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a b s t r a c t 

A data-driven framework for the enhancement of fracture paths in random heterogeneous microstruc- 

tures is presented. The approach relies on the combination of manifold learning, introduced to explore 

the geometrical structure exhibited by crack patterns and achieve efficient dimensionality reduction, 

and a posteriori crack path reconstruction, defined through a Markovianization. The proposed method- 

ology enables the generation of new crack patterns, the underlying structure and dynamical properties of 

which are consistent, by construction, with those obtained from high-fidelity computations. These sam- 

pled cracks can subsequently be used to enrich datasets and perform uncertainty quantification at mul- 

tiple scales, at a fraction of the computational cost associated with full-scale simulations. A numerical 

example where the initial dataset is obtained from a recently developed gradient damage formulation is 

provided to demonstrate the effectiveness of the method. While the methodology is presently applied to 

digital data, it can also be deployed on experimental measurements. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Put forward by the growth of both available data and comput-

ng resources, Machine Learning (ML) techniques (and within that

amily, Deep Learning (DL) approaches in particular) have recently

esurged as very promising tools capable of accommodating high-

imensional inputs and highly nonlinear mappings. In this context,

here has been a proliferation of works involving ingredients of ML

or computational physics. Examples include, in a non-exhaustive

anner , material constitutive modeling [1–11] , discovery of partial

nd ordinary differential equations [12,13] , inverse problem solv-

ng (see, e.g., [14–18] ), random microstructure modeling and recon-

truction [19,20] , and uncertainty propagation [21,22] . Uncertainty

uantification frameworks for DL were also proposed in [23,24] .

estricting the attention to surrogate modeling for fracture, Neu-

al Networks (NN) were used, for instance, in [25] to predict the

rowth and coalescence of (preexisting) cracks in a geologic ma-

erial; see [26,27] for various extensions including different types

f NN and reduced order modeling. Convolutional neural networks

ere considered in [28] to predict crack profiles in a polycrys-

alline alloy, based on microstructural data. 

While encouraging, the use of deep learning methods in com-

utational mechanics also raises a series of well-known issues,

mong which the design of optimal architectures and the inte-
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ration of constraints inferred from physics [2,29,30] . Conceptually,

he application of DL for crack path prediction amounts to defin-

ng a sequence of local approximations, corresponding to the time

iscretization of the fracture process. For microstructure-sensitive

rack paths, this necessitates tracking a large number of input vari-

bles, some of which may not be active near the crack tip at a

iven time instance. 

The main objective pursued in this paper is to propose an

pproach enabling the enrichment of datasets, obtained either

hrough computational simulations or by means of physical ex-

eriments. While this may possibly be achieved by using Gener-

tive Adversarial Networks (GANs), we aim to develop a method-

logy that leverages the “regularity” induced by the properties

f the microstructural fields, which are often assumed to be ho-

ogeneous (meaning that the systems of marginal laws defining

hese random fields are invariant under translations in space) and

sotropic (that is, the systems of marginal laws are also invariant

nder rotations) [31,32] . These two properties manifest themselves

hrough a “geometrical signature” defining a manifold over the en-

ire crack path, suggesting that crack paths could be described, un-

er the above assumptions, in a low dimensional space. Motivated

y these remarks, we propose a sampling-based approach taking

dvantage of the aforementioned invariance properties. The ap-

roach relies on the combination of manifold learning, which is in-

roduced to reveal the geometrical structure of crack patterns and

sed as a means to achieve dimensionality reduction, and a poste-

iori Markov-type point selection, which is necessary to reconstruct

rack profiles from newly synthesized, unlabeled data. 

https://doi.org/10.1016/j.mechrescom.2019.103443
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mechrescom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mechrescom.2019.103443&domain=pdf
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Fig. 1. (a) Sketch of a body, B, with an internal discontinuity �. (b) A regularized 

representation of the internal discontinuity. Constitutive phases are not represented 

for the sake of readability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. One microstructural sample and associated crack path for mode I fracture. 
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This paper is organized as follows. The high-fidelity formula-

tion used to generate the reference dataset is first presented in

Section 2 . The machine learning framework and selection proce-

dure are then introduced in Section 3 . Results are presented all

along the paper to illustrate the methodological steps. 

