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A B S T R A C T

A general (applicable to arbitrary nonlinearity) linearization method above the phase curve is detailed in
this paper. It is shown that the proposed method – based on the first harmonic approximation provided
by the method itself – is capable of establishing the amplitudes of higher-order harmonics in order to
improve the accuracy of the first approximation. The applicability of our method is demonstrated through
the analytical–numerical analysis of well-known (cubic truly-nonlinear (TNL) and van der Pol) single-degree-
of-freedom (SDOF), harmonically-forced nonlinear systems. The obtained results are compared with solutions
in the literature that are considered to be exact. This comparison demonstrates the accuracy, efficiency and
applicability of the proposed linearization procedure to arbitrary periodically-forced nonlinear vibrations. Thus,
on the whole, the relevance of the method is justified.

1. Introduction

Due to the increasing industrial demand for machines and struc-
tures, complicated vibration phenomena often need to be dealt with.
The investigation of such problems usually can be launched through
the analysis of a nonlinear dynamical model with the concomitant
nonlinear governing equation or equation system. Although several
worthwhile publications have been put forward so far (e.g. [1–7]),
the theory of nonlinear differential equations, even in the case of
single-degree-of-freedom (SDOF) 2nd-order differential equations, is
still incomplete. This may raise impassable barriers to handling these
problems with an analytical approach. Although the closed-form so-
lutions of such nonlinear differential equations can be set up in few
cases only [3,5,6], still there is a strong demand from the side of
the engineers for solving these nonlinear problems, even with the
application of certain approximation methods.

In engineering practice, several approximation methods are applied
that share one common feature: each method includes at least one step
that cannot be justified exactly by means of mathematics, at least not
at this point in time. These methods are referred to as ‘‘engineering
methods’’ by some publications [8–11]. Reviewing the approximation
methods that are applied and prevalent in the field of the engineer-
ing, it is clearly seen that the great majority of these methods are
based on approximation by finite or infinite series of mathematical
functions. Two sets of methods are worth contrasting with each other.
One, which contains pure numerical procedures, provides a numerical
solution within a predefined tolerance range with the disadvantages of
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providing a discrete solution. This solution belongs to only one fixed set
of parameters, and these procedures may sometimes be needlessly time-
consuming. The other set contains analytical approximation procedures
which, as a result of a series expansion, provide analytical expressions
as the function of the parameters [12–14]. Sometimes even the first
steps of these methods are enough to reveal the main nonlinear features
of the dynamic system being investigated.

Due to the drawbacks mentioned above, in some cases there have
been attempts to replace a nonlinear system with a linear one, which
yields what is called an equivalent linear system. This brought about
the evolution of a particular set of procedures, the methods of lin-
earization. They do not focus on establishing the exact solution, but
rather on setting up a first approximation solution of the problem
by assigning a considered equivalent linear equation to the original
one. In particular, the nonlinear term is approximated by a so-called
‘‘equalizing’’ plane in such a way that the difference between the
two surfaces is minimized by a certain principle. Hence, the solution
of the equivalent linear system is assumed to be the approximated
solution of the nonlinear one. The difference between the several meth-
ods of linearization can be distinguished by the instructions on how
the equivalent linear equation is assigned to the nonlinear equation.
Consequently, a wide variety of linearization methods can be men-
tioned, such as the simplest and long-existing tangent-line linearization
method [15], harmonic linearization [16,17], which is considered to
be a special type of the method of harmonic balances (HBM) [18–
20], as well as the linearization method based on the equivalence
of energies [21,22], which is the physical interpretation of harmonic
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linearization, the equivalent linearization procedures [23–25], which
can be constructed on the basis of the first approximation of the Krylov–
Bogoliubov-type asymptotic method, the direct linearization method of
Ponovko [26–29], the partial-corresponding correlation method [30],
the different types of global linearization methods [31–33], and the
Blaquiere-type optimal linearization method [34,35], which was im-
proved by Iwan [36–40]. Some additional earlier works about the
different subtypes of linearization methods are mentioned in [41–43].

Besides the SDOF deterministic systems that our investigations are
restricted to in this paper, the class of stochastic linearization tech-
niques, which determine the nonlinear vibration response in the pres-
ence of uncertainties, also needs to be mentioned. These procedures
are particularly useful in the random vibration field, where there are
inherent uncertainties in the excitation (e.g. earthquake loading and
wind loading) [44–47].

The obvious advantage of the above-mentioned methods over non-
linearizing ones is that the analytical handling of a linearized system
is well-established, the analytical forms of the response functions can
be set up in most cases and, moreover, the relative simplicity and the
illustrative presentation of such methods are coherent with the engi-
neering mindset. In this context the Ponovko method can be mentioned
as the very first and only linearization method which is based on the
geometrical considerations that are close to the engineering way of
thinking. A drawback of the Ponovko method is its way of approxi-
mation of a nonlinear characteristic surface by the equalizing plane.
This takes place in such a way that each point of the considered range
of arguments is taken into account. A particular solution is however
evolved from only the nonlinear characteristic surface, which covers
the phase curve projectively, while the other points of the surface are
neglected; hence, it is sufficient to take only the surface curve above the
phase curve into account when the equalizing plane is defined during
any linearization process. Since some publications assume the Ponovko
method to be a generalized procedure of some other linearization
methods [41], then the problem concerning the range of arguments of
linearization may emerge in case of several other linearization methods.
In order to eliminate these difficulties, some procedures of linearization
above the phase curve have been developed [48,49]. These methods,
however, would be considered semi-numerical/semi-analytical proce-
dures rather than pure analytical ones. As regards the Ponovko method,
another common drawback of some existing linearization methods
can be broached: some equivalent linearization methods [50–52], like
that of Ponovko, require the application of weight functions, which
are selected arbitrarily, lacking any kind of physical meaning. The
optimal selection of such functions requires practical experience, thus
they are mathematically inexact. The above-mentioned disadvantages
indicate that the line of thought of these methods includes more than
one mathematically inexact step. So in order to establish the optimal
solution by these methods, several trials are required, which, in some
cases, actually are lacking any kind of physical meaning.

In this article a general (applicable to arbitrary nonlinearity) lin-
earization method above the phase curve is proposed. This method
is a pure analytical procedure that requires no arbitrary weighing
functions lacking physical meaning. It provides an arbitrarily exact
approximating solution of the nonlinear problem in such a way that
only the points constructing the phase curve are taken into account.
The proposed method does not assume any linear term included by the
nonlinear equation; therefore, both ‘‘strongly’’ nonlinear systems [5]
and truly-nonlinear (TNL) systems [4] are also capable of being an-
alyzed by our method. Our experience has shown that the applied
minimizing principle can be taught almost effortlessly. In addition,
some other linearizing procedures, which nowadays might still be
refused by mechanical engineers intuitively, can be illustrated by our
method. Moreover, on the basis of the regular first approximation and
beyond, an improved approximation including higher-order harmonic
terms can also be established, giving rise to solving the inverse problem
(establishing the parameters of a nonlinear vibration).

In the following sections, our method, a linearization above the
phase curve, is detailed first. Then the applicability, accuracy and
efficiency of the method are demonstrated through analytical inves-
tigations of harmonically forced TNL cubic Duffing and van der Pol
systems. The investigation of each system begins by setting up the
equivalent linearized equation, which is followed by the calculation of
the first harmonic approximation. On the basis of the first harmonic
approximation provided by the method itself, the computation of the
first few higher-order harmonics with a successive refining procedure
is performed. Then the results of our method are compared with those
obtained by computation with error calculation in [53]. Besides, the
applicability and the convenience of our method for solving nonlinear
equations from the fields of mechanical engineering and physics are
also demonstrated.

2. The method of linearization above the phase curve

Our investigations are restricted to deterministic SDOF
heteronomous systems whose governing equation takes the general
form of

𝑥′′ + 𝑓
(

𝑥′, 𝑥
)

= 𝑔 (𝜏) , (2.1)

where 𝑥, 𝜏, (…)′, in that order, are denoted to the dimensionless
displacement, time, and the derivative with respect to 𝜏. 𝑔 (𝜏) is the
harmonic forcing term taking the form

𝑔 (𝜏) = 𝑔0 𝑐𝑜𝑠 𝜂𝜏, (2.2)

where 𝜂, 𝑔0 > 0 are constants and denote the dimensionless forcing
angular velocity and amplitude, respectively. The term 𝑓

(

𝑥, 𝑥′
)

is
called the nonlinear characteristic surface and its partial differentials in
respect with 𝑥 and 𝑥′ are assumed to be at least piecewise-continuous
within the considered range of arguments. The detailed theoretical
background of the method can be found in [41–43,54]. Ref. [41]
details the method of linearization above the phase curve, such as the
procedure itself, historical review of the methods of linearization, and
gives an example (SDOF Duffing system) for the application. Solely
the establishment of the first-order approximation (𝑥1 = 𝑎1 𝑐𝑜𝑠 𝜓) is
mentioned and detailed. Ref. [42] highlights the importance of the
transformation of the independent variable in case of the proposed
linearization procedure above the phase curve. Then it compares the
first approximation established by the proposed method to that of
other methods. Ref. [43] gives the details (mathematical background
and literature review) of the proposed linearization method, giving an
example for a possible ‘‘a priori’’ way of judgment of the measure of
nonlinearity, which facilitates the ‘‘a priori’’ judgment of the quality
of the linear approximation. Ref. [43] mentions a possible way of
improving the actual approximation with higher-order harmonics, but
without any examples or details. Ref. [54] is a short summary of the
author’s working life for the habilitation procedure, where a short
extract of the proposed method is also included and, in addition, an
attempt was made to extend the linearization method to MDOF systems.

