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a b s t r a c t 

This paper presents an exact analytical approach to calculate the dynamic response of elastic beams with 

periodically-attached resonators, generally referred to as locally-resonant beams. Showing that a typical 

resonator is equivalent to an external constraint, whose reaction force on the beam depends on the de- 

flection of the application point through a pertinent frequency-dependent stiffness, the beam-resonators 

coupled system is handled using only the beam motion equation, with Dirac’s deltas modelling the shear- 

force discontinuities associated with the reaction forces of the resonators. This is the basis to tackle the 

dynamics of infinite as well as finite beams, the first by a transfer matrix method to calculate frequency 

band gaps, the second by a generalized function approach. The dynamics of the finite beam is studied in 

frequency and time domains deriving the exact frequency response and the exact modal response, includ- 

ing modal frequency and impulse response functions. The proposed approach is formulated for arbitrary 

number of resonators and loads, and applies for both non-proportional and proportional damping. 

© 2019 The Authors. Published by Elsevier Ltd. 
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. Introduction 

Beams with periodically-attached resonators are an emerging

nd challenging concept for vibration attenuation, with several po-

ential applications in mechanical and structural engineering [1–

0] . Typically, they are modelled as a continuous-discrete system,

here resonators are single- or multi-degree-of-freedom mass-

pring subsystems coupled with a continuous Euler or Timoshenko

eam. The continuous-discrete model has been applied to sand-

ich beams with embedded resonators [2] , hollow aluminium

eams with an array of rubber-ring coated copper columns [3] ,

eams carrying beam-like resonators [4] , elastic metamaterial

eams [5–10] . Beams with periodically-attached resonators are

eferred to as locally-resonant (LR) beams [1] . Remarkably, the

esonators provide elastic wave attenuation over low-frequency

anges named band gaps [1–10] , whose number is equal to the res-

nator degrees of freedom (DOFs). Translational DOFs are generally

onsidered for resonators [1–10] , to be activated by the beam dis-

lacement at the application point. 

Most frequently, solutions for LR beams have been sought in

he frequency domain using the spectral element method [3–4] ,
∗ Corresponding author. 
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he transfer matrix method [11] and the finite element method

12] . Also, homogenization techniques defining an equivalent mass

er unit length [2] or the Galerkin technique in presence of non-

inearity [9] have been used. 

The present study aims to introduce a comprehensive frame-

ork to calculate frequency and time responses of elastic LR

eams. The key is to show that the mass-spring subsystem mod-

ling a resonator can be reverted to an equivalent constraint with

eaction force depending on the deflection of the application point

hrough a suitable frequency-dependent stiffness. Indeed, a per-

inent stiffness will be derived for single- or multi-degree-of-

reedom resonators generally considered in the literature [1–10] .

tarting from this basis, a transfer matrix method will be adopted

o calculate band gaps of the infinite beam, while the exact fre-

uency and time responses of a finite beam subjected to arbitrary

oads will be obtained, in closed analytical form, extending an ap-

roach recently introduced by some of the authors [13–15] using

he theory of generalized functions [13–20] . 

The paper is organized as follows. Section 2 derives the

requency-dependent stiffness of typical resonators and formulates

he transfer matrix method for infinite beams. Frequency and time

omain solutions for finite beams are presented in Section 3 . A nu-

erical application is discussed in Section 4 . Finally, one Appendix
s included. 
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Fig. 1. Elastic LR beam. 
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Fig. 2. Examples of resonators: (a) 1-DOF; (b) 2-DOF; (c) laterally-resonant 2-DOF. 
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2. Local resonance via transfer matrix approach 

Fig. 1 shows the simple model of a LR Euler beam. Local res-

onators are periodically attached to the beam at mutual distance

a ( = cell length). Symbol “R” denotes a resonator, typically with

single or multiple DOFs as shown in Fig. 2 . 

