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A B S T R A C T

In this work, we present a new systematic procedure to derive two integrals from a Darboux polynomial for
the given second order nonlinear ordinary differential equation (ODE). We succeed it by exploring an interlink
between Darboux polynomial (DP) and the extended Prelle–Singer procedure (PS) quantities, namely null forms
and integrating factors. We demonstrate the interconnection with suitable examples.

1. Introduction

During the past three decades several mathematical methods have
been developed to obtain the solution of nonlinear ODEs [1–11].
Among them the DP method [12,13] and the extended PS procedure [3,
14–18] got attention in recent years. In both the methods one can
construct the necessary integrals, for the given ODE, algorithmically.
In general, for a second order nonlinear ODE it is difficult to find
the second integral. Suppose the given second order nonlinear ODE
possesses an integral which is not in the form of a polynomial or
rational in �̇� then in general it is difficult to construct this integral.
For example, let us consider the simple harmonic oscillator equation
�̈� + 𝑥 = 0, where over dot is differentiation with respect to 𝑡. In this
example, it is straightforward to determine the first integral (𝐼1 =
(�̇�2∕2) + (𝑥2∕2)) [15]. However, obtaining the second integral (𝐼2 =
𝑡 + tan−1(�̇�∕𝑥)) is not an easy task in the DP method.

In this paper, we propose an alternate way to overcome this situa-
tion. We connect the known DP and its cofactor with the integrability
quantifiers of the PS procedure, namely null forms and integrating
factors. From the latter ones, the second integral can be derived in a
systematic way [15]. By employing this interconnection one can con-
struct both the integrals for the given ODE (if the underlying equation
admits solution in terms of elementary functions) from the DP and its
cofactor. The interconnection which we propose in this paper between
null forms and integrating factors with the DP is new to the literature.

We organize our presentation as follows: In Section 2, we briefly
recall the theory of extended PS procedure and DP method for second-
order nonlinear ODEs. In Section 3, we develop the interconnection
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between DP and PS quantities. In Section 4, we demonstrate this in-
terconnection with three examples. Finally, we present our conclusion
in Section 5.

2. Extended PS procedure and DP method

To begin, we briefly recall the essential steps involved in the ex-
tended PS procedure. Let us consider a second-order nonlinear ODE of
the form [15]

�̈� = 𝜙(𝑡, 𝑥, �̇�), (1)

where 𝜙 is a function of 𝑡, 𝑥 and �̇�.
In extended PS method one essentially seeks two sets of functions 𝑆𝑖

and 𝑅𝑖, 𝑖 = 1, 2, where 𝑆 is the null form and 𝑅 is the integrating factor,
from which one can construct two integrals for the given equation. The
required functions 𝑆𝑖 and 𝑅𝑖, 𝑖 = 1, 2, can be determined from [15]

𝐷[𝑆] = −𝜙𝑥 + 𝑆𝜙�̇� + 𝑆2, (2)

𝐷[𝑅] = −𝑅(𝑆 + 𝜙�̇�), (3)

𝑅𝑥 = 𝑅�̇�𝑆 + 𝑅𝑆�̇�, (4)

where 𝐷 is total derivative operator and it is given by 𝐷 = 𝜕
𝜕𝑡 + �̇� 𝜕

𝜕𝑥 +
𝜙 𝜕

𝜕�̇� .
The relations (2)–(4) can be derived from the expressions [15]

𝐼𝑡 = 𝑅(𝜙 + 𝑆�̇�), (5)

𝐼𝑥 = −𝑅𝑆, (6)

https://doi.org/10.1016/j.ijnonlinmec.2019.103284
Received 5 August 2019; Received in revised form 17 September 2019; Accepted 21 September 2019
Available online 23 September 2019
0020-7462/© 2019 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.ijnonlinmec.2019.103284
http://www.elsevier.com/locate/nlm
http://www.elsevier.com/locate/nlm
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijnonlinmec.2019.103284&domain=pdf
mailto:senv0000@gmail.com
https://doi.org/10.1016/j.ijnonlinmec.2019.103284


M. Manoranjani, R. Mohanasubha, V.K. Chandrasekar et al. International Journal of Non-Linear Mechanics 118 (2020) 103284

𝐼�̇� = −𝑅. (7)

Once the functions 𝑅𝑖 and 𝑆𝑖 are known they can be substituted
pairwise on the right hand side of Eqs. (5)–(7) and upon integration
they lead to

