
International Journal of Non-Linear Mechanics 118 (2020) 103253

Contents lists available at ScienceDirect

International Journal of Non-Linear Mechanics

journal homepage: www.elsevier.com/locate/nlm

Compact and unified elasto-plastic formulation to study isotropic plates
J.L. Mantari a,c,∗, F.G. Canales a,b

a Faculty of Mechanical Engineering, Universidad Nacional de Ingeniería (UNI), Avenida Tupac Amaru 210, Rimac, Lima, Peru
b D+Imac Lab, Desarrollo e investigación en mecánica aplicada y computacional, Peru
c Instituto de desarrollo e investigación en ingeniería naval (IDIIN), Peru

A R T I C L E I N F O

Keywords:
Elasto-plastic
Plasticity
Higher-order plate theories
Finite element method

A B S T R A C T

We introduce a compact and unified shear deformation theory for plates with elasto-plastic behavior. We
formulate the kinematics of the two-dimensional structure in a compact and unified manner using the Carrera
Unified Formulation. This formulation allows for generalized expansions of the primary variables and through-
the-thickness functions. We obtain the governing equations using the principle of virtual work and a finite
element discretization. We solve the nonlinear equations using a Newton–Raphson linearization scheme, and
linearize the constitutive equations using the algorithmic tangent moduli. We consider the J2 flow theory
of plasticity, and use a backwards Euler scheme to update the stresses. We analyze the convergence, and
compare the effectiveness of the Mixed Interpolation of Tensorial Components technique in contrasting the
shear locking phenomenon in the nonlinear regime to the use of full and uniform reduced integration. We
also conduct numerical assessments for plates under uniform and line loads. We compare the present results
to those obtained by finite element commercial software, and demonstrate the computational efficiency of the
present method.

1. Introduction

The elasto-plastic analysis of plates and shells is important for the
design of structures subjected to extreme loads. Analytical methods are
possible only for simplified geometries [1], limiting their applicability.
Due to the success of the finite element method in linear analysis of
plates and shells, many extensions to non-linear analyses were pro-
posed. Then, incremental and/or iterative algorithms are used, which
can be computationally expensive. In this regard, a current direction in
the field is to develop formulations that are computationally efficient.

The two main approaches used for elasto-plastic analysis are lumped
plasticity models and distributed plasticity models. In the lumped plas-
ticity model, inelastic deformations are assumed to be concentrated at
plastic hinge locations [2]. This method originates from limit analysis
of structures [1] and is computationally efficient. However, the plastic
hinge locations are assigned empirically and the results are often unreli-
able. On the other hand, the distributed plasticity model is known to be
accurate. In that approach, the spread of plasticity is analyzed by using
control points in the structure. While accurate, this approach requires
discretization of the structure, making it computationally expensive.
Due to this limitation, the development of efficient formulations is
imperative for use in conjunction with distributed plasticity models.

Many finite element formulations have been proposed for elasto-
plastic analysis of plates and shells [3–10]. These formulations often
and arbitrarily assume a given displacement field. Some models are
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based on the Kirchhoff plate theory or the Kirchhoff–Love shell theory,
which neglect transverse shear deformations. These theories are accu-
rate for thin isotropic plates/shells, but fail as the plate/shell becomes
thicker or when composite materials are considered. First-order and
higher-order plate/shell theories were developed to overcome such
problems. These theories are more accurate, but at the expense of com-
putational cost. Since many different types of nonlinear variations of
the displacement field along the element thickness can be considered, it
is beneficial to use or develop a compact formulation that can consider
any plate/shell theory in a compact and unified manner.

The Carrera Unified Formulation (CUF) allows for the develop-
ment of refined plate theories in a systematic manner, as presented
in Ref. [11]. Using index notation, the kinematic displacement field is
assumed as a generalized expansion of element thickness displacement
variables. Classical and first-order plate theories can be obtained as
a special case of this unified formulation. An in-depth explanation of
this formulation was provided in Refs. [12–14]. The CUF was suc-
cessfully applied for structural analysis of plates with thermoelastic
coupling [15,16], piezoelectric materials [17,18], functionally graded
materials [19], and general multifield problems [20,21].

As is well known, the finite element method suffers from a phe-
nomenon known as shear locking, where the analysis of thin plates
requires a large amount of elements. Many different approaches were
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Fig. 1. Plate coordinate frame.

used to alleviate this phenomenon. Reduced and selective-reduced in-
tegration procedures were successfully applied in linear and nonlinear
problems [22–24], with the added advantage of reduced computational
cost. However, these techniques also produce spurious energy modes.
A remedy to shear locking that does not introduce spurious modes
involves introducing an assumed shear strain field, also known as
the Mixed Interpolation Tensorial Components (MITC) technique. This
was first proposed for the linear four nodes’ plate element [25], but
subsequent research works extended it to plate and shell elements with
higher interpolation orders [26–30]. More recently, the MITC technique
was applied in conjunction with the Carrera Unified Formulation to
develop accurate analysis of plates [31,32] and shells [33–37] in the
linear elastic regime. The extension of CUF to consider material and
geometry nonlinearities was recently developed in Refs. [38,39].

In this paper, we develop an elasto-plastic bending analysis of plates
using a compact and robust formulation in the framework of CUF. We
consider plate theories of arbitrary expansion orders. We use the finite
element method to discretize the structure. We obtain the nonlinear
governing equations via the principle of virtual work, and they are
solved by a Newton–Raphson procedure. We use a consistent tangent
stiffness matrix in order to improve convergence characteristics [40].
We consider a J2 flow theory of plasticity along with the Von Mises
yield criterion and a radial return algorithm for stresses update for sim-
plicity. First, we perform a convergence analyzed, where we compare
results using MITC4 and MITC9 plate elements to those obtained using
full and reduced integration. Finally, the numerical results demon-
strate that the present formulation is capable of accurately estimate
thick plate results in a computationally efficient manner compared to
commercial finite element software.

