
International Journal of Non-Linear Mechanics 118 (2020) 103286

Contents lists available at ScienceDirect

International Journal of Non-Linear Mechanics

journal homepage: www.elsevier.com/locate/nlm

A total Lagrangian elasticity formulation for the nonlinear free vibration of
anisotropic beams
Paul R. Heyliger ∗, Abdullah Asiri
Department of Civil Engineering, Colorado State University, Fort Collins, CO 80523, United States of America

A B S T R A C T

The large amplitude free vibration response of isotropic and anisotropic beams is considered using a total Lagrangian description of the motion along with
Ritz-based approximations to the dynamic statement of virtual work. Results are presented for both axial and bending modes and are compared with existing
results in the literature using various formulations along with a finite element solution of the Euler–Bernoulli beam with Föppl–von Karman nonlinearity. Results
from the present formulation include all nonlinear strain terms and give frequency ratios that are in excellent agreement with both Euler–Bernoulli and higher
order beam theories for slender beams under small amplitudes but grow noticeably higher than those of other beam models as the beam becomes thick and the
amplitude of vibration increases.

1. Introduction

The nonlinear vibration of beams has been studied for decades.
For the most elementary description of the axial deformation of bars
and the transverse motion of slender beams, the second-order ordinary
differential equation that represents the former and the fourth-order or-
dinary differential equation that models the latter using Euler–Bernoulli
theory [1] that are usually uncoupled for linear analysis now become
coupled and must be solved simultaneously. Depending on support
conditions, the axial force that can be generated within the beam tends
to stiffen the beam as it deforms and hence the bending stiffness and
resulting frequencies of vibration tend to increase as the relative magni-
tude of the deformation increases. The first study to capture this effect
was completed in 1950 by Woinowsky–Krieger [2], and was followed
by several other studies in the years to follow. Burgreen [3] and Ray
and Bert [4] both studied nonlinear vibrations of beams with pinned
ends and Srinivasan [5] extended many of these concepts to include
beams and plates. Evenson [6] considered nonlinear beam vibrations
for a variety of end conditions, and related studies were completed
by Prathap and Varadan [7], Bhashyam and Prathap [8], and Reddy
and Singh [9]. A number of finite element approaches were developed
for nonlinear beam vibration included those of Sarma and Varadan
[10,11]. Most of these studies focused on Euler–Bernoulli descriptions
of beam bending, although Timoshenko theory was used by Sarma and
Varadan [12]. A higher-order beam theory was used by Heyliger and
Reddy [13] that incorporated shear deformation without the use of
a shear coefficient. Several nonlinear beam models for straight and
curved beams have been given by Pai and Nayfeh [14], Mayo and co-
workers [15], Hodges and co-workers [16], and Lewandowski [17].
Ribeiro and Peyt [18] and Ribeiro [19] used the hierarchical finite
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element method to study nonlinear beam vibration, and thermal ef-
fects were considered by Manoach and Ribeiro [20], Librescu and
co-workers [21], and Ribeiro and Monach [22]. Additional formula-
tions have been given by Cottrell and co-workers [23] and Cao and
Tucker [24]. More recent studies of nonlinear beam vibration have
incorporated nonlocal elasticity or a modified couple stress or strain
gradient theory [25–28]. Other studies have considered beams on
elastic foundations [29], functionally graded beams [30], collocation
methods [31], and high order strain gradient theories [32]. Additional
models using a unified beam theory have been presented by Pagana
and Carrera [33] and applied to rotating beams by Fillippi, Pagana,
and Carrera [34].

The axial vibration of the beam continuum has not seen near the
attention of flexural vibrations, at least in the nonlinear geometric
realm. Some studies have included one-dimensional models in which
the restoring force is assumed to be of third-order [35], and others
have studied axial vibrations that contain the strain components that
are quadratic in the axial displacement gradient in modeling nan-
otubes [36] and nonlinear elastic properties of cow muscle [37]. Both
continuous and discretized axial bar vibrations that contain exactly
cubic nonlinearities have also been studied [38,39]. But studies of the
influence of geometric nonlinearity on the frequency of axial vibration
are relatively unknown.

In this study, the large-amplitude nonlinear vibration behavior is
studied for both the axial (or longitudinal) and flexural (or bend-
ing) modes of isotropic and anisotropic beams using both the one-
dimensional Euler–Bernoulli beam as a representative example of sim-
plified theories and a more comprehensive total Lagrangian description
of the planar solid that comprises the beam. Both formulations are

https://doi.org/10.1016/j.ijnonlinmec.2019.103286
Received 22 March 2019; Received in revised form 20 September 2019; Accepted 23 September 2019
Available online 25 September 2019
0020-7462/© 2019 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.ijnonlinmec.2019.103286
http://www.elsevier.com/locate/nlm
http://www.elsevier.com/locate/nlm
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijnonlinmec.2019.103286&domain=pdf
mailto:prh@engr.colostate.edu
https://doi.org/10.1016/j.ijnonlinmec.2019.103286


P.R. Heyliger and A. Asiri International Journal of Non-Linear Mechanics 118 (2020) 103286

developed, discussed, and applied to several geometries that have been
considered in past work to determine the level of influence of several
of the kinematric variables that can influence the increase in nonlinear
frequency compared with linear values. The total Lagrangian formula-
tion does not reduce or approximate the nonlinear strain terms as is the
case in many other studies and so provides a more complete analysis of
the system. The frequencies can be found using direct iteration with the
updated eigenfunction approximations provided that an appropriate
number of terms are used to represent the two in-plane displacements.