𝐼(𝑡, 𝑥, �̇�) = ∫ 𝑅(𝜙 + �̇�𝑆)𝑑𝑡 − ∫

(

𝑅𝑆 + 𝑑
𝑑𝑥 ∫ 𝑅(𝜙 + �̇�𝑠)𝑑𝑡

)

𝑑𝑥

− ∫

{

𝑅 + 𝑑
𝑑�̇�

[

∫ 𝑅(𝜙 + �̇�𝑆)𝑑𝑡

−∫

(

𝑅𝑆 + 𝑑
𝑑𝑥 ∫ 𝑅(𝜙 + �̇�𝑆)𝑑𝑡

)

𝑑𝑥
]}

𝑑�̇�. (8)

Note that for every independent set (𝑆,𝑅), Eq. (8) defines an integral.
Now we recall the Darboux polynomial method. Let us consider a

second order ODE (1) which admits a first integral of the form 𝐼 =
𝐾(𝑡, 𝑥, �̇�)∕𝐺(𝑡, 𝑥, �̇�) where 𝐾 and 𝐺 are functions of their arguments.
Differentiating this integral with respect to 𝑡 and rewriting the resultant
expression, we find
𝑑𝐼
𝑑𝑡

= 𝑑
𝑑𝑡

(𝐾
𝐺

)

= 0 ⇒ �̇� = 𝑏(𝑡, 𝑥, �̇�)𝐾 ⇒ 𝐷[𝐾] = 𝑏(𝑡, 𝑥, �̇�)𝐾, (9)

where 𝐷 is the total differential operator and 𝑏(𝑡, 𝑥, �̇�) = �̇�∕𝐺 is the
cofactor. Eq. (9) is the determining equation for the DP [12]. Solving
(9), we can obtain DPs (𝐾) and their cofactors (𝑏).

3. Exploring the links between DP and PS method

In this section, we interconnect the null forms and integrating
factors with the DP.

Proposition 1. The DP (𝐾) and its associated cofactor 𝑏(𝑡, 𝑥, �̇�) can be
connected through the null forms (𝑆) and integrating factors (𝑅) in the PS
method through the expressions,

𝐷[𝑏] = 𝑏(𝜙�̇� + 2𝑆1) + 𝑏2, (10)
𝐷[𝑅1] = −𝑅1(𝑆1 + 𝜙�̇�), (11)
𝑆2 = 𝑆1 + 𝑏, 𝑅2 = 𝑅1𝐾. (12)

Proof. Let 𝐼1 = 𝑁(𝑡, 𝑥, �̇�) and 𝐼2 = 𝑀(𝑡, 𝑥, �̇�) are two independent inte-
grals for the given Eq. (1). Rewriting 𝐼1 in terms of �̇� and substituting
it into 𝐼2, we get 𝐼2 = �̃�(𝐼1, 𝑥, 𝑡). Now differentiating this expression
(�̃�) with respect to 𝑥 and �̇� and comparing the obtained expressions
with (6) and (7), we find

𝐼2𝑥 = �̃�𝑥 + �̃�𝐼1𝐼1𝑥 = −𝑆2𝑅2, (13)

𝐼2�̇� = �̃�𝐼1𝐼1�̇� = −𝑅2. (14)

With the help of (7), Eq. (14) can be rewritten as

𝑅2 = �̃�𝐼1𝑅1 = 𝐾(𝑡, 𝑥, �̇�)𝑅1, (15)

where we have replaced �̃�𝐼1 as 𝐾(𝑡, 𝑥, �̇�). Substituting Eq. (15) into
Eq. (13) and simplifying the resultant expression for 𝑆2, we find

𝑆2 =
�̃�𝑥

�̃�𝐼1𝐼1�̇�
+ 𝑆1 = 𝑏(𝑡, 𝑥, �̇�) + 𝑆1, where 𝑏(𝑡, 𝑥, �̇�) =

�̃�𝑥

�̃�𝐼1𝐼1�̇�
. (16)

Differentiating the expression 𝑅2 = 𝐾𝑅1 (vide Eq. (15)) with respect to
𝑡 and substituting (3) into it we obtain the DP determining Eq. (9). On
the other hand differentiating the expression 𝑆2 = 𝑏+𝑆1 (vide Eq. (16))
with respect to 𝑡 and substituting Eq. (2) into it we end up at Eq. (10).