The forcing term is assumed to be a harmonic expression, thus (2.1)
takes the form

𝑥′′ + 𝑓
(

𝑥, 𝑥′
)

= 𝑔0 𝑐𝑜𝑠 𝜂𝜏, (2.3)

where 𝜂 > 0 constant and is called the dimensionless circular frequency
of the excitement, while 𝑔0 is a dimensionless forcing amplitude.

The linearization of a nonlinear differential equation (2.3) will
generally come to the point where the nonlinear term of 𝑓

(

𝑥, 𝑥′
)

is replaced with a linear expression of 𝑥 and 𝑥′. That is to say, an
equivalent linear differential equation

𝑥′′ + 𝑏𝑥′ + 𝑐𝑥 + 𝑑 = 𝑔0 𝑐𝑜𝑠 𝜂𝜏 (2.4)

is assigned to (2.3) in such a way that the periodic solution of (2.4) is
a ‘‘good’’ approximation of the periodic solution of (2.3). Eq. (2.3) is
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Fig. 1. A nonlinear characteristic surface (continuous) and its equalizing plane (dashed
with dots) above the phase curve (dashed) [43].

assumed to have a known dominant frequency (𝜂), thus the steady-state
solution of (2.4) assumes the form

𝑥 (𝜏) = 𝑎0 + 𝑎1 𝑐𝑜𝑠
(

𝜂𝜏 − 𝜗1
)

. (2.5)

The unknown 𝑎0, 𝑎1 and 𝜗1 constants in (2.5) can be expressed as the
functions of 𝑏, 𝑐 and 𝑑 coefficients as follows:

𝑎0 = −𝑑
𝑐
, 𝑎1 =

𝑔0
√

(

𝑐 − 𝜂2
)2 + (𝑏𝜂)2

, 𝜗1 = 𝑎𝑟𝑐𝑡𝑔
(

𝑏𝜂
𝑐 − 𝜂2

)

. (2.6)

When (2.3) is linearized, the nonlinear characteristic surface
𝑓
(

𝑥, 𝑥′
)

is approximated by an equalizing plane of 𝑧 = 𝑏𝑥′ + 𝑐𝑥 + 𝑑
over the considered range of arguments. Thus, the problem is reduced
to establishing the unknown 𝑏, 𝑐 and 𝑑 coefficients of the approximating
plane. In order to obtain the equalizing plane, the method of lineariza-
tion along the phase-curve applies the following procedure: let the
quadratic integration of the difference 𝑒 = |

|

|

𝑓
(

𝑥, 𝑥′
)

−
(

𝑏𝑥′ + 𝑐𝑥 + 𝑑
)

|

|

|

along the phase-curve 𝑠 of the vibrating system be minimal, which then
can be formulated as

𝐽1 = ∮(𝑠)

[

𝑓
(

𝑥, 𝑥′
)

−
(

𝑏𝑥′ + 𝑐𝑥 + 𝑑
)]2 𝑑𝑠 = min . (2.7)

Fig. 1 displays the geometrical approach of the proposed method.
From an engineering and educational point of view, this might be the
most important advantage of our method.

The continuous curve displays the intersection curve of the nonlin-
ear characteristic surface and the cylinder that is extruded from the
circular phase curve, while the dotted line indicates the intersection
of the same circular cylinder and the equalizing plane. The equalizing
plane is selected in accordance with (2.7), i.e., the solution of the
extremum problem (2.7) yields the unknown b, c and d parameters as
the functions of the vibrational amplitude and frequency. The solution
procedure of (2.7) can be simplified significantly if the calculation
is performed on the phase plane. This requires a new dimensionless
variable to be introduced, 𝜑 = 𝜂𝜏. Thus (2.3) and (2.4) are transformed
into the forms

𝜂2𝑥′′ + 𝑓
(

𝑥, 𝜂𝑥′
)

= 𝑔0 𝑐𝑜𝑠 𝜑 (2.8)

and

𝜂2𝑥′′ + 𝑏𝜂𝑥′ + 𝑐𝑥 + 𝑑 = 𝑔0 𝑐𝑜𝑠 𝜑, (2.9)

respectively, where ′ denotes the derivatives by 𝜑. Using these nota-
tions, the solution of (2.5) and its derivative by 𝜑 take the forms

𝑥 (𝜑) = 𝑎0 + 𝑎1 𝑐𝑜𝑠
(

𝜑 − 𝜗1
)

(2.10)

and

𝑥′ (𝜏) = −𝑎1 𝑠𝑖𝑛
(

𝜑 − 𝜗1
)

, (2.11)

respectively, whose constant coefficients 𝑎0, 𝑎1 and 𝜗1 are established
also by (2.6). It is clearly seen by (2.10) and (2.11) that the

(

𝑥, 𝑥′
)

phase-curve of (2.9) is a circle with the origin of 𝑎0 situated along the
𝑥 axis and with the radius 𝑎1. Since the dimensions of (2.10) and (2.11)
are identical, an element arc of 𝑑𝑠 can be defined along the circular
phase curve, which implies the following form of (2.7):

𝐽1 = ∮(𝑠)

[

𝑓
(

𝑥, 𝜂𝑥′
)

−
(

𝑏𝜂𝑥′ + 𝑐𝑥 + 𝑑
)]2 𝑑𝑠 = min . (2.12)

After introducing 𝜓 = 𝜑 − 𝜗1, the ds element arc takes the form
𝑑𝑠 = 𝑎1𝑑𝜓 , and (2.12) is transformed into

𝐽1 = ∫

2𝜋

0

[

𝑓
(

𝑥, 𝜂𝑥′
)

−
(

𝑏𝜂𝑥′ + 𝑐𝑥 + 𝑑
)]2 𝑎1𝑑𝜓 = min . (2.13)

From (2.13) the equations 𝜕𝐽1
𝜕𝑏 = 0, 𝜕𝐽1𝜕𝑐 = 0, 𝜕𝐽1𝜕𝑑 = 0 are yielded, from

which the unknown b, c and d coefficients are obtained as follows:

𝑏 = − 1
𝜋𝑎1𝜂 ∫

2𝜋

0
𝑓
(

𝑎0 + 𝑎1 𝑐𝑜𝑠 𝜓 ; −𝑎1𝜂 𝑠𝑖𝑛 𝜓
)

𝑠𝑖𝑛 𝜓𝑑𝜓,

𝑐 = 1
𝜋𝑎1 ∫

2𝜋

0
𝑓
(

𝑎0 + 𝑎1 𝑐𝑜𝑠 𝜓 ; −𝑎1𝜂 𝑠𝑖𝑛 𝜓
)

𝑐𝑜𝑠 𝜓𝑑𝜓,

𝑑 = 1
2𝜋 ∫

2𝜋

0
𝑓
(

𝑎0 + 𝑎1 𝑐𝑜𝑠 𝜓 ; −𝑎1𝜂 𝑠𝑖𝑛 𝜓
)

𝑑𝜓

−
𝑎0
𝜋𝑎1 ∫

2𝜋

0
𝑓
(

𝑎0 + 𝑎1 𝑐𝑜𝑠 𝜓 ; −𝑎1𝜂 𝑠𝑖𝑛 𝜓
)

𝑐𝑜𝑠 𝜓𝑑𝜓.

(2.14)

By (2.14) the approximating 𝑎1 (𝜂), 𝜗1 (𝜂) amplitude–frequency and
amplitude–phase functions of (2.3) can be established. In cases where
𝑓
(

𝑥, 𝑥′
)

is symmetric about the origin of the coordinate system, i.e.,

𝑓
(

𝑥, 𝑥′
)

= −𝑓
(

−𝑥,−𝑥′
)

(2.15)

is fulfilled, 𝑎0 = 0 is obtained, and the expressions (2.14) are reduced
to the following forms

𝑏 = − 1
𝜋𝑎1𝜂 ∫

2𝜋

0
𝑓
(

𝑎1 𝑐𝑜𝑠 𝜓 ; −𝑎1𝜂 𝑠𝑖𝑛 𝜓
)

𝑠𝑖𝑛 𝜓𝑑𝜓,

𝑐 = 1
𝜋𝑎1 ∫

2𝜋

0
𝑓
(

𝑎1 𝑐𝑜𝑠 𝜓 ; −𝑎1𝜂 𝑠𝑖𝑛 𝜓
)

𝑐𝑜𝑠 𝜓𝑑𝜓.

(2.16)

Thus, the equivalent linear equation of (2.3) and the corresponding
zeroth and first approximations of the nonlinear vibrations have been
established. The zeroth approximation is meant to be the shift of the
mean line of the vibration from the time axis. As was shown in [43], a
proper selection of transformation on the phase plane can also give a
geometrical interpretation of the first step of other methods.

