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A B S T R A C T

This paper presents a novel electrostatic micro-tweezers to manipulate particles with diameters up to 14 μm.
The tweezers consist of two grip-arms mounted to an electrostatically actuated initially curved micro-beam. It
exploits bistable equilibria, resulting from a snap-through instability, to close the separation distance between
the two arms allowing them to grasp a large range of objects. The tweezers offer further control beyond the
snap-through point, via electrostatic actuation, to increase pressure on larger objects or grasp smaller objects.
The tweezers are fabricated in a p-type Silicon on Insulator (SOI) wafer. Euler-Bernoulli beam theory is utilized
to derive the governing equation of motion taking into account the arms' rotary inertia and the electrostatic
fringing field. A reduced-order model (ROM) is developed utilizing two, three and five symmetric modes in a
Galerkin expansion. A finite element model (FEM) is also developed to validate the ROM and to study the arm
tips' separation as a function of actuation voltage. The five-mode ROM is found to be convergent and accurate
except in the vicinity of the snap-through saddle-node bifurcation. Our analysis shows that the tweezers can
manipulate micro-particles with diameters ranging from 5 to 12 μm with an operating voltage range limited
by the snap-back voltage 100.2V and the pull-in voltage 153.2V.

1. Introduction

A present need exists for the development of Micro-Device-Assembly
(MDA) systems [1]. In addition, the complexity of micro-particle ge-
ometries, their internal microstructure and varying material properties,
have led many researchers to develop MEMS devices to precisely locate
and manipulate objects such as DNA strands and white and red blood
cells [2]. These devices provide a bridge between the macro systems
and a tiny world that is only visible under microscopes and with
advanced tools. Automatically handling and manipulating those par-
ticles requires consideration of device compatibility, size, integration
with electronics, resolution, power consumption and design configura-
tion. Micro-tweezers are the typical end-effectors deployed to handle
micro-particles.

The actuation mechanisms for micro-tweezers fall into four cate-
gories: electromagnetic, piezoelectric, electrothermal and electrostatic.
Electromagnetic micro-tweezers are larger in size and output force but
harder to fabricate [3]. Piezoelectric tweezers have a smaller stroke
which restricts their use [4]. Electrothermal tweezers are often pre-
ferred due to their simplicity of their fabrication. They also require
a small voltage and produce a large grip force [5]. However, they
are limited to applications where heat dissipation from the actuator
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does not damage sensitive targets such as biological cells. Because
of these limitations, many researchers have turned their attention to
electrostatic actuation of MEMS tweezers due to many inherent ad-
vantages compared to the electrothermal actuation, including lower
power consumption, controllability over the travel distance and simpler
fabrication processes.

Electrostatic MEMS tweezers have been designed with a wide vari-
ety of gripping mechanisms but only two actuation schemes: parallel-
plate and interdigitated comb-fingers. The tweezers designed by Varona
et al. [6] and Chang et al. [7] presented the only parallel-plate actuation
schemes reported to date. Their designs reduces the micro-tweezers
size, however they requires more than 45 V to close a gap of 2 μm and
93 V to close a gap of 1.2 μm, respectively. Micro-tweezers based on
interdigitated comb-finger drives have been more popular with efforts
devoted to increase the gripping range and reducing the actuation
voltage.

Many researchers [8–13] utilized flexible beams to convert the lin-
ear motion of comb-finger actuators to rotational gripper arms motion.
The maximum arm stroke and actuation voltage they realized in each
case are listed in Table 1. On the other hand, Chen et al. [14] used
linear comb-fingers to directly close the grip arms and achieve a stroke
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Table 1
Relevant works on electrostatic micro-tweezers.

Actuator Stroke (μm) Voltage (V)

Parallel-plate

Varona et al. [6] 2 45
Chang et al. [7] 1.2 93

Linear comb-fingers

Volland et al. [8] 20 80
Beyeler et al. [9] 100 150
Chen et al. [10] 25 80
Bazaz et al. [11] 17 50
Hamedi et al. [12] 26 82
Xu [13] 63 72
Chen et al. [14] 7.5 50
Demaghsi et al. [15] 12 55

Rotary comb-fingers

Chang et al. [16] 94 100
Piriyanont et al. [17] 85 80

of 7.5 μm at voltage of 50 V. Micro-tweezers have also demonstrated
the ability to hold objects under a static load (DC voltage) and to
release dynamically under AC signal [15]. Other researchers [16,17]
have recently employed rotary comb-fingers to directly actuate the
tweezers arms, thereby drastically increasing arms without increasing
the actuation voltage as can be seen in Table 1.

Most electrostatic micro-tweezers use comb-finger actuator which
guarantees them a larger stroke at the expense of a larger footprint.
To date, the use of more compact parallel-plate actuators has been
hampered by the small stroke imposed by the pull-in instability. We
propose to reduce the footprint of micro-tweezers while increasing their
stroke by using parallel-plate curved beams (arches) as an actuation
platform. These actuators can switch from one stable equilibrium to
another resulting in a larger stroke. The transition between the two
stable equilibria is commonly referred to as snap-through.

Curved micro-beam actuators can be realized by buckling initially
straight beams through compressive axial loads or can be fabricated
in an initially curved. The latter type has been used in a variety
of applications, such as switches, filters and mechanical memories
[18–20].

In this paper, we present a novel electrostatic micro-tweezers based
on bistable micro-actuators. We also develop analytical and FEM mod-
els of the micro-tweezers taking into the account the arm's inertia and
the electrostatic fringing field. Finally, we use the model to investigate
the micro-tweezers operational range and capabilities to manipulate
micro-particles.

2. Design and fabrication

The electrostatic micro-tweezers consist of an initially curved beam
with two arms mounted to it and a side electrode, Fig. 1. The distance
between the beam anchors (center line) is 𝓁𝑏 = 1000 μm. The beam
thickness and initial mid-point rise are ℎ𝑏 = 3μm and ℎ◦ = 3.5 μm,
respectively. The initial capacitor gap between the side electrode and
the center line is 𝑑 = 11 μm, Fig. 2 (b). The arms' length and a thickness
are 𝓁𝑎 = 250 μm and ℎ𝑎 = 4μm, respectively. The beam and arms are
fabricated into a structural layer with a thickness of 𝑏 = 30 μm. The
distance between the arms attachment points along the center line is
300 μm. The arms' are fabricated at an angle of 55.11◦ with respect to
the cord length resulting in an initial tip distance of 14 μm, Fig. 2 (c).