2. Finite element formulation

2.1. Preliminaries

The present mathematical formulation follows a referential coordi-
nate system with the 𝑧-axis passing through the plate thickness. The
plate length and width are denoted by 𝑎 and 𝑏, respectively, as shown
in Fig. 1. Then, a general displacement vector is introduced:

𝐮 (x, y, z) =
{

𝑢𝑥 𝑢𝑦 𝑢𝑧
}𝑇 . (1)

The stress and strain components are expressed in vector form as

σ =
{

𝜎𝑥𝑥 𝜎𝑦𝑦 𝜎𝑧𝑧 𝜎𝑥𝑦 𝜎𝑥𝑧 𝜎𝑦𝑧
}𝑇 ,

𝐞 =
{

𝜀𝑥𝑥 𝜀𝑦𝑦 𝜀𝑧𝑧 𝛾𝑥𝑦 𝛾𝑥𝑧 𝛾𝑦𝑧
}𝑇 ,

ε =
{

𝜀𝑥𝑥 𝜀𝑦𝑦 𝜀𝑧𝑧 𝜀𝑥𝑦 𝜀𝑥𝑧 𝜀𝑦𝑧
}𝑇 , (2)

where 𝐞 is the vector of engineering strains and ε is the vector of
mathematical strains, i.e. 𝛾𝑥𝑦 = 2𝜀𝑥𝑦. The constitutive equation in the
linear regime can be written as follows:

σ = 𝐂ε, (3)

where 𝐂 is a matrix of stiffness coefficients. For an isotropic material,
it is given by:

𝐂 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐶11 𝐶12 𝐶13 0 0 0
𝐶12 𝐶22 𝐶23 0 0 0
𝐶13 𝐶23 𝐶33 0 0 0
0 0 0 𝐶44 0 0
0 0 0 0 𝐶55 0
0 0 0 0 0 𝐶66

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (4)

where the stiffness coefficients depend on the Young modulus 𝐸 and
the Poisson ratio 𝜈 as follows:

𝐶11 = 𝐶22 = 𝐶33 =
𝐸 (1 − 𝜈)

(1 + 𝜈) (1 − 2𝜈)
,

𝐶12 = 𝐶13 = 𝐶23 =
𝐸𝜈

(1 + 𝜈) (1 − 2𝜈)
,

𝐶44 = 𝐶55 = 𝐶66 =
𝐸

(1 + 𝜈)
.

(5)

Small amplitude displacements are assumed in this paper, i.e. non-
linear geometric effects are neglected. The displacement–strain relation
for mathematical strains is expressed as follows:

ε = 𝐛𝑀𝐮, (6)

where 𝐛𝑀 is a linear differential operator given by:

𝐛𝑀 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝑥0 0
0 𝜕𝑦 0
0 0 𝜕𝑧

𝜕𝑧∕2 0 𝜕𝑥∕2
0 𝜕𝑧∕2 𝜕𝑦∕2

𝜕𝑦∕2 𝜕𝑥∕2 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (7)

and 𝜕 denotes differentiation, i.e. 𝜕𝑥 = 𝜕(∙)
𝜕𝑥 , 𝜕𝑦 = 𝜕(∙)

𝜕𝑦 and 𝜕𝑧 = 𝜕(∙)
𝜕𝑧 . A

similar relation is obtained if engineering strains are considered:

𝐞 = 𝐛𝐸𝐮, (8)

𝐛𝐸 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝑥 0 0
0 𝜕𝑦 0
0 0 𝜕𝑧
𝜕𝑧 0 𝜕𝑥
0 𝜕𝑧 𝜕𝑦
𝜕𝑦 𝜕𝑥 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (9)

2.2. Plate unified finite element

The displacement field is expressed within the framework of CUF as
follows:

𝐮 (𝑥, 𝑦, 𝑧) = 𝐹𝑠 (𝑧)𝐮s (𝑥, 𝑦) , 𝑠 = 0, 1,… , 𝑁, (10)

where 𝐹𝑠 are functions of the coordinate 𝑧, 𝑁 is the number of terms
used in the expansion, 𝐮𝑠 is the vector of the generalized displacements,
and the repeated subscript ‘‘𝑠’’ indicates summation. A simple polyno-
mial expansion is used to determine the functions 𝐹𝑠. For example, the
displacement field of the second-order (𝑁 = 2) expansion model is
expressed as:

𝑢 = 𝑢0 + 𝑧𝑢1 + 𝑧2𝑢2,
𝑣 = 𝑣0 + 𝑧𝑣1 + 𝑧2𝑣2,
𝑤 = 𝑤0 + 𝑧𝑤1 + 𝑧2𝑤2.

(11)

Reduced plate order theories can be obtained by using a suitable
expansion order and eliminating certain displacement variables. For
example, the Mindlin plate theory is obtained by imposing kinematic
constraints in a first-order expansion (𝑁 = 1), resulting in the following
displacement field:

𝑢 = 𝑢0 + 𝑧𝑢1,
𝑣 = 𝑣0 + 𝑧𝑣1,
𝑤 = 𝑤0,

(12)
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Fig. 2. Tying points for the MITC4 plate finite element.

where the displacement variables 𝑢1 and 𝑣1 represent rotations in the
y- and 𝑥-axis respectively.

