
International Journal of Non-Linear Mechanics 118 (2020) 103255

Contents lists available at ScienceDirect

International Journal of Non-Linear Mechanics

journal homepage: www.elsevier.com/locate/nlm

Feasibility study of a resonant accelerometer with bistable electrostatically
actuated cantilever as a sensing element
Omer HaLevy ∗, Naftaly Krakover, Slava Krylov
School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel

A R T I C L E I N F O

Keywords:
MEMS
Bistable cantilever
Resonant accelerometer
Fringing electrostatic fields

A B S T R A C T

We report on a feasibility study of a resonant accelerometer incorporating fringing electrostatic fields actuated
cantilever serving as a sensing element. Device’s dynamics are described using the reduced order (RO) Galerkin
and numerical finite differences (FD) models, the finite elements (FE) analysis is used for the evaluation of
the electrostatic forces. The architecture of the electrodes designed to be thicker than the cantilever allows
tuning of the beam behavior in a wide range, starting from linear and up to bistable responses. By choosing
an appropriate value of the actuating voltage close to the bistability threshold the cantilever can be positioned
in the configuration where the frequency sensitivity of the device to the electrode’s deflection is enhanced
while the frequency itself is higher than in the initial inactuated state. In accordance with the model results,
by integrating the bistable cantilever with a proof mass, it is possible to design a highly sensitive resonant
accelerometer with the state of the art performance.

1. Introduction

Micro scale inertial sensors – accelerometers and angular rate sen-
sors (micro gyros) – are probably the most common and commercially
successful devices in the realm of a steadily growing microelectrome-
chanical systems (MEMS) industry. Since the first batch-fabricated
micro accelerometer was reported back in the seventies [1,2], inertial
sensors remain among the most intensively researched and widely
used micro scale devices. One of the promising approaches for per-
formance enhancement of miniaturized mechanical sensors in general
and accelerometers in particular is based on monitoring of the device
spectral characteristics instead of a direct quasi-static displacement
measurement.

In resonant sensors, the natural frequencies of the vibrating element
are affected by the device parameters and environmental stimuli. By
measuring the natural frequency of the device, the quantity of interest
can be extracted [3]. For example, in mass sensors allowing detection of
extremely small, down to attogram and even zeptogram, masses [4–6],
the frequency of a vibrating structure decreases when a mass is attached
to it. Frequency based sensing also lays the foundations of atomic force
microscopy (AFM) [7], which is one of the most sensitive and well-
established sensing technologies. The applicability of resonant sensing
based on electromechanical micro- and nanodevices was explored in
gas sensors [8], pressure sensors [9,10], electric/magnetic fields sensors
and micro gyroscopes [11,12]. In micromechanical devices, resonant
sensing has numerous advantages when compared to the direct ana-
log quasi-static displacement detection. Dynamically operated devices
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distinguished by high frequencies and stiffness are less prone to the
negative influence of environmental vibrations and mechanical shocks,
demonstrate higher bandwidth and reduced Flicker (1∕𝑓 ) noise [13,
14]. Since in the frequency-based sensors the vibrational amplitude
itself is not the measured quantity and could be just above the detection
limit [3,15], the requirements to the accuracy of the displacements de-
tection are less demanding. Not less important, operation of the device
at the smallest possible amplitudes improves the linearity of the sensor,
eliminates undesired couplings and decreases power consumption.

In resonant sensors the shift in the device natural frequency oc-
curs when a parameter to be measured alters either the stiffness or
the mass of the structure [16,17]. In contrast to mass sensors [4–6],
resonant accelerometers commonly exploit the dependence between
the device’s effective stiffness and the inertial (acceleration) loading
resulting in a deflection of the proof mass [18–21]. Generally speaking,
to achieve the situation when the stiffness is configuration-dependent,
some kind of nonlinearity should be present in the system. Because
MEMS devices, and, in particular, spring suspension elements, are in
most cases fabricated from physically linear materials, such as silicon
or quartz, the only way of introducing nonlinearity is through an
appropriate structural design resulting in geometric nonlinearity. In this
context, based on the type of nonlinearity, all resonant accelerometers
could be subdivided into two groups: the devices based on mechanical
stiffness/frequency tuning and those based on electrostatic stiffness
tuning.
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Among mechanically tuned devices, a dominant architecture is that
of the vibrating beam accelerometer (VBA), which is one of the most
sensitive devices implemented in high-end inertial instruments [18–
21]. This device consists of one or several double-clamped resonating
beams (ties) connected to a proof mass at one end and anchored at
the other end. The frequency modulation is due to the axial force
applied to the beam by the proof mass. To achieve detectable frequency
shifts at small accelerations, force amplification approaches, realized
either by leverage compliant mechanisms [19–23], or by designing
appropriate in-plane [24,25], out-of-plane rotational [18,24,26–28]
or linear movements [29], were suggested, at the expense of added
design and fabrication complexities. A possible alternative is the use
of the configuration-dependent electrostatic forces as the source of
nonlinearity in inertial sensors [30–34]. In these devices, the decrease
of the distance between the sensing element and the actuating electrode
is accompanied by a softening effect and decrease in the resonant
frequency. Electrostatically operated sensors are prone to the so-called
pull-in instability, when the device collapses toward the electrode at
the voltage exceeding certain critical value. On the one hand, the
frequency to deflection sensitivity of the device increases when the
structure approaches the pull-in point, which is a limit point of the
voltage-deflection curve. On the other hand, presence of pull-in, which
may result in an irreversible damage, such as electrical short with the
electrode, stiction, or wear, limits the dynamics range of the sensor.
Moreover, since the effective stiffness and the natural frequency of the
device decrease when the vibrating structure is positioned closer to the
pull-in point, the sensor’s bandwidth is reduced. It is to say, there is a
trade-off between the device sensitivity on the one side and bandwidth,
dynamic range and reliability on the other side. For these reasons, the
working point of the electrostatic resonant accelerometers is commonly
chosen far enough from the pull-in point. Note that while close-loop
feedback control can be used to eliminate pull-in and tailor the voltage-
deflection characteristics [35,36], implementation of these techniques
in the micro-scale sensors is not always suitable for practical purposes.

One of the approaches to avoid the pull-in related limitations is
the use of curved bistable micro beams [37,38]. In these structures,
able to stay in two different configurations at the same loading, the
transition between the two states is through the snap-through buckling
mechanism. Since snap-through is a limit point of the equilibrium
curve, the frequency sensitivity is enhanced in the vicinity of the
critical point [39,40]. But, in contrast to pull-in, the snap-through is
reversible and is not accompanied by contact. Moreover, by choosing an
appropriate geometry, the snap-through can be eliminated and replaced
by an inflection point where the effective stiffness can be tailored
to a desired value. The frequency-based displacement sensing using
curved micro beams electrostatically coupled to a moving electrode was
demonstrated in [41]. However, these devices, intrinsically based on
a double-clamped beam architecture, have several major drawbacks,
such as high sensitivity to residual and thermal stress [42,43] and to
the initial geometry, which imposes challenging requirements to the
fabrication accuracy.

