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A B S T R A C T

We model the thermo-visco-hyperelastic behavior of soft tissues using a thermodynamic framework. For
this purpose, we develop a rheological model which can predict the stress–stretch behavior as well as the
temperature variation due to visco-hyperelasticity and rate-dependent damage of the matrix and fibers. In a
second stage, we carry out a set of cyclic uniaxial tensile tests to provide experimental data and calculate
the material constants for the constitutive model utilizing the genetic algorithm. Later, with the purpose
of validation, we determine the stress–stretch relation, and determine the temperature change in another
series of experiments, and draw comparisons with the model predictions. The results show that the material
behavior strongly depends on the temperature, strain rate and also the fiber’s direction. We determine that
the temperature change is more significant at high strain rate and initial temperature levels and that it is
necessary to use the developed coupled model.

1. Introduction

Thermal ablation and hyperthermia of tumors consists in the local
application of extreme temperatures, which can be either high or
low, to induce irreversible injury [1]. This method can be utilized to
cure soft tissue diseases [2–4]. The procedure is to apply controlled
temperature elevation by targeting the heating field to the cancerous
tumor and the enclosing tissue [5].

Most hyperthermic investigations have concentrated on the tumo-
ricidal effects of heat at 42–44 ◦C because at these temperatures
cancerous tissue has been observed to be more sensitive [6,7]. Although
elevated temperatures may have therapeutic benefit, host tissue toler-
ance is a limiting factor due to the irreversible damage to both normal
and neoplastic tissues [8] which should be evaluated in the surrounding
soft tissues. Beside experimental observations, thermo-mechanical con-
stitutive models can be employed to simulate soft tissues hyperthermia.
This simulation requires a thermo-mechanical basis.

To model soft tissues, a wide variety of studies utilize the isotropic
[9–11] and anisotropic hyperelastic energy functions [12,13] concern-
ing isothermal applications. To implement the anisotropic simulation of
biological tissues, several scholars have set the response as the sum of
matrix and fiber energy functions [14,15]. To capture the anisotropic
behavior of fiber-reinforced tissues, Gasser–Ogden–Holzapfel (GOH)
and Fung-type energy functions are popular [16–18]. In the absence of
viscous effects, these models are consistent with experimental results.
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For modeling the viscous behavior of soft tissues, it is essential
to consider the rate-dependent response of the material. The rate-
dependent response can be divided into equilibrium (elastic) and
non-equilibrium (viscous) parts. More sophisticated approaches have
been developed to simulate visco-hyperelastic isotropic [19,20] and
anisotropic [21–24] response of soft tissues. Among different tech-
niques, decoupling the Helmholtz free energy function into an elastic
and a viscous component for matrix and fiber is a successful method
[25,26].

To involve the effect of temperature in the elastic [27] or viscoelas-
tic [28–32] models, most of biomechanical studies recommend a linear
function for properties with the temperature. In other researches, the
structure of temperature dependent free energy functions has been
introduced and implemented using a thermodynamical view [33,34].
Although considering the thermal influences on properties and energy
functions will improve model accuracy, potential damage which may
be induced by the excessive temperature should also be considered.

Despite many notable articles on visco-hyperelastic-damage formu-
lation [35–38], based on a literature survey by Li [39] and to the
best of our knowledge, the temperature and damage coupled effect in
the thermo-visco-hyperelastic modeling of fibrous soft tissues has not
been thoroughly addressed yet. Hence, in this paper, rate-dependent
damage and thermo-visco-hyperelastic response are coupled. For this
purpose, in the first section, based on the thermodynamics in the
thermal dilated configuration, we develop the rheological model and
the coupled thermo-mechanical equation. The temperature terms are
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Fig. 1. Rheological model.

merged in the matrix (isotropic) and fiber (anisotropic) energy func-
tions, viscous flow rule, and rate-dependent damage. We perform a
set of cyclic experiments at different temperatures and strain rates on
bovine round muscle to verify the model and to obtain the material
parameters. The Genetic Algorithm (GA) is employed to determine the
material parameters. Also, we use another set of experiments to validate
the model.

2. Thermal and damage coupled rheological model

The developed constitutive rheological model is composed of ther-
mal and mechanical branches of the matrix and fibers as shown in
Fig. 1. This model evaluates the damage by coupling thermal and
mechanical effects of fibrous tissues.