2. High-fidelity model for crack propagation 

2.1. Phase-field/gradient damage formulation 

We consider an arbitrary, heterogeneous body B ⊂ R 

n (with

n ∈ {1, 2, 3}) with external boundary ∂B with ∂ B t ∩ ∂ B u = ∅ ,
∂ B t ∪ ∂ B u = ∂ B and an internal crack surface � as shown in

Fig. 1 a. Without loss of generality, we consider a two-phase com-

posite system, and denote with the subscripts i and m the inclu-

sion and matrix phases, respectively. The state of the system is

described by two independent variables, the vector displacement

field u and a scalar damage field d . 

We follow the approach described in [33] wherein the dam-

age plays the role of approximating the crack surface � by its

regularized counterpart �d as shown in Fig. 1 b. Following con-

ventions, the damage takes values in [0,1], with d = 0 away from

the crack surface and d = 1 in the vicinity of the crack. Small de-

formations and deformation gradients are assumed. The infinitesi-

mal strain tensor ε is defined as ε = 

1 
2 

(∇u + (∇u ) T 
)
. We assume

that the damage field acts only to degrade the tensile resistance

of the body and that crack propagation is prohibited under com-

pression. Following [34] , this is effected by employing a spectral

decomposition of ε into positive and negative components, via

ε ± := 

∑ n 
a =1 〈 ε a 〉 ±n a � n a , where { ε a } a =1 ...n are the principal strains

and { n a } a =1 ...n the principal strain directions. The positive and neg-

ative operators 〈·〉 + and 〈·〉 − are given by 

〈 x 〉 + = 

{
x if x ≥ 0 , 

0 otherwise , 
and 〈 x 〉 − = 

{
x if x ≤ 0 , 

0 otherwise . 

The decomposition of the strain makes it possible to define ten-

sile and compressive elastic strain energy densities. We restrict

attention to isotropic linear elasticity, and define these strain en-

ergy densities by ψ 

+ 
0 

( ε ) = 

1 
2 λs 〈 Tr ε 〉 2 + + μs ε + : ε + and ψ 

−
0 

( ε ) =
1 
2 λs 〈 Tr ε 〉 2 − + μs ε − : ε −, where λs > 0 and μs > 0 are the Lamé co-

efficients in the constitutive phase s ∈ { i , m } . The stress σ is as-

sumed to decay with the damage according to σ(d) = g(d) 
∂ψ 

+ 
0 

∂ ε 
+

∂ψ 

−
0 

∂ ε 
, where g is a degradation function. In this work, we use the

degradation function proposed by Lorentz [35] : 

g(d) = 

(1 − d) 2 

( 1 − d) 2 + 

M 

ψ c 
d(1 + d) 

, 

where M is a mobility constant such that M = 3 G c / (8 � ) , where G c

is the critical energy release rate and � denotes the regularization

length, and ψ c is a threshold energy for damage initiation defined

as ψ c = σ 2 
c / (2 E) , with E the Young’s modulus. Note that phase-

specific subscripts are not used in these material parameters to
implify notation. In this work, we take � = EG c / (4 σ 2 
c ) (see Section

.3 in [33] ). 

In the present work, we confine attention to quasi-static load-

ngs where inertial effects can be neglected. The governing equa-

ions are then given by the macro-scale force balance and the

icro-force balance, and read 

iv σ = 0 on B×]0 , T [ (1)

 � 2 	d − g ′ (d) 

M 

ψ 

+ 
0 = 1 on B×]0 , T [ (2)

ubject to the boundary conditions u = ū on ∂B u ×]0 , T [ , σ · n = ̄t

n ∂B t ×]0 , T [ , and ∇d · n = 0 on ∂B×]0 , T [ , and subject to the

onstraint ˙ d ≥ 0 on B×]0 , T [ (enforced using an augmented La-

range method). The above governing equations and boundary

onditions are re-cast in an equivalent variational form, and then

nite-element approximations are constructed for the displace-

ent and damage fields (see [33] for details of the implementa-

ion). 