Cantilevers, as opposed to double-clamped beams, are distinguished
by low sensitivity to the residual stress and temperature and can be
fabricated using established micro machining approaches. This explains
their widespread use in resonant sensors [4,13,44,45]. However, since
cantilevers are mechanically linear, they cannot be used without mod-
ification as a highly responsive sensing element in resonant accelerom-
eters, perhaps except for the operation close to the pull-in point. One
of the possibilities to overcome this limitation is the use of actuation
by fringing electrostatic fields. It was previously shown [45–49] that
for certain electrodes configurations, such as non-interdigitated comb
electrodes [46] or vertical comb drives [47], the voltage-deflection
characteristic can be non-monotonic and the device may exhibit bista-
bility. Motivated by an attempt to combine the intrinsic advantages of
cantilevers with frequency tuning and sensitivity enhancement abilities
of bistable devices, a concept of a bistable cantilever actuated by

fringing electrostatic fields was suggested and analyzed theoretically
in [50]. The implementation of this architecture for pressure sensing
was reported in [9]. An important feature of this device, along with
its simplicity and robustness, is an ability to reach stiffening rather
than softening behavior by applying the electrostatic force. In this
case, the device effective stiffness and frequency both increase with
actuating voltage. However, since in the devices reported in [9,50]
the cantilever and the surrounding electrode were fabricated from the
same structural layer, an additional force was necessary to bring the
device to a working point, close to the highly sensitive snap-through
configuration. This complicates the device design and operation and
may require high actuation voltages.

In the present work we introduce an electrode configuration al-
lowing positioning of the cantilever within the high sensitivity region
already in the initial ‘‘as-fabricated state’’. As a result, no additional
actuation is necessary to bring the device to the working point. The
effect is achieved by designing the side electrode to be thicker than
the cantilever. Moreover, the suggested architecture results in the
hardening behavior of the device and allows to increase the effective
natural frequency and consequently the bandwidth of the sensor in
the vicinity of the working point. We present a generic model of a
resonant accelerometer incorporating a vibrating cantilever interacting
with the proof mass through fringing field electrostatic force. Model
results demonstrate feasibility of the suggested approach.

2. Model of the cantilever actuated by fringing electrostatic field

2.1. Formulation

The device shown in Fig. 1(a) is a cantilever of the length 𝐿, width
𝑏 and thickness 𝑑 designed to deflect in the out-of-plane (𝑧) direction. A
side electrode of length 𝐿𝑆 and thickness 𝑑𝑆 is located at the distance
𝑔𝑆 from the beam. In the initial, as-fabricated, state, the bottom surface
of the beam is co-planar with the bottom surface of the side electrode.
Hereafter this configuration is referred as the reference configuration.
Since the side electrode is thicker than the beam the fringing field
emerging from the electrode is not symmetric and is a source of the
actuating electrostatic force 𝐹𝑒𝑠 pulling the beam in the positive 𝑧-
direction, toward the mid height of the side electrode. In the position
corresponding to the mid height of the electrode, the field is symmetric,
and the resultant electrostatic force is zero. Since the beam cannot be
deflected in a negative 𝑧-direction, apart from the electrode, only by the
electrostatic force, an additional actuation force 𝐹𝑀 , referred hereafter
as a ‘‘mechanical" force, is provided. With application of a steady DC
voltage 𝑉𝑆 to the side electrode and with 𝐹𝑀 present, the beam reaches
equilibrium configuration, Fig. 1(b).

In the framework of the Euler–Bernoulli model, under the small
deflections assumptions, allowing to neglect the rotary inertia and the
nonlinear curvature, the dynamics of the slender beam are governed by
the equation

𝐸𝐼𝑦𝑦
𝜕4�̂�
𝜕�̂�4

+ 𝜌𝐴𝜕
2�̂�
𝜕𝑡2

= −𝐹𝑀 + 𝑉 2
𝑆𝐹𝑒𝑠𝐻(�̂� − �̂�𝑆 ) (1)

Here �̂�(�̂�, 𝑡) is the deflection of the cantilever in the positive 𝑧-direction,
𝐸 and 𝜌 are the elastic modulus and the mass density of the cantilever
material, respectively, 𝐴 = 𝑏𝑑 and 𝐼𝑦𝑦 = 𝑏𝑑3∕12 are the area and the
second moment of area of the cantilever cross section, respectively.
In addition, 𝐹𝑒𝑠(�̂�) is the electrostatic force (per unit length and per
unit voltage) associated with the fringing fields emerging from the
side electrode, 𝑉𝑆 is the voltage applied to the electrode, 𝐻(�̂�) is the
Heaviside step function and �̂�𝑆 is the starting point coordinate of the
side electrode. The prescribed, independent on the beam deflection,
uniformly distributed mechanical actuation force 𝐹𝑀 is positive when
it acts in the negative 𝑧−direction.

We are interested in developing an expression for the frequencies
of the free undamped vibrations around the equilibrium configuration.
To this end we introduce a perturbation to the beam deflection and
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Fig. 1. (a) Schematics of the undeformed cantilever in the reference (as fabricated)
configuration. (b) Deformed beam in the equilibrium configuration. When the steady
dc voltage 𝑉𝑆 is applied to the side electrode the electrostatic and ‘‘mechanical"
actuation forces and the elastic restoring forces are equilibrated. The inset shows
schematically the fringing field lines and the resultant electrostatic force. The side
(fringing) electrode is depicted by the bright red color; the beam is shown in the gray
color. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Table 1
Non-dimensional quantities.

Definition Description

𝑥 = �̂�∕𝐿 Axial coordinate
𝑤 = �̂�∕(2𝑑𝑆 ) Deflection
𝑡 = 𝑡

√

𝐸𝐼𝑦𝑦∕(𝜌𝐴𝐿4) Time
𝐹𝑀 = 𝐿4𝐹𝑀∕(2𝐸𝐼𝑑𝑆 ) Mechanical force
𝐹𝑒𝑠 = 𝐿4𝐹𝑒𝑠∕(2𝐸𝐼𝑑𝑆 ) Electrostatic force

linearize the resulting equation in terms of perturbations. Specifically,
we convert Eq. (1) into a non-dimensional form (the non-dimensional
quantities used in the development are listed in Table 1) and then
set 𝑤(𝑥, 𝑡) = 𝑤∗(𝑥) + 𝑣(𝑥, 𝑡), where 𝑤∗(𝑥) is the equilibrium deflection
corresponding to the voltage 𝑉𝑆 and 𝑣(𝑥, 𝑡) is the small time-dependent
deflection (the perturbation). As a result, we obtain two equations

𝑤∗(𝐼𝑉 )
= −𝐹𝑀 + 𝑉 2

𝑆𝐹
∗
𝑒𝑠𝐻

(

𝑥 − 𝑥𝑆
)

(2)

𝑣(𝐼𝑉 ) − 𝑉 2
𝑆𝐺𝑣𝐻

(

𝑥 − 𝑥𝑆
)

+ �̈� = 0 (3)

where 𝐹 ∗
𝑒𝑠 = 𝐹𝑒𝑠(𝑤∗) is the non-dimensional electrostatic force in the

equilibrium configuration and

𝐺 = 𝐺(𝑤∗) =
𝑑𝐹𝑒𝑠
𝑑𝑤

|

|

|𝑤∗ (4)

Nonlinear ordinary differential equation Eq. (2) describes the equi-
librium of the beam under the electrostatic and mechanical forces,
while linear partial differential equation Eq. (3) (with space-dependent
stiffness coefficient) governs free undamped vibrations around the
equilibrium. Hereafter the prime and the over dot denote deriva-
tives with respect to the non-dimensional spatial coordinate 𝑥 and
non-dimensional time 𝑡, respectively.