2. Theory

In this section, the problem geometry and character are defined and
the two primary methods of analysis are outlined.

2.1. Geometry

The geometry considered in this study is a prismatic rectangular
beam with a length of 𝐿, a height of 𝐻 , and a width of 𝑏. For all models
considered in this study, the out-of-plane displacement is assumed to be
zero as all motion is confined to an 𝑥−𝑧 plane. The material response is
assumed to follow a linear constitutive law and is characterized by the
elastic modulus 𝐸 and the Poisson ratio 𝜈 for isotropic materials. For
anisotropic beams, the material properties are represented by the four
inplane engineering constants 𝐸1, 𝐸2, 𝜈12, and 𝐺12, where the first two
values are the elastic modulii in the two principal material directions,
the third is the in-plane Poisson ratio, and the final is the in-plane
shear modulus. The boundary conditions at the left and right ends of
the beam are discussed for specific examples to follow, but the upper
and lower surfaces of the beam are assumed to be traction-free. The
material has a density of 𝜌.

For the bulk of the work in this study, the domain is two-
dimensional with the origin of an (𝑥, 𝑧) system located at the beam
centroid at the left-hand end of the beam. For the Euler–Bernoulli
beam model, the thickness coordinate 𝑧 is pre-integrated out of the
governing differential equations and lumped into equivalent cross-
sectional properties including the area 𝐴 and the second moment of the
area 𝐼 . For the total Lagrangian plane elasticity model, these resultants
are not used.

2.2. One dimensional models

By far, most early studies of nonlinear beam response have used the
kinematic model implied by Euler–Bernoulli beam theory coupled with
axial bar mechanics. In this case, the governing equations of motion
can be given as [40]
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Here 𝑥 is the independent spatial coordinate along the length of the
beam, 𝑡 is time, 𝐸 is the modulus of elasticity in the axial direction of
the beam, 𝑢 and 𝑤 are the axial and transverse displacements of the
section centroid, 𝐴 is the area of the cross-section, 𝜌 is the material
density, and 𝑓 and 𝑞 are the distributed axial and transverse loads,
respectively. For the free vibration problem, these last two variables
are assumed to be zero. This one-dimensional model embeds several
key assumptions, the most prominent of which are (1) the constraint of
zero shear strain in the kinematic model, which is cause for concern as
the slenderness ratio of the beam decreases, (2) ignoring rotary inertia,
which is also an issue as the beam becomes thick, and (3) the neglect of
any material anisotropy. All of these are discussed within the context
of the present planar elasticity model.

The term that couples the axial and transverse motion for the
one-dimensional theory is the rotation (𝜕𝑤∕𝜕𝑥) that appears in both

equations. When this value is small in the case of small displacements
and rotations, the two equations uncouple and they represent mo-
tion in the axial and transverse directions, respectively. The solutions
to both of these problems under free vibration conditions are well-
known [41]. As the rotation increases in size, the coupling becomes
more pronounced as the axial force increases with the amplitude of
transverse motion and cannot be ignored.

The finite element model of this system has been given by Reddy
[40] for the static case but can be easily adjusted to include the kinetic
terms in the equations of motion and assumption of simple harmonic
motion in the axial and transverse displacement variables. This results
in the generalized eigenvalue problem
[

[

𝐾11
] [

𝐾12
]

[

𝐾21
] [

𝐾22
]

]

{

{𝑢}
{𝛥}

}

= 𝜔2
[[

𝑀11
]

[0]
[0]

[

𝑀22
]

]{

{𝑢}
{𝛥}

}

(3)

Here the finite element variables of displacement and rotation have
been embedded within the vector 𝛥 as is common for this sort of
structural system. Both the element matrices and the global matrix
have the exact same structure. The elements within the submatrices are
defined in the Appendix in closed form in terms of nodal variables.
For linear analysis, the off-diagonal matrices are zero and there is
no interaction between the axial and transverse displacements. Hence
the analysis results in uncoupled axial and bending vibrational modes
which can be solved for the natural frequencies 𝜔 along with the result-
ing eigenvectors 𝑢 and 𝛥 for the axial and bending vibrational modes. In
nonlinear analysis, direct iteration can be used to constantly update the
matrices on the left-hand side by normalizing the eigenvector according
to the maximum displacement in the beam. This allows a scaling of
the nonlinear terms that can be updated within the global [𝐾] matrix.
This equation is solved iteratively for the unknown frequency 𝜔 until
convergence has been achieved. In this study, convergence is assumed
when the frequency does not change in the fifth decimal point between
iterations.

The boundary conditions for this model are simple to enforce. For
pinned conditions, the axial displacement and the transverse displace-
ment are set equal to zero. For clamped conditions, the beam rotation
(𝜕𝑤∕𝜕𝑥) is also set equal to zero in addition to the two displacements.
All of these values are measured at the beam centroid since the beam
displacement field has already incorporated the thickness coordinate
into the Euler–Bernoulli kinematic assumptions. This finite element
model was used as a means of comparison for all flexural mode results
that follow.

2.3. Total Lagrangian plane elasticity model

Several excellent descriptions of the large deformation behavior of
solids are available [42,43]. In this section only the elements that are
of critical importance to the vibrating beam problem using elasticity
theory rather than simplified beam models are highlighted.