In this paper, the unified plate finite element method is used to
discretize the structure along the x- and 𝑦-axis. The generalized dis-
placements are approximated as follows:

𝐮𝑠 (𝑥, 𝑦) = 𝑁𝑗 (𝑥, 𝑦)𝐪𝑠𝑗 , 𝑗 = 1, 2,… , 𝑝, (13)

where 𝑝 is the number of nodes of the finite element and the repeated
index ‘‘𝑗’’ indicates summation. 𝐪𝑠𝑗 is a vector of nodal parameters
given by:

𝐪𝑠𝑗 =
{

𝑞𝑥𝑠𝑗 𝑞𝑦𝑠𝑗 𝑞𝑧𝑠𝑗
}𝑇 . (14)

The shape functions 𝑁𝑗 can be found in any standard text of finite
element method, e.g. in Bathe [41].

2.3. The MITC technique

The Mixed Interpolation Tensorial Component (MITC) method cal-
culates certain strains in a different manner from other tensorial compo-
nents. For a four-noded plate finite element, the application of the MITC
technique is denoted as MITC4. Following Ref. [25], the transverse
shear strains are calculated as follows:

{

𝜀𝑥𝑧
𝜀𝑦𝑧

}

=

⎧

⎪

⎨

⎪

⎩

1
2
(1 + 𝜂) 𝜀𝑃𝑥𝑧 +

1
2
(1 − 𝜂) 𝜀𝑀𝑥𝑧

1
2
(1 + 𝜉) 𝜀𝑁𝑥𝑧 +

1
2
(1 − 𝜉) 𝜀𝑄𝑥𝑧

⎫

⎪

⎬

⎪

⎭

, (15)

where (𝜉, 𝜂) are the isoparametric coordinates associated with the
global coordinates (𝑥, 𝑦) and P, M, N, Q are tying points (see Fig. 2).
These tying points are used as superscripts on the strains

(

𝜀𝑥𝑧, 𝜀𝑦𝑧
)

;
they indicate an evaluation of the physical strains obtained by Eq. (6)
on the corresponding sampling point.

When a nine-noded finite element is used, a new interpolation
scheme is required, denoted as MITC9. Following Ref. [41], we use
three different sets of tying points to interpolate the strains, as shown in
Fig. 3. The interpolation functions are Lagrange polynomials, arranged
as follows:
𝑁𝑚1 (𝜉, 𝜂) =

[

𝑁𝐴1 𝑁𝐵1 𝑁𝐶1 𝑁𝐷1 𝑁𝐸1 𝑁𝐹1
]

,

𝑁𝑚2 (𝜉, 𝜂) =
[

𝑁𝐴2 𝑁𝐵2 𝑁𝐶2 𝑁𝐷2 𝑁𝐸2 𝑁𝐹2
]

,

𝑁𝑚3 (𝜉, 𝜂) =
[

𝑁𝑃 𝑁𝑄 𝑁𝑅 𝑁𝑆
]

.

(16)

Each Lagrange polynomial is obtained according to the location of
the tying point, see Fig. 3. For example, the interpolation function 𝑁𝐴1
is given by:

𝑁𝐴1 (𝜉, 𝜂) =
5
√

3
12

𝜂

(

𝜂 −
√

3
5

)(

1
√

3
− 𝜉

)

. (17)

Using these interpolation functions, the strain components are interpo-
lated as follows:

⎡

⎢

⎢

⎣

𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑧𝑧

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑁𝑚1 0 0
0 𝑁𝑚2 0
0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝜀𝑚1𝑥𝑥
𝜀𝑚2𝑦𝑦
𝜀𝑧𝑧

⎤

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎣

𝜀𝑥𝑦
𝜀𝑥𝑧
𝜀𝑦𝑧

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑁𝑚3 0 0
0 𝑁𝑚1 0
0 0 𝑁𝑚2

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝜀𝑚3𝑥𝑦
𝜀𝑚1𝑥𝑧
𝜀𝑚2𝑦𝑧

⎤

⎥

⎥

⎥

⎦

, (18)

where the superscripts (𝑚1, 𝑚2, 𝑚3) on the strains indicates an evalua-
tion of the physical strains, obtained via Eq. (6), on each of the tying
points of the given set. The grouping of tying points given in Eq. (16)
follows.

2.4. Governing equations

We use the principle of virtual work to obtain the governing equa-
tions:

𝛿𝑊int − 𝛿𝑊𝑒𝑥𝑡 = 0, (19)

where 𝛿𝑊int and 𝛿𝑊𝑒𝑥𝑡 are the virtual variations of the internal and
external virtual work respectively. The variation of the internal virtual
work is given by:

𝛿𝑊int = ∫𝑉
𝛿𝐞𝑇σ d𝑉 , (20)

where 𝑉 is the volume of the plate element. Substituting Eqs. (8), (10)
and (13) into Eq. (20), we express the internal virtual work within the
framework of CUF as follows:

𝛿𝑊int =
(

𝛿𝐪𝜏𝑖
)T

∫𝑉

(

𝐛𝐸𝑇𝐹𝜏𝑁𝑖
)

σ d𝑉 . (21)

The nodal internal forces are now recognized, given as follows:

𝐟 𝜏𝑖int = ∫𝑉

(

𝐛𝐸𝑇𝐹𝜏𝑁𝑖
)

σ d𝑉 . (22)

The repeated superscript ‘‘𝜏’’ and ‘‘i’’ are related to the variation terms,
complementary to ‘‘𝑠’’ and ‘‘j’’ used for the displacement field formu-
lation, Eq. (10). A global internal force vector 𝐟int can be assembled
from 𝐟 𝜏𝑖int by expanding the indexes 𝜏 = 0, 1, 2,… , 𝑁 and 𝑖 = 1, 2,… , 𝑝
according to Eqs. (10) and (13):
(

𝐟int
)T =

{

𝐟11int … 𝐟1𝑝int 𝐟21int … 𝐟2𝑝int … 𝐟𝑀𝑝
int

}T
. (23)