.2. Numerical result on a microstructural sample 

The formulation detailed in Section 2.1 is now applied to a

onodisperse random medium exhibiting statistical isotropy. This

rototypical microstructure is relevant to a wide variety of materi-

ls, ranging from concrete to cross-sectional models of fiber-matrix

omposites. Moreover, it presents a high level of stochasticity in

erms of crack paths due to limited localization (see, e.g., [36] ).

n this work, microstructural samples are obtained by using the

olecular-dynamics-based algorithm detailed in [37] . Material pa-

ameters for the matrix are set to: λm 

= 121 GPa, μm 

= 80 . 77 GPa,

(G c ) m 

= 2 . 7 N/mm and (σc ) m 

= 2 . 0 GPa. A contrast of 10 is intro-

uced between the properties of the matrix phase and those as-

ociated with the inclusions (e.g., λi /λm 

= 10 ). A crack path asso-

iated with one sample of the microstructure and mode I fracture

s shown in Fig. 2 . While the cracks were not a-priori restricted to

ropagate only in the matrix, all simulation results exhibited this

orm of crack growth. This is consistent with common observations

f simulated crack trajectories in composites with relatively stiff

nclusions. 

. Hybrid unsupervised-supervised approach 

Within the framework introduced in Section 2 , diffuse crack

aths can be interpreted as realizations of a space-time random

eld { d ( x , t ), x ∈ 
, t ∈ [0, T ]}, defined on a given probability space

(�, T , P ) and with values in [0,1], with 0 � T < + ∞ . Without loss

f generality, we assume in what follows that crack path variability

s generated by microstructural randomness. Boundary conditions

re fixed throughout this section. 
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Fig. 3. Discretized representations of crack patterns obtained from phase-field sim- 

ulations with N = 45 independent microstructures (mode II). Each color is associ- 

ated with one microstructural sample. 
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Fig. 4. Filtered crack pattern for microstructure # 3. 
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Fig. 5. Filtered crack patterns, obtained by postprocessing the phase-field dataset 

shown in Fig. 3 . 
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.1. Manifold learning formulation 

.1.1. Data filtering 

The first step of the approach consists in computing “filtered”

that is, non-diffuse) crack patterns that will be used as train-

ng points within the unsupervised learning component of the

ethodology and to evaluate conditional probabilities for pattern

econstruction. To that end, let I d be the damage indicator func-

ion such that I d ( x ) = 1 if d ( x , T ) > 0 and I d ( x ) = 0 otherwise, for

ll x in 
 (note that the time instance t = T is considered here,

o that the entire crack path is characterized). For a given sam-

le θ i of the random microstructure, let 
i 
d 

denote the set of all

non-ordered) points in 
 where damage occurs, I d ( x ) = 1 for

ll x ∈ 
i 
d 
, and let N i = | 
i 

d 
| . The set of raw simulated data, ob-

ained from the gradient damage formulation, is then written as

d = 

⋃ N 
i =1 


i 
d 
, where N denotes the number of microstructures

ampled. Plots of all points belonging to 
i 
d 
, 1 � i � N , are shown

n Fig. 3 . 

Various strategies were proposed to reconstruct crack patterns

ased on diffuse (phase-field) representations; see [38] for an

ptimization-based approach, for instance. In this work, a crack

ath is identified with the set of points that have the highest den-

ity of surrounding damage. In practice, the crack is localized by

omputing a scale-space representation of the damage indicator

unction, in which the scale level in the Gaussian kernel is de-

uced from a parametric analysis, and through ridge detection on

he smooth function thus obtained. It should be noticed that while

his choice may be critical in studies focused on the development

f phase-field formulations, it is not expected to impact the pre-

ented methodology and results. The initial reference dataset and

econstructed crack for microstructure # 3 (for which the band as-

ociated with the diffuse damage field has a location-dependent

idth) are shown in Fig. 4 . The set of all reference crack paths,

btained by filtering the data in Fig. 3 , is shown in Fig. 5 . 