The starting point for the analysis using nonlinear plane elastic-
ity theory is a dynamic form of spatial virtual work, which can be
expressed as

∫𝑉
𝜎𝑖𝑗𝛿𝑑𝑖𝑗𝑑𝑉 − ∫𝑉

𝑓𝑖𝛿𝑣𝑖𝑑𝑉 − ∫𝑆
𝑡𝑖𝛿𝑣𝑖𝑑𝑆 = ∫𝑉

𝜌
𝜕2𝑢𝑖
𝜕𝑡2

𝛿𝑣𝑖𝑑𝑉 (4)

Here 𝑉 and 𝑆 are the volume and surface occupied by and bounding the
solid in the deformed configuration, 𝑡𝑖 and 𝑓𝑖 are the components of the
specified surface tractions and body force vectors, 𝛿 is the variational
operator, 𝜎𝑖𝑗 are the components of the Cauchy stress tensor, 𝑑𝑖𝑗 is
the rate of deformation tensor, and 𝑢𝑖 and 𝑣𝑖 are the components of
displacement and velocity.

Under the type of free vibration motion such as that considered
in this study, the displacements are assumed to have a sinusoidal
dependence in time and the body force and surface tractions are equal
to zero. This latter condition eliminates the second and third integrals
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on the left hand side. In addition, it can be shown that in a total
Lagrangian description the double product of the Cauchy stress and its
energetic work conjugate of the rate of deformation tensor integrated
over the deformed volume is the same as the integral over the original
volume 0𝑉 . Hence

∫𝑉
𝜎𝑖𝑗𝛿𝑑𝑖𝑗𝑑𝑉 = ∫0𝑉

2
0𝑆𝑖𝑗𝛿

2
0�̇�𝑖𝑗𝑑

0𝑉 (5)

Here 2
0𝑆𝑖𝑗 are the components of the second Piola–Kirchhoff stress ten-

sor in the deformed configuration referred to the initial configuration
0𝑉 and 2

0�̇�𝑖𝑗 are the components of the material strain rate tensor. In
the case of harmonic motion, which is the nature of the deformation in
the course of this study, the time derivatives of the displacements all
contain a common term that cancels. Hence the equivalent quasi-static
forms can be used where

∫𝑉
𝜎𝑖𝑗𝛿𝜖𝑖𝑗𝑑𝑉 = ∫0𝑉

2
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Here 𝜖𝑖𝑗 and 2
0𝐸𝑖𝑗 are the components of the Cauchy infinitesimal strain

and the Green–Lagrange strain tensors, respectively. The constitutive
model for the second Piola–Kirchhoff stress is assumed to be written in
the form
2
0𝑆𝑖𝑗 = 0𝐶𝑖𝑗𝑘𝑙

2
0𝐸𝑖𝑗 (7)

Here 0𝐶𝑖𝑗𝑘𝑙 are the components of the elastic stiffness tensor in the
original configuration of the beam. The components of Green–Lagrange
strain can be expressed in terms of the total displacement components
2
0𝑢𝑖 measured from the undeformed configuration (0) to the deformed
configuration (2) in the three coordinate directions 𝑥𝑖 as

2
0𝐸𝑖𝑗 =

1
2

(

𝜕20𝑢𝑖
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+
𝜕20𝑢𝑗
𝜕0𝑥𝑖

+
𝜕20𝑢𝑚
𝜕0𝑥𝑖

𝜕20𝑢𝑚
𝜕0𝑥𝑗

)

(8)

Substituting these expressions into the remaining terms, dropping
the left superscript and subscripts on the displacements for convenience
by letting 2

0𝑢1 = 𝑢, 2
0𝑢3 = 𝑤, 𝑥1 = 𝑥, and 𝑥3 = 𝑧, and using the

prior assumption of harmonic motion (where, for example, 𝑢(𝑥, 𝑧, 𝑡) =
𝑢(𝑥, 𝑧) sin𝜔𝑡 where 𝜔 is the natural frequency of free vibration, results
in the weak form of the equations of harmonic motion given by
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In this study, Ritz-based approximations are sought for the two in-
plane displacement components 𝑢 and 𝑤 and their variations in the
form

𝑢(𝑥, 𝑧) =
𝑀
∑

𝑗=1
𝑎𝑗𝜓

𝑢
𝑗 (𝑥, 𝑧) 𝛿𝑢 = 𝜓𝑢𝑖 (𝑥, 𝑧) (10)

𝑤(𝑥, 𝑧) =
𝑁
∑
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𝑤
𝑗 (𝑥, 𝑧) 𝛿𝑤 = 𝜓𝑤𝑖 (𝑥, 𝑧) (11)

Here M and N are the total number of approximations used for the
displacements in the x and z directions, respectively. Substituting these

into the weak form allows expression of the final generalized eigen-
value problem to be written in matrix form as
[

[

𝐾1
11 +𝐾
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11
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𝐾1
13 +𝐾

2
13
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[

𝐾1
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2
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2
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= 𝜔2
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𝑀𝑢𝑢
]

[0]
[0]

[

𝑀𝑤𝑤
]

]{

{𝑎}
{𝑏}

}

(12)

Here the superscripts of 1 and 2 represent contributions from the linear
and nonlinear terms in the weak statement, respectively. As before,
the linear versions of these equations are initially solved to obtain
the initial eigenvalues for the Ritz constants. The displacements and
their gradients are then computed over the entire domain using these
displacement functions scaled to some fixed amplitude 𝑎 at a single
location in the beam and used in the nonlinear coefficient matrices as
updates. The process then repeats until there is no change in the fifth
decimal place of the nonlinear frequencies from one iteration to the
next.