In the frequency domain, the reaction force of resonators in

Fig. 2 can be expressed in terms of the deflection of the applica-

tion point by using the resonator motion equations. For instance,

the motion equations of the 2-DOF resonator in Fig. 2 c are [10] : 

m 2 ω 

2 U 2 − η2 ( ω ) [ U 2 + λ( U 1 − V ) / 2 ] = 0 (1a)

m 1 ω 

2 U 1 − η1 ( ω ) ( U 1 − V ) − λη2 ( ω ) [ U 2 + λ( U 1 − V ) / 2 ] = 0 (1b)

where V = V ( x j ), λ = H / D and ηl ( ω) = k l + i ωc l , for l = 1,2. From

Eqs. (1) , the displacements U 1 , U 2 and the reaction force of the

resonator take the form: 

 1 = 

H 

2 η2 ( ω ) m 2 ω 

2 − 2 D 

2 η1 ( ω ) 
(
η2 ( ω ) − m 2 ω 

2 
)

H 

2 η2 ( ω ) m 2 ω 

2 − 2 D 

2 
(
η1 ( ω ) − m 1 ω 

2 
)(

η2 ( ω ) − m 2 ω 

2 
)V 

(2)

 2 = 

DH η2 ( ω ) m 1 ω 

2 

H 

2 η2 ( ω ) m 2 ω 

2 − 2 D 

2 
(
η1 ( ω ) − m 1 ω 

2 
)(

η2 ( ω ) − m 2 ω 

2 
)V 

(3)

R ( ω ) = −κ( ω ) V (4)
here κ( ω) is the frequency-dependent stiffness 

( ω ) = 

m 1 ω 

2 
[
2 D 

2 η1 ( ω ) 
(
η2 ( ω ) − m 2 ω 

2 
)

− H 

2 m 2 ω 

2 η2 ( ω ) 
]

H 

2 m 2 ω 

2 η2 ( ω ) − 2 D 

2 
(
η1 ( ω ) − m 1 ω 

2 
)(

η2 ( ω ) − m 2 ω 

2 
)
(5)

Likewise, the reaction force of the 2-DOF resonator in Fig. 2 b is

iven as Eq. (4) , being 

2 ( ω ) ( U 1 − U 2 ) + m 2 ω 

2 U 2 = 0 (6a)

2 ( ω ) ( U 2 − U 1 ) − η1 ( ω ) ( U 1 − V ) + m 1 ω 

2 U 1 = 0 (6b)

( ω ) = 

η1 ( ω ) 
[
η2 ( ω ) ( m 1 + m 2 ) ω 

2 − m 1 m 2 ω 

4 
]

η2 
2 ( ω ) −

(
η1 ( ω ) + η2 ( ω ) − m 1 ω 

2 
)(

η2 ( ω ) − m 2 ω 

2 
) (7)

Next, consider the n th cell of the LR beam shown in Fig. 1 . Be-

ng EI the flexural stiffness and ρ the mass density per unit length,

or a given frequency ω the motion equation within the n th cell

eads ( ω-dependence is omitted for brevity) 

I 
d̄ 

4 V ( x ) 

d x 4 
− ρω 

2 V ( x ) = 0 (8)

here V ( x ) is the deflection 

 ( x ) = A n cos 
(
αx ′ 

)
+ B n sin 

(
αx ′ 

)
+ C n cosh 

(
αx ′ 

)
+ D n sinh 

(
αx ′ 

)
(9)

or x ′ = x −( n − 1)a and α4 = ρω 

2 / EI . Now, enforcing appropriate

atching conditions for deflection, rotation, bending moment and

hear force at the connection point between n th and ( n − 1)th cells

eads to the following equation [21] 

n = T �n −1 = K 

−1 H �n −1 (10)

here T = K 

− 1 H is the transfer matrix, 

 = 

⎡ 

⎢ ⎣ 

1 0 1 0 

0 1 0 1 

−1 0 1 0 

F −1 F 1 

⎤ 

⎥ ⎦ 

(11)

 = 

⎡ 

⎢ ⎣ 

cos ( αa ) sin ( αa ) cosh ( αa ) sinh ( αa ) 
−sin ( αa ) cos ( αa ) sinh ( αa ) cosh ( αa ) 
− cos ( αa ) −sin ( αa ) cosh ( αa ) sinh ( αa ) 

sin ( αa ) − cos ( αa ) sinh ( αa ) cosh ( αa ) 

⎤ 

⎥ ⎦ 

(12)

 = κ( ω ) 
(
α3 EI 

)−1 
(13)

Now, to investigate wave propagation in an infinite periodic LR

eam, assume no damping in every resonator. According to the

loch theorem [21] , it is known that �n = e i qa �n −1 , where q is

he wave vector in x direction and i = imaginary unit. Combining

n = e i qa �n −1 and Eq. (10) leads to the following standard eigen-

alue problem of the transfer matrix T : 

et 
(
T − e i qa I 

)
= 0 (14)

here I is the 4 × 4 unit matrix. Eq. (14) gives the values of q for

pecified ω: if q is real the corresponding wave propagates through

he beam, i.e. the frequency ranges associated with real q are pass

ands. On the contrary, there is a band gap over a specific fre-

uency range for which no real q exists and, in this case, the imag-

nary part of q indicates the wave attenuation through one cell of

he beam. For convenience, roots of the characteristic Eq. (14) will

e sought setting γ = i qa . 

