite and finite beams. On demon-
strating that the reaction force of a typical resonator depends on
the deflection of the application point via a proper frequency-
dependent stiffness, a transfer matrix method has been used to
calculate the band gaps of the infinite beam, while for a finite
beam the exact frequency response and exact modal responses
have been derived in analytical form by a generalized function ap-
proach. The solutions hold for any number of resonators, propor-
tional and non-proportional damping, providing a valuable tool to
calculate the beam response to arbitrary loads and modal contri-
butions for design purposes.
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Appendix

Following ref. [14], matrix W in Eq. (18) is given as (w-
dependence is omitted for brevity):

sz<x>+i1<x,xj>%<xj)éj(x,xj) >

j=1 2=q<j
Z (I)J(Xj,xm)"'d:)_](xraxs)q)ﬂ(XS)

i )
(jmn,...rs)eNg

W) =

(A1)

where Néj) is the set including all possible g-ples of indexes (j, m,
n, 1, s) such that j>m>n>r>s, being 2 < q <j.
In Eq. (A1), J(xx;) is the 4 x 1 vector

Jvr(x.x;)
Jor(x.%;)
J(x,x;) = ' (A.2)
( j) ]M,P(X, Xj)
Jsp(x. X))
while Dy(x;,x1) denotes the scalar function
Di(x;,x;) = —kj(@)lv,p(xj,X,). Terms in J are derived using the
beam equations
s | & 2 dM(x)
o T ;R,-s(x —Xj) + pw?V (x) = 0; o =Sk (A3ab)
dO(x) _ 7M(x); dv(x) — oK) (A3cd)

dx El dx

starting from the following particular integrals for deflection asso-
ciated with a unit force at arbitrary x = xq:

Jvp(X.x0) = ¥ (sinh (B(x —xo)) — sin(B(x — X0)))H (X — xo)

(A.4)
where 9 = Y(w) = 2 ~ YE)Vp3Mp=32 and B = B(w) =
(EN~14p1412, Again in Eq. (A1), (x) depends on the solution
to the homogeneous equation associated with Eq. (16), i.e.

e P efx cos (Bx) sin (Bx)
Q(x) — —Bef*  Befr —Bsin(Bx) P cos(Bx)
)= | _E1g2e-Bx _EIB2ePr EIB2cos(Bx) EIB?sin (BX)
EIB3e~Px _EIB3efr _EIB3sin (Bx) EIB3 cos (Bx)
(A.5)
while  ®g(xs) in  Eq. (A1) is the row  vector

Do(xs) = —kj(@){(R(x5))1}, with (), indicating the Ith row of
the matrix within parenthesis.

Finally, in Eq. (18) vector YV(x) is given as (again w-dependence
is omitted for brevity)

N N
YO = F@)+ ) Jxx)D (x)+ > J(x.%) >

j=1 j=2 2<q<j
> Dy (xj, Xm) - -+ Py (xr, X5) P (x5)

(imn,...r.s)eNy

(A6)
where ®U)(x;) is the scalar function ®(xs) = —k(w)F;(x), with
F; denoting the 1st component of vector

L
Foo = [ e oy (A7)
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