The tweezers were fabricated using a p-type < 100 > low resistivity
Silicon on Insulator (SOI) wafer. The structural layer thickness is 30
± 3 μm, the buried oxide layer thickness is 1 μm and the handle layer
thickness is 550 μm. The material properties of the single-crystal silicon
layer are listed in Table 2. A cross-section for the final fabrication step
is shown in Fig. 2 (a). SEM pictures of the fabricated device before the
backside etch and release process are shown in Fig. 2 (b) and (c).

Fig. 1. A 3D drawing of the arch micro-tweezers.

Fig. 2. (a) A cross-section of the last fabrication step, (b) an SEM picture of the
fabricated device and (c) a close-up SEM picture on the grip arms.

3. Tweezers model

To derive the equation of motion describing the transverse response
and the associated boundary and initial conditions of the electrostatic

2



A.M. Alneamy, M.E. Khater, A.K. Abdel-Aziz et al. International Journal of Non-Linear Mechanics 118 (2020) 103298

Table 2
Material properties of the used SOI wafer.

Description Value

Density (𝜌) 2330 kg/m3

Young’s Modulus (𝐸) 129 GPa
Yield strength (𝜎𝑦) 1.2 GPa
Poisson’s ratio (𝜈) 0.22

micro-tweezers, Fig. 2 (a), we utilize Euler-Bernoulli beam theory.
Then, we assume that the tweezers arms are rigid bodies and their
elastic deformations is ignored. The tweezers is composed of an arch
micro-beam with a cross-sectional area of 𝐴𝑏 and an area moment of
inertia of 𝐼𝑏 carrying two identical arms A1 and A2 with equal masses
𝑚𝑎 and mass moments of inertia 𝐽𝑎 located at distances 𝓁1 and𝓁2 from
the origin as shown in Fig. 3.

Fig. 3. A schematic of the arch beam carrying two masses.

The beam is assumed uniform and isotropic. The initial shape of the
micro-beam was laid out to follow the expression

𝑤◦(𝑥) =
ℎ◦
2
[1 − cos( 2𝜋𝑥

𝓁𝑏
)] (1)

Following [21,22] in the derivation of the equation of motion, we
consider a differential beam element initially 𝑑𝑥 long. Its left edge P is
located at (𝑥,𝑤◦), see Fig. 4. After the deformation, the left edge moves
to P∗ at

𝑥∗ = 𝑥 + 𝑢 , 𝑧∗ = 𝑤 +𝑤◦ (2)

where 𝑢 is the displacement along 𝑥-axis and 𝑤 is the transverse
displacement along 𝑧-axis measured from 𝑤◦. Therefore, the deformed
element length can be calculated as

𝑑𝑠 =
√

(𝑑𝑥∗)2 + (𝑑𝑧∗)2 (3)

Then, differentiating 𝑥∗ and 𝑧∗ with respect to 𝑥 yields

𝑑𝑥∗ = (1 + 𝑢′) 𝑑𝑥 , 𝑑𝑧∗ = (𝑤′ +𝑤′
◦) 𝑑𝑥 (4)

substituting Eq. (4) into Eq. (3) gives

𝑑𝑠 =
√

(1 + 𝑢′)2 + (𝑤′ +𝑤′
◦)2 𝑑𝑥 (5)

Assuming a small initial rise ℎ◦ << 𝓁𝑏, Eq. (5) can be simplified to

𝜆 = 𝑑𝑠
𝑑𝑥

=
√

1 + 2𝑢′ + 𝑢′2 +𝑤′2 + 2𝑤′
◦𝑤′ (6)

The axial strain of the beam element is given by

𝜀𝑥𝑥 = 𝑑𝑠 − 𝑑𝑥
𝑑𝑥

(7)

Scaling the transverse displacement 𝑤(𝑥) and initial shape 𝑤◦(𝑥) at
order O(𝜖1), the axial displacement at order O(𝜖2) and the other system

Fig. 4. A segment of the curved beam showing the location before 𝐏 and after
deformation 𝐏∗.

Table 3
Scales of the beam parameters.

Parameter Scaling order O(𝜖𝑛)

𝑤 𝑂(𝜖1)
𝑢 𝑂(𝜖2)
�̇�′ , �̇�′′ , �̈�′ , �̈�′′ 𝑂(𝜖1)
�̇� 𝑂(𝜖3)
ü 𝑂(𝜖4)
𝓁, 𝑏, 𝑑 𝑂(𝜖0)
ℎ 𝑂(𝜖1)
𝐴 𝑂(𝜖1)
𝐼 𝑂(𝜖3)
𝐽 𝑂(𝜖1)

parameters scaling properties as listed in Table Table 3. Expanding 𝜀𝑥𝑥
in Taylor series and retaining terms up to order O(𝜖3), we can write

𝜀𝑥𝑥 = 𝑢′ +𝑤′
◦𝑤

′ + 1
2
𝑤′2 (8)

This formula describes the element elongation for the small strains and
moderate rotations [22]. Recalling that for Euler-Bernoulli beam, the
axial and transverse displacements can be written as

𝑢 = �̄� − 𝜁�̄�′ , 𝑤 = �̄� (9)

where the bar represents the displacement of the reference axis in
both directions and 𝜁 is a coordinate pointing into the curvature.
Substituting this equation into Eq. (8), the total strain of the initially
curved beam can be written up to order O(𝜖3) as

𝜀𝑥𝑥 = �̄�′ − 𝜁�̄�′′ +𝑤′
◦�̄�

′ + 1
2
�̄�′2 (10)

The beam element rotation angle 𝜃 can be expressed as

sin 𝜃 = 𝑑𝑧∗

𝑑𝑠
=

𝑤′
◦ +𝑤′

𝜆
(11)

cos 𝜃 = 𝑑𝑥∗

𝑑𝑠
= 1 + 𝑢′

𝜆
(12)

differentiating Eq. (11) and Eq. (12) with respect to the time 𝑡 yields

�̇� cos 𝜃 =
(1 + 𝑢′)[(1 + 𝑢′)�̇�′ − (𝑤′

◦ +𝑤′)�̇�′]

(1 + 2𝑢′ + 𝑢′2 +𝑤′2 + 2𝑤′
◦𝑤′)

3
2

(13)

and using Eq. (12) in Eq. (13), we obtain

�̇� =
(1 + 𝑢′)�̇�′ − (𝑤′ +𝑤′

◦)�̇�
′

𝜆2
(14)

Expanding Eq. (14) in a Taylor series, retaining terms up-to order
O(𝜖4), recalling that 𝑢 and 𝑤 are evaluated here at the reference axis
where (𝜁 = 0) and using Eq. (9), one can rewrite �̇�2 as