2.2. Reduced order model

To build a RO model of the beam, we use the Galerkin approach
limited to a single term approximation. The equilibrium 𝑤∗(𝑥) and the
dynamic 𝑣(𝑥, 𝑡) deflections are approximated by the expressions

𝑤∗(𝑥) ≈ 𝑞∗𝜓(𝑥), 𝑣(𝑥, 𝑡) ≈ 𝑞(𝑡)𝜓(𝑥) (5)

Here 𝑞∗ is the generalized coordinate corresponding to the equilibrium
state, 𝑞(𝑡) is the generalized amplitude and 𝜓(𝑥) is the fundamental

mode of vibration of a cantilever used as the base function

𝜓(𝑥) = 0.367
[

sin(𝛽1𝑥) − sinh(𝛽1𝑥)−

sin(𝛽1) + sinh(𝛽1)
cos(𝛽1) + cosh(𝛽1)

[

cos(𝛽1𝑥) − cosh(𝛽1𝑥)
]

] (6)

where 𝛽1 = 1.8751 is the cantilever fundamental eigenvalue [51]. Since
the base function is normalized in such a way that 𝜓(1) = 1, 𝑞∗ and
𝑞(𝑡) correspond to the (static and dynamic) endpoint deflections of the
beam.

By performing the usual Galerkin procedure, we obtain the RO
counterparts of Eqs. (2) and (3)

𝐼1𝑞
∗ − 𝑉 2

𝑆 ∫

1

𝑥𝑆
𝜓𝐹 ∗

𝑒𝑠 d𝑥 = −𝐼3𝐹𝑀 (7)

𝐼2𝑞 +

(

𝐼1 − 𝑉 2
𝑆 ∫

1

𝑥𝑆
𝜓2𝐺 d𝑥

)

𝑞 = 0 (8)

where 𝐹 ∗
𝑒𝑠 = 𝐹 ∗

𝑒𝑠(𝑞
∗𝜓), 𝐺 = 𝐺(𝑞∗𝜓) and

𝐼1 = ∫

1

0
(𝜓 ′′)2 d𝑥 = 3.089,

𝐼2 = ∫

1

0
𝜓2 d𝑥 = 0.250, 𝐼3 = ∫

1

0
𝜓 d𝑥 = 0.391

(9)

Since the electrode is significantly shorter than the cantilever we re-
place in Eqs. (7) and (8) the base function 𝜓(𝑥) by its constant average
only inside the expressions for the electrostatic force and its derivative,
namely [49,52],

𝐹 ∗
𝑒𝑠(𝑞

∗𝜓) ≈ 𝐹 ∗
𝑒𝑠 = 𝐹 ∗

𝑒𝑠(𝑞
∗𝐼𝑆3 ∕𝐿𝑆 )

𝐺(𝑞∗𝜓) ≈ �̄� = 𝐺(𝑞∗𝐼𝑆3 ∕𝐿𝑆 ) (10)

As a result of this simplification we obtain

𝐼1𝑞
∗ − 𝑉 2

𝑆 𝐼
𝑆
3 𝐹

∗
𝑒𝑠 = −𝐼3𝐹𝑀 (11)

𝐼2𝑞 + (𝐼1 − 𝑉 2
𝑆 𝐼

𝑆
2 �̄�)𝑞 = 0 (12)

where

𝐼𝑆2 = ∫

1

𝑥𝑆
𝜓2 d𝑥, 𝐼𝑆3 = ∫

1

𝑥𝑆
𝜓 d𝑥 (13)

In accordance with Eq. (12) the effective stiffness is parameterized by
𝑉𝑆 . From Eq. (12) one can extract the frequency of free vibrations
around the equilibrium

𝑓 = 𝑓0

√

√

√

√1 −
𝑉 2
𝑆 𝐼

𝑆
2 �̄�

𝛽41𝐼2
(14)

where 𝑓0 = 𝛽21∕(2𝜋) is the non-dimensional fundamental mode fre-
quency of the unactuated beam (at zero 𝑉𝑆 ). Since the exact eigenfunc-
tion of the cantilever is used as the base function, 𝐼1∕𝐼2 = 𝛽41 .

We define several figures of merits to quantify the frequency sen-
sitivity of the device. The sensitivity of the frequency to the beam’s
deflection is reflected by the non-dimensional relative 𝑆𝐹𝑤 and the
dimensional 𝑆𝐹𝑤 scale factors defined in the following way

𝑆𝐹𝑤 = 1
𝑓0

𝑑𝑓
𝑑𝑞∗

=

−
𝑉 2
𝑆 𝐼

𝑆
2

2𝛽21
√

𝐼2
[

𝛽41𝐼2 − 𝑉
2
𝑆 𝐼

𝑆
2 �̄�

]

(

𝑑�̄�
𝑑𝑞∗

)

(15)

𝑆𝐹𝑤 =
𝑑𝑓
𝑑�̂�∗

𝐿
= 1

2𝑑𝑆

√

𝐸𝐼𝑦𝑦
𝜌𝐴𝐿4

𝑑𝑓
𝑑𝑞∗

= 1
2𝑑𝑆

𝑓0𝑆𝐹𝑤 (16)

where �̂�∗
𝐿 = �̂�∗(𝐿) depends on 𝑉𝑆 and is found as a solution of Eq. (11);

𝑓0 = 𝑓0
√

𝐸𝐼𝑦𝑦∕(𝜌𝐴𝐿4) is the dimensional fundamental mode frequency
of the unloaded cantilever.
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Fig. 2. Numerical results: the electric potential for different positions of the cantilever cross section with respect to the side electrode. (a) Zero displacement as defined in Fig. 1(a).
(b) The beam is located at the middle of the side electrode. The geometric parameters are listed in Table 3, configuration A.

Table 2
Electrostatic force fitting coefficients. Parameters of the beam are in accordance with
Table 3.

Coeff. Value Coeff. Value

𝑎1 2.16 × 10−6 N/m 𝑎6 −3 × 10−6

𝑎2 0 𝑎7 700000
𝑎3 375000 𝑎8 2.22 × 10−5

𝑎4 10−6 𝑎9 375000
𝑎5 700000 𝑎10 1.8 × 10−5

2.3. Electrostatic force fitting

The electrostatic force acting on the beam was found numerically
using the finite elements package COMSOL. A two-dimensional prob-
lem in terms of the electric potential was solved within a computational
domain surrounding the beam and the electrodes. A generic cantilever
cross section was placed at multiple vertical locations corresponding
to the displacements between �̂� = −0.5𝑑𝑆 and up to �̂� = 1.5𝑑𝑆 with
the increment of 0.04𝑑𝑆 . For each beam position the resultant force
was calculated. Fig. 2 shows the distribution of the electric potential
for two differing beam positions. The geometric parameters 𝑏, 𝑔𝑆 , 𝑑𝑆
and 𝑑 corresponded to those given in Table 3, configuration A. The
boundary conditions corresponded to the zero voltage enforced on the
beam and on the outer boundary of the computational domain and to
the voltage of 1V on the side electrode. After several successive mesh
refinements carried out to assure convergence, the final adopted mesh
included 27,800 elements and 126,100 degrees of freedom (DOF). The
numerical data was imported into Maple [53] and the following fitting
function was built

𝐹𝑒𝑠 = 𝑎1𝜙(𝑤) 𝐹𝑒𝑠 = 𝛾𝜙(𝑤) (17)

𝜙(𝑤) = 𝑎2 +
𝑗=4
∑

𝑗=1
(−1)2𝑗+1 arctan

(

𝑎2𝑗+1
(

𝑤 − 𝑎2𝑗+2
))

Here 𝑎𝑖, 𝑖 = 1...10 are fitting coefficients listed in Table 2, 𝐹𝑒𝑠 and 𝐹𝑒𝑠
are the dimensional and non-dimensional electrostatic force, respec-
tively and 𝛾 = 𝐿4𝑎1∕(2𝐸𝐼𝑑𝑆 ) is the electrostatic force coefficient. The
non-dimensional electrostatic force obtained numerically, and the fit
Eq. (17) are shown in Fig. 3.