3. Applications

Several representative cases were considered for the dominant
modes of deformation for the representative geometry under longitu-
dinal and flexural vibrations. It is not typical to use the phrase beam
in the context of longitudinal vibrations, but because of the nonlinear
coupling it is used in the results that follow and the words bar and beam
are effectively interchangeable.

3.1. Longitudinal vibrations

There is a special case embedded within the kinematic models
assumed here using elasticity theory. This is the case where the mode
of vibration is not associated with flexure or shear but rather the
longitudinal deformation along the axis of the beam. Such modes are
purely axial and linear according to the one-dimensional theories since
in this case the transverse displacement of the beam centroid is exactly
zero. For the elasticity model, there are nonlinear terms associated
with the squares or products of the displacement gradients along with
non-zero transverse normal strains that are usually neglected in one-
dimensional theories and have seen little if any exploration in existing
studies of bar and beam dynamics.

There is another behavior that influences frequency response for
both linear and nonlinear analysis, and that is the Poisson effect in the
region of supports. In one-dimensional models, these effects are almost
always neglected. Yet there is a stiffening effect that can occur in such
regions, and this changes the nature of the displacement field in the
region of, for example, fixed supports.

To investigate these effects, a fixed-fixed rectangular bar is assumed
to be under the constraint of plane stress. The classical linear one-
dimensional bar theory predicts frequencies of a bar of length 𝐿 with
elastic modulus 𝐸 and density 𝜌 to be given by [41]

𝜔𝑛 =
𝑛𝜋
𝐿

√

𝐸
𝜌

(13)

These frequencies are of course independent of the Poisson ratio and
there is no impact of the support restraint on the transverse displace-
ment since those values are assumed be zero.

This problem is considered using the plane elasticity methodology
using approximation functions for both displacement components to be
of the form

𝜓𝑢𝑖 (𝑥, 𝑧) = 𝜓𝑤𝑗 (𝑥, 𝑧) = sin
𝑗𝜋𝑥
𝐿
𝑧𝑘−1 (14)

Here the indices 𝑖, 𝑗, and 𝑘 are independent and range outside of the
values 1, 2, 3 usually used with indicial notation. The origin of the
(𝑥, 𝑧) system is at the left end centroid. The index 𝑖 is simply a counter
for the number of independent approximations formed by the products
of the spatial approximations in 𝑥 (identified by the index 𝑗) and
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the power series approximations in the thickness coordinate 𝑧, which
are identified by the index 𝑘. This family of approximation functions
contains the one-dimensional eigenfunctions for the fixed-fixed axial
bar for the linear solution of free vibration.

3.2. Flexural vibrations

Of primary interest in the nonlinear range are cases where there is
some sort of restraint that results in an axial force generated along the
beam length during flexural vibration. This has the effect of stiffening
the beam and the nonlinear frequencies are larger than those developed
for pure bending without this axial coupling. In the present formula-
tion, the nonlinear aspects of the problem are directly considered by
including the nonlinear terms in the Green–Lagrange strain tensor as
they appear in the original statement of virtual work. The dominant
nonlinear term is the square of the transverse displacement gradient
𝜕𝑤∕𝜕𝑥 that appears in the one-dimensional theory. This is the so-called
Föppl–von Karman nonlinearity [44,45]. In the full planar elasticity
formulation, however, there are far more terms that can appear just
as for the case of nonlinear axial vibration as noted in the form of the
element equations in Appendix.

3.2.1. Clamped–clamped support
In this case the approximation functions are exactly the same as

those used for the case of the fixed-fixed bar under axial vibration.
However, the focus is now on the eigenvectors associated with the
lowest bending mode rather than the lowest axial mode. Only odd
and even functions were used for the bending and axial displacement
functions, respectively, to capture the lowest bending mode behavior.

3.2.2. Simple support
The case of simple support using elasticity theory requires a bit

more care than the case of clamped–clamped conditions. In general,
the transverse displacement should be zero at both ends of the beam
and the axial displacement should be non-zero at the ends and change
sign both in z and at the two support locations. Hence in general the
approximations used are of the form

𝜓𝑢𝑖 (𝑥, 𝑧) = cos
𝑗𝜋𝑥
𝐿
𝑧2𝑘−1 (15)

𝜓𝑤𝑖 (𝑥, 𝑧) = sin
𝑗𝜋𝑥
𝐿
𝑧𝑘−1 (16)

However, this type of function does not allow an axial force to de-
velop along the length of the beam. The axial displacements must be
supplemented with approximating functions of the form

𝜓𝑢𝑖 (𝑥, 𝑧) = sin 2𝑖𝜋𝑥
𝐿

(17)

These additional functions are necessary because they are the only
conditions that can generate a non-zero axial force that does not
vary with beam thickness. The resultant forces generated from the
axial displacement associated with bending are equal to zero because
of the odd nature of the initial axial displacement functions in the
thickness coordinate. The factor of 2 within the sine function assumes
that the primary mode is the initial flexural mode, in which the axial
displacements are antisymmetric about the mid-point of the beam.

In all the results that follow, functions up to seventh order both
along the axis and through the thickness are used to describe all
displacement functions. For the inplane axial supplemental terms, a
total of three functions are included. These functions were selected after
representative convergence studies on both the axial and transverse
vibrational modes. Hence if only odd functions are included in both
𝑥 and 𝑧, this implies that M = 19 and N = 16 in Eqs. (10) and (11).