�̇�2 = ̇̄𝑤′2 − 2 ̇̄𝑤′2�̄�′ − 2�̄�′2 ̇̄𝑤′2 − 4𝑤′
◦�̄�

′ ̇̄𝑤′2 (15)
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The strain energy of the beam can be expressed as

𝑉 = 1
2 ∫

𝓁𝑏

0 ∫

𝐴𝑏

0
𝐸 𝜀2𝑥𝑥 𝑑𝐴𝑏 𝑑𝑥 (16)

where

𝜀2𝑥𝑥 =�̄�′2 + 2𝑤′
◦�̄�

′�̄�′ +𝑤◦
′2�̄�′2 + �̄�′2�̄�′ +𝑤′

◦�̄�
′3 + 1

4
�̄�′4

− 2𝜁�̄�′′�̄�′ − 2𝜁𝑤′
◦�̄�

′�̄�′′ − 𝜁�̄�′2�̄�′′ + 𝜁2�̄�′′2
(17)

substituting this equation back into Eq. (16) yields

𝑉 = ∫

𝓁𝑏

0

[ 𝐸𝐴𝑏
2

(

�̄�′ +𝑤◦
′�̄�′ + �̄�′2

2

)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐕1

+
𝐸𝐼𝑏
2

�̄�′′2

⏟⏞⏞⏟⏞⏞⏟
𝐕2

]

𝑑𝑥 (18)

The total kinetic energy is the sum of the kinetic energies of the
beam mass 𝑇𝑏𝑚 and rotary inertia 𝑇𝑏𝑟 and the the arms mass 𝑇𝑎𝑚 and
rotary inertia 𝑇𝑎𝑟

𝑇 = 𝑇𝑏𝑚 + 𝑇𝑏𝑟 + 𝑇𝑎𝑚 + 𝑇𝑎𝑟 (19)

The beam kinetic energy can be written as

𝑇𝑏𝑚 + 𝑇𝑏𝑟 =
1
2 ∫

𝑉

0
𝜌(( ̇̄𝑢 − 𝜁 ̇̄𝑤′)2 + ̇̄𝑤2) 𝑑𝑉

= 1
2 ∫

𝑉

0
𝜌( ̇̄𝑢2 − 2𝜁 ̇̄𝑤′ ̇̄𝑢 + 𝜁2 ̇̄𝑤′2 + ̇̄𝑤2) 𝑑𝑉

= 1
2 ∫

𝓁𝑏

0
(𝜌𝐴𝑏 ( ̇̄𝑢2 + ̇̄𝑤2) + 𝜌𝐼𝑏 ̇̄𝑤′2) 𝑑𝑥

(20)

The translational kinetic energy of the tweezers arms is

𝑇𝑎𝑚 =1
2 ∫

𝓁𝑏

0
𝑚𝑎 𝛿𝑑 ̇̄𝑤2 𝑑𝑥 (21)

where 𝛿𝑑 is the sum of two Dirac-Delta functions expressed as

𝛿𝑑 = 𝛿𝑑1 (𝑥 − 𝓁1) + 𝛿𝑑1 (𝑥 − 𝓁2)

The rotary kinetic energy of the arms is

𝑇𝑎𝑟 =
1
2 ∫

𝓁𝑏

0
𝐽𝑎 𝛿𝑑 �̇�

2 𝑑𝑥 (22)

where 𝐽𝑎 is

𝐽𝑎 =
1
3
𝑚𝑎 𝓁

2
𝑎 (23)

Using Eq. (15) in Eq. (22), one can write the kinetic energy of the arms
rotary inertia as

𝑇𝑎𝑟 =
1
2 ∫

𝓁𝑏

0
𝐽𝑎 𝛿𝑑 ( ̇̄𝑤′2 − 2 ̇̄𝑤′2�̄�′ − 2�̄�′2 ̇̄𝑤′2 − 4𝑤′

◦�̄�
′ ̇̄𝑤′2) 𝑑𝑥 (24)

Therefore, the total kinetic energy of the arch micro-tweezers can be
written as

𝑇 =∫

𝓁𝑏

0

[ 1
2

(

𝜌𝐴𝑏 + 𝑚𝑎𝛿𝑑
)

̇̄𝑤2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐓1

+ 1
2
𝜌𝐴𝑏 ̇̄𝑢2

⏟⏞⏟⏞⏟
𝐓2

+ 1
2

(

𝜌𝐼𝑏 + 𝐽𝑎𝛿𝑑 (1 − 2�̄�′ − 2�̄�′2 − 4𝑤′
◦�̄�

′)
)

̇̄𝑤′2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐓3

]

𝑑𝑥
(25)

3.1. Extended hamilton principle

The extended Hamilton principle states that the variation of the
summation of the Lagrangian  = 𝑇 − 𝑉 and the line integral of the
virtual work done by nonconservative forces 𝑊𝑛𝑐 during a time interval
from 𝑡1 to 𝑡2 must be equal to zero

∫

𝑡2

𝑡1
𝛿 (𝑇 − 𝑉 +𝑊𝑛𝑐 ) 𝑑𝑡 = 0 (26)

where 𝛿 is a differential operator denoting the first variation. The first
variation of mid-plane potential 𝑉1 in Eq. (18) is obtained as

∫

𝑡2

𝑡1
𝛿𝑉1 𝑑𝑡

= ∫

𝑡2

𝑡1
𝐸𝐴𝑏

(

�̄�′ +𝑤′
◦�̄�

′ + �̄�′2

2

)

𝛿�̄� 𝑑𝑡
|

|

|

|

|

𝓁𝑏

0

− ∫

𝑡2

𝑡1
∫

𝓁𝑏

0
𝐸𝐴𝑏

(

�̄�′ +𝑤′
◦�̄�

′ + �̄�′2

2

)′
𝛿�̄� 𝑑𝑥 𝑑𝑡

+ ∫

𝑡2

𝑡1
𝐸𝐴𝑏

(

�̄�′ +𝑤′
◦�̄�

′ + �̄�′2

2

)

�̄�′𝛿�̄� 𝑑𝑡
|

|

|

|

|

𝓁𝑏

0

− ∫

𝑡2

𝑡1
∫

𝓁𝑏

0
𝐸𝐴𝑏

[(

�̄�′ +𝑤′
◦�̄�

′ + �̄�′2

2

)

�̄�′
]′
𝛿�̄� 𝑑𝑥 𝑑𝑡

+ ∫

𝑡2

𝑡1
𝐸𝐴𝑏

(

�̄�′ +𝑤′
◦�̄�

′ + �̄�′2

2

)