Once the DP (𝐾) and its cofactor (𝑏) is known for a second order ODE
then Eq. (10) provides 𝑆1 from which 𝑅1 can be determined through
(11). The second set of (𝑆2, 𝑅2) can be identified from the expression
(12).

Proposition 2. The DP ℎ(𝑥, �̇�) admits 𝜙�̇� as cofactor then the PS method
quantities (𝑆,𝑅) can be obtained from the relations

𝑆1 = −
𝜙
�̇�
, (17)

𝑅1 =
�̇�

ℎ(𝑥, �̇�)
, (18)

𝐺 = 1
𝑅2�̇�

. (19)

Proof. Let us suppose Eq. (1) possesses a time independent integral
𝐼1 = 𝑁(𝑥, �̇�). In this case the null form 𝑆1 assumes the form (17) (see
Eq. (5)). Assuming the integrating factor 𝑅1 in the form 𝑅1 = �̇�

ℎ(𝑥, �̇�)
,

where ℎ(𝑥, �̇�) is the DP (irreducible polynomials) with cofactor 𝜙�̇�, that
is

𝐷[ℎ(𝑥, �̇�)] = 𝜙�̇�ℎ(𝑥, �̇�) (20)

and substituting the expression 𝑅1 =
�̇�
ℎ

in Eq. (15), we obtain

𝑅2 = 𝐾(𝑡, 𝑥, �̇�)𝑅1 =
�̇�𝐾(𝑡, 𝑥, �̇�)
ℎ(𝑥, �̇�)

. (21)

Now defining a new function 𝐺 which is of the form (19) and differen-
tiating it with respect to 𝑡, we find

𝐷[𝐺] = 𝐺(𝜙�̇� + 2𝑆1 + 𝑏). (22)

Thus the DP ℎ is known then 𝑅1 and 𝑆1 can be fixed straightforwardly
from (17) and (18). Substituting 𝑆1 and 𝑏 in (22) and solving the
resultant equation we obtain 𝐺 from which 𝑅2 can be fixed. Finally,
the function 𝑆2 can be identified from (16).

We note that two functions 𝐺 and �̂� are solutions of Eq. (22) with
the same cofactor 𝑏, then the ratio between these two functions is also
an integral for the Eq. (1), that is

�̂�
𝐺

=
𝑅2
𝑅2

= 𝐹 (𝐼). (23)

In the following, we prove the above propositions with suitable
examples.

4. Utility of interconnections

4.1. Example 1

To begin, we consider the nonlinear ODE discussed in [15]

𝑥�̈� = 3�̇�2 + 𝑥�̇�
𝑡
. (24)

The determining equation for the DP reads 𝐾𝑡+ �̇�𝐾𝑥+(3�̇�2+(𝑥�̇�∕𝑡))𝐾�̇� =
𝑏𝐾. Upon solving this equation, we find a particular solution for 𝐾 with
𝑏, which is of the form

𝐾 = 𝑡2, 𝑏 = −2
𝑡
. (25)

The DP and its cofactor (25) can be utilized to fix the null form 𝑆1
(vide (10)) which in turn reads 𝑆1 = −3�̇�∕𝑥. The associated integrating
factor 𝑅1 can be found from the relation (11) and it is given by 𝑅1 =
1∕𝑡𝑥3. From (12), we obtain

(𝑆2, 𝑅2) =
(

−
(

2
𝑡
+ 3�̇�

𝑥

)

,− 𝑡
𝑥3

)

. (26)

The functions (𝑆𝑖, 𝑅𝑖), 𝑖 = 1, 2, also satisfy the third condition (4). In
other words the obtained sets are compatible ones. Using Eq. (8), we
can find the first integral 𝐼1 in the form 𝐼1 = �̇�∕𝑡𝑥3.

Substituting the second null form and the integrating factor (𝑆2, 𝑅2)
into Eq. (8) and integrating it, we can obtain the second integral 𝐼2
which is of the form 𝐼2 = (�̇�𝑡∕𝑥3) + (1∕𝑥2). Using these two integrals
𝐼1 and 𝐼2, we can derive the general solution of Eq. (24) in the form
𝑥(𝑡) = 1∕

√

𝐼2 + 𝐼1𝑡2.