Regarding a finite LR beam, it is known that its frequency band

aps are described effectively by the frequency response function

FRF) [22] . Therefore, the remainder of the paper will derive the

xact FRF for a LR finite beam and, in addition, the exact modal

esponse in frequency and time domains. 
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. Dynamics of LR finite beam 

Assume that the LR beam in Fig. 1 is finite. The vibration re-

ponse can be represented in the general form 

 ( x, t ) = Y e i ωt ; u j ( t ) = U j e 
i ωt (15) 

here y = { v θ m s } T , Y = { V 
 M S } T , u j = { u j 
(1) u j 

(2) …u j 
( Q ) } T and

 j = { U j 
(1) U j 

(2) …U j 
( Q ) } T collect the response variables of the beam

nd the Q -DOF resonator applied at x = x j (e.g., U j 
(1) = U 1 , U j 

(2) = U 2 

n Fig. 2 ). Eq. (15) will be used as general form to represent: 

a) FRF under an harmonic load with frequency ω, i.e. Y = Y ( x, ω)

and U j = U j ( ω); 

b) free-vibration response, being ω = ω k an eigenvalue and

Y = Y k ( x ), U = U j , k the corresponding eigenfunctions. Eigenval-

ues and eigenfunctions may be either real or complex depend-

ing on damping in the system. 

Since Eq. (4) provides the resonator reaction force in terms of

he deflection V ( x j ), the response of the beam-resonators coupled

ystem can be obtained from the motion equation of the beam

nly, generalizing the approach recently proposed by some of the

uthors in frequency and time domains [13–14] . 

.1. Exact frequency response 

Be the beam in Fig. 1 subjected to a harmonic load f ( x )e i ωt , so

hat the FRF takes the form (15) . The motion equation reads 

I 
d̄ 

4 V ( x ) 

d x 4 
−

N ∑ 

j=1 

R j δ
(
x − x j 

)
− ρω 

2 V ( x ) = f ( x ) (16) 

here bar means generalized derivative, symbol δ( x −x j ) denotes a

irac’s delta at x = x j , R j is the reaction force of the j th resonator,

.e. (see Eq. (4) ) 

 j = −κ j ( ω ) V 

(
x j 

)
j = 1 , 2 ...N (17)

or N = number of resonators. Following ref. [13] , it can be written

hat 

 ( x, ω ) = W ( x, ω ) d + Y 

( f ) ( x, ω ) (18)

here d = { d 1 d 2 d 3 d 4 } 
T is a vector of integration constants,

 ( x, ω) is a 4 × 4 matrix depending on the solution to the homo-

eneous equation associated with Eq. (16) , while Y 

f ( x, ω) is a 4 × 1

oad-dependent vector. Elements in W and Y 

f are available in an

xact analytical form, see Appendix A. 

Vector d in Eq. (18) is obtained enforcing the beam B.C., i.e. 

d = r → d = B 

−1 r (19)

here B and r are a 4 × 4 matrix and a 4 × 1 vector, built from

 and Y 

f computed at x = 0 and x = L . 

The inverse matrix B 

−1 is available in a closed analytical form,

s shown in ref. [15] . Hence, replacing Eq. (19) for d in Eq. (18) pro-

ides a closed analytical expression for the FRF Y ( x, ω) of the beam

n Fig. 1 . Remarkably, Eq. (18) for Y ( x, ω) holds for any number of

esonators along the beam. The frequency response U j ( ω) in the

 th resonator can be obtained from the deflection V ( x j ) of the ap-

lication point, e.g. using Eqs. (2)–(3) for the resonator in Fig. 2 c. 

Eq. (18) holds for homogeneous B.C. Non-homogeneous B.C. as-

ociated with resonators applied at the beam end can be still

reated as homogeneous, considering an end resonator as an in-

ernal resonator located at x = 0 + or x = L −. 