Based on the first approximation (2.10), the next section will detail
the approximation with additional higher-order harmonics and the
successive refining procedure.

3. The improvement of linear approximation with higher order
harmonics and the successive refining procedure

Here and below the partial differentials with respect with 𝑥 and 𝑥′

of 𝑓
(

𝑥, 𝑥′
)

are still assumed to be continuous, or at least piecewisely,
within the considered range of arguments, and the equalizing plane of
𝑧 = 𝑏𝑥′ + 𝑐𝑥 + 𝑑 differs slightly from 𝑓

(

𝑥, 𝑥′
)

along the phase curve.
From this point, we no longer assume that 𝑓

(

𝑥, 𝑥′
)

may take the form
of (2.15), but the dependency of quantities of 𝑏, 𝑐 on 𝜂 and 𝑎1 are still
emphasized. The amplitudes of the higher harmonics are computed on
the basis of the first approximation (2.5). In particular, we still assume
that the nonlinear vibration governed by the equation of

𝜂2𝑥′′ + 𝑓
(

𝑥, 𝜂𝑥′
)

= 𝑔0 𝑐𝑜𝑠 𝜑 (3.1)
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which is approximated with (2.5) within an acceptable accuracy range,
where (2.5) is the stationary periodic solution of the equivalent linear
equation of

𝜂2𝑥′′ + 𝑏𝜂𝑥′ + 𝑐𝑥 + 𝑑 = 𝑔0 𝑐𝑜𝑠 𝜑, (3.2)

where 𝜑 = 𝜂𝜏. Based on practical observations (see [55,56]), this is
likely to occur when (3.1) is ‘‘weakly’’ nonlinear and 𝜂 slightly differs
from the undamped linear natural angular frequency of (3.1), i.e., when
the nonlinear terms of (3.1) are ignored. In line with the above,
𝑓
(

𝑥, 𝜂𝑥′
)

, along the phase curve and in its neighborhood, assumes the
form

𝑓
(

𝑥, 𝜂𝑥′
)

= 𝑏
(

𝑎1, 𝜂
)

𝜂𝑥′ + 𝑐
(

𝑎1, 𝜂
)

𝑥 + 𝜀ℎ
(

𝑎1, 𝜂
)

, (3.3)

where 𝜀 is a ‘‘small’’ parameter, while the quantities 𝑏
(

𝑎1, 𝜂
)

and
𝑐
(

𝑎1, 𝜂
)

are calculated by (2.14). The approximating solution of (3.1)
is still assumed in the form

𝑥1 (𝜓) = 𝑎1 𝑐𝑜𝑠 𝜓, (3.4)

where 𝜓 = 𝜂𝜏 − 𝜗1, 𝑎1 and 𝜗1 fulfill the expressions (2.6). The periodic
solution of (3.1), which contains higher order harmonics, is taken to be

𝑥1,𝛥 (𝜓) = 𝑥1 (𝜓) + 𝛥𝑥1 (𝜓) , (3.5)

where the Fourier series of 𝛥𝑥1 (𝜓) can be written as

𝛥𝑥1 (𝜓) = 𝐶0,1 +
∞
∑

𝑛=2

(

𝐶𝑛,1 𝑐𝑜𝑠 𝑛𝜓 +𝐷𝑛,1 𝑠𝑖𝑛 𝑛𝜓
)

. (3.6)

Since 𝑓
(

𝑥, 𝜂𝑥′
)

takes the form of (3.3), and the system is forced at
almost its natural frequency, we may assume that ‖

‖

𝛥𝑥1‖‖≪ ‖

‖

𝑥1‖‖, which
is emphasized by this short form

𝛥𝑥1 = 𝜀𝑢1. (3.7)

Substituting (3.5)–(3.7) into (3.1), we obtain

𝜂2𝑥′′1 + 𝜂2𝜀𝑢′′1 + 𝑓
[

𝑥1 + 𝜀𝑢1, 𝜂
(

𝑥′1 + 𝜀𝑢
′
1
)]

= 𝑔0 𝑐𝑜𝑠
(

𝜓 + 𝜗1
)

, (3.8)

where 𝑥1 = 𝑎1 𝑐𝑜𝑠 𝜓 and (…)′ = 𝑑
𝑑𝜓 . Let us generate the linearized

form of 𝑓
[

𝑥1 + 𝜀𝑢1, 𝜂
(

𝑥′1 + 𝜀𝑢
′
1
)]

of (3.8) at
(

𝑥1, 𝜂𝑥′1
)

, i.e., within the
neighborhood of the phase curve. This results in

𝑓
[

𝑥1 + 𝜀𝑢1, 𝜂
(

𝑥′1 + 𝜀𝑢
′
1
)]

≈ 𝑓
(

𝑥1, 𝜂𝑥
′
1
)

+
𝜕𝑓
𝜕𝑥1

|

|

|

|

(

𝑥1 ,𝜂𝑥′1
)

𝜀𝑢1

+
𝜕𝑓

𝜕
(

𝜂𝑥′1
)

|

|

|

|

|

(

𝑥1 ,𝜂𝑥′1
)

𝜂𝜀𝑢′1, (3.9)

where, from (3.3), the expressions

𝜕𝑓
𝜕𝑥1

= 𝑐
(

𝑎1, 𝜂
)

+ 𝜀 𝜕ℎ
𝜕𝑥1

𝜕𝑓
𝜕
(

𝜂𝑥′1
) = 𝑏

(

𝑎1, 𝜂
)

+ 𝜀 𝜕ℎ
𝜕
(

𝜂𝑥′1
)

(3.10)

are yielded. If the expressions (3.9)–(3.10) are substituted into (3.8),
and the terms which includes 𝜀2 are ignored, then

𝜂2𝑥′′1 + 𝜂2𝜀𝑢′′1 + 𝑓
(

𝑥1, 𝜂𝑥
′
1
)

+ 𝑏𝜂𝜀𝑢′1 + 𝑐𝜀𝑢1 = 𝑔0 𝑐𝑜𝑠
(

𝜓 + 𝜗1
)

(3.11)

is obtained. If the expressions (3.4) and (3.6) are substituted into (3.11),
then

−𝜂2𝑎1 𝑐𝑜𝑠 𝜓 + 𝜂2
∞
∑

𝑛=2

[

𝑛2
(

𝐶𝑛,1 𝑐𝑜𝑠 𝑛𝜓 +𝐷𝑛,1 𝑠𝑖𝑛 𝑛𝜓
)]

+𝑓
(

𝑎1 𝑐𝑜𝑠 𝜓,−𝑎1𝜂 𝑠𝑖𝑛 𝜓
)

+𝜂𝑏
∞
∑

𝑛=2

[

𝑛
(

−𝐶𝑛,1 𝑠𝑖𝑛 𝑛𝜓 +𝐷𝑛,1 𝑐𝑜𝑠 𝑛𝜓
)]

+ 𝑐𝐶01

+𝑐
∞
∑

𝑛=2

(

𝐶𝑛,1 𝑐𝑜𝑠 𝑛𝜓 +𝐷𝑛,1 𝑠𝑖𝑛 𝑛𝜓
)

= 𝑔0
(

𝑐𝑜𝑠 𝜓 𝑐𝑜𝑠 𝜗1 − 𝑠𝑖𝑛 𝜓 𝑠𝑖𝑛 𝜗1
)

(3.12)

is obtained, where 𝑓
(

𝑎1 𝑐𝑜𝑠 𝜓,−𝑎1𝜂 𝑠𝑖𝑛 𝜓
)

is expanded into the Fourier
series

𝑓 = 𝐺0,1 +
∞
∑

𝑛=1

(

𝐺𝑛,1 𝑐𝑜𝑠 𝑛𝜓 +𝐻𝑛,1 𝑠𝑖𝑛 𝑛𝜓
)

(3.13)

and yields the coefficients

𝐺0,1 = 1
2𝜋 ∫

2𝜋

0
𝑓
(

𝑎1 𝑐𝑜𝑠 𝜓,−𝑎1𝜂 𝑠𝑖𝑛 𝜓
)

𝑑𝜓

𝐺𝑛,1 = 1
𝜋 ∫

2𝜋

0
𝑓
(

𝑎1 𝑐𝑜𝑠 𝜓,−𝑎1𝜂 𝑠𝑖𝑛 𝜓
)

𝑐𝑜𝑠 𝑛𝜓𝑑𝜓

𝐻𝑛,1 = 1
𝜋 ∫

2𝜋

0
𝑓
(

𝑎1 𝑐𝑜𝑠 𝜓,−𝑎1𝜂 𝑠𝑖𝑛 𝜓
)

𝑠𝑖𝑛 𝑛𝜓𝑑𝜓.