For isotropic materials, a value of Poisson ratio of either zero or
0.3 was used for the examples that follow. The elastic modulus and
the material density are somewhat arbitrary since results are given as

Table 1
Ratio of (𝜔𝑁𝐿∕𝜔𝐿)2 for the hinged–hinged isotropic beam and compared with the
higher-order and Euler–Bernoulli beam theory results.
𝑎∕𝑟 𝐿∕𝑟 = 13.856 𝐿∕𝑟 = 27.713 𝐿∕𝑟 = 110.85 Euler–Bernoulli

[13] Present [13] Present [13] Present [2] 1DFEM

0.1 1.0028 1.0032 1.0026 1.0028 1.0025 1.0026 1.0025 1.0025
0.2 1.0112 1.0128 1.0102 1.0111 1.0099 1.0105 1.0100 1.0100
0.4 1.0449 1.0514 1.0409 1.0443 1.0396 1.0421 1.0400 1.0400
0.6 1.1010 1.1159 1.0921 1.0997 1.0891 1.0947 1.0900 1.0900
0.8 1.1792 1.2066 1.1635 1.1774 1.1584 1.1684 1.1600 1.1598
1.0 1.2795 1.3239 1.2554 1.2773 1.2474 1.2632 1.2500 1.2496
1.5 1.6247 1.7378 1.5736 1.6258 1.5566 1.5921 1.5625 1.5605
2.0 2.1003 2.3331 2.0171 2.1224 1.9886 2.0527 2.0000 1.9939

Table 2
Ratio of (𝜔𝑁𝐿∕𝜔𝐿)2 for the clamped–clamped isotropic beam and compared with the
higher-order and Euler–Bernoulli beam theory results.
𝑎∕𝑟 𝐿∕𝑟 = 13.856 𝐿∕𝑟 = 27.713 𝐿∕𝑟 = 110.85 Euler–Bernoulli

[13] Present [13] Present [13] Present 1DFEM [6]

0.1 1.0009 1.0009 1.0007 1.0007 1.0006 1.0006 1.0006 1.0006
0.2 1.0036 1.0036 1.0027 1.0029 1.0024 1.0024 1.0025 1.0024
0.4 1.0146 1.0143 1.0107 1.0115 1.0096 1.0097 1.0096 1.0096
0.6 1.0328 1.0321 1.0240 1.0257 1.0217 1.0219 1.0215 1.0216
0.8 1.0582 1.0570 1.0428 1.0457 1.0385 1.0389 1.0382 1.0384
1.0 1.0911 1.0891 1.0668 1.0714 1.0602 1.0607 1.0597 1.0599
1.5 1.2039 1.2004 1.1496 1.1603 1.1352 1.1361 1.1339 1.1349
2.0 1.3594 1.3561 1.2643 1.2839 1.2397 1.2410 1.2371 1.2398

Table 3
Ratio of (𝜔𝑁𝐿∕𝜔𝐿)2 for the hinged–hinged and clamped–clamped anisotropic beams.
𝑎∕𝑟 Hinged–hinged Clamped–clamped

𝐿∕𝑟 𝐿∕𝑟

13.856 27.713 110.85 13.856 27.713 110.85

0.1 1.0077 1.0039 1.0026 1.0052 1.0017 1.0008
0.2 1.0307 1.0155 1.0104 1.0207 1.0068 1.0034
0.4 1.1232 1.0619 1.0417 1.0829 1.0273 1.0136
0.6 1.2782 1.1393 1.0938 1.1873 1.0613 1.0305
0.8 1.4962 1.2479 1.1668 1.3347 1.1091 1.0542
1.0 1.7781 1.3878 1.2606 1.5262 1.1705 1.0845
1.5 2.7744 1.8755 1.5863 2.2031 1.3843 1.1894
2.0 2.5623 2.0432 1.6862 1.3348

a function of frequency ratios and hence these values cancel. For the
orthotropic material, the properties of a graphite-polymer composite
were used as typical of the large mismatch between the longitudinal
and in-plane shear modulus that can occur in many materials. The
engineering properties are given as 𝐸1 = 155.0 GPa, 𝐸2 = 𝐸3 = 12.10
GPa, 𝜈23 = 0.458, 𝜈12 = 𝜈13 = 0.248, 𝐺23 = 3.20 GPa, and 𝐺13 = 𝐺12
= 4.40 GPa [46]. In all cases, the lowest mode of the type of vibration
was used for the iterated eigenvalue in the nonlinear analysis.

4. Results

For the nonlinear axial frequency, the squared frequency ratio as a
function of 𝑎∕𝑟 is shown in Fig. 1 for the case of the isotropic bar where
𝑎 is the peak amplitude within the bar and r is the radius of gyration
√

𝐼∕𝐴. The mode shapes for the axial bar are shown for three different
cases in Fig. 2: the isotropic bar with an assumed zero Poisson ratio, the
isotropic bar with full elastic properties, and the anisotropic bar with
the stiff (1) direction along the bar axis.

The squared frequency ratios for the isotropic hinged–hinged beam
for the present model are compared with the results from the higher-
order beam theory [13], the analytic Euler–Bernoulli model [2], and
the one-dimensional Euler–Bernoulli finite element model developed in
this work in Table 1 both as a function of the slenderness ratio 𝐿∕𝑟
and the relative amplitude of vibration 𝑎∕𝑟. A similar comparison is
given for the clamped–clamped beam in Table 2. The results for the
anisotropic beam are shown in Table 3 for both the hinged–hinged and
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Fig. 1. The ratio of squared frequency as a function of aspect ratio for the
clamped–clamped axial bar under its fundamental vibrational mode.

the clamped–clamped beam. Since the Euler–Bernoulli results depend
only on the value of the elastic modulus in the axial direction of the
beam, the frequency ratios for the anisotropic case can be compared
with the analytic or finite element results that are given for the isotropic
beams in Tables 1 and 2. As a check on the present method, analyses
were repeated using the kinematic model of the Euler–Bernoulli beam
with the Föppl–von Karman nonlinearity. These results were identical
to those of the comparative studies presented here.