2.1. Kinematic decomposition

To describe the kinematics of the model, according to Fig. 2, four
steps can be considered, which connect the reference configuration
𝛺0 to the current one 𝛺. Two intermediate steps 𝛺𝜃 and 𝛺 indicate
the thermal dilated and the relaxed configurations respectively. The
deformation gradient tensor 𝐅 as a function of time (𝑡) may be used to
map an element from the reference configuration to the current step:

𝐅 (𝐗, t) = FiA𝐞i ⊗ 𝐞A =
𝜕xi
𝜕XA

𝐞i ⊗ 𝐞A (1)

in which xi and XA refer to the spatial (current) and material (ref-
erence) coordinates of each particle respectively, 𝐞 is the unit vector
and ⊗ is the tensor product. Inspired by other researchers [40–42] and
according to Fig. 1, the deformation gradient tensor can be decomposed
multiplicatively into a thermal 𝐅𝜃 and a mechanical 𝐅M part:

𝐅 = 𝐅M𝐅𝜃 (2)

The mechanical deformation gradient tensor, 𝐅M will affect the matrix
behavior 𝐅m

M as well as the fibers 𝐅f
M. Since the model has a parallel

arrangement (Fig. 1), 𝐅m
M and 𝐅f

M will be equal:

𝐅M = 𝐅m
M = 𝐅f

M (3)

The matrix and fiber contributions are divided into purely elastic (𝐅i
 )

and viscoelastic (𝐅i
V) parts:

𝐅i
M = 𝐅i

 = 𝐅i
V i = m and f (4)

where m and f superscripts identify matrix and fiber respectively. The
viscoelastic deformation gradient is assumed to be composed as:

𝐅i
V = 𝐅i,

V 𝐅i,v
V i = m and f (5)

where 𝐅i,
V and 𝐅i,v

V are elastic and viscous parts of the viscoelastic
deformation gradient tensor. Merging equations (2), (4) and (5) leads
to:

𝐅i = 𝐅i,
V 𝐅i,v

V 𝐅𝜃 = 𝐅i
𝐅𝜃 i = m and f (6)

The velocity gradient tensor of a continuum (𝐥) is [43]:

𝐥 = �̇�𝐅−1 (7)

This tensor can be decomposed to the rate of stretching (𝐝) and the spin
tensor (ω):

𝐥 = 𝐝 +ω (8)

in which 𝐝 and ω are symmetric and skew-symmetric parts of 𝐥 respec-
tively:

𝐝 = 𝐥 + 𝐥T
2

(9)

ω = 𝐥 − 𝐥T
2

(10)

where superscript T denotes transpose. Considering Eqs. (6) and (7),
thermo-viscous velocity tensor (𝐥𝜃V) can be written as:

𝐥𝜃V =
(

�̇�i,
V 𝐅i,v

V 𝐅𝜃 + 𝐅i,
V �̇�i,v

V 𝐅𝜃 + 𝐅i,
V 𝐅i,v

V �̇�𝜃

)

𝐅−1
𝜃 𝐅−i,v

V 𝐅−i,
V

= �̇�i,
V 𝐅−i,

V + 𝐅i,
V �̇�i,v

V 𝐅−i,v
V 𝐅−i,

V + 𝐅i,
V 𝐅i,v

V �̇�𝜃𝐅−1
𝜃 𝐅−i,v

V 𝐅−i,
V

= 𝐥i,V + 𝐅i,
V 𝐥

i,v
V 𝐅−i,

V + 𝐅i,
V 𝐅i,v

V 𝐥𝜃𝐅
−i,v
V 𝐅−i,

V i = m and f (11)

in which 𝐥i,V = �̇�i,
V 𝐅−i,

V , 𝐥
i,v
V = �̇�i,v

V 𝐅−i,v
V are elastic and viscous parts

(𝐥V = 𝐥i,V + 𝐅i,
V 𝐥

i,v
V 𝐅−i,

V ). In this equation 𝐥𝜃 = �̇�𝜃𝐅−1
𝜃 is the thermal

velocity tensor. In a similar way, the thermo-elastic velocity tensor (𝒍𝜃 )
is as follows:

𝐥𝜃 =
(

�̇�i
𝐅𝜃 + 𝐅i

 �̇�𝜃
)

𝐅−1
𝜃 𝐅−i



= �̇�i
𝐅

−i
 + 𝐅i

 �̇�𝜃𝐅−1
𝜃 𝐅−i



= 𝐥i + 𝐅i
 𝐥𝜃𝐅

−i
 i = m and f (12)

where 𝐥i = �̇�i
𝐅

−i
 is the pure elastic velocity tensor.