(3.14)

Substituting (3.13) into (3.12), and matching the coefficients of the
appropriate harmonic terms, the relations

𝑐
(

𝑎1, 𝜂
)

𝐶0,1 + 𝐺0,1 = 0
−𝜂2𝑎1 + 𝐺1,1 = 𝑔0 𝑐𝑜𝑠 𝜗1
𝐻1,1 = −𝑔0 𝑠𝑖𝑛 𝜗1
[

𝑐
(

𝑎1, 𝜂
)

− 𝑛2𝜂2
]

𝐶𝑛,1 + 𝑛𝜂𝑏
(

𝑎1, 𝜂
)

𝐷𝑛,1 + 𝐺𝑛,1 = 0
−𝑛𝜂𝑏

(

𝑎1, 𝜂
)

𝐶𝑛,1 +
[

𝑐
(

𝑎1, 𝜂
)

− 𝑛2𝜂2
]

𝐷𝑛,1 +𝐻𝑛,1 = 0

(3.15)

are obtained. The 2nd and 3rd lines of (3.15) are identical equations,
while the remaining equations yield the Fourier coefficients of 𝛥𝑥1,
which can be formulated as follows:

𝐶0,1 = −
𝐺0,1

𝑐
(

𝑎1, 𝜂
) ,

𝐶𝑛,1 =
−
[

𝑐
(

𝑎1, 𝜂
)

− 𝑛2𝜂2
]

𝐺𝑛,1 + 𝑛𝜂𝑏
(

𝑎1, 𝜂
)

𝐻𝑛,1
[

𝑐
(

𝑎1, 𝜂
)

− 𝑛2𝜂2
]2 +

[

𝑛𝜂𝑏
(

𝑎1, 𝜂
)]2

𝐷𝑛,1 =
𝑛𝜂𝑏

(

𝑎1, 𝜂
)

𝐺𝑛,1 +
[

𝑐
(

𝑎1, 𝜂
)

− 𝑛2𝜂2
]

𝐻𝑛,1
[

𝑐
(

𝑎1, 𝜂
)

− 𝑛2𝜂2
]2 +

[

𝑛𝜂𝑏
(

𝑎1, 𝜂
)]2 .

, (3.16)

In ‘‘weakly’’ damped systems, when 𝑏
(

𝑎1, 𝜂
)

is ‘‘small’’ enough, and the
relations

|

|

𝑛𝜂𝑏𝐻𝑛,1
|

|

≪ |

|

|

(

𝑐 − 𝑛2𝜂2
)

𝐺𝑛,1
|

|

|

|

|

𝑛𝜂𝑏𝐺𝑛,1||≪
|

|

|

(

𝑐 − 𝑛2𝜂2
)

𝐻𝑛,1
|

|

|

(3.17)

hold at the same time, expressions (3.16) will lead to the following
simpler forms

𝐶𝑛,1 = −
𝐺𝑛,1

𝑐
(

𝑎1, 𝜂
)

− 𝑛2𝜂2
,

𝐷𝑛,1 = −
𝐻𝑛,1

𝑐
(

𝑎1, 𝜂
)

− 𝑛2𝜂2
.

(3.18)

At resonance, namely when 𝑐 = 𝜂2, the expressions (3.18) takes the
forms

𝐶𝑛,1 ≈ −
𝐺𝑛,1

(

1 − 𝑛2
)

𝑐
(

𝑎1, 𝜂
)

𝐷𝑛,1 ≈ −
𝐻𝑛,1

(

1 − 𝑛2
)

𝑐
(

𝑎1, 𝜂
) ,

(3.19)

hence 𝛥𝑥1 of (3.5) can be written as

𝛥𝑥1 = −
𝐺0,1
𝑐

+ 1
𝑐

∞
∑

𝑛=2

(𝐺𝑛,1 𝑐𝑜𝑠 𝑛𝜓 +𝐻𝑛,1 𝑠𝑖𝑛 𝑛𝜓
𝑛2 − 1

)

. (3.20)

The 𝐺0,1, 𝐺𝑛,1 and 𝐻𝑛,1 coefficients of (3.20) can be calculated from
(3.14). Using the expressions (3.4) and (3.20), the improved approx-
imation solution of (3.1), which already contains the higher-order
harmonics, can be formulated as follows:

𝑥1,𝛥 (𝜓) = 𝑥1 (𝜓) + 𝛥𝑥1 (𝜓)

= 𝑎1 𝑐𝑜𝑠 𝜓 −
𝐺0,1
𝑐

+ 1
𝑐

∞
∑

𝑛=2

(𝐺𝑛,1 𝑐𝑜𝑠 𝑛𝜓 +𝐻𝑛,1 𝑠𝑖𝑛 𝑛𝜓
𝑛2 − 1

)

. (3.21)

4
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Fig. 2. The refining process along the phase curve of the improved solution.

Now we turn to the refining process and apply it to (3.21). This
procedure is based on the idea of finding a new equalizing plane
that approximates 𝑓

(

𝑥1,𝛥, 𝜂𝑥′1,𝛥
)

along the new phase curve that now
belongs to the improved (3.21) solution. Now let the equivalent linear
equation

𝜂2𝑥′′ + 𝑏1𝜂𝑥′ + 𝑐1𝑥 = 𝑔0 𝑐𝑜𝑠 𝜑 (3.22)

be assigned to (3.1), whose particular solution shall take the form
𝑎2 𝑐𝑜𝑠 𝜓 . Hence, the approximation solution of (3.1) takes the form

𝑥2 (𝜓) = 𝑎2 𝑐𝑜𝑠 𝜓 + 𝛥𝑥1, (3.23)

where 𝑎2 is unknown for the time being, while 𝛥𝑥1 still assumes the
form of (3.20). During the refining process of approximation solu-
tion (3.21), the 𝑏1

(

𝑎2, 𝜂
)

and 𝑐1
(

𝑎2, 𝜂
)

parameters of the equalizing
plane 𝑧1 = 𝑏1𝜂𝑥′ + 𝑐1𝑥 are calculated in such a way to provide a
satisfactory approximation of the nonlinear surface 𝑓

(

𝑥1,𝛥, 𝜂𝑥′1,𝛥
)

along
the 𝑠1,𝛥 phase curve of (3.22) (Fig. 2).

Accordingly, the following extremum problem along the phase
curve can be set up:

∮(𝑠1,𝛥)

[

𝑓
(

𝑎2 𝑐𝑜𝑠 𝜓 + 𝛥𝑥1,−𝑎2 𝑠𝑖𝑛 𝜓 + 𝛥𝑥′
)

−
(

𝑏1𝜂𝑥
′
1,𝛥 + 𝑐1𝑥1,𝛥 + 𝑑1

)] 2
𝑑𝑠 = min . (3.24)

The element arc along the phase-curve 𝑠1,𝛥 can be defined again.
If we wrote it in the exact form, even in simple cases this would
transform (3.24) into a complicated elliptic integral. To make the
treatise simpler, the 𝑑𝑠2 = 𝑎2𝑑𝜓 approximation is assumed, i.e., the 𝑠1,𝛥
phase curve is replaced by a circle having the same center and with
the radius 𝑎2. Hence, the simplified extremum calculation yields the
expressions

𝑏1
(

𝑎2, 𝜂
)

=
∫ 2𝜋0 𝑓

(

𝑎2 𝑐𝑜𝑠 𝜓 + 𝛥𝑥1,−𝑎2 𝑠𝑖𝑛 𝜓 + 𝛥𝑥′1
) (

−𝑎2 𝑠𝑖𝑛 𝜓 + 𝛥𝑥′1
)

𝑑𝜓

𝜂 ∫ 2𝜋0
(

−𝑎2 𝑠𝑖𝑛 𝜓 + 𝛥𝑥′1
)2 𝑑𝜓

𝑐1
(

𝑎2, 𝜂
)

=
∫ 2𝜋0 𝑓

(

𝑎2 𝑐𝑜𝑠 𝜓 + 𝛥𝑥1,−𝑎2 𝑠𝑖𝑛 𝜓 + 𝛥𝑥′1
) (

𝑎2 𝑐𝑜𝑠 𝜓 + 𝛥𝑥1
)

𝑑𝜓

𝜂 ∫ 2𝜋0
(

𝑎2 𝑐𝑜𝑠 𝜓 + 𝛥𝑥1
)2 𝑑𝜓

,

(3.25)

where the 𝑏1
(

𝑎2, 𝜂
)

and 𝑐1
(

𝑎2, 𝜂
)

parameters of the equalizing plane
are still the functions of the amplitude and angular frequency. 𝑎2
and 𝜗2, included by (3.23), are calculated from the equivalent linear
equation (3.22) by the expressions (2.6). Based on the improved and

refined solution, another improved approximation can be established
including even higher order harmonics. For further improvement and
refinement, this procedure can be continued up to an arbitrary number
of new higher-order terms. The flowchart below (Table 1) outlines some
steps of the improving–refining procedure

4. Nonlinear systems - examples

This section demonstrates the applicability, accuracy and efficiency
of the proposed method through the analysis of well-known and fre-
quently referenced nonlinear forced systems. In order to demonstrate
the suitability of the proposed method, our results are compared to
those of [53], which were obtained with the application of the Galerkin
method. Section 4.1 gives details about the application of the proposed
linearization method and the improving steps of adding higher-order
harmonics. The successive refining process following each improving
step is also detailed. The subsequent subsections, without detailed
calculations, give only the final results of the linearization and the steps
of the successive improvement and refining procedures.