.1.2. Mathematical formulation in dimension 2 

The data corresponding to N (filtered) crack paths are gathered

n a (2 × N D ) matrix [ D ] = [[ D 

(1) ] , . . . , [ D 

(N) ]] , where N D = | 
d | =
 N 
i =1 N i . The data points associated with the i -th crack path are

ritten as [ D 

(i ) ] = [ d i 1 , . . . , d iN i ] , 1 � i � N , and d ij is the vector of

oordinates of the j−th point in 
i 
d 
. Following [39] , [ D ] is inter-

reted from now on as the realization of a random matrix [ D ] de-

ned on (�, T , P ) . The columns of [ D ] correspond to independent

amples of a random vector D defined by a probability measure
oncentrated on the manifold that reflects microstructural details.

t is common practice to normalize [ D ] through a principal compo-

ent analysis: 

 D ] = [ D ] + [
][�] 1 / 2 [ H] , (3)

here [ D ] = [ d , . . . , d ] , with d = 

1 
N D 

∑ N 
i =1 

∑ N i 
j=1 

d i j 
, [ �] and [ 
] are

he matrices of eigenvalues and eigenvectors of the covariance ma-

rix [ C] = 

1 
N D 

∑ N 
i =1 

∑ N i 
j=1 

( d i j − d )( d i j − d ) T . The normalized dataset

s thus given by 

 H] = [�] −1 / 2 [
] T ([ D ] − [ D ]) , (4)

ith [ H] = [ h 

1 
, . . . , h 

N D ] , and [ H ] can be seen as one realization of

 normalized random matrix [ H ]. The goal to enrich the dataset is

hen to draw new samples of [ H ] that can then be used to compute

ew samples of [ D ]. 

In order to ensure proper measure concentration, we follow the

pproach proposed in [39] . The strategy consists in using an Itô

tochastic Differential Equation (ISDE) to sample the probability

easure estimated from the data, and in performing an appropri-

te change of measure in the ISDE through a diffusion map basis.

ollowing the work of Coifman et al. [40] , a direct effect of the pro-

ection is to concentrate the realizations on the manifold defined

y the reference dataset. These ingredients are reviewed below. 

The construction of the diffusion map basis proceeds as follows

40] . Let k ε be the kernel defined as 

 ε ( h , h 

′ ) = exp (−‖ h − h 

′ ‖ / (4 ε)) , (5)
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Fig. 6. Plot of i �→ λi for 1 � i � 10 0 0. 

Fig. 7. New samples generated through probabilistic learning (red) and comparison 

with the reference dataset (black). (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article). 
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where ‖ · ‖ denotes the Euclidean norm, and let [ K ] be the sym-

metric matrix such that 

K i j = k ε ( h 

i 
, h 

j ) , 1 � i, j � N D . (6)

Let [ B ] be the matrix with entries B i j = δi j 

∑ N D 
k =1 

[ K] ik , and let [ P ] =
[ B ] −1 [ K] . Let [ P S ] be the matrix defined as [ P S ] = [ B ] 1 / 2 [ P ][ B ] −1 / 2 ,

and let { λi } N D i =1 
and { φ(i ) } N D 

i =1 
be the set of eigenvalues (ordered as a

non-increasing sequence) and eigenvectors of [ P S ]. A reduced-order

representation is then obtained by retaining the m most significant

eigenvalues and associated eigenvectors. The diffusion map basis is

given as [ G ] = [ g (1) , . . . , g (m ) ] , where 

g (i ) = λS 
i [ B ] −1 / 2 φ(i ) 

, 1 � i � m , (7)

and S ∈ N ∗ is a scale parameter related to the exploration of the

underlying geometrical structure [40] . The reader is referred to

[41] for discussions regarding the selection of hyperparameters. A

reduced order representation of the random matrix [ H ] is finally

defined as 

[ H ] = [ Z ][ G ] T , (8)

where [ Z ] is a random matrix defined on (�, T , P ) . The above re-

lation can be inverted as [ Z ] = [ H ][ A ] T , with [ A ] = [ G ]([ G ] T [ G ]) −1 . 