It is noteworthy that Eq. (18) can be applied to calculate also

he transmittance of the beam, which is typically used to assess

ffectiveness of band gaps in a LR finite beam [8 , 21] . For this, the

eaction force of every resonator shall be set equal to 

 j = −κ j ( ω ) 
(
V 

(
x j 

)
+ U g 

)
(20) 
here U g is the displacement of the ground, while the B.C. are 

V ( 0 ) = 0 V 

′ ( 0 ) = 0 

 

′′ ( 0 ) = 0 V 

′′′ ( 0 ) = 0 

(21a-d) 

eing V ( x ) the deflection relative to the ground. 

.2. Exact modal response 

Next, be the beam in Fig. 1 subjected to an impulsive load-

ng f ( x ) δ( t ), where δ( t ) is a Dirac’s delta in time and f ( x ) a space-

ependent function. Adopting the approach in ref. [13] , the im-

ulse response function (IRF) h ( x,t ) = { h v h θ h m 

h s } 
T of the beam

an be represented by modal superposition as 

 ( x, t ) = 

∞ ∑ 

k =1 

h k ( x, t ) = 

∞ ∑ 

k =1 

g k ( t ) Y k ( x ) (22) 

 k ( t ) = 

ˆ g k e 
i ω k t k = 1 , 2 ... (23) 

eing ˆ g k a complex coefficient, while ω k and Y k ( x ) are eigen-

alue and vector of eigenfunctions associated with the k th mode.

amely, ω k and Y k are complex if damping is not proportional, real

f damping is proportional. The eigenvalue problem is B ( ω) d = 0 ,

.e. Eq. (19) with r = 0 . 

Based on ref. [13] , ˆ g k can be obtained as 

ˆ 
 k = χk ( i ω k 
k ) 

−1 
(24) 

k = 

∫ L 

0 

f ( x ) V k ( x ) d x (25) 

k = 

N ∑ 

j = 1 

4 ∑ 

l = 1 
μ j ( ω k ) V 

2 
k 

(
x j 

)
+ 2 ρ

∫ L 

0 

V 

2 
k ( x ) dx (26) 

Terms in Eq. (26) depend on the type of resonator. Specifi-

ally, μj ( ω k ) is obtained from the following limit that involves the

requency-dependent stiffness of the resonator 

lim 

 n → ω k 

ω n 

(
κ j ( ω n ) − κ j ( ω k ) 

)
( ω k − ω n ) 

= ω 

2 
k μ j ( ω k ) (27) 

For instance, for the resonator in Fig. 2 c 

j ( ω k ) = 

2 m 1 

g ( ω k ) 

3 ∑ 

s =1 

f s ( ω k ) (28) 

f 1 = H 

4 m 

2 
2 ω 

4 
n η

2 
2 ( ω n ) + 2 D 

4 
(
2 k 2 1 + 4i ω n c 1 k 1 −c 1 ω 

2 
n ( 2 c 1 +i ω n m 1 ) 

)
×

(
η2 ( ω n ) − m 2 ω 

2 
n 

)2 
(29) 

f 2 = D 

2 H 

2 m 2 ω 

2 
n 

[
−4 k 1 η2 ( ω n ) 

(
η2 ( ω n ) − m 2 ω 

2 
n 

)
+ 4 c 1 

(
c 2 ω 

2 
n − i k 2 ω n 

)(
η2 ( ω n ) − m 2 ω 

2 
n 

)]
f 3 = D 

2 H 

2 m 1 m 2 ω 

4 
n 

[
2 k 2 2 + 4i ω n c 2 k 2 − c 2 ω 

2 
n ( 2 c 2 + i ω n m 2 ) 

]
g = 

{
2 D 

2 
[(

η1 ( ω n ) − m 1 ω 

2 
n 

)(
η2 ( ω n ) − m 2 ω 

2 
n 

)]
− H 

2 m 2 ω 

2 
n η2 ( ω n ) 

}2 
(29) 

Now it is known that, for typical damping levels in engineer-

ng applications, modes contributing to the beam response occur

n complex conjugate pairs, i.e. g k ( t ) in Eq. (23) may be ˆ g k e 
i ω k t 

s well as ˆ g k 
∗e −i ω k t , with ˆ g k 

∗ complex conjugate of ˆ g k . The result

s the following real form of the modal IRFs for the k th mode in

q. (22) : 

 k ( x, t ) = ϕ k ( x ) | ω k | z k ( t ) + ψ k ( x ) ̇ z k ( t ) (30) 

here 

 k ( x ) = ζk ψ k ( x ) −
√ 

1 − ζ 2 
k 
λk ( x ) (31) 
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i1 te ω

Fig. 3. Elastic LR beam with resonators in Fig. 2 c. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Band gaps of the LR beam in Fig. 3 . 