4.1. A truly nonlinear (TNL) system

A possible dimensionless equation of motion of a truly nonlinear
system may take the form of

𝑥′′ + 𝑥3 = 𝑐𝑜𝑠 𝜏 (4.1)

[3,5], where, as per (2.2), 𝜂 = 1. The characteristic surface of (4.1)
cannot be linearized at 𝑥 = 0, hence (4.1) is a truly nonlinear equation
of motion [3]. Since the system under investigation is undamped,
numerical computation, for example the method of Runge–Kutta, may
encounter difficulties originating from the integrals. As regards (4.1),
or specific 𝑥′′ + 𝑥3 = 𝑠𝑖𝑛 𝜏, it has been pointed out that one and only
one isolated periodic solution exists. This was established by Urabe
and Reiter with the application of the Galerkin method [53]. Their
solution was calculated to 6 decimal places, resulting in the numerical
expression

𝑥 (𝜏) = 1.431189 𝑠𝑖𝑛 𝜏 − 0.126915 𝑠𝑖𝑛 3𝜏 + 0.009754 𝑠𝑖𝑛 5𝜏
−0.000763 𝑠𝑖𝑛 7𝜏 + 0.000059 𝑠𝑖𝑛 9𝜏.

(4.2)

Below, the approximation solution of (4.1), also to 6 decimal places,
is established by the proposed method of linearization above the phase
curve, and then our results are compared to those of [53].

Since no damping is assumed, the equivalent linearized equation
(4.1) takes the form

𝑥′′ + 𝑘𝑒𝑥 = 𝑐𝑜𝑠 𝜏. (4.3)

The closed-form first approximating solution of (4.3) assumes the form

𝑥1 (𝜓) = 𝑎1 𝑐𝑜𝑠 𝜓, (4.4)

where 𝜓 = 𝜏 − 𝜗1. Since the 𝑓
(

𝑥, 𝑥′
)

= 𝑥3 nonlinear characteristic
surface of (4.1) is symmetric about the origin of the phase space, and
thus (4.4) and (2.16) can be exploited, the equivalent spring stiffness
included by (4.3) takes the form

𝑘𝑒 =
3
4
𝑎1
2. (4.5)

Taking into account the expressions (4.5) and (2.6), the unknown 𝑎1
amplitude of the first approximation can be expressed as

𝑎1 =
1

|

|

𝑘𝑒 − 1||
= 1

|

|

|

3
4𝑎1

2 − 1||
|

. (4.6)

Solving (4.6) for 𝑎1, the calculation leads to the result of 𝑎1 = 1.4922.
Based on (4.6), the 1st improved approximation expression of (4.1),

which includes higher harmonics, can now be established, taking
the form of (3.21). Due to the origin symmetry of 𝑓

(

𝑥, 𝑥′
)

= 𝑥3,

5
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Table 1
The first few and the general (𝑖 − 1)th and 𝑖th steps of the improving–refining procedure.

1st approximation

𝑥1 (𝜓) = 𝑎1 𝑐𝑜𝑠 𝜓 (obtained as detailed in Chapter 2)

1st improvement (𝛥𝑥1 is calculated for improving 𝑥1, hence 𝑥1,𝛥 is obtained)

𝑥1,𝛥 (𝜓) = 𝑎1 𝑐𝑜𝑠 𝜓 + 𝛥𝑥1

𝛥𝑥1 = 𝐶01 +
∞
∑

𝑛=2

{

𝐶𝑛1 𝑐𝑜𝑠 (𝑛𝜓) +𝐷𝑛1 𝑠𝑖𝑛 (𝑛𝜓)
}

𝐶01 = −
𝐺0

𝑐
(

𝑎1 , 𝜂
) , 𝐶𝑛1 =

−
[

𝑐
(

𝑎1 , 𝜂
)

− 𝑛2𝜂2
]

𝐺𝑛 + 𝑛𝜂𝑏
(

𝑎1 , 𝜂
)

𝐻𝑛
[

𝑐
(

𝑎1 , 𝜂
)

− 𝑛2𝜂2
]2 +

[

𝑛𝜂𝑏
(

𝑎1 , 𝜂
)]2 , 𝐷𝑛1 =

𝑛𝜂𝑏
(

𝑎1 , 𝜂
)

𝐺𝑛 +
[

𝑐
(

𝑎1 , 𝜂
)

− 𝑛2𝜂2
]

𝐻𝑛
[

𝑐
(

𝑎1 , 𝜂
)

− 𝑛2𝜂2
]2 +

[

𝑛𝜂𝑏
(

𝑎1 , 𝜂
)]2

𝐺01 =
1
2𝜋 ∫

2𝜋

0
𝑓
(

𝑎1 𝑐𝑜𝑠 𝜓,−𝑎1𝜂 𝑠𝑖𝑛 𝜓
)

𝑑𝜓, 𝐺𝑛1 =
1
𝜋 ∫

2𝜋

0
𝑓
(

𝑎1 𝑐𝑜𝑠 𝜓,−𝑎1𝜂 𝑠𝑖𝑛 𝜓
)

𝑐𝑜𝑠 𝑛𝜓𝑑𝜓, 𝐻𝑛1 =
1
𝜋 ∫

2𝜋

0
𝑓
(

𝑎1 𝑐𝑜𝑠 𝜓,−𝑎1𝜂 𝑠𝑖𝑛 𝜓
)

𝑠𝑖𝑛 𝑛𝜓𝑑𝜓

2nd approximation (𝑎2 is calculated to refine 𝑎1, hence 𝑥2 is obtained)

𝑥2 (𝜓) = 𝑎2 𝑐𝑜𝑠 𝜓 + 𝛥𝑥1

∮(𝑠2)

[

𝑓
(

𝑎2 𝑐𝑜𝑠 𝜓 + 𝛥𝑥1 ,−𝑎2𝜂 𝑠𝑖𝑛 𝜓 + 𝛥𝑥1′
)

−
(

𝑏1𝜂𝑥2
′ + 𝑐1𝑥2 + 𝑑1

)]2 𝑑𝑠 = min .

𝑏1
(

𝑎2 , 𝜂
)

=
∫ 2𝜋
0 𝑓

(

𝑎2 𝑐𝑜𝑠 𝜓 + 𝛥𝑥1 ,−𝑎2𝜂 𝑠𝑖𝑛 𝜓 + 𝛥𝑥′1
) (

−𝑎2𝜂 𝑠𝑖𝑛 𝜓 + 𝛥𝑥′1
)

𝑑𝜓

𝜂 ∫ 2𝜋
0

(

−𝑎2𝜂 𝑠𝑖𝑛 𝜓 + 𝛥𝑥′1
)2 𝑑𝜓

,

𝑐1
(

𝑎2 , 𝜂
)

=
∫ 2𝜋
0 𝑓

(

𝑎2 𝑐𝑜𝑠 𝜓 + 𝛥𝑥1 ,−𝑎2𝜂 𝑠𝑖𝑛 𝜓 + 𝛥𝑥′1
) (

𝑎2 𝑐𝑜𝑠 𝜓 + 𝛥𝑥1
)

𝑑𝜓

𝜂 ∫ 2𝜋
0

(

𝑎2 𝑐𝑜𝑠 𝜓 + 𝛥𝑥1
)2 𝑑𝜓

𝑎2 =
𝑔0

√

[

𝑐1
(

𝑎2 , 𝜂
)

− 𝜂2
]2 +

[

𝑏1
(

𝑎2 , 𝜂
)

𝜂
]2
, 𝜗2 = 𝑎𝑟𝑐𝑡𝑔

(

𝑏1𝜂
𝑐1 − 𝜂2

)

, 𝑎2 = ⋯ , 𝜗2 = ⋯

(𝑖 − 1)th improvement (𝛥𝑥𝑖−1 is calculated for improving 𝑥𝑖−1, hence 𝑥𝑖−1,𝛥 is obtained)

𝑥𝑖−1,𝛥 (𝜓) = 𝑎𝑖−1 𝑐𝑜𝑠 𝜓 +
𝑖−2
∑

𝑗=1
𝛥𝑥𝑗 + 𝛥𝑥𝑖−1

𝛥𝑥𝑖−1 = 𝐶0,𝑖−1 +
∞
∑

𝑛=2

{

𝐶𝑛,𝑖−1 𝑐𝑜𝑠 (𝑛𝜓) +𝐷𝑛,𝑖−1 𝑠𝑖𝑛 (𝑛𝜓)
}

𝐶0,𝑖−1 = −
𝐺0,𝑖−1
𝑐𝑖−1

𝐶𝑛,𝑖−1 =
−
[

𝑐𝑖−1 − 𝑛2𝜂2
]

[

𝑛2𝜂2
∑𝑖−1
1 𝐶𝑛,𝑗 − 𝐺𝑛,𝑖

]

+ 𝑛𝜂𝑏𝑖−1
[

𝑛2𝜂2
∑𝑖−1
1 𝐷𝑛,𝑗 −𝐻𝑛,𝑖

]

[

𝑐𝑖−1 − 𝑛2𝜂2
]2 +

[

𝑛𝜂𝑏𝑖−1
]2 ,

𝐷𝑛,𝑖−1 =
𝑛𝜂𝑏𝑖−1

[

𝑛2𝜂2
∑𝑖−1
1 𝐶𝑛,𝑗 − 𝐺𝑛,𝑖

]