The external virtual work accounts for surface, line and point loads.
Expressions for the external virtual work within the framework of CUF
can be found in Ref. [11]. For example, for a vertical surface load
applied on the top surface (𝑧 = ℎ∕2), the variation of the external
virtual work is given by:

𝛿𝑊ext = ∫𝐴𝑃

𝑃
(

𝛿𝑢𝑧
)

|

|

|𝑧=ℎ∕2
𝑑𝐴𝑃 , (24)

where 𝑃 is the magnitude of the surface load per unit of area and 𝐴𝑃
is the area where the load is applied. By substituting Eqs. (10) and (13)
into Eq. (24), the following expression is found:

𝛿𝑊𝑒𝑥𝑡 =
(

𝛿𝑞𝑧𝜏𝑖
)

∫𝐴𝑃

𝑃
(

𝐹𝜏𝑁𝑖
)

|

|

|𝑧=ℎ∕2
𝑑𝐴𝑃 , (25)

where the nodal external forces is obtained:

𝐟 𝜏𝑖ext = ∫𝐴𝑃

𝑃
(

𝐹𝜏𝑁𝑖
)

|

|

|𝑧=ℎ∕2
𝑑𝐴𝑃 . (26)

3
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Fig. 3. Tying points for the MITC9 plate finite element.

A global external force vector 𝐟ext can be obtained in a similar
manner as the global internal force vector by using Eq. (23). Since the
virtual displacements are arbitrary, Eq. (19) is equivalent to a balance
of internal and external forces. By using the global force vectors, the
equilibrium is expressed in the following form:

𝐟int − 𝐟ext = 𝟎. (27)

2.5. Linearization

We obtain a linear system with the displacements as variables by
substituting Eqs. (22) and (26) into Eq. (27) and expressing the stress
vector σ as a function of the displacements. However, if elasto-plastic
behavior is considered, the stresses are not linear with the strains and
the resulting equations are nonlinear in nature. The Newton–Raphson
procedure is then used to solve the equations, incrementally. In this
procedure, an initial approximation is assumed and its estimated value
is refined using the residual of the governing equations, i.e. the error
in the governing equations obtained when the approximate solution is
substituted. The residual of Eq. (27) is defined by:

𝐫 = 𝐟int − 𝐟ext . (28)

Using a Taylor expansion of the residual about an initial displace-
ment approximation 𝐪0 and by setting the resulting expression equal to
zero, we find an important relation:

𝐫0 +
𝜕𝐫
𝜕𝐪

𝛥𝐪 = 0, (29)

where 𝐫0 = 𝐫
(

𝐪0
)

. The matrix 𝜕𝐫∕𝜕𝐪 is the effective tangent stiffness
matrix of the system. Considering small amplitude displacements, the
nodal external forces do not contribute to the effective tangent stiffness
matrix since changes in surface area or orientation are neglected. Thus,
only the internal forces contribute to the effective tangent stiffness
matrix. The resulting matrix is the tangent stiffness matrix 𝐊T, which is
deeply discussed in Section 2.6. Using this matrix, we express Eq. (29)
as follows:

𝐫0 +𝐊T𝛥𝐪 = 0, (30)

where

𝐊T =
𝜕𝐟int
𝜕𝐪

. (31)

Eq. (30) is the linearized model of the governing nonlinear equations.
In order to obtain the complete nonlinear response, we divide the load
into load steps, and solve the nonlinear system for each load step.
The converged displacements from the previous load step are used as
the starting value of the displacements 𝐪0, from which the residual 𝐫0

and the tangent stiffness matrix 𝐊T are calculated. The vector 𝛥𝐪 is
obtained from the linear system in Eq. (30), and it is used to update the
displacements, i.e. 𝐪 = 𝐪0 +𝛥𝐪. Afterwards, 𝐫0 and 𝐊T are recalculated,
and the procedure is repeated. This iterative procedure is continued
until the convergence criterion is met. In this paper, the residual error
is used as a criterion of convergence, where the L2 norm of the vectors
is used:

‖𝐫‖𝐿2

max
(

‖

‖

𝐟int‖‖𝐿2 , ‖
‖

𝐟ext‖‖𝐿2
) ≤ TOL, (32)

where TOL is the error tolerance.

2.6. Tangent stiffness matrix

An expression for 𝐊T is required in order to apply the iterative
procedure mentioned above. According to Eq. (22), an increment of
the internal forces is given by:

d
(

𝐟 𝜏𝑖int
)

= ∫V

(

𝐛𝐸𝑇𝐹𝜏𝑁𝑖
)

dσ d𝑉 . (33)

Since the stress and strain are not linearly related, a linearization of
the constitutive equation is required. An increment of the stress vector
is related to an increment of the mathematical strain vector via the
elasto-plastic modulus Cep:

dσ = 𝐂epdε. (34)

The procedure to obtain the elasto-plastic modulus is discussed in
Section 2.7. Substituting Eqs. (34), (6), (10) and (13) into Eq. (33), we
obtain the following expression:

d
(

𝐟 𝜏𝑖int
)

= d
(

𝐪𝑠𝑗
)

∫𝑉

(

𝐛𝐸𝑇𝐹𝜏𝑁𝑖
)

𝐂ep (𝐛𝑀𝑇𝐹𝑠𝑁𝑗
)

d𝑉 , (35)

where the repeated indices ‘‘𝑠’’ and ‘‘𝑗’’ indicate summation. Using
Eq. (35) with Eq. (21), the tangent stiffness matrix is obtained as
follows:

𝐊𝜏𝑠𝑖𝑗
T = ∫𝑉

(

𝐛𝐸𝑇𝐹𝜏𝑁𝑖
)

𝐂ep (𝐛𝑀𝑇𝐹𝑠𝑁𝑗
)

d𝑉 , (36)

where 𝐊𝜏𝑠𝑖𝑗
T is the fundamental nucleus of the tangent stiffness matrix.