Representative modal plots of the lowest nonlinear frequency are
given in Fig. 3 for the isotropic and anisotropic beam. The one-
dimensional results are plotted along the beam centerline from the
finite element results developed in this work since the position of the

centroidal axis completely defines the state of deformation for the
Euler–Bernoulli beam.

5. Discussion

There are few, if any, results with which to compare the axial
frequencies. Although only the case of the isotropic material with a
non-zero Poisson ratio is shown, the results in Fig. 1 are nearly identical
to those when the Poisson ratio is zero and also for the anisotropic bar.
Likewise, there is little to no change as a function of the aspect ratio
for the axial modes results. More interesting are the modal plots for
the axial modes shown in Fig. 2. The transverse displacement varies
widely as a function of the Poisson effect, and the displacements for
the anisotropic bar are especially pronounced because of the large
mismatch between the elastic modulii 𝐸1 and 𝐸2.

There is very good agreement between the present elasticity model
and the results from the higher-order beam theory for the flexural
isotropic modes. However, the frequencies for the former model are
consistently higher than those of the latter for all but the short thick
beam under clamped conditions.

For the anisotropic beam, the increase in frequency ratio is far larger
than for that of the isotropic beam. For example, the squared frequency
ratio for the aspect ratio of 13.856 with 𝑎∕𝑟 = 1 is 1.7378 for the
for isotropic beam but 2.7744 for the anisotropic beam. Much of this
difference is because of the larger levels of shear deformation for the
anisotropic beam. This is very clearly demonstrated in the modal plots
of Fig. 3. There is significant shear deformation in the isotropic case but
it is not as obvious as the clear deviation in the straight-line normals
to the centroidal axis for the anisotropic beam.

6. Conclusions

The analysis based in this study is based on an elasticity formulation
that does not restrict or eliminate any of the terms in the expression
for nonlinear strain. Based on the results of this work, preliminary
conclusions can be listed as follows:

1. Initial estimates of nonlinear frequency response indicates sev-
eral percent increase over linear values for 𝑎∕𝑟 = 1 and a ten
percent difference for 𝑎∕𝑟 = 2.25.

Fig. 2. The lowest nonlinear axial mode for the fixed-fixed bar of length 𝐿∕𝐻 = 4 with 𝑎∕𝑟 = 2, plotted to scale with and without Poisson effects at the supports.
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Fig. 3. The lowest bending mode for the simply supported beam with 𝐿∕𝐻 = 4 and 𝑎∕𝑟 = 1.5, plotted to scale for the isotropic and anisotropic case.

2. A full nonlinear planar elasticity model gives a ratio of the
square of nonlinear to linear frequency ratios that are greater
than those of the higher order beam theory by up to ten percent
for 𝑎∕𝑟 of 2, and greater than the Euler–Bernoulli frequency
ratios by over 15 percent for thicker isotropic beams.

3. For isotropic beams, moderately large amplitude vibrations of
up to 𝑎∕𝑟 = 1 for slenderness ratios up to about 25 are modeled
within several percent of plane elasticity models by nonlinear
one-dimensional Euler–Bernoulli beam theory. For higher values
of 𝑎∕𝑟 and 𝐿∕𝑟, the higher order theory gives results that are in
excellent agreement with those from plane elasticity.

4. For the representative case of anisotropic media, where the
shear modulus and off-direction elastic modulus are at least
one order of magnitude smaller than the on-direction modu-
lus, Euler–Bernoulli theory is completely inadequate even for
relatively slender beams. Even the higher order beam model
gives frequency ratios that appear to under-predict those from
the present formulation. The combination of shear deforma-
tion and the contribution of nonlinear terms other than that
of Föppl–von Karman yield squared frequency ratios with far
larger differences as the beam becomes thick. It appears that
existing models for nonlinear beam vibration fall short when the
material is anisotropic, and improved simplified beam theories
await development.
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Appendix

The element matrices for the one-dimensional nonlinear Euler–
Bernoulli beam model where the displacements depend only on the
axial coordinate 𝑥 can be expressed as

𝐾11
𝑖𝑗 = ∫

𝑥𝐵

𝑥𝐴
𝐴𝐸

𝑑𝜓𝑖
𝑑𝑥

𝑑𝜓𝑗
𝑑𝑥

𝑑𝑥 (18)

𝐾12
𝑖𝑗 = ∫

𝑥𝐵

𝑥𝐴

1
2
𝐴𝐸 𝑑𝑤

𝑑𝑥
𝑑𝜓𝑖
𝑑𝑥

𝑑𝜙𝑗
𝑑𝑥

𝑑𝑥 (19)

𝐾21
𝑖𝑗 = ∫

𝑥𝐵

𝑥𝐴
𝐴𝐸 𝑑𝑤

𝑑𝑥
𝑑𝜓𝑖
𝑑𝑥

𝑑𝜙𝑗
𝑑𝑥

𝑑𝑥 (20)

𝐾22
𝑖𝑗 = ∫

𝑥𝐵

𝑥𝐴
𝐸𝐼

𝑑2𝜓𝑖
𝑑𝑥2

𝑑2𝜙𝑗
𝑑𝑥2

𝑑𝑥 + ∫

𝑥𝐵

𝑥𝐴

1
2
𝐴𝐸

(𝑑𝑤
𝑑𝑥

)2 𝑑𝜙𝑖
𝑑𝑥

𝑑𝜙𝑗
𝑑𝑥

𝑑𝑥𝑑𝑥 (21)