𝑤′
◦𝛿�̄� 𝑑𝑡

|

|

|

|

|

𝓁𝑏

0

− ∫

𝑡2

𝑡1
∫

𝓁𝑏

0
𝐸𝐴𝑏

[(

�̄�′ +𝑤′
◦�̄�

′ + �̄�′2

2

)

𝑤′
◦

]′
𝛿�̄� 𝑑𝑥 𝑑𝑡

(27)

similarly, the first variation of the section bending potential 𝑉2 yields

∫

𝑡2

𝑡1
𝛿𝑉2 𝑑𝑡 = ∫

𝑡2

𝑡1
∫

𝓁𝑏

0
𝐸𝐼𝑏 �̄�

′′𝛿�̄�′′ 𝑑𝑥 𝑑𝑡

+ ∫

𝑡2

𝑡1

(

𝐸𝐼𝑏 �̄�
′′ 𝛿�̄�′

|

|

|

|

|

𝓁𝑏

0
− 𝐸𝐼𝑏 �̄�

′′′ 𝛿�̄�
|

|

|

|

|

𝓁𝑏

0
+ ∫

𝓁𝑏

0
𝐸𝐼𝑏 �̄�

𝑖𝑣 𝛿�̄� 𝑑𝑥
)

𝑑𝑡

= ∫

𝑡2

𝑡1
𝐸𝐼𝑏 �̄�

′′ 𝛿�̄�′ 𝑑𝑡
|

|

|

|

|

𝓁𝑏

0
− ∫

𝑡2

𝑡1
𝐸𝐼𝑏 �̄�

′′′ 𝛿�̄� 𝑑𝑡
|

|

|

|

|

𝓁𝑏

0

+ ∫

𝑡2

𝑡1
∫

𝓁𝑏

0
𝐸𝐼𝑏 �̄�

𝑖𝑣 𝛿�̄� 𝑑𝑥 𝑑𝑡

(28)

The variation of the kinetic energy can be evaluated via integration
by parts of individual terms. The first variation of T1 in Eq. (25) can be
written as

∫

𝑡2

𝑡1
𝛿𝑇1 𝑑𝑡 = ∫

𝓁𝑏

0
(𝜌𝐴𝑏 + 𝑚𝑎

2
∑

𝑘=1
𝛿𝑑 ) ̇̄𝑤 𝛿�̄� 𝑑𝑥

|

|

|

|

|

𝑡2

𝑡1

− ∫

𝑡2

𝑡1
∫

𝓁𝑏

0
(𝜌𝐴𝑏 + 𝑚𝑎

2
∑

𝑘=1
𝛿𝑑 ) ̈̄𝑤 𝛿�̄� 𝑑𝑥 𝑑𝑡

(29)

similarly the first variation of T2 is

∫

𝑡2

𝑡1
𝛿𝑇2 𝑑𝑡 = ∫

𝓁𝑏

0
𝜌𝐴𝑏 ̇̄𝑢 𝛿�̄� 𝑑𝑥

|

|

|

|

|

𝑡2

𝑡1

− ∫

𝑡2

𝑡1
∫

𝓁𝑏

0
𝜌𝐴𝑏 ̈̄𝑢 𝛿�̄� 𝑑𝑥 𝑑𝑡 (30)

and the first variation of T3 can be written as

∫

𝑡2

𝑡1
𝛿𝑇3 𝑑𝑡 = ∫

𝑡2

𝑡1
∫

𝓁𝑏

0

( 𝜕𝑇3
𝜕�̄�′ 𝛿�̄�

′ +
𝜕𝑇3
𝜕�̄�′

𝛿�̄�′ +
𝜕𝑇3
𝜕 ̇̄𝑤′

𝛿 ̇̄𝑤′
)

𝑑𝑥 𝑑𝑡 (31)

Now, break the variation of Eq. (31) into three individual parts and
then perform the integration by parts. The first variation of the first
term can be obtained as

∫

𝑡2

𝑡1
∫

𝓁𝑏

0

( 𝜕𝑇3
𝜕�̄�′

)

𝛿�̄�′ 𝑑𝑥 𝑑𝑡 = ∫

𝑡2

𝑡1
𝛾1 𝛿�̄� 𝑑𝑡

|

|

|

|

|

𝓁𝑏

0

− ∫

𝑡2

𝑡1
∫

𝓁𝑏

0
𝛾2 𝛿�̄� 𝑑𝑥 𝑑𝑡

(32)

the first variation of the second term gives

∫

𝑡2

𝑡1
∫

𝓁𝑏

0

( 𝜕𝑇3
𝜕�̄�′

)

𝛿�̄�′ 𝑑𝑥 𝑑𝑡 = ∫

𝑡2

𝑡1
𝛾3 𝛿�̄� 𝑑𝑡

|

|

|

|

|

𝓁𝑏

0

− ∫

𝑡2

𝑡1
∫

𝓁𝑏

0
𝛾4 𝛿�̄� 𝑑𝑥 𝑑𝑡

(33)
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while the first variation of the third term yields

∫

𝑡2

𝑡1
∫

𝓁𝑏

0

( 𝜕𝑇3
𝜕 ̇̄𝑤′

)

𝛿 ̇̄𝑤′ 𝑑𝑥 𝑑𝑡 = ∫

𝓁𝑏

0
𝛾5 𝛿�̄�

′ 𝑑𝑥
|

|

|

|

|

𝑡2

𝑡1

− ∫

𝑡2

𝑡1
𝛾6 𝛿�̄� 𝑑𝑡

|

|

|

|

|

𝓁𝑏

0
+ ∫

𝑡2

𝑡1
∫

𝓁𝑏

0
𝛾7 𝛿�̄� 𝑑𝑥 𝑑𝑡

(34)

where the 𝛾𝑖 parameters are listed in Appendix.
The variation of the virtual work due to the electrostatic force,

viscous linear damping and nonlinear squeeze-film damping can be
written as

∫

𝑡2

𝑡1
𝛿𝑊𝑛𝑐 𝑑𝑡 = ∫

𝑡2

𝑡1

(

∫

𝓁𝑏

0
𝐹𝑒𝑠 𝛿�̄� 𝑑𝑥 − 𝑐𝑣𝑎 ̇̄𝑢 𝛿�̄� − (𝑐𝑣𝑡 + 𝑐𝑠𝑓 ) ̇̄𝑤 𝛿�̄�

)

𝑑𝑡

(35)

where 𝐹𝑒𝑠 is the electrostatic force. For parallel-plate model, it can be
expressed as

𝐹𝑃𝑃 = −1
2

𝜖 𝑏 𝑉 2

(𝑑 +𝑤◦ + �̄�)2
(36)