2.2. Thermodynamics framework

In this subsection, by using the first and second thermodynamic
principles, we study the consistency of the model. Produced entropy
(H) by a continuum is equal to [44]:

H (t) = ∫𝛺
𝜂 (x, t) dV (13)
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Fig. 2. Deformation kinematic decomposition.

in which 𝜂 is the entropy per unit current volume. Temporal change
of H has two contributions, the reversible (due to the external heat
sources) and the irreversible (due to the dissipation) parts. The second
law of thermodynamics states that the irreversible part is never nega-
tive, which leads to the well-known Clausius–Duhemprinciple [45,46]
inequality in the current configuration (𝛺).

Considering that V, V𝜃 and V0 are current, thermal dilated and
reference volumes respectively, one can write dV = JMdV𝜃 = JdV0
where J = JMJ𝜃 = det (𝐅), JM = det

(

𝐅M
)

and J𝜃 = det
(

𝐅𝜃
)

are Jacobian
determinants. Therefore temporal change of 𝐻 can be written as:

D
Dt ∫𝛺

𝜂dV = D
Dt ∫𝛺𝜃

𝜂dV𝜃 = ∫𝛺𝜃

(

�̇� + 𝜂J−1𝜃
𝜕J𝜃
𝜕t

)

dV𝜃 (14)

Introducing isotropic thermal expansion coefficient (𝛼𝜃) [47]:

𝐅𝜃 = e𝛼𝜃𝜃𝐈 ≅
(

1 + 𝛼𝜃𝜃
)

𝐈 (15)

where 𝐈 and 𝜃 are unit matrix and temperature. According to Eq. (8)
one can write:

𝐥𝜃 = �̇�𝜃𝐅−1
𝜃 = f𝜃𝜃𝐈 (16)

in which f𝜃 =
𝜕𝛼𝜃
𝜕𝜃 𝜃+𝛼𝜃
1+𝛼𝜃𝜃

is a temperature dependent function of 𝛼𝜃 .
Considering (9), (10) and (16) indicates that ω𝜃 = 0 and 𝐥𝜃 = 𝐝𝜃 in
which 𝐝𝜃 is thermal rate of stretching. Also, J−1𝜃

𝜕J𝜃
𝜕t = tr

(

𝐝𝜃
)

= 3f𝜃 �̇�.
Therefore the Clausius-Duhem inequality in the 𝛺𝜃 configuration

can be written as:

�̇� + 𝜂tr
(

𝐝𝜃
)

+ 1
𝜃
∇.𝐐 − 1

𝜃2
𝐐.∇𝜃 − R

𝜃
≥ 0 (17)

in which 𝐐 and R are the Piola–Kirchhoff heat flux per unit surface area
and the heat sources per unit volume in 𝛺𝜃 respectively.

Implementing the first law of thermodynamics, the energy balance
in 𝛺𝜃 , can be written as follows:

∫𝛺𝜃

(

ė + etr
(

𝐝𝜃
))

dV𝜃 = ∫𝛺𝜃

[

σ∶ 𝐥 − div (𝐪) + r
]

JMdV𝜃 (18)

where σ, 𝐪, r and e are the Cauchy stress, heat source, heat flux,
and specific internal energy per unit volume respectively. Using the
Helmholtz free energy per unit volume (𝛹 ), the specific internal energy
(e) is divided as [44]:

e = 𝛹 + 𝜃𝜂 (19)

Based on the rule of mixture, we can decompose stress into matrix and
fiber parts as [48]:

σ =
∑

i=m and f
σi (20)

2.3. Formulation of the model

In this paper, we model fibrous soft tissue damage coupled with
the thermal and mechanical effects based on visco-hyperelasticity.
The proposed model deals with the time and temperature dependent
behavior of tissue (Fig. 1) including an equilibrium (elastic) and a non-
equilibrium (viscoelastic) responses. For this purpose, we employ the
first law of thermodynamics and the Clausius-Duhem inequality.