The following ISDE was introduced in [39] to sample the

reduced-order representation [ Z ]: for t � 0, {
d[ Z (t)] = [ Y (t)] d t 

d[ Y (t)] = [ L ([ Z (t )])] d t − γ [ Y (t )] d t + 

√ 

2 γ [d W (t ) ] 
, 

with [ Z (0)] = [ H][ A ] and [ Y (0)] = [ N ][ A ] almost surely,

where [ N ] is a (2 × N D ) random matrix whose columns are inde-

pendent copies of the normalized Gaussian random vector in R 

2 ,

and γ > 0 is a parameter. The matrix-valued function [ L ] is defined

as 

[ L ([ Z (t)])] = [ L ([ Z (t)][ G ] T )][ A ] , (9)

where 

L ([ U]) i j = 

1 

f ( u 

j ) 
{ ∇ u j f ( u 

j ) } i (10)

for any (2 × N D ) matrix [ U] = [ u 

1 , . . . , u 

N D ] , and f is the ker-

nel density estimator constructed with the normalized data

[42] . Finally, one has [d W(t)] = [d W (t)][ A ] , where [d W (t)] =
[d W 

1 (t) , . . . , d W 

N D (t)] and { W 

i } N D 
i =1 

are independent copies of the

normalized Wiener process in R 

2 . It can then be shown that

lim t→ + ∞ 

[ Z (t)] = [ Z ] in probability distribution, meaning that in-

tegrating the ISDE allows for the generation of samples of [ Z ]

(and hence, of [ H ] and [ D ]). When written in vector form, the

above ISDE corresponds to the Langevin equation used in molec-

ular dynamics simulations to model the effect of molecules out-

side the computational domain (the analogy being formally ob-

tained by considering that all atoms have a mass equal to one, and

a Langevin bath temperature set to 1/ k B , with k B the Boltzmann

constant; γ is then called the collision frequency in the literature).

In this context, many schemes were proposed to discretize the

equation; see, e.g., [43] for details. In this work, the well-known

Brünger–Brooks–Karplus (BBK) integrator is used [44] . 

3.1.3. Example: case of pure shear 

We now apply the methodology to the dataset obtained for

pure shear, shown in Fig. 5 . In this case, N D = 19 , 880 and the plot

of the mapping i �→ λi is shown in Fig. 6 for 1 � i � 10 0 0. Note that

by construction, λ1 = 1 . Below, the order of truncation is deter-

mined by retaining all eigenvalues greater than 0.01, which yields

m = 166 . This underlines the substantial dimensionality reduction

obtained through the manifold learning approach. New samples

generated by integrating the ISDE are shown in Fig. 7 (100 addi-

tional samples of [ D ] are shown). 
As expected, it is seen that the points generated through the

educed-order representation are well concentrated on the mani-

old induced from microstructural characteristics, thanks to the dif-

usion map basis. In the next section, a possible strategy to recon-

truct crack is presented. 

.2. Crack path reconstruction 

Let us consider the sequence { D 

k } k � 1 of ordered points consti-

uting a stochastic crack path (of arbitrary length). A natural way to

escribe the discretized crack is through a Markov chain (see, e.g.,

45] ). To that end, consider the representation { X 

k = (r k , αk ) } k � 1 

f the crack, where r k +1 = ‖ D 

k +1 − D 

k ‖ takes its values in S r ⊂ R 

+ ∗
nd the angle αk between successive segments takes its values

n S α = [ −π/ 2 + εα, π/ 2 − εα] , with 0 < εα � 1; see Fig. 8 . For

andom composites that exhibit both stationarity and statistical

sotropy, it is reasonable to assume homogeneity and finite mem-

ry, meaning that 

 ( X 

k +1 ∈ B k +1 | X 

k ∈ B k , . . . , X 

1 ∈ B 1 ) (11)

s equal to 

 ( X 

k +1 ∈ B k +1 | X 

k ∈ B k , . . . , X 

k −ν+1 ∈ B k −ν+1 ) (12)

or some positive integer ν and ∀ k � ν . The chain { Y 

k } k , with Y k =
( X 

k , . . . , X 

k −ν+1 ) , then satisfies the Markov property. The choice

f ν is application-dependent. While longer memory is expected
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Fig. 8. Crack parameterization (left) and view of possible points (in red) identi- 

fied through conditional probabilities (right). (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this arti- 

cle). 