Fig. 5. Transmittance of the beam in Fig. 3: with resonators (blue) and without 

resonators (red). (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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ψ k ( x ) = 2 Re 
[

ˆ g k Y k ( x ) 
]
;λk ( x ) = 2 Im 

[
ˆ g k Y k ( x ) 

]
(32a.b)

z k ( t ) = 

1 

ω Dk 

e −ζk | ω k | t sin ( ω Dk t ) ;ω Dk = | ω k | 
√ 

1 − ζ 2 
k 

(33a.b)

being ζ k = Im[ ω k ]/| ω k | the modal damping ratio. Finally, the

modal FRF H k = { H v , k H θ , k H m 

, k H s , k } 
T of the beam is [13] 

H k ( x, ω ) = ϕ k ( x ) | ω k | H k ( ω ) + ψ k ( x ) i ω H k ( ω ) (34)

H k ( ω ) = 

1 

| ω k | 2 − ω 

2 + i2 ζk | ω k | ω 

(35)

Eq. (34) approximates the exact FRF (18) providing an insight

into the single modal contributions, i.e. 

Y ( x, ω ) ≈
M ∑ 

k =1 

H k ( x, ω ) (36)

where M is the number of modes retained for practical purpose.

The IRF and FRF in every resonator follow from Eq. (22) and

Eq. (36) , provided that Y k is replaced with U j , k , i.e. the vector of

eigenfunctions associated with the k th mode for the response in

the j th resonator. Specifically, U j , k can be calculated from the de-

flection V k ( x j ) of the application point (e.g. using Eqs. (2)–(3) for

the resonator in Fig. 2 c). 

Eq. (22) for IRF and Eq. (36) and FRF hold for any number

of resonators along the beam. Every modal contribution (30) and

(34) is exact and readily obtainable in analytical form once the

eigenvalues are calculated. For practical purposes, a sufficient num-

ber of modes M shall be retained in Eq. (22) and Eq. (36) to obtain

accurate expressions for IRF and FRF. 

Finally, it is noteworthy that Eq. (22) for IRF and Eq. (36) for

the FRF hold a similar form also for proportional damping [15] 

h k ( x, t ) = 

2 χk 

ω Dk 
k 

e −ζk ω k t sin ( ω Dk t ) Y k ( x ) (37)

H k ( x, ω ) = 

2 χk 


k 

H k ( ω ) Y k ( x ) (38)

where ζ k is the modal damping ratio, ω Dk is given by Eq. (33b)

and H k ( ω) by Eq. (35) on replacing | ω k | with the real frequency ω k

of the k th mode. 

4. Numerical application 

4.1. Example A 

Consider the cantilever aluminium beam in Fig. 3 carrying the

laterally-resonant 2-DOF resonators in Fig. 2 c [10] . Parameters are:

E = 70 GPa, I = 7.85 × 10 −9 m 

4 (corresponding to a circular

cross section of radius = 0.01 m), ρ = 0.88 kg m 

−1 , N = 8,

a = 0.02 m, H = D = 0.01 m, m 1 = 0.01 kg, m 2 = 0.005 kg,

k = k = 10 5 Nm 

−1 , c = c = 0.1 Nsm 

−1 (see Fig. 2 c). The beam
1 2 1 2 
ay be thought of as the elastic support for a machinery/structure

xerting transverse loads. 

In order to have a preliminary insight into the elastic wave at-

enuation properties, the band gaps of the infinite beam with no

amping are calculated using Eq. (14) . Fig. 4 shows that two band

aps exist in the frequency ranges 426–480 Hz and 840–933 Hz,

here no real wave vectors are found. 

Next, Fig. 5 shows the transmittance of the cantilever beam in

ig. 3 . It is noticed that the wave attenuation properties of the in-

nite beam hold also for the finite beam, as indeed the transmit-

ance within the band gaps is lower than that over the remaining

requency domain by more than one order of magnitude. Notice

hat the transmittance is equal to 1 for zero frequency, as expected

or a static unit ground displacement. For comparison, Fig. 5 shows

he transmittance of the beam without resonators, which exhibits

 single peak but larger than the peaks of the beam with res-

nators. 