2
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4.2. Example 2

To demonstrate Proposition 2, we consider the following second
order nonlinear ODE, namely [19]

�̈� − 3
2
�̇�2

𝑥
+ 2𝑥3 = 0. (27)

The DP of this equation can be determined by solving the equation

ℎ𝑡 + �̇�ℎ𝑥 + (3
2
�̇�
𝑥
− 2𝑥3)ℎ�̇� = 3�̇�

𝑥
ℎ. (28)

A particular solution of (28) is given ℎ1 = −𝑥3∕2. The null form 𝑆1 and
the integrating factor 𝑅1 turns out to be (vide Eqs. (17) and (18))

𝑆1 =
2𝑥3
�̇�

− 3�̇�
2𝑥

, 𝑅1 =
−2�̇�
𝑥3

. (29)

Substituting the above null form 𝑆1 in Eq. (10), and solving the
resultant equation we obtain a particular solution for 𝑏 which is of the
form

𝑏 = − 4𝑥4 + �̇�2

2𝑡�̇�2 + 2𝑥�̇�
. (30)

Substituting the expression 𝑆1 and 𝑏 in (22) and solving the resul-
tant equation, we find a particular solution for 𝐺 in the form 𝐺 =
−𝑥3∕4�̇�(𝑡�̇� + 𝑥). We note that instead of finding the function 𝐺, we can
determine the function 𝐾 from the cofactor 𝑏. In this case, we can
straightforwardly calculate 𝑅2 using the relation (21).

From (19) we obtain

𝑅2 = −
4(𝑡�̇� + 𝑥)

𝑥3
. (31)

The null form 𝑆2 can be obtained from the relation 𝑆2 = 𝑆1 + 𝑏
which in turn read

𝑆2 =
4𝑡𝑥4 − 3𝑡�̇�2 − 4𝑥�̇�

2𝑡𝑥�̇� + 2𝑥2
. (32)

The integrals associated with the null forms and integrating factors 𝑆𝑖
and 𝑅𝑖, 𝑖 = 1, 2, read

𝐼1 =
�̇�2

𝑥3
+ 4𝑥, 𝐼2 =

8𝑡𝑥4 + 2𝑡�̇�2 + 4𝑥�̇�
𝑥3

. (33)

We found that the integrals 𝐼1 and 𝐼2 are functionally independent.
From these two integrals we derive the general solution of (27) in the
form

𝑥(𝑡) =
16𝐼1

64 + 𝐼22 − 4𝐼1𝐼2𝑡 + 4𝐼21 𝑡
2
. (34)

4.3. Example 3

For the third example, we consider a nonlinear non-polynomial
oscillator equation, [20–22]

�̈� = 𝑘𝑥�̇�2 − 𝜔2𝑥
(1 + 𝑘𝑥2)

, (35)

where 𝑘 and 𝜔 are arbitrary parameters. Eq. (35) was introduced by
Mathews and Lakshmanan in 1974 [20–22]. Subsequently the classical
and quantum dynamics of the oscillator (35) on the spherical configura-
tion space was studied by Higgs and Leeman [23,24]. In recent years a
considerable number of studies have been devoted on this oscillator,
see for example Refs. [6,25,26]. In Refs. [6,27], the classical and
quantum dynamics of the nonlinear non-polynomial oscillator (35) and
its higher dimensional versions have been studied. Eq. (35) is integrable
by quadrature but admits only the time-translational symmetry [28].

Eq. (35) admits a Darboux polynomial ℎ1 in the form [29]

ℎ1 =
1
2
𝑘
(

1 + 𝑘𝑥2
)

(36)

The associated cofactor is found to be 𝜙�̇� = 2𝑘𝑥�̇�
1+𝑘𝑥2 . Eq. (35) admits the

first compatible set of null form and integrating factor (𝑆1, 𝑅1) which
are of the form (vide Eqs. (17) and (18))

𝑆1 =
𝑥(𝜔2 − 𝑘�̇�2)
(1 + 𝑘𝑥2)�̇�

, 𝑅1 =
2𝑘�̇�

1 + 𝑘𝑥2
. (37)

The associated integral reads

𝐼1 =
𝜔2 − 𝑘�̇�2

1 + 𝑘𝑥2
. (38)

Now we determine the function 𝑏 using the expression (10) with the
help of the function 𝑆1. Our analysis yields

𝑏 = −
(𝜔2𝑥2 + �̇�2)(𝑘�̇�2 − 𝜔2)

�̇�(𝑘𝑡�̇�3 + 𝑘𝑡𝜔2𝑥2�̇� − 𝑘𝜔2𝑥3 − 𝜔2𝑥)
. (39)

Now substituting the above expression (39) and the null form 𝑆1 in
(22), we get the following determining equation for the function 𝐺,
that is