By varying the indices ‘‘𝜏’’ and ‘‘𝑠’’ of the nucleus over the range 𝜏, 𝑠 =
0, 1, 2,… , 𝑁 , we arrive at the following matrix:

𝐊𝑖𝑗
T =

⎡

⎢

⎢

⎣

𝐊00𝑖𝑗 … 𝐊0𝑁𝑖𝑗
… 𝐊𝜏𝑠𝑖𝑗 …

𝐊𝑁0𝑖𝑗 … 𝐊𝑁𝑁𝑖𝑗

⎤

⎥

⎥

⎦

. (37)
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Then the global tangent stiffness matrix is obtained by varying the
indices ‘‘𝑖’’ and ‘‘𝑗’’ over the range 𝑖, 𝑗 = 1, 2,… , 𝑝:

𝐊T =
⎡

⎢

⎢

⎣

𝐊11 … 𝐊1𝑝
… 𝐊𝑖𝑗 …
𝐊𝑝1 … 𝐊𝑝𝑝

⎤

⎥

⎥

⎦

. (38)

For more details about the matrix assembly using fundamental nuclei
within CUF framework, the reader may consult the work by Carrera
et al. [14]. According to CUF, explicit expressions of the stiffness matrix
are given by decoupling integrations in the plate thickness direction
and the plate longitudinal axes. However, in the present work it is not
possible to decouple the integrals in the stiffness matrix because the
matrix 𝐂ep varies spatially along all three axes.

2.7. Elasto-plastic modulus

In this section, we present the procedure to obtain 𝐂ep. It is required
when yielding occurs, according to a certain yield criterion. Note that
in the elastic regime, 𝐂ep = 𝐂. Either the continuum or the algorithmic
tangent modulus can be used in Eq. (34) to linearize the constitu-
tive equation. Then we use the algorithmic modulus for its improved
convergence characteristics. Assuming J2 flow theory of plasticity, the
algorithmic tangent modulus is derived as in Ref. [40]:

𝐂ep = 𝐂 − 2𝐺𝑏𝑰DEV − 2𝐺 (𝛾 − 𝑐)𝐒, (39)

where 𝐺 = 𝐸∕2 (1 + 𝜈) is the shear modulus, 𝑰DEV is the deviatoric ma-
trix and 𝐒 is a matrix constructed using the unit deviatoric stress tensor.
Expressions for 𝑰DEV and 𝐒 are given in Appendix. The parameters 𝑐
and 𝛾 are:

𝑐 = 1 − 𝜎
𝜎 + 3𝐺𝛥𝜆

, 𝛾 = 1
1 + (𝐻∕3𝐺)

, (40)

where 𝜎 is the Von Mises equivalent stress, 𝛥𝜆 is the accumulated equiv-
alent plastic strain and 𝐻 is the plastic modulus. In order to evaluate
𝐻 , the instantaneous slope of the stress–strain curve 𝐸𝑇 (evaluated at
the current equivalent stress) is required. The plastic modulus is given
by:

𝐻 =
𝐸𝑇𝐸

𝐸 − 𝐸𝑇
. (41)

2.8. Stress update algorithm

Explicit schemes can be used to update the stress and plastic strain
variables. However, it is often the case that the updated values do not
satisfy the yield condition at the next step. This causes the solution to
drift from the yield surface, resulting in inaccurate solutions. In order
to avoid drifting from the yield surface, the implicit backward Euler
scheme is used to obtain the plastic strains and stresses. This is an
iterative procedure that enforces the yield criterion 𝑓

(

𝜎, 𝛥𝜆
)

= 0, at the
end of the step. For the J2 flow theory of plasticity considered here, this
general algorithm reduces to the well-known radial return algorithm.
For more details, see Refs. [40] and [42].

Note that the stress update procedure is an inner loop of the
Newton–Raphson iteration. If a bilinear stress–strain relation is as-
sumed, then the method converges with a single iteration. Since the
stress update algorithm is used on discrete points, a question arises as to
where to define the monitoring points. The integral in Eq. (36) involves
the elasto-plastic modulus 𝐂ep, which depends on the plastic strains. For
this reason, the plastic strains are evaluated at the plate element Gauss
points. In this manner, 𝐂ep can be computed at these monitoring points
and the integral in Eq. (36) is evaluated using Gaussian integration. We
discuss the number of Gauss points used in the plate element in the next
section. The complete solution algorithm is shown in Fig. 4.

Fig. 4. Flow chart for the solution algorithm.

3. Results and discussion

3.1. Preliminaries

Here we study the accuracy of the present formulation, coded in
MATLAB for all the numerical results presented in this paper. In all the
numerical examples, the elastic material properties are 𝐸 = 210 GPa

5
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Fig. 5. Bilinear strain hardening elasto-plastic behavior.

and 𝜈 = 0.3. A bilinear isotropic hardening model is assumed with
𝐸1 = 70 GPa and 𝜎𝑌 = 350 MPa, as shown in Fig. 5. The error tolerance
used in Eq. (32) as a convergence criterion for the Newton–Raphson
procedure is TOL = 2.5 × 10−3. The loads used are divided into 20 load
steps in order to evaluate the full nonlinear response.