For a further insight into the dynamics of the beam in Fig. 3 .

ig. 6 shows the FRF for the tip deflection under a unit harmonic

orce applied at the free end, obtained by the exact Eq. (18) and

he approximate Eq. (36) using M = 7 modes (pertinent complex

igenvalues are in Table 1 ). The modal FRFs (34) are also reported

n Fig. 6 to highlight the contribution of every mode. 



G. Failla, R. Santoro and A. Burlon et al. / Mechanics Research Communications 103 (2020) 103460 5 

Fig. 6. FRF for the tip deflection of the beam in Fig. 3 , under a unit harmonic force 

applied at the free end: Eq. (18) (blue); Eq. (36) with M = 7 modes (black dots); 

Eq. (34) for modal FRFs (color dashes); beam without resonators (red). (For inter- 

pretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 

Table 1 

Eigenvalues and damping ratios for modes of beam in Fig. 3 . 

Mode Eigenvalue Damping ratio 

1 ± 2143.994 + 1.076253i 0.000502 

2 ± 2672.508 + 3.545824i 0.001326 

3 ± 3570.584 + 4.171392i 0.001168 

4 ± 5229.014 + 13.43045i 0.002568 

5 ± 6338.494 + 17.59552i 0.002776 

6 ± 21,786.56 + 6.095178i 0.000279 

7 ± 60,345.95 + 5.750229i 0.000095 

Fig. 7. FRF for the displacement of the lateral mass within the resonator at the free 

end of the beam in Fig. 3 , under a unit harmonic force applied at the free end: 

Eq. (18) (blue); Eq. (36) with M = 7 modes (black dots); Eq. (34) for modal FRFs 

(color dashes). (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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Fig. 8. Time response for the tip deflection of the beam in Fig. 3 under a 920- 

Hz unit sine force at the free end, for increasing number of modes M in Eq. (22) : 

M = 1 (blue dashes), M = 3 (yellow dashes), M = 5 (pink dashes) M = 7 (black). 

(For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

Fig. 9. Time response for the tip deflection of the beam in Fig. 3 without res- 

onators, under a 920-Hz unit sine force at the free end. 
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Further, Fig. 7 shows the FRF for the displacement of the lateral

asses within the resonator placed at the free end. Interestingly,

he peak values of the FRF are all outside the band gaps. This is

vidence that the resonators ensure wave attenuation properties

ibrating within a limited displacement range, which is obviously

esirable for a consistent design of the LR beam. 

Next, consider again Fig. 6 . It is noticed that the FRF, within the

and gaps, is generally well lower than the corresponding one of

he beam without resonators. The only exception is at the right
nd of the second band gap, where the FRFs of the beam with and

ithout resonators are very close to each other. This behaviour is

ssentially attributable to the 3rd and 5th modes, whose modal

RFs are significant within that frequency range (see pink and yel-

ow lines in Fig. 6 ). 

To further investigate this issue, Figs. 8 and 9 report the time

esponses for tip deflection under a 920-Hz unit sine force applied

t the tip, for the beam in Fig. 3 with and without resonators

920 Hz is chosen as a forcing frequency close to the right end

f the second band gap in Fig. 6 ). Consistently with the results

n Fig. 7 , it is found that the beam response is mainly dominated

y 3rd and 5th modal contributions and, due to these modes, the

esponses of the beam with resonators (black line in Fig. 8 ) and

ithout resonators ( Fig. 9 ) have almost the same order of magni-

ude. This is a crucial information for design purposes because, e.g.,

nce mass and stiffness of the resonators are calibrated, damping

oefficients might be selected so as to minimize the contribution

f the 3rd and 5th modes. 
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a
L Na=

i1 te ω

Fig. 10. Elastic LR beam with resonators in Fig. 2 b. 

Fig. 11. Band gaps of the LR beam in Fig. 10 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Transmittance of the beam in Fig. 10: with resonators (blue) and without 

resonators (red). (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

Fig. 13. FRF for the tip deflection of the beam in Fig. 10 under a unit harmonic 

force applied at the free end: Eq. (18) (blue); Eq. (36) with M = 7 modes (black 

dots); Eq. (34) for modal FRFs (color dashes); beam without resonators (red). (For 

interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 

Table 2 

Eigenvalues and damping ratios for modes of beam in Fig. 10 . 