+
[

𝑐𝑖−1 − 𝑛2𝜂2
]

[

𝑛2𝜂2
∑𝑖−1
1 𝐷𝑛,𝑗 −𝐻𝑛,𝑖

]

[

𝑐𝑖−1 − 𝑛2𝜂2
]2 +

[

𝑛𝜂𝑏𝑖−1
]2 ,

𝑤ℎ𝑒𝑟𝑒

𝐺0,𝑖−1 =
1
2𝜋 ∫

2𝜋

0
𝑓

(

𝑎𝑖−1 𝑐𝑜𝑠 𝜓 +
𝑖−2
∑

𝑗=1
𝛥𝑥𝑗 − 𝑎𝑖−1𝜂 𝑠𝑖𝑛 𝜓

𝑖−2
∑

𝑗=1
𝛥𝑥𝑗

′

)

𝑑𝜓

𝐺𝑛,𝑖−1 =
1
𝜋 ∫

2𝜋

0
𝑓

(

𝑎𝑖−1 𝑐𝑜𝑠 𝜓 +
𝑖−2
∑

𝑗=1
𝛥𝑥𝑗 − 𝑎𝑖−1𝜂 𝑠𝑖𝑛 𝜓

𝑖−2
∑

𝑗=1
𝛥𝑥𝑗

′

)

𝑐𝑜𝑠 𝑛𝜓𝑑𝜓, 𝐻𝑛,𝑖−1 =
1
𝜋 ∫

2𝜋

0
𝑓

(

𝑎𝑖−1 𝑐𝑜𝑠 𝜓 +
𝑖−2
∑

𝑗=1
𝛥𝑥𝑗 − 𝑎𝑖−1𝜂 𝑠𝑖𝑛 𝜓

𝑖−2
∑

𝑗=1
𝛥𝑥𝑗

′

)

𝑠𝑖𝑛 𝑛𝜓𝑑𝜓

𝑎𝑛𝑑
𝑐𝑖−1 = 𝑐𝑖−1

(

𝑎𝑖−1 , 𝜂
)

𝑏𝑖−1 = 𝑏𝑖−1
(

𝑎𝑖−1 , 𝜂
)

𝑖th approximation (𝑎𝑖 is calculated to refine 𝑎𝑖−1, hence 𝑥𝑖 is obtained)

𝑥𝑖 (𝜓) = 𝑎𝑖 𝑐𝑜𝑠 𝜓 +
𝑖−1
∑

𝑗=1
𝛥𝑥𝑗

∮(𝑠𝑖)

[

𝑓

(

𝑎𝑖 𝑐𝑜𝑠 𝜓 +
𝑖−1
∑

𝑗=1
𝛥𝑥𝑗 ,−𝑎𝑖𝜂 𝑠𝑖𝑛 𝜓 +

𝑖−1
∑

𝑗=1
𝛥𝑥𝑗

′

)

−
(

𝑏𝑖−1𝜂𝑥
′ + 𝑐𝑖−1𝑥 + 𝑑𝑖−1

)

]2

𝑑𝑠 = min .

𝑏𝑖−1 =
∫ 2𝜋
0 𝑓

(

𝑎𝑖 𝑐𝑜𝑠 𝜓 +
∑𝑖−1
𝑗=1 𝛥𝑥𝑗 ,−𝑎2𝜂 𝑠𝑖𝑛 𝜓 +

∑𝑖−1
𝑗=1 𝛥𝑥𝑗

′
)(

−𝑎2𝜂 𝑠𝑖𝑛 𝜓 +
∑𝑖−1
𝑗=1 𝛥𝑥𝑗

′
)

𝑑𝜓

𝜂 ∫ 2𝜋
0

(

−𝑎2𝜂 𝑠𝑖𝑛 𝜓 +
∑𝑖−1
𝑗=1 𝛥𝑥𝑗 ′

)2
𝑑𝜓

,

𝑐𝑖−1 =
∫ 2𝜋
0 𝑓

(

𝑎𝑖𝑐𝑜𝑠 𝜓 +
∑𝑖−1
𝑗=1 𝛥𝑥𝑗 ,−𝑎2𝜂𝑠𝑖𝑛 𝜓 +

∑𝑖−1
𝑗=1 𝛥𝑥𝑗

′
1

)(

𝑎𝑖𝑐𝑜𝑠 𝜓 +
∑𝑖−1
𝑗=1 𝛥𝑥𝑗

)

𝑑𝜓

𝜂 ∫ 2𝜋
0

(

𝑎𝑖 𝑐𝑜𝑠 𝜓 +
∑𝑖−1
𝑗=1 𝛥𝑥𝑗

)2
𝑑𝜓

𝑎𝑖 =
𝑔0

√

[

𝑐𝑖−1
(

𝑎𝑖 , 𝜂
)

− 𝜂2
]2 +

[

𝑏𝑖−1
(

𝑎𝑖 , 𝜂
)

𝜂
]2
, 𝜗𝑖 = 𝑎𝑟𝑐𝑡𝑔

(

𝑏𝑖−1𝜂
𝑐𝑖−1 − 𝜂2

)

, 𝑎𝑖 = ⋯ , 𝜗𝑖 = ⋯

the 𝐺0,1 included by (3.21) fulfills 𝐺0,1 = 0, while, as the conse-
quence of the trigonometric identity of 𝑓

(

𝑥, 𝑥′
)

= 𝑥3 = 𝑎13 𝑐𝑜𝑠3𝜓 =
𝑎13

(

3
4 𝑐𝑜𝑠 𝜓 + 1

4 𝑐𝑜𝑠 3𝜓
)

, 𝐺𝑛,1, 𝐻𝑛,1 are obtained as 𝐺1,1 = 3
4𝑎1

3, 𝐺3,1 =
1
4𝑎1

3 and 𝐻𝑛,1 = 0. On the basis of expressions (2.6) and (3.15)–
(3.16), expression (3.21) of the 2nd approximation includes only one
term of higher harmonics, which takes the form 𝛥𝑥1 = 𝐶3,1 𝑐𝑜𝑠 3𝜓 =

𝑎13

4
(

9− 3
4 𝑎1

2
) 𝑐𝑜𝑠 3𝜓 . Hence, after the computation, the form of the second

approximation solution of (4.1) can be expressed as

𝑥1,𝛥 (𝜓) = 𝑎1 𝑐𝑜𝑠 𝜓 + 𝛥𝑥1 = 𝑎1 𝑐𝑜𝑠 𝜓 +
𝑎13

4
(

9 − 3
4𝑎1

2
) 𝑐𝑜𝑠 3𝜓

= 1.4922 𝑐𝑜𝑠𝜓 + 0.1133 𝑐𝑜𝑠 3𝜓. (4.7)

6
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Based on (4.7), the refined second approximation solution of (4.1) is
assumed in the form

𝑥2 (𝜓) = 𝑎2 𝑐𝑜𝑠 𝜓 + 𝛥𝑥1 = 𝑎2 𝑐𝑜𝑠 𝜓 +
𝑎13

4
(

9 − 3
4𝑎1

2
) 𝑐𝑜𝑠 3𝜓, (4.8)

where 𝑎2 is the amplitude. 𝑎2 is obtained by the successive linearization
procedure over the phase curve of (4.7). The actual phase curve is
approximated now with a circle having the radius of 𝑎2. From (4.8)
the nonlinear characteristic surface of (4.1) is yielded as follows:

𝑓 (𝑥) = 𝑥3 =

⎛

⎜

⎜

⎜

⎝

𝑎2 𝑐𝑜𝑠 𝜓 +
𝑎13

4
(

9 − 3
4𝑎1

2
) 𝑐𝑜𝑠 3𝜓

⎞

⎟

⎟

⎟

⎠

3

. (4.9)

During the refining process, which is in effect a successive lineariza-
tion procedure, the (4.9) nonlinear ‘‘surface’’ is now approximated with
a new 𝑧1 = 𝑏1𝑥′ + 𝑘2𝑥 equalizing plane. The 𝑏1, 𝑘1 parameters can
be calculated by the expressions (3.25), which, since no damping is
applied, lead to

𝑏1 = 0

𝑘1 =
3
4𝑎2

2 +𝐾𝑎2 + 3𝐾2
(

1 + 1
4𝐾

2
)

1 + 𝐾2
𝑎22

, (4.10)

where 𝐾 = 𝑎13

4
(

9− 3
4 𝑎1

2
) . From expressions (4.10) and (2.6) 𝑎2 is obtained

in a form of expression which is similar to (4.6), and which yields

𝑎2 =
1

|

|

|

𝑘1
(

𝑎2
)

− 1||
|

. (4.11)

Taking into consideration that 𝑘1 = 𝑘1
(

𝑎2
)

and 𝑎2 = 𝑎2
(

𝑎1
)

, and
solving (4.11) numerically, the refined expression of (4.8) takes the
form

𝑥2 (𝜓) = 1.421176 𝑐𝑜𝑠𝜓 + 0.113337 𝑐𝑜𝑠 3𝜓. (4.12)

Applying the algorithm (3.5)–(3.21) again, the next stage of
approximation based on (4.12) can be established. It now includes
additional terms of higher harmonics, and can be written as follows:

𝑥2,𝛥 (𝜓) = 1.421176 𝑐𝑜𝑠𝜓 + 0.119097 𝑐𝑜𝑠 3𝜓 + 0.007957 𝑐𝑜𝑠 5𝜓
+ 0.000289 𝑐𝑜𝑠 7𝜓 + 0.000004 𝑐𝑜𝑠 9𝜓.