2.4. Model results

The cantilever actuated by the fringing fields could be bistable [50].
In order to highlight the origin of the bistability in the case when the
side electrode is thicker than the beam, we present the dependence
between each of the forces acting on the beam (the elastic restoring
and the electrostatic) and the cantilever’s deflection. These forces are
shown in Fig. 4(a) for the beam with the parameters detailed in Table 3,

Table 3
Material properties and geometric parameters of the device for three different
configurations.

Configuration A B C
Parameter Value Value Value

𝐿 (μm) 150 270 420
𝑏 (μm) 16 16 16
𝑑 (μm) 1 2 3
𝐿𝑆 (μm) 37.5 68 105
𝑑𝑆 (μm) 20 40 50
𝑔𝑆 (μm) 1 2 3
𝑉 (V) 108 185 185
𝐼𝑆2 0.174
𝐼𝑆3 0.207
𝐸 (GPa) 170
𝜌
(

kgm−3) 2328

Fig. 3. Non-dimensional normalized electrostatic force per unit length of the beam
calculated for a unit voltage applied on the side electrode: FE solution (markers) and
fit, Eq. (17) (solid line).

configuration A. In a certain range of the deflections where the elastic
and the electrostatic forces have different signs and can equilibrate each
other, the beam can be deflected solely by the electrostatic force. In
contrast, in the intervals where the elastic and the electrostatic forces
have the same sign, they are both restoring and the additional mechan-
ical actuation force is necessary to bring the beam to the corresponding
equilibrium configuration (see Eq. (11)).

The equilibrium curve of the beam is shown in Fig. 4(b). For low
voltages the equilibrium curve is monotonic (the case of 𝑉𝑆 = 0 and
𝑉𝑆 = 95V) whereas for higher 𝑉𝑆 the snap-through (maximum) and
release (minimum) limit points are observed indicating that the beam
is bistable (the case of 𝑉𝑆 = 120V on the figure). While the bistability
here is associated with the non-monotonic character of the electrostatic
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Fig. 4. (a) Forces acting on the beam: the linear elastic restoring force, the electrostatic fringing field force fit, Eq. (17) and the resultant sum of the elastic and the electrostatic
forces. The side electrode voltage is 𝑉𝑆 = 108V. (b) Equilibrium curve for different values of the side electrode voltage 𝑉𝑆 (numbers). Inset depicts the equilibrium curve zoom-in
view in the vicinity of the snap-through and release instabilities, for 𝑉𝑆 = 120V. The parameters of the beam are listed in Table 3, configuration A.

force, Fig. 4(a), it appears due to the simultaneous contribution of the
elastic restoring and the electrostatic forces and is not possible when
one of the forces is absent. This is one of the distinguishing features of
the device under consideration. The equilibrium curve corresponding
to 𝑉𝑆 = 108 V does not contain a snap-through point. Instead, there is
an inflection point where the slope of the curve is close to zero. At this
voltage the sensor can be operated in a continuous manner, without
the jumps related to the snap-through collapse. Fig. 4 suggests that the
bistability of the beam takes place at the deflections of the order of
0.1 of the electrode height. Consequently, only small (with respect to
the beam length) deflections are required for the device functionality.
For the beam with the parameters corresponding to the configuration
A, Table 3 the maximal required deflection is of the order of ±10 μm,
which is much smaller than the beams length 𝐿 = 150 μm. As a result
contribution of the nonlinear curvature, which in this case is smaller
than approximately 0.67%, can be neglected.

It is instructive to find the bistability criterion, namely, the critical
value of 𝑉𝑆 corresponding to the bistability onset. Since the snap-
through and the release are the limit points, the slope of the curve at
these points is zero and the corresponding critical deflections can be
found from the condition (see Eq. (11))

𝐼3
𝑑𝐹𝑀
𝑑𝑞∗

= 𝑉 2
𝑆 𝐼

𝑆
3 �̄� − 𝐼1 = 0 (18)

The critical deflections and the corresponding values of 𝐹𝑀 at the snap-
through and the release points, as functions of 𝑉𝑆 , are shown in Fig. 5.
One observes that the bistability emerges at the voltages higher than
a certain onset value. Due to the complexity of the fitting function,
Eq. (17), the bistability onset value of 𝑉𝑆 cannot be found in the closed
form (as in the case of an initially curved double clamped bistable
beam [37]) and a numerical solution of Eq. (18) is necessary. For the
beam with the parameters detailed in Table 3, configuration A, the
minimal value of the side electrode voltage required for bistability to
occur was found to be 𝑉 𝑚𝑖𝑛

𝑆 = 109.2V.
It should be noted that along with the pull-in in the vertical 𝑧 direc-

tion, additional stability loss scenarios could be anticipated. To assure
that the voltages associated with these instabilities are higher than the
operational values and do not interfere with the device functionality,
we estimated critical voltages corresponding to two possible secondary
pull-in cases. The first is the side pull-in associated with the cantilever’s
bending within the 𝑥𝑦 plane (see Fig. 1). The second scenario is the
combined bending-torsion instability (lateral buckling of a thin walled
cantilever, [54]). In both cases, while calculating the critical voltages,
we took a conservative approach and considered the beam located at
the mid height between the side electrode (as in Fig. 2(b)). In this
configuration the electrostatic force is maximal. Since in our design the

Fig. 5. (a) Critical (snap-through and release) endpoint deflections as the functions
of the side electrode voltage 𝑉𝑆 . (b) Critical mechanical forces as the function of 𝑉𝑆 .
Parameters of the beam are listed in Table 3, configuration A.
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Fig. 6. Frequency of the free undamped vibrations around the equilibrium (a) as a function of the non-dimensional mechanical force 𝐹𝑀 for different values of 𝑉𝑆 (numbers) and
(b) as a function of the beam non-dimensional endpoint deflection 𝑞∗ for different values of 𝑉𝑆 (numbers). The parameters of the beam are listed in Table 3, configuration A.

length of the side electrode 𝐿𝑆 is smaller than that of the beam (see
Table 3), we replaced the distributed electrostatic force by its resultant
acting at the mid-length of the electrode. The electrostatic forces were
calculated numerically, by fitting the results of the 2D finite elements
solution (COMSOL), as described in Section 2.3. In the case of the in-
plane side pull-in the electrostatic force provided by two electrodes
was considered. In the case of the bending-torsion buckling the coarse
conservative estimation was carried out by evaluating the electrostatic
force provided by only one side electrode and by using the solution
for the lateral buckling of a cantilever available in [54]. In both cases
the critical pull-in voltages were found to be significantly higher than
the maximal operational voltages presented in this work. For example,
for a beam with dimensions corresponding to configuration A, Table 3,
the in-plane side pull-in voltage was 344V, while the critical voltage
corresponding to the lateral (bending-torsion) pull-in was estimated to
be 452V.