The electrostatic force 𝐹𝑒𝑠 can be modified to account for the fringing
field by replacing the width of the arch micro-beam 𝑏 with an effective
width 𝑏𝑒 considering two models in the literature:

- Palmer's model [23]

𝐹𝑃𝑀 = −1
2

𝜖 𝑏 𝑉 2

(𝑑 +𝑤◦ + �̄�)2
(

1 + 0.65
(𝑑 +𝑤◦ + �̄�)

𝑏

)

(37)

- Kimbali's model [24]

𝐹𝐾𝑀 = − 1
2

𝜖 𝑏 𝑉 2

(𝑑 +𝑤◦ + �̄�)2
(

0.0612 + 𝑑4

𝑏4
((𝑑 +𝑤◦ + �̄�)2)2

− 0.5𝑑
3

𝑏3
(𝑑 +𝑤◦ + �̄�)2 + 1.5𝑑

2

𝑏2
(𝑑 +𝑤◦ + �̄�)2 + 1.2

)

(38)

In addition, 𝑐𝑣𝑎 and 𝑐𝑣𝑡 are the viscous damping coefficients in
the axial and transverse directions, respectively. Squeeze-film damping
accounts for energy losses due to the narrow channel between the beam
and the side electrode. Its damping coefficient 𝑐𝑠𝑓 can be written as
[25]

𝑐𝑠𝑓 =
𝜇 𝑏3

(1 + 6𝐾𝑛)(1 +𝑤◦ + �̄�)3
(39)

where 𝜇 is air viscosity, 𝐾𝑛 = 𝜆∕𝑑 is Knudsen number and 𝜆 = 65nm is
the mean free path of air molecules at ambient pressure.

Substituting Eq. (27)–Eq. (30), Eq. (32)–Eq. (34) into Eq. (26) yields
two nonlinear equations of motion describing the system response. The
first equation governs the axial response

𝜌𝐴𝑏 ̈̄𝑢 + 𝑐𝑣𝑎 ̇̄𝑢 + 𝛾4 − 𝐸𝐴𝑏

(

�̄�′ +𝑤′
◦�̄�

′ + �̄�′2

2

)′
= 0 (40)

the boundary and initial conditions are listed in Appendix. Setting the
time derivative terms equal to zero, Eq. (40) reduces to a static equation
and can be written as
(

�̄�′ +𝑤′
◦�̄�

′ + �̄�′2

2

)′
= 0 (41)

The second equation of motion governs the transverse response

(𝜌𝐴𝑏 + 𝑚𝑎 𝛿𝑑 ) ̈̄𝑤 − (𝜌𝐼𝑏 + 𝐽𝑎 𝛿𝑑 ) ̈̄𝑤′′

− 𝐽𝑎 𝛿
′
𝑑

̈̄𝑤′ + 𝛾8 + (𝑐𝑣𝑡 + 𝑐𝑠𝑓 ) ̇̄𝑤 + 𝐸𝐼𝑏�̄�
𝑖𝑣 (42)

− 𝐸𝐴𝑏

[(

�̄�′ +𝑤′
◦�̄�

′ + �̄�′2

2

)

(𝑤′
◦ + �̄�′)

]′
= −𝐹𝑒𝑠

the boundary and initial conditions as well as 𝛾8 are listed in Appendix.
Equation Eq. (41) can be used to write �̄� in terms of �̄� by integrating

once over 𝑥 which results in

�̄�′ = −𝑤′
◦�̄�

′ − �̄�′2

2
+ 𝑐1 (43)

Integrating once more over 𝑥 and recalling that the axial displacement
at both ends is zero (�̄� = 0) results in

�̄�(0) = 0 ⇒ 𝑐2 = 0 (44a)

�̄�(𝓁𝑏) = 0 ⇒ 𝑐1 =
1
2𝓁𝑏 ∫

𝓁𝑏

0
(2𝑤′

◦�̄�
′ + �̄�′2) 𝑑𝑥 (44b)

Therefore, we can rewrite Eq. (43) as

�̄�′ = −𝑤′
◦�̄�

′ − �̄�′2

2
+ 1

2𝓁𝑏 ∫

𝓁𝑏

0
(2𝑤′

◦�̄�
′ + �̄�′2) 𝑑𝑥 (45)

Substituting with Eq. (45) into Eq. (42) yields

(𝜌𝐴𝑏 + 𝑚𝑎 𝛿𝑑 ) ̈̄𝑤 − (𝜌𝐼𝑏 + 𝐽𝑎 𝛿𝑑 ) ̈̄𝑤′′ − 𝐽𝑎 𝛿
′
𝑑

̈̄𝑤′ + 𝛾9 + (𝑐𝑣𝑡 + 𝑐𝑠𝑓 ) ̇̄𝑤

+ 𝐸𝐼𝑏�̄�
𝑖𝑣 − (𝑤′′

◦ + �̄�′′)
𝐸𝐴𝑏
2𝓁𝑏 ∫

𝓁𝑏

0
(2𝑤′

◦�̄�
′ + �̄�′2) 𝑑𝑥 = −𝐹𝑒𝑠

(46)

where 𝛾9 parameter is listed in Appendix. For convenience, we intro-
duce the following nondimensional variables

�̂� = �̄�
𝑑
, �̂�◦ =

𝑤◦

𝑑
, �̂� = �̄�

𝑙𝑏
, 𝑡 = 𝑡

𝑇
, 𝓁1 =

𝓁1
𝓁𝑏

, 𝓁2 =
𝓁2
𝓁𝑏

where 𝑇 =
√

𝜌𝐴𝓁𝑏
4∕𝐸𝐼 is a time scale. Then, nondimensionalizing the

equation of motion, Eq. (46) and multiplying both sides by 𝑇 2

𝑑 𝜌𝐴𝑏
results

in

(1 + 𝛼1 𝛿𝑑 ) ̈̂𝑤 − (𝛼2 + 𝛼4 𝛿𝑑 ) ̈̂𝑤′′ − 𝛼4 𝛿
′
𝑑

̈̂𝑤′ + 𝛾10 + (𝑐𝑣𝑡 + 𝑐𝑠𝑓 ) ̇̂𝑤

+ �̂�𝑖𝑣 − 𝛼5(�̂�′′
◦ + �̂�′′)∫

1

0
(2�̂�′

◦�̂�
′ + �̂�′2) 𝑑�̂� = −𝛼6 𝐹𝑒𝑠 (47)

where

𝛼1 =
𝑚𝑎
𝑚𝑏

, 𝛼2 =
𝐼𝑏

𝓁2
𝑏 𝐴𝑏

, 𝛼3 =
2
3
𝑚𝑎 𝓁

2
𝑎 𝑑

2

𝑚𝑏 𝓁
4
𝑏

𝛼4 =
2
3
𝑚𝑎 𝓁

2
𝑎

𝑚𝑏 𝓁
2
𝑏

, 𝛼5 = 6
( 𝑑
ℎ𝑏

)2
, 𝛼6 =

6𝜖 𝓁4
𝑏

𝐸 ℎ3 𝑑3
(48)

𝑐𝑣𝑡 =
𝑐𝑣𝑡 𝓁4

𝑏
𝐸𝐼𝑏 𝑇

, 𝑐𝑠𝑓 =
( 𝑏
𝑑

)3 𝑇
𝑚𝑏

𝜇
(1 + 6𝐾𝑛)(1 + �̂�◦ + �̂�)3

and 𝛾10 is a combination of rotary terms of order O(𝜖3) listed in
Appendix.