The number of Gauss points in the thickness of the plate is defined
so that the integration of terms 𝐹𝜏𝐹𝑠 can be performed exactly. In this
manner, the stiffness matrix in the elastic regime is correctly evaluated.
For example, for a model or theory with expansion order 𝑁 = 4, the
term z8 must be integrated. Then, 5 Gauss points are used along the
plate thickness. Along the plate longitudinal axes, the number of Gauss
points is defined according to the interpolation order of the element,
which depends on the number of nodes. If full integration is performed
for a plate element with 9 nodes (quadratic interpolation), then 3 Gauss
points are used along each of the plate longitudinal axes. In the case
of reduced integration, only 2 Gauss points per plate longitudinal axis
are used.

3.2. Measure of computational cost

For the numerical results presented in this paper, we ascertain the
accuracy and computational efficiency of the present formulation by
using the ANSYS commercial finite element software as a basis of
comparison. The degrees of freedoms (DOFs) are used as a measure
for the evaluation of the computational cost. The present formulation
for a model with an expansion order 𝑁 (composed of 𝑛 × 𝑛 plate finite
element with 𝑝 × 𝑝 nodes each) has the following number of DOFs:

DOFPRESENT = 3 (𝑁 + 1) [𝑛 (𝑝 − 1) + 1]2 . (42)

In a model constructed in ANSYS using the 3D element SOLID186, each
node has three translational degrees of freedom. So, the total number
of DOFs is given by the number of nodes of the model multiplied by 3.
Denoting the number of nodes of the ANSYS model by nodesANS3D, we
obtain the number of DOFs as:

DOFANS3D = 3 × nodesANS3D. (43)

On the other hand, for a model built in ANSYS using the 2D element
SHELL281, each node has six degrees of freedom: three translations and
three rotations [43]. Then, the total number of DOFs is given by the
number of nodes of the model multiplied by 6.

Table 1
Convergence of transverse displacement uz at (x = 0.5, y = 0.5, z = 0) for a square

plate with 𝑎 = 𝑏 = 1m and 𝑎∕ℎ = 5 subjected to a surface load 𝑃 = 200 MPa using full
integration.

No. of plate elements Plate theory order

N = 2 N = 3 N = 4

2 × 2 3.316 3.342 3.330
3 × 3 3.435 3.496 3.526
4 × 4 3.574 3.677 3.695
5 × 5 3.647 3.741 3.774
6 × 6 3.719 3.787 3.831
7 × 7 3.757 3.828 3.872
8 × 8 3.791 3.860 3.909
9 × 9 3.815 3.881 3.930
10 × 10 3.836 3.898 3.952
11 × 11 3.851 3.913 3.965
12 × 12 3.865 3.925 3.980

Table 2
Convergence of transverse displacement uz at (x = 0.5, y = 0.5, z = 0) for a square
plate with 𝑎 = 𝑏 = 1m and 𝑎∕ℎ = 5 subjected to a surface load 𝑃 = 200 MPa using
nine-noded finite elements and various integration methods.

No. of plate elements Integration method

Reduced Full MITC9

3 × 3 4.173 3.526 3.700
4 × 4 4.174 3.695 3.765
6 × 6 4.079 3.831 3.855
8 × 8 4.083 3.909 3.916
10 × 10 4.084 3.952 3.955

Table 3
Convergence of transverse displacement uz at (x = 0.5, y = 0.5, z = 0) for a square
plate with 𝑎 = 𝑏 = 1m and 𝑎∕ℎ = 5 subjected to a surface load 𝑃 = 200 MPa using
four-noded finite elements and various integration methods.

No. of plate elements Integration method

Reduced Full MITC4

4 × 4 4.029 2.547 3.105
6 × 6 4.127 3.122 3.491
8 × 8 4.089 3.386 3.628
10 × 10 4.127 3.541 3.702
12 × 12 4.079 3.651 3.769
14 × 14 4.084 3.731 3.822
16 × 16 4.081 3.785 3.858

Table 4
Convergence of transverse displacement uz at (x = 0.5, y = 0.5, z = 0) for a square
plate with 𝑎 = 𝑏 = 1m and 𝑎∕ℎ = 100 subjected to a surface load 𝑃 = 2MPa using
nine-noded finite elements and various integration methods.

No. of plate elements Integration method

Reduced Full MITC9

3 × 3 3.101 1.597 2.445
4 × 4 3.102 2.022 2.532
6 × 6 3.060 2.470 2.669
8 × 8 3.054 2.641 2.754
11 × 11 3.050 2.765 2.832

3.3. Convergence and comparison of integration methods

We consider a square plate with dimensions 𝑎 = 𝑏 = 1 m, and a site-
to-thickness ratio 𝑎∕ℎ = 5, where all the edges are clamped. A uniform
load of magnitude 𝑃 = 200 MPa is applied at the top surface 𝑧 =
ℎ∕2. This load drives the plate into the elasto-plastic regime. Table 1
presents the convergence of the scaled transverse displacement 𝑢𝑧 ×103

at (x = 0.5, y = 0.5, z = 0) as the number of finite element is increased.
Nine-noded plate elements are used and the full integration scheme is
performed. The displacement converges monotonically, and the results
are stable for all the expansion orders N considered. The expansion
order 𝑁 = 4 is considered for further numerical examples since it
provides results closer to 3D (accuracy is expected to increase with
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Table 5
Convergence of transverse displacement uz at (x = 0.5, y = 0.5, z = 0) for a square
plate with 𝑎 = 𝑏 = 1m and 𝑎∕ℎ = 100 subjected to a surface load 𝑃 = 2MPa using
four-noded finite elements and various integration methods.

No. of plate elements Integration method

Reduced Full MITC4

4 × 4 3.067 0.009 1.767
6 × 6 3.065 0.019 2.235
8 × 8 3.066 0.034 2.398
10 × 10 3.056 0.059 2.511
12 × 12 3.055 0.094 2.592
14 × 14 3.055 0.139 2.648
16 × 16 3.054 0.192 2.692

higher order plate theories). Consequently, further investigation on the
convergence characteristics on this expansion order is warranted.