𝐷[𝐺] − 2𝑘𝑥�̇�
𝑘𝑥2 + 1

𝐺 +
(𝜔2𝑥2 + �̇�2)(𝑘�̇�2 − 𝜔2)

�̇�(𝑘𝑡�̇�3 + 𝑘𝑡𝜔2𝑥2�̇� − 𝑘𝜔2𝑥3 − 𝜔2𝑥)
𝐺

−
2𝑥(𝜔2 − 𝑘�̇�2)
(1 + 𝑘𝑥2)�̇�

𝐺 = 0. (40)

We find a particular solution for (40) in the form

𝐺 =

(

1 + 𝑘𝑥2
) (

𝑤2𝑥2 + �̇�2
)

�̇�
(

−𝑘𝑡𝑤2𝑥2�̇� − 𝑘𝑡�̇�3 + 𝑘𝑤2𝑥3 +𝑤2𝑥
) . (41)

Using (19), we can straightforwardly fix the function 𝑅2 and it is given
by

𝑅2 =
(𝜔2𝑥 + 𝑘𝜔2𝑥3 − 𝑘𝑡𝜔2𝑥2�̇� − 𝑘𝑡�̇�3)

(1 + 𝑘𝑥2)(𝜔2𝑥2 + �̇�2)
. (42)

We also find another particular solution of Eq. (40) which is of the form

�̂� =

(

𝑤2𝑥2 + �̇�2
)

√

(𝑤2 − 𝑘�̇�2)
(

𝑘𝑥2 + 1
)

�̇�
(

−𝑘𝑡𝑤2𝑥2�̇� − 𝑘𝑡�̇�3 + 𝑘𝑤2𝑥3 +𝑤2𝑥
) . (43)

The ratio of these two functions 𝐺 and �̂� define a integral 𝐼 =
√

𝐼1 and
it is confirmed here. The integrating factor �̂�2 for the above function
�̂� turns out to be

𝑅2 =
(𝜔2𝑥 + 𝑘𝜔2𝑥3 − 𝑘𝑡𝜔2𝑥2�̇� − 𝑘𝑡�̇�3)

(1 + 𝑘𝑥2)(𝜔2𝑥2 + �̇�2)
√

𝐼1
. (44)

The corresponding null form 𝑆2 can be obtained by using the relation
(16) and it becomes

𝑆2 =
(𝑘�̇�2 − 𝜔2)(𝑘𝑡𝜔2𝑥3 + �̇� + 𝑘𝑥2�̇� + 𝑘𝑡𝑥�̇�2)

(1 + 𝑘𝑥2)(𝜔2𝑥 + 𝑘𝜔2𝑥3 − 𝑘𝑡𝜔2𝑥2�̇� − 𝑘𝑡�̇�3)
. (45)

This set of null form and integrating factor (𝑆2, 𝑅2) does not satisfy
the extra constraint which is given in Eq. (4). So the new set of null
form and integrating factor (𝑆2, 𝑅2) is a compatible solution for the Eqs.
(2)–(4). By substituting 𝑆2 and 𝑅2 into Eq. (8), we obtain the second
integral 𝐼2 in the form

𝐼2 = 𝑡𝑎𝑛−1(
𝑥
√

𝐼1
�̇�

) − 𝑡
√

𝐼1. (46)

From the integrals 𝐼1 and 𝐼2, we can write the general solution of
Eq. (35) as

𝑥(𝑡) = 𝐴 sin
(

𝛺𝑡 + 𝛿
)

, 𝛺 =

√

𝜔2

1 + 𝑘𝐼1
, 𝐴 =

√

𝐼1, 𝛿 = 𝐼2, (47)

where 𝐼1 and 𝐼2 are the integration constants. We note here that the
relation 𝐼1 =

𝐼1+𝜔2

𝑘 relates the above integral with the standard integral
𝐼1 =

�̇�2+𝑘2𝑥2
1+𝜔𝑥2 .

5. Conclusion

In this paper, we have shown that by knowing a DP and its cofactor
one can derive two sets of null forms and integrating factors. Using
the latter ones one can construct the required integrals for the given
second order nonlinear ODE. Through this work we have brought out
an unknown interconnection that exists between DP and the extended
PS procedure. The interconnection reported in this paper helps to

3
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establish the integrability of the given second order nonlinear ODE.
We have also demonstrated the interconnection with suitable examples.
The interconnection in the case of third order nonlinear ODEs is under
investigation.
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