The terms in 𝐾11
𝑖𝑗 and the terms in the first integral of 𝐾22

𝑖𝑗 are well-
known when linear approximations are used for the axial displacements

and Hermite cubic polynomials are used for the transverse displace-
ments. The nonlinear terms are those that involve (𝑑𝑤∕𝑑𝑥) and can be
evaluated analytically. They are given in matrix form for an element of
length ℎ as

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 𝐾12
11 𝐾12

12 0 𝐾13
12 𝐾14

12

𝐾21
11 𝐾22

11 𝐾22
12 𝐾21

12 𝐾22
13 𝐾22

14

𝐾21
21 𝐾22

12 𝐾22
22 𝐾21

12 𝐾22
23 𝐾22

24

0 𝐾12
21 𝐾12

22 0 𝐾12
23 𝐾12

24

𝐾21
31 𝐾22

13 𝐾22
23 𝐾21

41 𝐾22
33 𝐾22

34

𝐾21
41 𝐾22

14 𝐾22
24 𝐾21

42 𝐾22
34 𝐾22

44

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(22)

𝐾12
11 = 𝐴𝐸

20ℎ2
(

−12𝛥1 + ℎ𝛥2 + 12𝛥3 + ℎ𝛥4
)

= 1
2
𝐾21

11 = −𝐾12
21 (23)

𝐾12
12 = 𝐴𝐸

60ℎ
(

3𝛥1 − 4ℎ𝛥2 − 3𝛥3 + ℎ𝛥4
)

= 1
2
𝐾21

12 = −𝐾12
22 (24)

𝐾12
13 = 𝐴𝐸

20ℎ2
(

12𝛥1 − ℎ𝛥2 − 12𝛥3 − ℎ𝛥4
)

= 1
2
𝐾21

31 = −𝐾12
23 (25)

𝐾12
14 = 𝐴𝐸

60ℎ
(

3𝛥1 + ℎ𝛥2 − 3𝛥3 − 4ℎ𝛥4
)

= 1
2
𝐾21

41 = −𝐾12
24 (26)

𝐾22
11 = 3𝐴𝐸

70ℎ3
(

6𝛥3𝛥4ℎ − 6𝛥1𝛥4ℎ + 6𝛥2𝛥3ℎ − 6𝛥1𝛥2ℎ+

𝛥22ℎ
2 + 24𝛥21 − 48𝛥1𝛥3 + 24𝛥23 + 𝛥

2
4ℎ

2) (27)

𝐾22
12 = 𝐴𝐸

280ℎ2
(

−2𝛥2𝛥4ℎ2 − 24𝛥2𝛥3ℎ + 24𝛥1𝛥2ℎ + 𝛥22ℎ
2−

36𝛥21 + 72𝛥1𝛥3 − 36𝛥23 − 𝛥
2
4ℎ

2) (28)

𝐾22
13 = −3𝐴𝐸

70ℎ3
(

6𝛥3𝛥4ℎ − 6𝛥1𝛥4ℎ + 6𝛥2𝛥3ℎ − 6𝛥1𝛥2ℎ+

24𝛥21 − 48𝛥1𝛥3 + 24𝛥23 + 𝛥
2
4ℎ

2) (29)

𝐾22
14 = −𝐴𝐸

280ℎ2
(

24𝛥3𝛥4ℎ − 24𝛥1𝛥4ℎ + 2𝛥2𝛥4ℎ2 + 𝛥22ℎ
2+

36𝛥21 − 72𝛥1𝛥3 + 36𝛥23 − 𝛥
2
4ℎ

2) (30)

𝐾22
22 = 𝐴𝐸

420ℎ
(

3𝛥3𝛥4ℎ − 3𝛥1𝛥4ℎ − 3𝛥2𝛥4ℎ2 − 3𝛥2𝛥3ℎ+

12𝛥22ℎ
2 + 18𝛥21 − 36𝛥1𝛥3 + 18𝛥23 + 𝛥

2
4
)

(31)

𝐾22
23 = −𝐴𝐸

280ℎ2
(

−2𝛥2𝛥4ℎ2 − 24𝛥2𝛥3ℎ + 24𝛥1𝛥2ℎ + 𝛥22ℎ
2−

36𝛥21 + 72𝛥1𝛥3 − 36𝛥23 − 𝛥
2
4ℎ

2) (32)

6
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𝐾22
24 = 𝐴𝐸

840
(

6𝛥3𝛥4 − 6𝛥1𝛥4 + 4𝛥2𝛥4ℎ + 6𝛥2𝛥3 − 6𝛥1𝛥2 − 3𝛥22ℎ − 3𝛥24ℎ
)

(33)

𝐾22
33 = 3𝐴𝐸

70ℎ3
(

6𝛥3𝛥4ℎ − 6𝛥1𝛥4ℎ + 6𝛥2𝛥3ℎ − 6𝛥1𝛥2ℎ + 𝛥22ℎ
2

+24𝛥21 − 48𝛥1𝛥3 + 24𝛥23 + 𝛥
2
4ℎ

2) (34)

𝐾22
34 = 𝐴𝐸

280ℎ2
(

24𝛥3𝛥4ℎ − 24𝛥1𝛥4ℎ + 2𝛥2𝛥4ℎ2 + 𝛥22ℎ
2+

36𝛥21 − 72𝛥1𝛥3 + 36𝛥23 − 𝛥
2
4ℎ

2) (35)