The corresponding nondimensional boundary conditions of the arch
micro-beam are

𝑤(0, 𝑡) = 0, 𝑤′(0, 𝑡) = 0, 𝑤(1, 𝑡) = 0, 𝑤′(1, 𝑡) = 0 (49)

On the other hand, if we were to scale the electrostatic gap 𝑑 at
order O(𝜖1), similar to the beam width ℎ, the equation of motion would
reduce it to a simpler form

(1 + 𝛼1 𝛿𝑑 ) ̈̂𝑤 − (𝛼2 + 𝛼4 𝛿𝑑 ) ̈̂𝑤′′ − 𝛼4 𝛿
′
𝑑

̈̂𝑤′ + (𝑐𝑣𝑡 + 𝑐𝑠𝑓 ) ̇̂𝑤 + �̂�𝑖𝑣

− 𝛼5(�̂�′′
◦ + �̂�′′)∫

1

0
(2�̂�′

◦�̂�
′ + �̂�′2) 𝑑�̂� = −𝛼6 𝐹𝑒𝑠

(50)

where the arms rotary inertia terms 𝛾10 scale at order O(𝜖5) and,
therefore, can be neglected.

3.2. Reduced order model

A reduced order model based on a Galerkin approximation is uti-
lized to solve the equation of motion. This technique discretizes the
equation of motion in terms of a finite number of degrees-of-freedom
describing the amplitude of mode shapes that satisfy the boundary
conditions. In this case, we chose to utilize the mode shapes of a straight
beam 𝜙𝑖(𝑥). Therefore, the solution is assumed as

�̂�(�̂�, 𝑡) =
𝑁
∑

𝑖=1
𝜙𝑖(�̂�)𝑞𝑖(𝑡) (51)

where 𝑁 is the number of modes retained in the discretization process
and 𝑞𝑖(𝑡) are the generalized coordinates. We multiply both sides of
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Eq. (47) and Eq. (50) by (1+�̂�◦+�̂�)2 to regularize the response near the
singularity [26], substitute with Eq. (51), multiply by individual mode
shapes 𝜙𝑗 and integrate along the beam length to obtain the discretized
equations of motion.

We solve for the static deflection of the arch beam �̂�𝑠(𝑥) as a
function of Root-Mean-Square RMS 𝑉𝑅𝑀𝑆 voltage by eliminating the
time derivatives from the non-dimensional equations of motion Eq. (47)
and Eq. (50) to obtain an identical equilibrium equation in both cases

�̂�𝑖𝑣
𝑠 = 𝛼5

(

�̂�′′
◦ + �̂�′′

𝑠
)

∫

1

0

(

2�̂�′
◦�̂�

′
𝑠 + �̂�′2

𝑠

)

𝑑�̂� − 𝛼6
𝑉 2
𝑅𝑀𝑆

(1 + �̂�◦ + �̂�𝑠)2
(52)

subjected to the following boundary conditions

�̂�𝑠(0) = 0, �̂�′
𝑠(0) = 0, �̂�𝑠(1) = 0 and �̂�′

𝑠(1) = 0 (53)

The static deflection of the micro-tweezers �̂�𝑠 can also be written in
terms of a Galerkin approximation as

�̂�𝑠(�̂�) =
𝑁
∑

𝑖=1
𝜙𝑖(𝑥)𝑞𝑖(𝑡) (54)

Substituting Eq. (54) into Eq. (52), we obtained

(1 +𝑤◦ +
𝑁
∑

𝑖=1
𝜙𝑖𝑞𝑖)2

[

𝑁
∑

𝑖=1
𝜙𝑖𝑣
𝑖 𝑞𝑖 − 𝛼5

(

𝑤′′
◦ +

𝑁
∑

𝑖=1
𝜙′′
𝑖 𝑞𝑖

)

× ∫

1

0

[(

𝑁
∑

𝑖=1
𝜙′
𝑖𝑞𝑖

)

2

+ 2𝑤′
◦

𝑁
∑

𝑖=1
𝜙′
𝑖𝑞𝑖

]

𝑑�̂�
]

+𝛼6𝑉 2
𝑅𝑀𝑆 = 0

(55)

Multiplying this equation by the mode shapes 𝜙𝑗 (𝑥) and carrying out
the integration over the beam length results in 𝑁 algebraic equations
describing the equilibrium position.

Then, the resulting equations can be solved for the generalized
coordinates 𝑞𝑖 describing available equilibrium positions at a given
voltage 𝑉𝑅𝑀𝑆 . We determined those equilibria and their eigenvalues via
a continuation method [27]. Stable equilibria were identified by a set
of eigenvalues where all real parts were negative. Unstable equilibria
were identified by the presence of one or two eigenvalues with positive
real parts.

4. Results and discussion

The fidelity of a ROM depends on the type and number of mode
shapes used in the Galerkin expansion [26]. We carried out conver-
gence analysis to determine the minimum number of modes required
in the Galerkin expansion by comparing the static response obtained
from ROMs employing two, three and five symmetric modes and a
parallel-plate electrostatic field model.

Figure Fig. 5 shows the change in the mid-point rise 𝑤𝑠(0.5) as a
function RMS voltage for the three ROMs. In all cases, two branches of
stable equilibria (marked by solid lines) and two branches of unstable
equilibria (marked by dashed lines) are observed. The results show
that three modes, at least, are required for model convergence. Using
two modes in the model results in quantitative errors along the second
branch of stable equilibria and qualitative errors along the second
branch of unstable equilibria. Henceforth, we adopt the five-mode ROM
in the rest of this work.