The dependence between the frequencies of the free undamped
vibrations around equilibrium and 𝐹𝑀 is shown in Fig. 6 for different
values of 𝑉𝑆 . When no voltage is applied to the side electrode, the
frequency sensitivity to the actuation force and to the beam deflection
is zero. Increase of 𝑉𝑆 results in the increase of the frequency/force
(or frequency/deflection) curve slope and in higher sensitivity. Note
that in accordance with Fig. 6, application of the voltage to the side
electrode increases the effective stiffness and the natural frequency of
the cantilever in the configurations close to the initial state, when the
beam is located far away from the critical snap-through point. This
situation is different from the common case of electrostatic softening,
taking place when the device is operated by a gap-closing electrode.
Since an arbitrarily low slope at the inflection point of the equilibrium
curve, Fig. 4(b), can be tailored by applying an appropriate voltage,
high frequency sensitivity combined with an acceptably high free vi-
brations frequency of the sensing element can be achieved, Fig. 6. We
also note that there is a point corresponding to the non-dimensional
deflection of 𝑤∗(1) ≈ −0.034, where the frequency curves corresponding
to different values of 𝑉𝑆 coincide while the frequency itself is equal
to the resonant frequency of the inactuated beam. This point is close
to the maximum of the electrostatic force curve, Fig. 3, where the
derivative of the electrostatic force with respect to deflection is zero. As
a result, at this deflection the beam vibrates at its mechanical resonant
frequency. Since that in this case the frequency is independent on the
side electrode voltage, this configuration can serve as the calibration
point for the sensor.

To investigate the influence of various parameters on the frequency
and frequency sensitivity of the device, the numerical studies were
carried out for three different configurations — A, B and C, Table 3. In
all the cases, the length of the side electrode was 𝐿𝑆 = 0.25𝐿. Fig. 7(b)
shows that as the structure becomes more slender, the frequency shift

Fig. 7. Model results: (a) Frequency and (b) frequency sensitivity (scale factor 𝑆𝐹𝑤),
Eq. (16) as a function of the cantilever’s non-dimensional endpoint deflection 𝑞∗, for
three different configurations A, B and C listed in Table 3.
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Fig. 8. (a) Equilibrium curve — non-dimensional deflection of the cantilever as the
function of the DC voltage 𝑉𝑆 applied to the side electrode and (b) frequency of free
vibrations around the equilibria corresponding to the voltage 𝑉𝑆 . No mechanical 𝐹𝑀
or inertial (acceleration) forces are applied to the beam.

is more pronounced. In all three configurations the cantilever width
𝑏 is the same. The ratio

(

𝑑∕𝑑𝑆
)

=
(

𝑔𝑆∕𝑑𝑆
)

= (1∕20) is also close to
be identical in all the configurations. Reducing 𝑑𝑆 , 𝑑 and increasing
the ratio

(

𝑏∕𝑔𝑆
)

leads to an improved 𝑆𝐹𝑤. Fig. 7(b) shows that for
the chosen beam’s geometric parameters and the side electrode voltage
value, the frequency is a continuous function of the endpoint deflection.
Within a certain range of deflections, the frequency values become very
small, close to zero. These deflections correspond to the configurations
at the verge of bistability (at the limit point itself the frequency is
zero). At the working point the frequency and SF should be maximized.
According to Fig. 7, for configuration A, Table 3, if the equilibrium
point is chosen close to the edge of the side electrodes, when 𝑞∗ = 0.05
(�̂� = 2μm), the natural frequency at the equilibrium point is 𝑓 ∗ ≈
99 kHz

(

which corresponds to 𝑓 ∗ ≈ 1.61𝑓0
)

. The corresponding 𝑆𝐹𝑤 is
≈ −14.3Hz∕nm. This value is significantly higher than reported in [9]
for a single layer fringing field actuated cantilever.

It is instructive also to consider the change of the linearized natural
frequency of the beam as a function of the side electrode voltage in

the case when no mechanical force is applied to the beam. To find
the frequency of free linear vibrations around an equilibrium, the static
deflections for each voltage was first found using Eq. (11) with 𝐹𝑀 =
0. The resulting equilibrium curve is shown in Fig. 8(a). Then, the
frequency for each voltage was calculated in accordance with Eq. (12).
The resulting frequency curve shown in Fig. 8(b) indicates that the
frequency of the device can be up-tuned in a wide range by applying
the DC voltage to the side electrode.

2.5. Numerical validation

The results presented above are obtained using an approximate
single degree of freedom RO model. Namely, the static responses of the
beam are obtained using the nonlinear algebraic Eq. (11) whereas the
frequency of the free vibrations around the equilibrium are calculated
using the linearized ordinary differential equation, Eq. (12). In addition
to the possible inaccuracies associated with the single term truncation
of the Galerkin series, both Eq. (11) and (12) incorporate the sim-
plifying approximation Eq. (10) of the distributed electrostatic force.
Thus, to verify the model and estimate its accuracy, numerical analysis
was exploited using several approaches. First, the nonlinear ordinary
differential equation Eq. (2) describing the beam’s equilibrium was
solved numerically using a boundary value problem (BVP) solver (mid-
point finite differences with a Richardson extrapolation) implemented
in Maple package. A mesh with 2048 nodes was used. The beam was
loaded by a linearly increasing mechanical force 𝐹𝑀 while the voltage
applied to the side electrode was held constant. In addition, a three-
dimensional FE analysis of the beam was carried out using COMSOL
Multiphysics package. The beam, considered as a three-dimensional
elastic body, was meshed by 15,000 tetrahedron solid elements with
second-order interpolation functions. The FE model contained 88,000
DOFs. The actuating mechanical force was distributed uniformly along
the entire length of the beam. The electrostatic force distributed within
the region between 𝑥𝑆 ≤ 𝑥 ≤ 𝐿 was realized as a prescribed non-
linear, deflection-dependent loading function provided by the fitting,
Eq. (17), with �̂�(�̂�) being the spatial, coordinate dependent, deflection.
The results are presented in Fig. 9, where the equilibrium curves are
shown for multiple values of 𝑉𝑆 . The comparison shows an excellent
agreement between the numerical and RO model results. For example,
the relative error in the snap-through value of 𝐹𝑀 between the RO and
FD model results is 0.47%, the difference between the FD and the FE
solutions is 1.18%.

To estimate the accuracy of the single mode approximation used
to evaluate the frequencies of free vibrations around equilibrium, the
linear eigenvalue problem, Eq. (3), was solved numerically for multiple
values of 𝐹𝑀 and for several constant values of 𝑉𝑆 . FD discretization
(2048 nodes) was implemented to convert Eq. (3) into a system of
algebraic equations and the eigenvalues of the associated matrix were
obtained using Matlab eigenvalue solver. The equilibrium deflection
𝑤∗(𝑥) necessary to evaluate the space-dependent coefficient 𝐺 in Eq. (3)
was calculated by numerically solving Eq. (2) (BVP solver realized in
Maple) for each of the 3000 increments of 𝐹𝑀 . Fig. 10 presents the
results obtained using both the single DOF RO and the FD models,
for four different values of 𝑉𝑆 . Good agreement between the results
is observed.

3. Implementation in an accelerometer

One of the promising applications of the vibrating cantilever con-
sidered here is its implementation as a sensing element in an elec-
trostatically tuned resonant accelerometer [32,33,41]. In the device
considered in the present work the interaction between the proof mass
and the sensing element is by means of the fringing electrostatic field.
One of the possible generic architectures allowing realization of the
suggested approach is illustrated in Fig. 11(a). The tilting-type proof
mass is suspended by two elastic torsion axes. Four sensing cantilevers
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Fig. 9. Equilibrium curves dependence between the non-dimensional endpoint deflec-
tion and non-dimensional mechanical force for different values of the side electrode
voltage 𝑉𝑆 (numbers). Solid lines correspond to the single DOF RO model, Eq. (11)
(see also Fig. 4). The black dashed lines are the results of the numerical FD solution
of the BVP, Eq. (2). The diamonds markers correspond results of the three-dimensional
FE analysis.