𝐾22
44 = 𝐴𝐸

420ℎ
(

−3𝛥3𝛥4ℎ + 3𝛥1𝛥4ℎ − 3𝛥2𝛥4ℎ2 + 3𝛥1𝛥2ℎ+

𝛥22ℎ
2 + 18𝛥21 − 36𝛥1𝛥3 + 18𝛥23 + 12𝛥24ℎ

2) (36)

The element equations for the total Lagrangian plane elasticity
model can be expressed as

1𝐾11
𝑖𝑗 = ∫𝑉

(

𝐶11
𝜕𝜓𝑢𝑖
𝜕𝑥

𝜕𝜓𝑢𝑗
𝜕𝑥

+ 𝐶55
𝜕𝜓𝑢𝑖
𝜕𝑧

𝜕𝜓𝑢𝑗
𝜕𝑧

)

𝑑𝑉 (37)

2𝐾11
𝑖𝑗 = ∫𝑉

[

𝑆11
𝜕𝜓𝑢𝑖
𝜕𝑥

𝜕𝜓𝑢𝑗
𝜕𝑥

+ 𝑆33
𝜕𝜓𝑢𝑖
𝜕𝑧

𝜕𝜓𝑢𝑗
𝜕𝑧

+

𝑆55

(

𝜕𝜓𝑢𝑖
𝜕𝑥

𝜕𝜓𝑢𝑗
𝜕𝑧

+
𝜕𝜓𝑢𝑖
𝜕𝑧

𝜕𝜓𝑢𝑗
𝜕𝑥

)

+ 𝐶11
𝜕𝜓𝑢𝑖
𝜕𝑥

𝜕𝜓𝑢𝑗
𝜕𝑥

( 1
2
𝜕𝑢
𝜕𝑥

)

+𝐶13
𝜕𝜓𝑢𝑖
𝜕𝑥

𝜕𝜓𝑢𝑗
𝜕𝑧

( 1
2
𝜕𝑢
𝜕𝑧

)

]

𝑑𝑉 (38)

1𝐾13
𝑖𝑗 = ∫𝑉

(

𝐶13
𝜕𝜓𝑢𝑖
𝜕𝑥

𝜕𝜓𝑤𝑗
𝜕𝑧

+ 𝐶55
𝜕𝜓𝑢𝑖
𝜕𝑧

𝜕𝜓𝑤𝑗
𝜕𝑥

)

𝑑𝑉 (39)

2𝐾13
𝑖𝑗 = ∫𝑉

[

𝐶11
𝜕𝜓𝑢𝑖
𝜕𝑥

𝜕𝜓𝑤𝑗
𝜕𝑥

( 1
2
𝜕𝑤
𝜕𝑥

)

+ 𝐶13
𝜕𝜓𝑢𝑖
𝜕𝑥

𝜕𝜓𝑤𝑗
𝜕𝑧

( 1
2
𝜕𝑤
𝜕𝑧

)

+𝐶55
𝜕𝜓𝑢𝑖
𝜕𝑧

𝜕𝜓𝑤𝑗
𝜕𝑧

𝜕𝑤
𝜕𝑥

]

𝑑𝑉 (40)

2𝐾31
𝑖𝑗 = ∫𝑉

[

𝐶13
𝜕𝜓𝑤𝑖
𝜕𝑧

𝜕𝜓𝑢𝑗
𝜕𝑥

( 1
2
𝜕𝑢
𝜕𝑥

)

+ 𝐶33
𝜕𝜓𝑤𝑖
𝜕𝑧

𝜕𝜓𝑢𝑗
𝜕𝑧

(1
2
𝜕𝑢
𝜕𝑧

)

+𝐶55
𝜕𝜓𝑤𝑖
𝜕𝑥

𝜕𝜓𝑢𝑗
𝜕𝑥

𝜕𝑢
𝜕𝑧

]

𝑑𝑉 (41)

1𝐾33
𝑖𝑗 = ∫𝑉

(

𝐶33
𝜕𝜓𝑤𝑖
𝜕𝑧

𝜕𝜓𝑤𝑗
𝜕𝑧

+ 𝐶55
𝜕𝜓𝑤𝑖
𝜕𝑥

𝜕𝜓𝑤𝑗
𝜕𝑥

)

𝑑𝑉 (42)

2𝐾33
𝑖𝑗 = ∫𝑉

[

𝑆11
𝜕𝜓𝑤𝑖
𝜕𝑥

𝜕𝜓𝑤𝑗
𝜕𝑥

+ 𝑆33
𝜕𝜓𝑤𝑖
𝜕𝑧

𝜕𝜓𝑤𝑗
𝜕𝑧

+

𝑆55

(

𝜕𝜓𝑤𝑖
𝜕𝑥

𝜕𝜓𝑤𝑗
𝜕𝑧

+
𝜕𝜓𝑤𝑖
𝜕𝑧

𝜕𝜓𝑤𝑗
𝜕𝑥

)

+ 𝐶13
𝜕𝜓𝑤𝑖
𝜕𝑧

𝜕𝜓𝑤𝑗
𝜕𝑥

( 1
2
𝜕𝑤
𝜕𝑥

)

+𝐶33
𝜕𝜓𝑤𝑖
𝜕𝑧

𝜕𝜓𝑤𝑗
𝜕𝑧

( 1
2
𝜕𝑤
𝜕𝑧

)

]

𝑑𝑉 (43)
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