Mode Eigenvalue Damping ratio 

1 ± 1835.184 + 0.822309i 0.000448 

2 ± 2404.434 + 2.852372i 0.001186 

3 ± 4386.564 + 5.289262i 0.001206 

4 ± 6029.053 + 17.46516i 0.002897 

5 ± 21,692.93 + 3.865147i 0.000178 

6 ± 60,314.17 + 3.808406i 0.000063 

7 ± 118,101.2 + 3.891800i 0.000033 

p  

c

 

g  

t  

a  

e  

o  

t

 

s  
4.2. Example B 

Next, it is of interest to investigate the cantilever aluminium

beam in Fig. 3 of Example A, when the laterally-resonant 2-DOF

resonators in Fig. 2 c are replaced with the 2-DOF resonators in

Fig. 2 b, as shown in Fig. 10 . 

The resonators in Fig. 10 are given the same

mass/stiffness/damping properties of those in Fig. 3 , with the

aim of assessing whether and to which extent the different

arrangement of masses/springs/dashpots within the two types

of resonators may affect band gaps and dynamics of the beam.

Therefore, following Example A, N = 8, a = 0.02 m, m 1 = 0.01 kg,

m 2 = 0.005 kg, k 1 = k 2 = 10 5 Nm 

−1 and c 1 = c 2 = 0.1 Nsm 

−1

(see Fig. 2 b). 

For the infinite beam with no damping, Fig. 11 shows two band

gaps in the frequency ranges 386–516 Hz and 930–942 Hz. It is ap-

parent that the band gaps of the beam with resonators in Fig. 2 b,

see Fig. 11 , are very different from those of the beam with res-

onators in Fig. 2 c, see Fig. 4 . Indeed, position as well as width of

the band gaps change, demonstrating that various arrangements of

masses/springs/dashpots may result in different elastic wave atten-

uation properties of the LR beam. 

The proposed method is now applied to calculate transmittance

and FRF of the cantilever beam in Fig. 10 . Fig. 12 shows that, as

expected, the transmittance is below 1 within the band gaps; how-

ever, values within the first band gap are significantly smaller than

those within the second band gap and, in this respect, the be-

haviour of the beam in Fig. 10 proves quite different from the be-

haviour of the beam in Fig. 3 . 

Further, Fig. 13 demonstrates that the FRFs for the tip deflection

under a harmonic load at the free end, as computed by the exact

Eq. (18) and the approximate Eq. (36) using M = 7 modes, are in a
erfect agreement (pertinent complex eigenvalues are in Table 2 ),

onfirming once again the accuracy of the proposed method. 

Considering again Fig. 13 , it is recognized that, within the band

aps, the FRF is generally well lower than the corresponding one of

he beam without resonators. However, the FRFs of the beam with

nd without resonators are very close to each other at the right

nd of the second band gap. This behaviour appears similar to that

f the beam in Fig. 3 but, in this case, is essentially attributable to

he 3rd and 4th modes. 

This conclusion is confirmed by Fig. 14 showing the time re-

ponse of the beam to a unit sine force at the free end, with
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Fig. 14. Time response for the tip deflection of the beam in Fig. 10 under a 942- 

Hz unit sine force at the free end, for increasing number of modes M in Eq. (22) : 

M = 1 (blue dashes), M = 3 (yellow dashes), M = 5 (pink dashes) M = 7 (black). 

(For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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requency equal to 942 Hz, i.e. the frequency at the right end of

he second band gap. In accordance with the results in Fig. 13 ,

he beam response is found to be mainly dominated by 3rd and

th modal contributions, which cause the response of the beam

ith resonators (black line in Fig. 14 ) to attain the order of magni-

ude of the beam response without resonators ( Fig. 9 ). In this case,

herefore, the damping coefficients of the resonators should be ap-

ropriately selected so as to minimize the contribution of the 3rd

nd 4th modes. The conclusion is that the insight provided into

he contribution of single modes to the beam response, in both

requency and time domain, is a most relevant advantage of the

roposed method. 