Fig. 10. Frequency of free vibrations around the equilibrium calculated for four
different values of 𝑉𝑆 (numbers). Solid lines correspond to the single DOF RO model
Eq. (12), the diamonds markers represent the results of the finite difference solution
of Eq. (3).

are positioned close to the corners of the mass, to provide an ability of
differential measurement. The four openings in the mass (see an inset in
Fig. 11), which is significantly thicker than the cantilevers, realizes the
side electrodes geometry similar to shown in Fig. 1. Due to the offset
between the mass center of gravity and the tilting axis, the presence of a
vertical (𝑧) acceleration results in a rotation of the mass, change in the
relative position of the cantilevers with respect to the side electrode
and therefore in the shift in the cantilever frequency. The geometry
shown in Fig. 11(a) can be realized using several established fabrication
processes. Here we assume that the mass and the cantilever are made
of single crystal silicon using deep reactive ion etching (DRIE) and
silicon on insulator (SOI) wafer as a starting material. The structural
elements of different heights can be fabricated by using critically timed
etching (e.g., see [55,56]). In this work, in order to explore the device

Fig. 11. (a) An artist rendering of a possible resonant accelerometer architecture
showing a proof mass and four resonant sensing cantilevers. (b) A generic model
of the accelerometer including a vertically moving proof mass and a single cantilever.
The arrow 𝑊𝑆 is in the positive deflection of the proof mass/side electrode deflection.
Insets depict a zoom-in view of the cantilever and of the opening in the mass, serving
as the side electrode.

feasibility and to estimate its performance, we considered a simplified
generic model of a proof mass designed to deflect only in the vertical
𝑧 direction. The mass interacts with the cantilever through the fringing
electrostatic fields, as shown in Fig. 11(b).

While analyzing the behavior of the proof mass-cantilever system,
we adopt several simplifying assumptions. First, since the beam vibrates
at a frequency much higher than the proof mass fundamental mode
frequency, we neglect the influence of the high-frequency component
of the electrostatic interaction force on the mass response and consider
only the quasi-static DC interactions. (Note, however, that in certain
situations the high frequency forces may result in an appearance of
effective steady components [57], which are neglected here as well.)
Second, the large discrepancy between the natural frequencies of the
mass and of the cantilever allows us to neglect the direct influence
of the acceleration force on the cantilever deflection and to assume
that the cantilever is actuated solely by the electrostatic force. This
assumption is justified since the static deflection of accelerometers
is generally inversely proportional to the mass frequency [51]. In
contrast to the configuration investigated in Sections 2.1–2.4 here both
the beam and the electrodes are movable. We consider the initial,
as fabricated, configuration of the beam and of the electrodes as the
reference configuration and adopt the clamping point of the cantilever
(the anchor) as the reference for the vertical, out of plane, 𝑧 deflection
of the cantilever and of the electrodes. The positive absolute deflections
of the cantilever and of the electrode are in the positive 𝑧-direction. The
positive acceleration and the positive inertial force are in the negative
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and positive 𝑧-directions, respectively. In this case, in accordance with
Fig. 11, the positive acceleration results in the displacement of the
electrode in the negative 𝑧-direction.

In view of the aforesaid, the equilibrium of the cantilever and of the
electrode is described by the system of two equations
{

𝐸𝐼�̂� ∗(𝐼𝑉 ) = 𝑉 2
𝑆𝐹𝑒𝑠𝐻

(

�̂� − �̂�𝑆
)

𝑘𝑀�̂�𝑆 = −𝑀�̂� − 𝑉 2
𝑆 ∫ 𝐿0 𝐹𝑒𝑠𝐻

(

�̂� − �̂�𝑆
)

𝑑�̂�
(19)

Here �̂�𝑆 and �̂� ∗(�̂�) are the absolute deflections of the side electrode
and of the beam, respectively, 𝑘𝑀 is the stiffness of proof mass suspen-
sion, 𝑀 = 𝜌𝐿𝑀𝐷𝐵 is the mass; 𝐿𝑀 , 𝐷 and 𝐵 are the length, height and
width of the proof mass, respectively and �̂� is the substrate acceleration.
The electrostatic force 𝐹𝑒𝑠 = 𝐹𝑒𝑠(�̂� ∗ − �̂�𝑆 ) depends on the relative
deflection of the beam with respect to the electrode

𝑤∗(�̂�) = 𝑊 ∗(�̂�) −𝑊𝑆 (20)

It is convenient to convert Eq. (19) into a non-dimensional form. In
addition to the non-dimensional quantities defined in Table 1, we
denote

𝑊 ∗ = �̂� ∗

2𝑑𝑆
, 𝑊 ∗

𝑆 =
�̂� ∗
𝑆

2𝑑𝑆
, 𝜂𝑀 =

𝐸𝐼𝑦𝑦
𝑘𝑀𝐿3

𝛾𝑎 =
𝑀𝑔

2𝑑𝑆𝑘𝑀
𝛾 =

𝐿4𝑎1
2𝐸𝐼𝑦𝑦𝑑𝑆

𝑎 = �̂�
𝑔

(21)

We represent the absolute deflection of the beam using a single term
approximation 𝑊 ∗ = 𝑄∗𝜓 (where 𝑄∗ is the generalized coordinate
corresponding to the non-dimensional absolute endpoint deflection of
the beam), perform the usual Galerkin procedure and obtain
{

𝑄∗𝐼1 = 𝛾𝑉 2
𝑆 𝐼

𝑆
3 𝜙

∗

𝑊𝑆 = −𝛾𝑎𝑎 − 𝜂𝑀 𝛾𝑉 2
𝑆𝜙

∗𝐿𝑆
(22)

Here 𝜙∗ = 𝜙(𝑄∗𝐼𝑆3 ∕𝐿𝑆−𝑊𝑆 ) is the nonlinear function of the deflections,
Eq. (17). Note that Eq. (22) incorporates the approximation involving
the replacement of the shape function 𝜓(𝑥) by its average value 𝜓(𝑥) ≈
𝐼𝑆3 ∕𝐿𝑆 inside 𝜙∗. Eq. (22) is the system of two nonlinear algebraic
equations with two unknowns 𝑄∗ and 𝑊𝑆 . Using the first of Eqs. (22),
𝛾𝑉 2

𝑆𝜙
∗ can be eliminated from the second equation, providing the

relation between the deflections of the electrode and of the beam

𝑊𝑆 = −𝛾𝑎𝑎 − 𝜂𝑀
𝐼1
𝐼𝑆3

𝐿𝑆𝑄
∗ (23)

Inserting 𝑊𝑆 given by Eq. (23) into 𝜙∗ in the first of Eq. (22) yields the
expression for the cantilever deflection at the equilibrium configuration

𝑄∗ =
𝛾𝑉 2

𝑆 𝐼
𝑆
3

𝐼1
𝜙∗ (24)

where now 𝜙∗ = 𝜙∗ ((𝐼𝑆3 ∕𝐿𝑆 + 𝜂𝑀𝐼1𝐿𝑆∕𝐼𝑆3
)