(4.13)

Due to the forcing term 𝑐𝑜𝑠 𝜏 included by (4.1), the coordinate
transformation of 𝜓 − 𝜋

2 is applied to (4.13). Due to the lack of the
damping term, and from (2.6), which results in 𝜗2 = 0, and also as a
consequence of the introduced new variable of 𝜓 = 𝜏 −𝜗2, (4.13) takes
the modified and the more accurate form of
𝑥2,𝛥 (𝜏) = 1.421176 𝑠𝑖𝑛 𝜏 − 0.119097 𝑠𝑖𝑛 3𝜏 + 0.007957 𝑠𝑖𝑛 5𝜏

− 0.000289 𝑠𝑖𝑛 7𝜏 + 0.000004 𝑠𝑖𝑛 9𝜏.
(4.14)

(4.14) now can be directly compared to the results of [53], whose
solutions were obtained by the application of the Galerkin method. The
table below summarizes the expressions of the sequential steps of the
approximation procedure carried out above (Table 2). The expressions
involved in the table are obtained as the result of the 𝜓 − 𝜋

2 coor-
dinate transformation applied to the expressions (4.4), (4.7), (4.12)
and (4.13).

Table 3 compares the computational results (obtained by (4.14)) of
our proposed linearization method to those calculated by Urabe and
Reiter [53].

Besides the computational results represented in Table 2, the accu-
racy of our method is also demonstrated in Fig. 3, which represents the
time history of the proposed method and of [53]. Fig. 4 shows the phase
curves of both methods. From the comparison, it can be concluded
that the 2nd-improved approximation of our method, despite not being
refined, still provides a very good approximation of the results of Urabe
and Reiter.

Table 2
The approximation steps of the proposed method when 𝜂 = 1.

The successive steps of the
approximation procedure:

𝑥 (𝜏)

1st approximation 𝑥1 (𝜏) = 1.4922 𝑠𝑖𝑛 𝜏

1st approximation — improved 𝑥1,𝛥 (𝜏) = 1.4922 𝑠𝑖𝑛 𝜏 − 0.1133 𝑠𝑖𝑛 3𝜏

2nd approximation 𝑥2 (𝜏) = 1.421176 𝑠𝑖𝑛 𝜏 − 0.113337 𝑠𝑖𝑛 3𝜏

2nd approximation — improved
𝑥2,𝛥 (𝜏) = 1.421176 𝑠𝑖𝑛 𝜏 − 0.119097 𝑠𝑖𝑛 3𝜏

+ 0.007957 𝑠𝑖𝑛 5𝜏 − 0.000289 𝑠𝑖𝑛 7𝜏
+ 0.000004 𝑠𝑖𝑛 9𝜏

Urabe and Reiter solution [53]
𝑥𝑈𝑅 (𝜏) = 1.431189 𝑠𝑖𝑛 𝜏 − 0.126915 𝑠𝑖𝑛 3𝜏

+ 0.009754 𝑠𝑖𝑛 5𝜏 − 0.000763 𝑠𝑖𝑛 7𝜏
+ 0.000059 𝑠𝑖𝑛 9𝜏

Table 3
Comparison of results of Urabe and Reiter [53] and the proposed solutions when
𝜂 = 1.
𝜏 Urabe & Reiter solution [53] Proposed solution (4.14) R. error [%]

0 0.000000 0.000000 0.000000
0.1𝜋 0.348737 0.350540 0.517087
0.2𝜋 0.721221 0.722351 0.156608
0.3𝜋 1.108687 1.104909 0.340738
0.4𝜋 1.435235 1.421448 0.960550
0.5𝜋 1.568650 1.548523 1.283078
0.6𝜋 1.435235 1.421448 0.960550
0.7𝜋 1.108687 1.104909 0.340738
0.8𝜋 0.721221 0.722351 0.156608
0.9𝜋 0.348737 0.350540 0.517087
𝜋 0.000000 0.000000 0.000000
1.1𝜋 −0.348737 −0.350540 0.517087
1.2𝜋 −0.721221 −0.722351 0.156608
1.3𝜋 −1.108687 −1.104909 0.340738
1.4𝜋 −1.435235 −1.421448 0.960550
1.5𝜋 −1.568650 −1.548523 1.283078
1.6𝜋 −1.435235 −1.421448 0.960550
1.7𝜋 −1.108687 −1.104909 0.340738
1.8𝜋 −0.721221 −0.722351 0.156608
1.9𝜋 −0.348737 −0.350540 0.517087
2𝜋 0.000000 0.000000 0.000000

Fig. 5 displays the phase curves from each of the sequential steps
of the approximation procedure of the proposed linearization method.
Besides, their convergence to the exact solution of Urabe and Reiter can
be followed.

The results displayed in both tables and figures demonstrate the
applicability, efficiency and accuracy of the proposed linearization
method above the phase curve. by comparing them to those of Urabe
and Reiter, whose results were established by the Galerkin method with
accuracy to 6 decimal places [53].

4.2. The forced van der Pol system

This section details the analysis of the harmonically forced van der
Pol system, which is also a well-known system that has been studied for
decades. We use it to demonstrate the efficiency of our linearization
method. The governing equation of such a system may take several
forms, of which the special form that can be found in [53] is given
as

�̈� − 𝜀
(

1 − 𝑥2
)

�̇� + 𝑥 = 𝜀𝐸 𝑠𝑖𝑛𝜔𝑡, (4.15)

where �̇� = 𝑑𝑥
𝑑𝑡 . Some new parameters for (4.15) are introduced in

accordance with [53], i.e., 𝜀 = 0.1, 𝜔 = 0.9, 𝐸 = 3. Introducing the
new 𝜔𝑡 = 𝜏, 𝜀

𝜔 = 𝜆, 𝐸
𝜔 = 𝐸1,

1−𝜔2
𝜀𝜔 = 𝐴 variables and parameters, (4.15)

takes the form

𝑥′′ − 𝜆
(

1 − 𝑥2
)

𝑥′ + (1 + 𝜆𝐴) 𝑥 = 𝜆𝐸1 𝑠𝑖𝑛 𝜏, (4.16)

where 𝑥′ = 𝑑𝑥
𝑑𝜏 . The expression

𝑓 = −𝜆
(

1 − 𝑥2
)

𝑥′ + (1 + 𝜆𝐴) 𝑥 (4.17)

7
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Fig. 3. Comparison of time-history diagram of displacement between the proposed (4.14) and the exact (4.2) solutions at 𝜂 = 1.

Fig. 4. Comparison of the phase curves belong to the proposed (4.14) and the exact (4.2) solutions for one period when 𝜂 = 1.

is the nonlinear characteristic surface of (4.16) with the numerical
values of 𝜆 = 1

9 , 𝐴 = 19
9 , 𝐸1 = 10

3 . Since (4.17) complies with (2.15),
exploiting Eqs. (2.16), (2.6) and (4.17), we are led to the equiv-
alent linearized equation assigned to (4.16). Without detailing the
computations, the expression

𝑥1 (𝜏) = 1.524718 𝑠𝑖𝑛 𝜏 + 0.287549 𝑐𝑜𝑠 𝜏 (4.18)

is yielded. Completing (4.18) with additional higher-order harmonics,
the improved 1st approximation is obtained with the form

𝑥1,𝛥 (𝜏) = 𝑥1 + 𝛥𝑥1 = 1.524718 𝑠𝑖𝑛 𝜏 + 0.287549 𝑐𝑜𝑠 𝜏 − 0.007266 𝑠𝑖𝑛 3𝜏
− 0.011212 𝑐𝑜𝑠 3𝜏.

(4.19)

From (4.19), having been refined with the successive procedure (3.22)–
(3.25), the refined 2nd approximation is obtained:

𝑥2 (𝜏) = 𝑎2 𝑐𝑜𝑠 𝜑 + 𝛥𝑥1 = 1.524966 𝑠𝑖𝑛 𝜏 + 0.287692 𝑐𝑜𝑠 𝜏 − 0.007266 𝑠𝑖𝑛 3𝜏
− 0.011212 𝑐𝑜𝑠 3𝜏.

(4.20)

Based on (4.20), the 2nd refined approximation, and then, by adding
further terms of higher harmonics, the improved 2nd approximation
solution of (4.16) can also be established, and the following expression
is yielded:

𝑥2,𝛥 (𝜏) = 𝑎2 𝑐𝑜𝑠 𝜑 + 𝛥𝑥1 = 1.524966 𝑠𝑖𝑛 𝜏
+ 0.287692 𝑐𝑜𝑠 𝜏 − 0.007266 𝑠𝑖𝑛 3𝜏
− 0.011212 𝑐𝑜𝑠 3𝜏 − 0.000110 𝑠𝑖𝑛 5𝜏 − 0.000153 𝑐𝑜𝑠 5𝜏 − 0.0000011 𝑠𝑖𝑛 7𝜏
+ 0.0000003 𝑐𝑜𝑠 7𝜏 .