. Conclusions 

This paper has presented a comprehensive framework for the

ynamic analysis of elastic LR infinite and finite beams. On demon-

trating that the reaction force of a typical resonator depends on

he deflection of the application point via a proper frequency-

ependent stiffness, a transfer matrix method has been used to

alculate the band gaps of the infinite beam, while for a finite

eam the exact frequency response and exact modal responses

ave been derived in analytical form by a generalized function ap-

roach. The solutions hold for any number of resonators, propor-

ional and non-proportional damping, providing a valuable tool to

alculate the beam response to arbitrary loads and modal contri-

utions for design purposes. 
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ppendix 

Following ref. [14] , matrix W in Eq. (18) is given as ( ω-

ependence is omitted for brevity): 

W ( x ) = �( x ) + 

N ∑ 

j=1 

J 
(
x, x j 

)
��

(
x j 

)
+ 

N ∑ 

j=2 

J 
(
x, x j 

) ∑ 

2 ≤q ≤ j ∑ 

( j,m,n,...,r,s ) ∈ N 

( j ) 
q 

�J 

(
x j , x m 

)
· · ·�J ( x r , x s ) ��( x s ) 

(A.1) 

here N 

( j) 
q is the set including all possible q -ples of indexes ( j, m,

, r, s ) such that j > m > n > r > s , being 2 ≤ q ≤ j . 

In Eq. (A.1) , J ( x,x j ) is the 4 × 1 vector 

 

(
x, x j 

)
= 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

J V,P 

(
x, x j 

)
J 
,P 

(
x, x j 

)
J M,P 

(
x, x j 

)
J S,P 

(
x, x j 

)

⎫ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎭ 

(A.2) 

hile �J ( x j ,x k ) denotes the scalar function

J ( x j ,x k ) = −κ j ( ω) J V , P ( x j ,x k ). Terms in J are derived using the

eam equations 

d̄ S ( x ) 

d x 
+ 

N ∑ 

j=1 

R j δ
(
x − x j 

)
+ ρω 

2 V ( x ) = 0 ; d̄ M ( x ) 

d x 
= S ( x ) (A.3a.b)

d̄ 
( x ) 

d x 
= −M ( x ) 

EI 
; d̄ V ( x ) 

d x 
= 
( x ) (A.3c.d) 

tarting from the following particular integrals for deflection asso-

iated with a unit force at arbitrary x = x 0 : 

 V,P ( x, x 0 ) = ϑ ( sinh ( β( x − x 0 ) ) − sin ( β( x − x 0 ) ) ) H ( x − x 0 ) 

(A.4) 

here ϑ = ϑ( ω) = 2 − 1 ( EI ) −1/4 ρ−3/4 ω 

−3/2 and β = β( ω) =
 EI ) −1/4 ρ1/4 ω 

1/2 . Again in Eq. (A.1) , �( x ) depends on the solution

o the homogeneous equation associated with Eq. (16) , i.e. 

( x ) = 

⎡ 

⎢ ⎣ 

e −βx e βx cos ( βx ) sin ( βx ) 
−βe −βx βe βx −β sin ( βx ) β cos ( βx ) 

−EI β2 e −βx −EI β2 e βx EI β2 cos ( βx ) EI β2 sin ( βx ) 
EI β3 e −βx −EI β3 e βx −EI β3 sin ( βx ) EI β3 cos ( βx ) 

⎤ 

⎥ ⎦ 

(A.5) 

hile ��( x s ) in Eq. (A.1) is the row vector

�( x s ) = −κ j ( ω){( �( x s )) 1 }, with () l indicating the l th row of

he matrix within parenthesis. 

Finally, in Eq. (18) vector Y 

( f ) ( x ) is given as (again ω-dependence

s omitted for brevity) 

Y 

( f ) ( x ) = F ( x ) + 

N ∑ 

j=1 

J 
(
x, x j 

)
�( f ) 

(
x j 

)
+ 

N ∑ 

j=2 

J 
(
x, x j 

) ∑ 

2 ≤q ≤ j ∑ 

( j,m,n,...,r,s ) ∈ N 

( j ) 
q 

�J 

(
x j , x m 

)
· · ·�J ( x r , x s ) �

( f ) ( x s ) 

(A.6) 

here �( f ) ( x s ) is the scalar function �( f ) ( x s ) = −κ j ( ω) F 1 ( x ), with

 1 denoting the 1st component of vector 

 ( x ) = 

∫ L 

0 

J ( x, y ) f ( y ) dy (A.7) 
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