𝑄∗ + 𝛾𝑎𝑎
)

is expressed
solely in terms of 𝑄∗. Eq. (24), which is a nonlinear algebraic equation
and can be solved only numerically, allows to find the absolute beam
deflection 𝑄∗ for the given values of the side electrode voltage 𝑉𝑆
and of the acceleration 𝑎. Once 𝑄∗ = 𝑄∗(𝑉𝑆 , 𝑎) is calculated, the
relative deflection of the cantilever with respect to the electrode, which
defines the electrostatic force, Eq. (17), can be evaluated by combining
Eqs. (23) and (24)

𝑞∗ = 𝑄∗ −𝑊𝑆 =
𝛾𝑉 2

𝑆 𝐼
𝑆
3

𝐼1
𝜙∗ + 𝛾𝑎𝑎 + 𝜂𝑀

𝐼1
𝐼𝑆3

𝐿𝑆𝑄
∗ (25)

It is convenient to approximate a functional dependence between
the relative deflection 𝑞∗ and the acceleration 𝑎 using a polynomial fit
limited to a third order

𝑞∗ = 𝐶0 + 𝐶1𝑎 + 𝐶2𝑎
2 + 𝐶3𝑎

3 + 𝐶4𝑎
4 (26)

Here 𝐶𝑖, 𝑖 = 0..4 are the fitting coefficients calculated for the specific
system parameters and the specific 𝑉𝑆 . The tilde above 𝑞∗ is introduced

Table 4
Material properties and geometric parameters of the proof mass.

Parameter Value

𝐿𝑀 4mm
𝐵 4mm
𝐷 20 μm
𝐸 170GPa
𝜌 2328 kgm−3

𝑘𝑀 292N/m
𝑓𝑀 3153Hz

to distinguish between the value 𝑞∗ calculated directly from Eq. (25)
and an approximate value 𝑞∗ given by a polynomial fit Eq. (26). The
frequency of the cantilever in the presence of the acceleration can be
found directly using Eq. (14) where 𝑞∗ is replaced by the fit 𝑞∗, Eq. (26),
namely

𝑓 (𝑎, 𝑉𝑆 ) = 𝑓0

√

√

√

√1 −
𝑉 2
𝑆 𝐼

𝑆
2 �̃�

𝛽41𝐼2
(27)

Here �̃� = 𝐺(𝑞∗𝐼𝑆3 ∕𝐿𝑆 ) (see Eq. (10)) and 𝐺 is defined by Eq. (4).
We recall that 𝑓0 = 𝛽21∕(2𝜋)

√

𝐸𝐼𝑦𝑦∕(𝜌𝐴𝐿4) is the fundamental mode
frequency of the unactuated beam.

One observes that the frequency depends on the acceleration. Con-
sequently, it is possible to define two figures of merit to quantify the
frequency sensitivity of the device. The (dimensional) sensitivity of the
frequency to the mass (side electrode) displacement is

𝑆𝐹𝑊𝑆
=

𝑑𝑓

𝑑𝑊𝑆

(28)

The sensitivity of the frequency to the acceleration is

𝑆𝐹 𝑎 =
𝑑𝑓
𝑑𝑎

=
𝑑𝑓
𝑑𝑞∗

𝑑𝑞∗

𝑑𝑎

= −
𝑓0𝑉 2

𝑆 𝐼
𝑆
2

2𝛽21
√

𝐼2
√

𝛽41𝐼2 − 𝑉
2
𝑆 𝐼

𝑆
2 �̃�

(

𝑑�̃�
𝑑𝑞∗

)(

𝑑𝑞∗

𝑑𝑎

) (29)

3.1. Device performance

To estimate the device performance calculations were carried out
for the sensing cantilever with the parameters corresponding to the
configuration A, Table 3. The adopted dimensions of the proof mass
are listed in Table 4 and and are consistent with commonly found in
realistic devices [27,29,58]. Since the device considered in this research
is designed to operate in an open loop (the suggested frequency based
sensing principle can be extended to the close loop operation as well),
the stiffness parameters of the proof mass suspension were evaluated
by setting the maximal mass deflection at the adopted maximal value
of the acceleration and at zero 𝑉𝑆 , namely

�̂� 𝑎𝑐𝑐
𝑆 =

9.81𝑎max𝑀
𝑘𝑀

≤ �̂�𝑚𝑎𝑥 (30)

From this condition, the required stiffness and the natural frequency of
the mass can be found

𝑘𝑀 =
9.81𝑎max𝑀

�̂�𝑚𝑎𝑥
, 𝑓𝑀 = 1

2𝜋

√

9.81𝑎max

�̂�𝑚𝑎𝑥
(31)

For the adopted maximal acceleration of 40 g, we set �̂�𝑚𝑎𝑥 = 1 μm,
or, in the non-dimensional coordinates, 𝑊𝑚𝑎𝑥 = 0.025. For the mass of
the adopted dimensions and for the adopted deflection limitation, the
natural frequency is 𝑓𝑀 = 3153Hz. Now the stiffness of the suspension
springs could be calculated (we neglect the influence of the electrostatic
force while evaluating the mass stiffness parameters)

𝑘𝑀 = 4𝜋2𝑓 2
𝑀𝑀 (32)
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Fig. 12. Dependency of the system on the acceleration for system with the parameters defined in Table 3, configuration A and to Table 4 for different 𝑉𝑆 (numbers). (a)
Non-dimensional relative deflection 𝑞∗ corresponding to the working point as a function of the acceleration. Acceleration is taken within a range such that Eq. (23) remains valid
for the adopted configuration of the system. (b) Frequency of the cantilever (c) Frequency sensitivity per acceleration (the scale factor SF 𝑎) (d) Frequency sensitivity per absolute
mass displacement (the scale factor SF𝑊𝑆

).

Table 5
Accelerometers sensitivity from the literature.
Reference Sensitivity (Hz/g) Resonant frequency (kHz) Relative sensitivity (ppm/g)

H. Zhang et al. [59] 30 27 1035
C. Li et al. [60] 21 36.9 569
B. Li et al. [27] 15.7 35.3 445
Y. Wang et al. [61] 28.4 140.7 201
N. St. Michel [23] 91 20.3 4483
J. Zhang et al. [20] 250 22 11364
Le Traon et al. [18] 24 60 400
Y. Shang et al. [29] 584 64.9 8998
C. Comi et al. [33] 10 2.4 4167
H. Ding et al. [62] 61 548.4 111
B. Yang et al. [63] 52.6 2.8 18786
X. Zou and A.A. Seshia [64] 100 149.5 669
M. Aikele et al. [65] 70 400 175
This work — at 𝑎 = 0 667 82.6 8072Mass freq. is 𝑓𝑀 = 1575Hz

The dependence between the relative (with respect to the electrode
bottom face) equilibrium deflection 𝑞∗ of the beam and the acceleration
is shown in Fig. 12(a). One observes that the non-dimensional and
dimensional beam displacements through the whole range of accelera-
tions of ±40 g are 𝛥𝑤∗ ≈ 0.015 and 𝛥�̂�∗ ≈ 0.6 μm, respectively. The scale
factor curve, representing the dependence between the frequency of
free undamped vibrations of the beam around the equilibrium point and
the acceleration, is shown in Fig. 12(b). The frequency is calculated us-
ing Eq. (27) with the relative working point deflection 𝑞∗ approximated
using the fit Eq. (26). The frequency to acceleration and frequency to
mass displacement scale factors, obtained using Eqs. (28) and (29),
respectively, are depicted in Figs. 12(d) and 12(c), respectively.