The figure also shows that the mid-point rise decreases with increas-
ing RMS voltage along the first branch of stable equilibria, correspond-
ing to the initial beam curvature, until it meets the first branch of un-
stable equilibria in a saddle-node bifurcation at point S (𝑉𝑆 = 112.7V).
This leads to a snap-through, and it jumps-down along the line marked
ST, towards the second branch of stable equilibria corresponding to the
counter beam curvature.

Decreasing the RMS voltage after snap-through decreases the counter-
rise of the mid-point along the second stable branch until it meets
the first unstable branch in another saddle-node bifurcation at point
B (𝑉𝐵 = 100.2V). As a result, the beam snaps-back, and it jumps-up
along the line marked R, towards the first branch of stable equilibria.

Fig. 5. The beam mid-point rise as a function of RMS voltage from ROMs employing
two, three and five symmetric modes in the Galerkin expansion without accounting for
the fringing field.

Increasing the voltage beyond the snap-through voltage 𝑉𝑆 increases
the counter rise of the mid-point along the second stable branch until
it reaches a third saddle-node bifurcation demarcating the ‘‘pull-in
instability" at point P (𝑉𝑃 = 153.2V) where it meets the second branch
of unstable equilibria. No equilibria exist beyond the pull-in point. The
jump-down and jump-up events at points B and S are used to grasp
and release micro-particles. The second stable branch represents the
operational range of the tweezers allowing for increased or decreased
pressure on object and for the grasping of smaller objects.

Fig. 6. The beam mid-point rise as a function of RMS voltage using the parallel-plate
model (blue line ), Palmer’s model (orange line ), Kimbali’s model (black line –),
FEM without arms (• symbols) and FEM with arms ( symbols). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

In order to validate the ROM, the FEM package COMSOL Multi-
physics (5.3a) [28] was also used to solve for the static response of
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the tweezers. A 3D model of the tweezers was created following the
dimensions and material properties listed in Table 2. The stationary
electrode (1000 × 30 × 3) μm was placed opposite the tweezers and
both of them were enclosed in air box (1000 × 100 × 270) μm to
represent the electrostatic field. The tweezers was grounded while the
electrode voltage was set to 𝑉𝑅𝑀𝑆 . The boundary conditions fixed the
tweezers at its anchors.

Tetrahedral elements were used to mesh the beam, arms, air box
and stationary electrode. The total number of elements was 50 359 and
their sizes varied in the range 10–80 μm. The Electromechanics module
was used to perform the static analysis. Applied voltage was set initially
to 𝑉𝑅𝑀𝑆 = 0 and gradually increased in steps of 5 V over a range
of [0–150] V to capture the locations of the snap-through and pull-in
voltages.

Figure Fig. 6 shows the mid-point rise values calculated by the
FEM models with ( symbols) and without (• symbols) arms and ROMs
employing three electrostatic field models: the traditional parallel-plate
model (blue lines) as well as Palmer’s (orange lines) and Kimbali’s
(green lines) models accounting for the fringing field. Comparing the
results of the FEM without arms and the parallel-plate ROM shows that
ignoring the fringing field underestimates the electrostatic force and
overestimates the saddle–node bifurcation points. The ROMs account-
ing for the fringing field compare well with the FEM without arms.
Henceforth, we adopt Kimbali’s model because it better matches the
FEM results. Further, comparing the two FEMs shows that introducing
the arms increases the voltage required for snap-through from 106 V
to 110 V. On the other hand, the arms do not result in a significant
change along the second stable branch.

Fig. 7. The tip separation as a function of the RMS voltage calculated using FEM.

The FEM was also used to calculate the arm tips’ separation as a
function of RMS voltage as shown in Fig. 7. At 0 V, the separation
distance is 14 μm, corresponding to the initial distance. The distance
decreases as the voltage increases and the beam rise follows the first
branch of stable equilibria until snap-down at 𝑉𝑆 = 110 V. As a result,
the separation distance drops from 12.66 μm to 7.18 μm.

Schematic drawings the tweezers before and after snap-through
are shown in top and bottom insets of the figure. Increasing the
RMS voltage further, reduces the distance to 5.1 μm at 130 V. Pull-
in occurs at a higher voltage not captured by the large voltage step
in this FEM simulation. We note that the separation distance varies
smoothly along the second stable branch demonstrating the tweezers
ability to smoothly grasp, manipulate and compress objects. The arms

Fig. 8. A snapshot of the tweezers (a) before 𝑉𝑅𝑀𝑆 = 95 V and (b) after 𝑉𝑅𝑀𝑆 = 130 V
snap-through.

Fig. 9. Variation of the tweezers’ first four natural frequencies with RMS voltage.

configuration along the first stable branch (𝑉𝑅𝑀𝑆 = 95 V) and the
second stable branch (𝑉𝑅𝑀𝑆 = 130 V) are shown in Fig. 8.

To examine the stability characteristics of the tweezers along the
two stable branches, we used the FEM model with arms to evaluate
the first four natural frequencies around these equilibria. The model
followed the two branches in steps of 2 V. The results are shown
in Fig. 9. The first natural frequency 𝑓1, corresponding to the first
symmetric mode Fig. 10 (a), drops continuously along the first stable
branch (initial curvature) to reach zero at snap-through voltage 𝑉𝑆 =
110 V. The first natural frequency 𝑓1 along the second branch (counter
curvature) is 𝑓1 = 23.5 kHz after snap-through. As the voltage increases,
the natural frequency 𝑓1 drops to reach zero at pull-in voltage 𝑉𝑃 .

The second natural frequency, corresponding to the first asymmetric
mode Fig. 10 (b), varies continuously with voltage within a small
range. It does not evince a discontinuity as the equilibrium position
jumps from the first to the second stable branch at snap-through.
The third and fourth natural frequencies, corresponding to the second
symmetric and asymmetric modes Fig. 10 (c) and (d), respectively, also
vary within a small range with voltage. However, they evince jumps
to higher values after snap-through. The relatively large fundamen-
tal natural frequency and the narrow variation range of the natural
frequencies with voltage indicate that the tweezers is stable against
parameter disturbance except in the immediate vicinity of snap-through
and pull-in.
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Fig. 10. The first four mode shapes of the tweezers at 𝑉𝑅𝑀𝑆 = 0.

The first four in-plane bending mode shapes of the tweezers at
𝑉𝑅𝑀𝑆 = 0 were found to be the first symmetric, Fig. 10 (a), the first
asymmetric, Fig. 10 (b), the second symmetric, Fig. 10 (c), and the
second asymmetric, Fig. 10 (d), mode shapes. The arms motions were
in-phase in the first and second modes and out-of-phase in the third
and fourth modes.