Fig. 9. Points (red) selected on the new dataset generated by the probabilistic 

learning approach (black). (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article). 
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Fig. 10. New crack patterns (red) and reference dataset (black). (For interpretation 

of the references to color in this figure legend, the reader is referred to the web 

version of this article). 
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o improve predictions, at least for ν � ν∗ (where ν∗ is unknown

 priori ), it significantly increases the size of the Markovianiza-

ion. This increase requires using larger training datasets and may

omplicate data processing over multi-states. The memoryless case

= 1 is considered below, for the sake of illustration. 

The reconstruction procedure consists in sampling the condi-

ional distribution and in randomly selecting a point among all

andidates in B k +1 (see the right panel in Fig. 8 ). The measure

 B k +1 | is assumed sufficiently small, so that the number of admis-

ible candidates remains small and the random selection induces

 negligible bias. Given the purpose of the study, stochastic jumps

re not modeled, so that conditional probabilities can be evaluated

or sets of the form 

 k = [ r − 	r/ 2 , r + 	r/ 2] × [ αk − 	α/ 2 , αk + 	α/ 2] , (13)

here r is the mean of r k , estimated from the dataset, 	r > 0 is a

mall parameter that has to be tuned using the training data (us-

ng, e.g., quantiles), αk is given by 

k = −π

2 

+ εα + (2 k + 1) 
	α

2 

(14)

nd 	α is such that | S α| = π − 2 ε = N α	α, with N α an even in-

eger (the value N α = 46 is selected below). When no points can be

ound in B k +1 , resampling is undertaken by increasing the measure

long the radius of search until admissible candidates are found. 

Examples of selected points are shown in Fig. 9 , where the

oints generated by using the probabilistic learning approach are

lso displayed. Note that the selection was stopped after a fixed

umber of iterations in the presented results, which explains why

he entire dataset was not fully explored. Depending on the appli-

ation, a probabilistic stopping criterion based on e.g., crack length,

an easily be implemented. 

The new crack profiles obtained through the hybrid, data-driven

pproach can be compared with the training data in Fig. 10 . By

onstruction, these sampled crack paths exhibit two important

roperties inherited from the high-fidelity model, that are: (1) The
eometrical structure, as induced by fine-scale details; and (2) spa-

ial evolution, as described by the matrix of transition probabili-

ies. Note that the latter can be strongly affected by the value of ν
which defines the memory in the chain), which has to be carefully

hosen based on the application. 

.3. Remarks 

The proposed methodology can accommodate other types of

oundary conditions. Numerical results (which are not reported for

he sake of brevity) were obtained for various settings balancing

etween mode I and mode II fracture, and the approach performed

qually well in all cases. By construction, the approach can also

andle the case of more complex loading paths where different

odes arise as a function of time, provided that the training set

emains informative about data concentration. 

While the additional fracture paths are not associated with

pecific microstructural samples, macroscopic results can still be

btained by considering a background media characterized by

omogenized elastic properties, defined under suitable boundary

onditions (see, e.g., [46,47] ). 

Whereas none of the reference simulations (detailed in

ection 2 ) exhibited crack branching, the latter could be described

y splitting the selection procedure (once branching has occurred)

nd by properly adapting the sets of initial conditions for the

arkovianizations. 

. Conclusion 

In this paper, a hybrid, data-driven framework for the enrich-

ent of fracture paths in random microstructures has been pre-

ented. Building upon standard assumptions associated with the

tochastic representation of random media, the approach aims to

ake advantage of crack path regularity to achieve dimensionality

eduction and enable statistical sampling. The strategy specifically

elies on the combination of manifold learning, introduced to ex-

lore the geometrical structure exhibited by crack patterns, and a

osteriori crack path reconstruction, defined through a Markovian-

zation. A numerical example where the initial dataset was ob-

ained from a phase-field/gradient damage formulation was pro-

ided to illustrate the method. The sampled crack paths can be

sed, in particular, to enrich datasets and perform uncertainty

uantification for a fixed (and reasonably small) number of full-

cale, high-fidelity simulations. While the approach was applied to

ynthetic data, it should be noticed that it could also be deployed

n experimentally characterized crack profiles. 
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