Our results suggest that for the adopted configuration relatively
high, when compared to the reported results, Table 5, sensitivity of
up to 𝑆𝐹 𝑎 ≈ 152 Hz/g, which corresponds to a relative sensitivity of
≈ 1700 ppm/g, can be achieved at ≈ −40 g. (It should be noted that
the direct comparison of the device performance is difficult since the
sensitivity depends on many factors such as the proof mass size and
design, dynamic range of the accelerometer and resonance frequency
of the mass and of the resonator. All these parameters are different in
different sources.) The sensitivity in the configuration corresponding to
zero acceleration is smaller and is 𝑆𝐹 𝑎 ≈ 117 Hz/g. This result suggests
that, by introducing an initial offset between the cantilever and the
mass, higher sensitivity at zero acceleration can be achieved. Fig. 13(a),
(b) present the frequency and acceleration scale factor, respectively, as
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Fig. 13. Device performance for different initial offsets (numbers) between the proof mass and the cantilever. The parameters of the system are in accordance with Table 3,
configuration A and Table 4. (a) Frequency of the cantilever. Inset depicts a positive initial offset between the side electrode and the cantilever (b) Frequency scale factor 𝑆𝐹 𝑎 (d)
Frequency scale factor 𝑆𝐹 𝑎 for the reduced proof mass frequency of 𝑓𝑀 ≈ 1575 Hz.

a function of the acceleration, for 𝑉𝑆 = 108 V and for different initial
offsets. The offset values correspond to the proof mass position with
respect to the initial, as fabricated, position of the cantilevers, when
no acceleration nor voltage are applied, (see inset on Fig. 13(a)). For
the initial offset of −2μm the maximum value for the scale factor is
obtained at 0.6 g. For zero acceleration, the sensitivity is 𝑆𝐹 𝑎 ≈ 167
Hz/g. Another observation is that in the configuration corresponding
to the maximal sensitivity the scale factor curve is close to linear,
which is a beneficial feature in sensors. The main conclusion from
these observation is that the best initial, as fabricated, configuration,
where the maximal sensitivity could be achieved, corresponds to the
positioning of the cantilever in such a way that its lower face is at the
distance of ≈ 2 μm above the bottom surface of the side electrode. This
could be achieved by fabricating the beam with an appropriate initial
offset. Note in passing that by reducing the frequency of the proof mass
from 𝑓𝑀 = 3153Hz to ≈ 1575Hz, which is consistent with the values for
high-end commercial accelerometers [58], the device sensitivity at zero
acceleration can be increased to 𝑆𝐹 𝑎 ≈ 667 Hz/g (relative sensitivity
of ≈ 8072 ppm/g), Fig. 13(c). Also, high end inertial sensors are
typically operated in a close loop mode. In this context the cantilever
strategically positioned in the location corresponding to the highest
sensitivity and linearity of the scale factor are ideally suitable for the
implementation in high end close loop accelerometers. While operated
in the close loop mode, the position of the cantilever can be controlled
rather than the position of the proof mass. The advantage is that the
small size high frequency low absolute stiffness cantilever can be re-
positioned using much smaller actuating voltage and in significantly
shorter time.

4. Conclusions

The work is generally motivated by the development of high-end
vibratory displacement or acceleration sensors based on resonant fre-
quency monitoring of a micromechanical structure. The key component
of the device is a vibrating cantilever actuated by fringing electrostatic
fields. Due to the unique suggested architecture of the actuating elec-
trodes, which are designed to be much thicker than the cantilever, the
sensing beam may manifest bistability in the configuration close to
its initial, ‘‘as fabricated", state. By applying the appropriate actuating
voltage, the device’s response can be strategically positioned at the
verge of bistability, where the sensitivity of the resonant frequency to
the cantilever deflections is enhanced. Specifically, when implemented
as an accelerometer, the cantilever is positioned in a proximity of a
proof mass whose displacements, caused by an inertial force, result
in a perturbation of the fringing electrostatic fields and affect the
cantilever’s natural frequency. By monitoring the sensing cantilever
resonant frequency, the acceleration is extracted. As opposed to the
resonant devices operated by gap-closing electrodes and prone to pull-
in instability, the snap-through collapse of the device suggested here is
not accompanied by contact and is fully reversible. On the other hand,
in contrast to the previously reported architectures based on the double
clamped curved bistable beams, the suggested device is based on the
cantilever architecture distinguished by low sensitivity to temperature
and residual stress.

The feasibility study of the suggested sensing principle is carried
out using the reduced order Galerkin model and the expected device
performance is estimated. The fit of the nonlinear fringing-field elec-
trostatic actuating force was built based on the results of the full-scale
finite elements analysis of the electrostatic problem. The accuracy of
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the approximate reduced order model was estimated through com-
parison with the results of the numerical finite differences solution
of the governing equations. First, the beam frequency sensitivity to
the deflections of the cantilever itself was investigated. In accordance
with the model results, by appropriately choosing the working point
(equilibrium) configuration, sensitivity of ≈ 20 Hz/nm can be achieved
in the 150 μm long, 1 μm thick Si cantilever. The static response of the
cantilever and consequently the working equilibrium configuration can
be tailored by changing the steady DC voltage applied to the fringing
fields electrodes. The developed bistability criterion, providing a crit-
ical value of the actuating voltage corresponding to the snap-through
collapse, can serve as a useful tool for evaluation of the working point
voltage. In contrast to the resonant sensors based on the electrostatic
softening the working point frequency of the device considered in the
present work is higher than the frequency in the initial unactuated
configuration. This unique feature allows to avoid a trade off between
the sensitivity and bandwidth commonly encountered in the bifurcation
based sensors. A possibility of implementation in an accelerometer was
explored as well using a generic model of a vibrating cantilever and
a proof mass interacting though fringing electrostatic field. The model
results show that high sensitivity of ≈ 160 Hz/g (for a 4 mm × 4 mm ×
20 μm Si proof mass with the frequency if 3153 Hz) and 6.5 Hz/nm
can be achieved using the suggested architecture. By reduction of the
proof mass frequency to 1575 Hz and by positioning the cantilevers
in an appropriate location the device sensitivity of 667 Hz/g can be
achieved. These numbers reflect the state-of-the-art performance in the
realm of resonant accelerometers of this kind, Table 5.

Although the present work does not address fabrication, a remark
should be made about possible influence of fabrication tolerances on
the device performance. Specifically, the fabrication process may result
in the appearance of horizontal (𝑥 or 𝑦 directions, Fig. 1(a)) mis-
alignment in the position of the beam between the electrodes. The
misalignment in the 𝑥 direction is effectively similar to the change
of the electrode length 𝐿𝑆 . Since 𝐿𝑆 ≫ 𝑔𝑆 and the dependence
between the electrostatic force and 𝐿𝑆 is linear, the 𝑥 misalignment
is less significant. To estimate the possible contribution of the lateral
misalignment in the 𝑦 direction we calculated numerically (2D finite
elements, see Section 2.3) the electrostatic force in the 𝑧 direction for
the case when the distance between the beam and the right and the
left electrodes are not identical. We found that for a misalignment
of 10% of the electrostatic gap 𝑔𝑆 the change in the out of plane
electrostatic force is 5.7%. Due to an intrinsic tunability property of
our device, the influence of the misalignment can be compensated by
applying an appropriate DC voltage to the side electrodes. Note also
that self-alignment fabrication process can be implemented, which will
effectively eliminate misalignment [66].

To conclude, we believe that the suggested architecture and oper-
ational principle of the simple, manufacturable and potentially down-
scalable device can be implemented in other types of sensors such as
force, mass and stress-based gas sensors.
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