We also assess the usefulness of other integration methods for thick
plates in the elasto-plastic regime. Again, we take the same plate
geometry and material properties as the previous example with 9-
node finite elements. However, uniform reduced integration and the
MITC9 technique are now evaluated, in addition to the full integration
method. Table 2 presents the convergence (expansion order 𝑁 = 4)
of the scaled transverse displacement 𝑢𝑧 × 103 at (x = 0.5, y = 0.5, z
= 0) as the number of 9-node finite elements is increased. It can be
seen that the MITC9 technique has accelerated convergence compared
to the full integration method, although the difference decreases, as
the mesh is refined. On the other hand, when using uniform reduced
integration, the convergence is fast, although the monotonic conver-
gence characteristic is lost. Table 3 presents the convergence of the
scaled transverse displacement 𝑢𝑧 × 103 for the same case study, but
using 4-node finite elements. The MITC4 technique is applied according
to Eq. (15). We observe similar trends with respect to 9-node finite
elements. The advantage of using MITC4 over full integration is slightly
better than when MITC9 is compared with full integration. However,
uniform reduced integration gives superior convergence rates.

Next, we consider a thin plate in order to evaluate the capabilities
of the MITC technique and the reduced integration method to deal with
shear locking in the elasto-plastic regime. We take a square plate with
the same dimensions but with a side-to-thickness ratio 𝑎∕ℎ = 100 (thin
plate) and clamped all the edges. A uniform load of magnitude 𝑃 =
2 MPa is applied at the top surface 𝑧 = ℎ∕2. As before, the magnitude
of the load is chosen so that elasto-plastic response is obtained. Table 4
presents the convergence of the scaled transverse displacement 𝑢𝑧 ×101

at (x = 0.5, y = 0.5, z = 0) as the number of 9-node finite elements
is increased. The shear locking phenomenon increases the difference
between using full integration and the MITC9 technique compared to
the case with 𝑎∕ℎ = 5. However, the reduced integration seems to be
superior, although further research activities in the topic covered by
this paper need still to be performed. Table 5 presents the convergence
of the scaled transverse displacement but using 4-node element. The
effects of shear locking are clear in this case, where the use of full
integration results in very low displacements. On the other hand, when
the MITC4 element is used, the displacement converges at much faster
rate, although slower than when reduced integration is used.

Previous research on the use of MITC plate elements within the
framework of CUF (using higher order plate theories) has shown con-
vergence characteristics similar to those obtained with reduced integra-
tion methods [31]. However, in this paper only the linear elastic regime
is assessed. The present section pretends to illustrate the behavior of
MITC4 and MITC9 elements in the elasto-plastic regime for higher order
plate theories. The results indicate that MITC elements are less effective
at dealing with shear locking in this case. Consequently, the uniform
reduced integration method is further used.

Fig. 6. Displacement–load curve for a square plate with 𝑎 = 𝑏 = 1 m and 𝑎∕ℎ = 5
subjected to surface loading at 𝑧 = ℎ∕2.

Fig. 7. Closer view of Fig. 4 in nonlinear region.

Fig. 8. Plate geometry and boundary conditions for second numerical example.

Fig. 9. Displacement–load curve for a square plate with 𝑎 = 𝑏 = 1 m and 𝑎∕ℎ = 5
subjected to line loads.
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Table 6
Comparison of transverse displacement uz at (x = 0, y = L, z = b/2) for a square plate
with 𝑎 = 𝑏 = 1m and 𝑎∕ℎ = 5 subjected to surface loading at 𝑧 = ℎ∕2.

Model DOFs P (MPa) Avg. error (%)

120 140 160 180 200

3D Reference 6 834 411 1.851 2.313 2.841 3.434 4.105 –

N4 3 × 3 735 1.753 2.217 2.774 3.444 4.173 2.75%
ANS 2D 798 1.740 2.096 2.490 2.929 3.400 11.93%

N4 7 × 7 3 375 1.825 2.296 2.820 3.410 4.088 0.81%
ANS 3Da 3 795 1.746 2.169 2.662 3.232 3.870 5.96%
ANS 3Db 76 539 1.833 2.290 2.810 3.397 4.058 1.06%

Table 7
Comparison of transverse displacement uz at (x = a/2, y = L, z = b/2 − t) for a square
plate with 𝑎 = 𝑏 = 1m and 𝑎∕ℎ = 5 subjected to various line loads.

Model DOFs P (MN/m) Avg. error (%)

24 28 32 36 40

3D Reference 1310 499 0.971 1.177 1.383 1.589 1.795 –

N4 3 × 3 735 0.973 1.178 1.384 1.589 1.795 0.08%
ANS 2D 798 0.914 1.103 1.293 1.483 1.672 6.43%
ANS 3Da 3 795 0.954 1.156 1.358 1.561 1.763 1.78%
ANS 3Db 45 708 0.968 1.173 1.378 1.584 1.789 0.34%

3.4. Plate subjected to uniform surface loading

In the present section, we compare results obtained by the present
formulation with those of the ANSYS finite element software. We take
a square plate with dimensions 𝑎 = 𝑏 = 1 m and with clamped edges.
A uniform load of magnitude 𝑃 = 200 MPa is applied at the top
surface 𝑧 = ℎ∕2. In order to demonstrate the capabilities of the present
formulation to deal with thick plates, we consider a side-to-thickness
ratio 𝑎∕ℎ = 5. We obtain results in the present formulation by using an
expansion order 𝑁 = 4 and for various mesh sizes with 𝑛 finite elements
along each longitudinal axis (denoted by 𝑛 × 𝑛). For example, a model
N4 7 × 7 indicates a model with expansion order 𝑁 = 4 and 7 elements
along each plate longitudinal axis, resulting in 49 finite elements in
total. On the other hand, results using ANSYS software with either a
2D mesh of SHELL281 elements or a 3D mesh of SOLID186 elements
are obtained.