(4.21)

Let us compare our results from (4.21) to those of Urabe and
Reiter [53]:

𝑥 (𝜏) = 1.529115 𝑠𝑖𝑛 𝜏 + 0.286713 𝑐𝑜𝑠 𝜏 + 0.007210 𝑠𝑖𝑛 3𝜏 − 0.011371 𝑐𝑜𝑠 3𝜏
− 0.000111 𝑠𝑖𝑛 5𝜏 − 0.000155 𝑐𝑜𝑠 5𝜏 − 0.0000029 𝑠𝑖𝑛 7𝜏
+ 0.0000007 𝑐𝑜𝑠 7𝜏,

(4.22)

8
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Fig. 5. The sequential steps of the approximation procedure.

Table 4
The approximation steps of the proposed method when 𝜆 = 1

9
, 𝐴 = 19

9
, 𝐸1 =

10
3

.

The steps of approximation: 𝑥 (𝜏)

1st approximation 𝑥1 (𝜏) = 1.524718 𝑠𝑖𝑛 𝜏 + 0.287549 𝑐𝑜𝑠 𝜏

1st approximation — improved 𝑥1,𝛥 (𝜏) = 𝑥1 + 𝛥𝑥1 = 1.524718 𝑠𝑖𝑛 𝜏 + 0.287549 𝑐𝑜𝑠 𝜏 − 0.007266 𝑠𝑖𝑛 3𝜏
−0.011212 𝑐𝑜𝑠 3𝜏

2nd approximation 𝑥2 (𝜏) = 𝑎2 𝑐𝑜𝑠 𝜑 + 𝛥𝑥1 = 1.524966 𝑠𝑖𝑛 𝜏 + 0.287692 𝑐𝑜𝑠 𝜏 − 0.007266 𝑠𝑖𝑛 3𝜏
−0.011212 𝑐𝑜𝑠 3𝜏

2nd approximation — improved
𝑥2,𝛥 (𝜏) = 𝑎2 𝑐𝑜𝑠 𝜑 + 𝛥𝑥1 = 1.524966 𝑠𝑖𝑛 𝜏 + 0.287692 𝑐𝑜𝑠 𝜏 + 0.006981 𝑠𝑖𝑛 3𝜏

−0.011407 𝑐𝑜𝑠 3𝜏 − 0.000110 𝑠𝑖𝑛 5𝜏 − 0.000153 𝑐𝑜𝑠 5𝜏 − 0.0000011 𝑠𝑖𝑛 7𝜏
+0.0000003 𝑐𝑜𝑠 7𝜏

Urabe & Reiter solution [53] 𝑥 (𝜏)𝑈𝑅 = 1.529115 𝑠𝑖𝑛 𝜏 + 0.286713 𝑐𝑜𝑠 𝜏 + 0.007210 𝑠𝑖𝑛 3𝜏 − 0.011371 𝑐𝑜𝑠 3𝜏
−0.000111 𝑠𝑖𝑛 5𝜏 − 0.000155 𝑐𝑜𝑠 5𝜏 − 0.0000029 𝑠𝑖𝑛 7𝜏 + 0.0000007 𝑐𝑜𝑠 7𝜏

which is actually the expression of a limit-cycle curve established by
the Galerkin method with accuracy to 6 decimal places (see Table 4,
Fig. 6).

A high degree of correspondence can be observed between the
exact solution by Urabe and Reiter and the solution established by the
proposed linearization method above the phase curve (Fig. 6). Thus,
the accuracy of our method is demonstrated also in the case of a van
der Pol system.

The solution of (4.15) by the method of Galerkin was established
also with another set of parameters in [53]. Now 𝜀 = 0.1, 𝜔 = 1, 𝐸 = 1,
which yields 𝜆 = 0.1, 𝐴 = 0, 𝐸1 = 1, and thus (4.16) takes the form

𝑥′′ − 0, 1
(

1 − 𝑥2
)

𝑥′ + 𝑥 = 0, 1 𝑠𝑖𝑛 𝜏, (4.23)

whose accurate solution to 6 decimal places by Urabe and Reiter can
be written as

𝑥 (𝜏) = −0.142330 𝑠𝑖𝑛 𝜏 − 2.378786 𝑐𝑜𝑠 𝜏 + 0.041868 𝑠𝑖𝑛 3𝜏
− 0.004647 𝑐𝑜𝑠 3𝜏
+ 0.000215 𝑠𝑖𝑛 5𝜏 + 0.001223 𝑐𝑜𝑠 5𝜏 − 0.0000398 𝑠𝑖𝑛 7𝜏
+ 0.0000098 𝑐𝑜𝑠 7𝜏.

(4.24)

The 1st approximation solution of (4.23) by the linearization
method over the phase curve is obtained as

𝑥1 (𝜏) = −2.382976 𝑐𝑜𝑠 𝜏. (4.25)

Adding some additional terms of higher-order harmonics to (4.25), the
more accurate, ‘‘improved’’ 1st approximation

𝑥1,𝛥 (𝜏) = 𝑥1 + 𝛥𝑥1 = −2.382976 𝑐𝑜𝑠 𝜏 + 0.007256 𝑠𝑖𝑛 3𝜏 + 0.011211 𝑐𝑜𝑠 3𝜏

(4.26)

is yielded. Applying the refining procedure (3.22)–(3.25) to (4.26) and
subsequently establishing additional terms of higher harmonics, the
improved 2nd approximation solution of (4.23) is obtained, which can
be written as follows:

𝑥2,𝛥 (𝜏) = 𝑎2 𝑐𝑜𝑠 𝜓 + 𝛥𝑥1 + 𝛥𝑥2 = −2.380544 𝑐𝑜𝑠 𝜏 + 0.042077 𝑠𝑖𝑛 3𝜏
− 0.002904 𝑐𝑜𝑠 3𝜏
+ 0.000053 𝑠𝑖𝑛 5𝜏 + 0.0012475 𝑐𝑜𝑠 5𝜏 − 0.0000155 𝑠𝑖𝑛 7𝜏
+ 0.0000006 𝑐𝑜𝑠 7𝜏.

(4.27)

The comparison of (4.24) with (4.27) is illustrated in Fig. 7.
A high degree of correspondence between the exact solution (4.24)

by Urabe and Reiter and the solution (4.27) established by the lin-
earization method above the phase curve can be observed in Fig. 7.

We note, that at stronger nonlinearity, i.e. 𝜀 ≫ 0, 1, a larger number
of higher-order terms need to be added to the approximation solutions
than in the case of 𝜀 = 0, 1.
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Fig. 6. Comparison of the time history and the phase curves belonging to the proposed (4.21) and the exact (4.22) solutions for one period when 𝜆 = 1
9
, 𝐴 = 19

9
, 𝐸1 =

10
3

.

5. Conclusions

This paper summarizes the theoretical background of a novel lin-
earization method above the phase curve with the ensuing approx-
imating and successive refining procedures. Besides the theoretical
approach, through the analysis of well-known nonlinear, harmonically
forced, SDOF, mass-point vibration systems, semi-analytical–numerical
calculations are also applied in order to demonstrate the applicability of
the proposed linearization method. The extremum principle applied for
the linearization method is defined as a cyclic integral, which refers to
the square differences between the nonlinear characteristic surface and
the equalizing plane, and is calculated along the approximated phase
curve of the original nonlinear system.

Based on the minimizing principle and assuming the first approx-
imation solution as a simple harmonic function, the unknown coef-
ficients of the equivalent linear equation are calculated first. This is
followed by establishing the first approximation solution of the original
nonlinear equation in the form of a simple harmonic expression. Then,
on the basis of the first approximation, the improved expression of the
first approximation is established by including additional higher-order
harmonic terms. This step is followed by a successive refining proce-
dure to obtain more accurate approximating solutions. The solutions of
the proposed linearization method are compared to the results of Urabe
and Reiter [53]. The analysis of the cubic TNL-system demonstrates
that in the proposed linearization method, the original nonlinear equa-
tion does not require the inclusion of linear terms; hence, the method
can be applied to the analytical investigation of even TNL systems.

We would like to emphasize our method’s capability for geometrical
interpretation, which may be important from the point of view of
mechanical engineering and in education. The geometrical interpreta-
tion of the proposed linearization method can be carried out not just
with the first approximation solution, but even in the case of approxi-
mating solutions that already include additional terms of higher-order
harmonics.

Comparing our results obtained from the analysis of a TNL and a van
der Pol system to other results from the literature, it can be claimed that
the proposed linearization method, completed with additional terms of
higher-order harmonics and the successive refining process, establishes
approximating solutions of the original nonlinear equations accurately
and efficiently.
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Fig. 7. Comparison of the time history and the phase curves belonging to the proposed (4.27) and the exact (4.24) solutions for one period when 𝜆 = 0.1, 𝐴 = 0, 𝐸1 = 1.
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