5. Conclusion

In this paper, we presented a novel electrostatic micro-tweezers
consisting of two arms mounted to an initially curved beam. The grip
mechanism uses the bistability of initially curved beams to close the
distance between the arm tips. It can capture hard micro-particles, such
as polystyrene beads, or soft micro objects, such as cells in aqueous
media [5,29,30]. A model accounting for the effects of tweezers arms
inertia, the arch beam mid-plane strteching and rotary inertia, and
the electrostatic fringing field was developed. A reduced-order model
was developed to represent the tweezers taking into account the arms'
inertia and the electrostatic fringing field. An FEM model was also
developed to validate the ROM. Simulation results show that small
differences between the ROM and FEM models of the tweezers in
the vicinity of snap-through and negligible differences elsewhere. The
results also show that ability of the tweezers to manipulate micro-
particles in the range of 5–12 μm and to smoothly compress and hold
objects along the second stable branch, corresponding to operating
voltage range from snap-back 𝑉𝐵 = 100.2 V to pull-in 𝑉𝑃 = 153.2 V.
Finally, the arch micro-tweezers were fabricated using SOI process.

In future wrok, we will compare the results of the tweezers model
accouting for higher order rotary inertia terms Eq. (47) with that
neglecting them Eq. (50) to examine the validity of the assumption
underlying the latter. We will also study the dynamic response of the
micro-tweezers analytically and experimentally.
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Appendix

𝛾1 = − 2𝐽𝑎 𝛿𝑑 ̇̄𝑤′2(�̄�′ +𝑤′
◦)

𝛾2 = − 2𝐽𝑎 𝛿′𝑑 ̇̄𝑤′2(�̄�′ +𝑤′
◦) − 𝐽𝑎 𝛿𝑑

(

2 ̇̄𝑤′2(�̄�′′ +𝑤′′
◦ ) + 4 ̇̄𝑤′′(�̄�′ +𝑤′

◦)
)

𝛾3 = − 𝐽𝑎 𝛿𝑑 ̇̄𝑤′2

𝛾4 = − 𝐽𝑎 𝛿
′
𝑑

̇̄𝑤′2 − 2𝐽𝑎 𝛿𝑑 ̇̄𝑤′ ̇̄𝑤′′

𝛾5 =(𝜌𝐼𝑏 + 𝐽𝑎 𝛿𝑑 ) ̇̄𝑤′ − 2𝐽𝑎 𝛿𝑑 ̇̄𝑤′(�̄�′ + �̄�′2 + 2𝑤′
◦�̄�

′)

𝛾6 =(𝜌𝐼𝑏 + 𝐽𝑎 𝛿𝑑 ) ̈̄𝑤′ − 𝐽𝑎 𝛿𝑑
(

4 ̇̄𝑤′2(�̄�′ +𝑤′
◦) + 2 ̈̄𝑤′(�̄�′ + �̄�′2 + 2𝑤′

◦�̄�
′)
)

𝛾7 =(𝜌𝐼𝑏 + 𝐽𝑎 𝛿𝑑 ) ̈̄𝑤′′ − 𝐽𝑎 𝛿
′
𝑑

(

4 ̇̄𝑤′2(�̄�′ +𝑤′
◦) + 2 ̈̄𝑤′(−1

2
+ �̄�′ + �̄�′2

+ 2𝑤′
◦�̄�

′)
)

−𝐽𝑎 𝛿𝑑
(

2 ̈̄𝑤′(�̄�′′ + 2�̄�′�̄�′′ + 2𝑤′′
◦ �̄�

′ + 2𝑤′
◦�̄�

′′)

+ 8 ̇̄𝑤′′(�̄�′ ̇̄𝑤′ +𝑤′
◦
̇̄𝑤′) + 4 ̇̄𝑤′2(�̄�′′ +𝑤′′

◦ ) + 2 ̈̄𝑤′′(�̄�′ + �̄�′2 + 2𝑤′
◦�̄�

′)
)

𝛾8 = − 𝐽𝑎 𝛿
′
𝑑

(

2 ̇̄𝑤′2(�̄�′ +𝑤′
◦) + 2 ̈̄𝑤′(�̄�′ + �̄�′2 + 2𝑤′

◦�̄�
′)
)

− 𝐽𝑎 𝛿𝑑
(

2 ̈̄𝑤′(�̄�′′ + 2�̄�′�̄�′′ + 2𝑤′′
◦ �̄�

′ + 2𝑤′
◦�̄�

′′)

+ 4 ̇̄𝑤′′(�̄�′ ̇̄𝑤′ +𝑤′
◦
̇̄𝑤′) + 2 ̇̄𝑤′2(�̄�′′ +𝑤′′

◦ ) + 2 ̈̄𝑤′′(�̄�′ + �̄�′2 + 2𝑤′
◦�̄�

′)
)

𝛾9 =𝐽𝑎 𝛿′𝑑
(

4�̄�′ ̇̄𝑤′2 + 2 ̈̄𝑤′
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𝓁𝑏

0
(2𝑤′

◦�̄�
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◦
̇̄𝑤′2
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◦�̄�
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)
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(
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+ 2 ̈̄𝑤′′
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𝓁𝑏

0
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◦�̄�
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◦
̇̄𝑤′2 + 4𝑤′′

◦ �̄�
′ ̈̄𝑤′

+ 4𝑤′
◦
̈̄𝑤′�̄�′′ + 8𝑤′

◦
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◦
̈̄𝑤′
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+ 2�̂�′
◦�̂�
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)
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(
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∫

1

0
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◦�̂�
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◦
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◦ �̂�
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◦
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)

(A.1)

The boundary and initial conditions of Eq. (40)

�̄�′ +𝑤′
◦�̄�

′ + �̄�′2

2
= 0 or �̄� = 0 at 𝑥 = 0 & 𝓁𝑏

̇̄𝑢 = 0 or �̄� = 0 at 𝑡2 = 0
(A.2)

The boundary and initial conditions of Eq. (42)

�̄�′′′ − (�̄�′ +𝑤′
◦�̄�

′ + �̄�′2

2
)(𝑤′

◦ + �̄�′) = 0 or �̄� = 0 at 𝑥 = 0 & 𝓁𝑏

�̄�′′ = 0 or �̄�′ = 0 at 𝑥 = 0 & 𝓁𝑏
̇̄𝑤 = 0 or �̄� = 0 at 𝑡2 = 0

(A.3)

The boundary conditions of the arch beam are given by

�̄� = 0 or �̄�′ = 0 at 𝑥 = 0 & 𝓁𝑏 (A.4)
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