Table 6 presents values of the scaled displacement 𝑢𝑍 × 103 at
the geometric center of the plate as the load is increased. In order
to evaluate the accuracy and computational efficiency of the present
formulation, we used different finite element models:

• ANS2D is constructed using a 6 × 6 mesh with SHELL281 ele-
ments, resulting in 133 nodes and 798 DOFs.

• ANS3Da is built using a 10 × 10 × 2 mesh with SOLID186
elements, resulting in 1265 nodes and 3795 DOFs.

• ANS3Db is composed of a 30 × 30 × 6 mesh with SOLID186
elements, resulting in 25 513 nodes and 76 539 DOFs.

• The 3D reference model is constructed using a very refined mesh
of 140 × 140 × 28 SOLID186 elements. This model is used as a
reference to calculate the average error of the other models.

The present N4 3 × 3 model has similar DOFs as the ANS2D model, but
much higher accuracy. This is because the 2D shell element used by
ANSYS is inadequate for the elasto-plastic thick plate analyzed in this
paper. Similarly, the N4 7 × 7 model has similar DOFs as the ANS3Da
model, but much higher precision. A more refined 3D solid model with
many more DOFs, ANS3Db, is required to obtain similar precision and
accuracy. The computational efficiency of the present model is evident
from these results.

Fig. 6 shows the load–displacement curve, as obtained by vari-
ous models. The N4 3 × 3 model presents results closer to the 3D

reference solution than others. Fig. 7 shows a closer view of the load–
displacement curve in the nonlinear regime. The present N4 7 × 7 model
is good to reproduce the nonlinear response accurately, more so than
the ANS3Da model (which has a similar number of DOFs).

3.5. Plate subjected to line loading

We consider a plate with dimensions 𝑎 = 𝑏 = 1 m. The edges at 𝑥 = 0
and 𝑦 = 𝑏 are clamped, while the other two are free (Fig. 8). Line loads
of equal magnitude 𝑃 = 40 MN∕m are applied at the edges 𝑥 = 𝑎 and
𝑦 = 0. Table 7 presents values of the scaled displacement 𝑢𝑍 × 101 at
(x = a, y = 0, z = 0) as the magnitude of the line loads is increased.
The finite element models are the same as those used in Section 3.4,
except for the 3D reference model, which is slightly less refined. The
following remarks can be made:

• Both the present and ANSYS models have less difficulty obtaining
accurate results for this case.

• The present N4 3 × 3 model has lower DOFs and higher accuracy
than all the other models.

Fig. 9 shows the load–displacement curve for this case. The N4 3 × 3
model results are closer to the 3D reference solution than the other
models. In addition, it can be seen that this case has a higher non-
linear response than the case analyzed previously. We observe large
displacements, and the geometrical nonlinearity should be considered.
This kind of nonlinearity should be further considered in future works.
Remarkable works that consider nonlinearities as in Refs. [38,39,44]
should be further utilized for comparison purposes.

4. Conclusions

We developed a unified formulation of plate theories with nonlinear
material behavior. We compared results using different integration
methods and MITC elements. In addition, we performed a comparison
with commercial finite element software. The following conclusions
arise from this paper:

• The present formulation is computationally efficient compared
to commercial finite element software, requiring less degrees of
freedom for similar accuracy.

• MITC elements can alleviate the shear locking that occurs in thin
plates. However, the effectiveness of these elements for higher
order plate theories is reduced in the nonlinear regime.

• Uniform reduced integration can eliminate the shear locking and
provide a fast convergence rate, albeit sacrificing some numerical
stability.

• While 2D plate elements based on first-order deformation theory
can give acceptable results for moderately thick isotropic plates in
the linear regime, they are inadequate in the elasto-plastic regime.
Either higher-order plate theories or a 3D solution are required.
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Appendix. Deviatoric matrix 𝑰𝐃𝐄𝐕 and 𝐒

The deviatoric matrix is given by [40]:

𝑰DEV =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2
3

−1
3

−1
3

0 0 0

−1
3

2
3

−1
3

0 0 0

−1
3

−1
3

2
3

0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

In order to construct the matrix 𝐒, the deviatoric stress tensor 𝐬T
must first be obtained by subtracting the hydrostatic part:

𝐬T =
⎡

⎢

⎢

⎣

s𝑥𝑥 s𝑥𝑦 s𝑥𝑧
s𝑥𝑦 s𝑦𝑦 s𝑦𝑧
s𝑥𝑧 s𝑦𝑧 s𝑧𝑧

⎤

⎥

⎥

⎦

.

The unit deviatoric stress tensor is obtained as:

ηT =
𝐬T

‖

‖

𝐬T‖‖
=
⎡

⎢

⎢

⎣

𝜂𝑥𝑥 𝜂𝑥𝑦 𝜂𝑥𝑧
𝜂𝑥𝑦 𝜂𝑦𝑦 𝜂𝑦𝑧
𝜂𝑥𝑧 𝜂𝑦𝑧 𝜂𝑧𝑧

⎤

⎥

⎥

⎦

,

where ‖ ‖ denotes the tensor norm. For programming purposes, the
second-order symmetric tensor ηT is converted to an equivalent vector
η:

η =
{

𝜂𝑥𝑥 𝜂𝑦𝑦 𝜂𝑧𝑧 𝜂𝑥𝑦 𝜂𝑥𝑧 𝜂𝑦𝑧
}𝑇 .

The matrix 𝐒 is defined as follows:

𝐒 = ηηT.
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