The stress power (σ∶ 𝐥) in the left hand side of Eq. (18) can be
calculated utilizing equations (11), (12) and (20) as:

σ∶ 𝐥 =
∑

i=m and f
σiV ∶ 𝐥𝜃V + σi ∶ 𝐥𝜃

=
∑

i=m and f

(

σiV ∶ 𝐥i,V + σiV ∶ 𝐅i,
V 𝐥

i,v
V 𝐅−i,

V

+ σiV ∶ 𝐅i,
V 𝐅i,v

V 𝐥𝜃𝐅
−i,v
V 𝐅−i,

V + σi ∶ 𝐥i
+σi ∶ 𝐅i

 𝐥𝜃𝐅
−i


)

(21)

where σiV and σi are viscous and elastic Cauchy stresses.
Knowing that the inner product of symmetric and skew-symmetric

second order tensor is zero and considering that σ is a second order
symmetric tensor, according to Eq. (8) we can write [43]:

σ∶ 𝐥 = σ∶ 𝐝 + σ∶ 𝐰 = σ∶ 𝐝 (22)

Adopting equation (22), the second Piola–Kirchhoff stress 𝐒 = J𝐅−1σ𝐅−T

and the Mandel stress 𝐌 = 𝐅T𝐅𝐒, the stress power per unit volume in
𝛺𝜃 , is obtained as follows:

σ∶ 𝐝 =
∑

i=m and f
J−1M

(

𝐒
i
V ∶ 𝐅T

M𝐝i,V 𝐅M +𝐌
i
V ∶ 𝐝

i,v
V +𝐌

i
V ∶ 𝐝𝜃

+𝐒
i
 ∶ 𝐅T

M𝐝i𝐅M +𝐌
i
 ∶ 𝐝𝜃

)

(23)

where 𝐌
i
V = 𝐅T

M𝐅M𝐒
i
V = 𝐅i,vT

V 𝐂i,
V 𝐅i,v

V 𝐒
i
V and 𝐌

i
 = 𝐅iT

 𝐅
i
𝐒

i
 = 𝐂i

𝐒
i
 in

which 𝐂i,
V = 𝐅i,T

V 𝐅i,
V and 𝐂i

 = 𝐅i,T
 𝐅i

 are elastic right-Cauchy–Green
deformation tensors respectively. 𝐝i,V , 𝐝i and 𝐝

i,v
V are the elastic and

viscous rate of stretching.
By using Eqs. (17), (18), (19) and (23), the Clausius-Duhem inequal-

ity will be read as:
∑

i=m and f

(

𝐒
i
V ∶ 𝐅T

M𝐝i,V 𝐅M +𝐌
i
V ∶ 𝐝

i,v
V +𝐌

i
V ∶ 𝐝𝜃 + 𝐒

i
 ∶ 𝐅T

M𝐝i𝐅M

+𝐌
i
 ∶ 𝐝𝜃

)

− �̇� − 𝛹 tr
(

𝐝𝜃
)

− �̇�𝜂 − 1
𝜃
𝐐.∇𝜃 ≥ 0 (24)

The Helmholtz free energy function is assumed to be a function of
the elastic right-Cauchy–Green deformation tensors of matrix and fiber
(𝐂m

 ,𝐂
m,
V ,𝐂f

 and 𝐂f ,
V ), temperature (𝜃), structure tensor (𝐀0) and

damage of matrix (𝜉m) and fiber (𝜉f ):

𝛹 = 𝛹
(

𝐂m,
V ,𝐂m

 ,𝐂
f ,
V ,𝐂f

 , 𝜃,𝐀0, 𝜉
m, 𝜉f

)

(25)

where

𝐀0 = a0 ⊗ a0 (26)

and a0 is the fiber direction unit vector. Thus, �̇� is determined as:

�̇� = 𝜕𝛹
𝜕𝐂m,

V

∶ �̇�m,
V + 𝜕𝛹

𝜕𝐂m

∶ �̇�m

 + 𝜕𝛹
𝜕𝐂f ,

V

∶ �̇�f ,
V + 𝜕𝛹

𝜕𝐂f


∶ �̇�f
 + 𝜕𝛹

𝜕𝜃
�̇�

+ 𝜕𝛹
𝜕𝜉m

�̇�m + 𝜕𝛹
𝜕𝜉f

�̇�f (27)
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Substituting Eq. (27) in (24) and considering that:

𝜕𝛹
𝜕𝐂i,

V

∶ �̇�i,
V = 𝜕𝛹

𝜕𝐂i,
V

∶
(

�̇�i, ,T
V 𝐅i,

V + 𝐅i, ,T
V �̇�i,

V

)

= 2 𝜕𝛹
𝜕𝐂i,

V

∶ 𝐅i, ,T
V 𝐝i,V 𝐅i,

V

(28)

𝜕𝛹
𝜕𝐂i



∶ �̇�i
 = 𝜕𝛹

𝜕𝐂i


∶
(

�̇�i,T
 𝐅i

 + 𝐅i,T
 �̇�i



)

= 2 𝜕𝛹
𝜕𝐂i



∶ 𝐅i,T
 𝐝i𝐅

i
 (29)

we can write:
(

𝐒
m
 − 2 𝜕𝛹

𝜕𝐂m


)

∶ 𝐅m,T
 𝐝m 𝐅

m
 +

(

𝐅m,v
V 𝐒

m
V𝐅

m,v,T
V − 2 𝜕𝛹

𝜕𝐂m,
V

)

∶ 𝐅m,T
V 𝐝m,

V 𝐅m,
V

+

(

𝐒
f
 − 2 𝜕𝛹

𝜕𝐂f


)

∶ 𝐅f ,T
 𝐝f𝐅

f
 +

(

𝐅f ,v
V 𝐒

f
V𝐅

f ,vT
V − 2 𝜕𝛹

𝜕𝐂f ,
V

)

∶

𝐅f ,T
V 𝐝f ,V 𝐅f ,

V

+𝐌
m
V ∶ 𝐝

m,v
V +𝐌

f
V ∶ 𝐝

f ,v
V + 𝜕𝛹

𝜕𝜉m
�̇�m + 𝜕𝛹

𝜕𝜉f
�̇�f − 1

𝜃
𝐐.∇𝜃

+
[

𝛼𝜃
(

𝐌
m
V +𝐌

m
 +𝐌

f
V +𝐌

f


)

∶ 𝐈 − 𝜕𝛹
𝜕𝜃

− 3𝛼𝜃𝛹 − 𝜂
]

�̇� ≥ 0 (30)

This inequality must hold for any arbitrary values; therefore, by using
the Coleman and Noll [49] common procedure, we can write:

𝐒
i
 = 2 𝜕𝛹

𝜕𝐂i


i = m and f (31)

𝐒
i
V = 2𝐅−i,v

V
𝜕𝛹
𝜕𝐂i,

V

𝐅−i,vT
V i = m and f (32)

𝜂 = 𝛼𝜃
∑

i=m and f

(

𝐌
i
 +𝐌

i
V

)

∶ 𝐈 − 𝜕𝛹
𝜕𝜃

− 3𝛼𝜃𝛹 (33)

Hence the inequality (30) is reduced to (34) to calculate the dissipation
():

 =
∑

i=m and f

(

𝐌
i
V ∶ 𝐝

i,v
V

)

− 𝜕𝛹
𝜕𝜉m

�̇�m − 𝜕𝛹
𝜕𝜉f

�̇�f − 1
𝜃
𝐐.∇𝜃 ≥ 0 (34)

This inequality is divided into two parts, the intrinsic 𝐼 and thermal
dissipations 𝜃 :

I =
∑

i=m and f

(

𝐌
i
V ∶ 𝐝

i,v
V

)

− 𝜕𝛹
𝜕𝜉m

�̇�m − 𝜕𝛹
𝜕𝜉f

�̇�f ≥ 0 (35)

𝜃 = 1
𝜃
𝐐.∇𝜃 ≥ 0 (36)

The first term in Eq. (35) is due to the viscoelastic response and the
other ones are damage dissipation terms. Also, 𝜃 is associated with
the irreversible energy flow. Combining equations (18), (19) and (23)
results in energy balance as follows:

∑

i=m and f

(

𝐒
i
V ∶ 𝐅T

M𝐝i,V 𝐅M +𝐌
i
V ∶ 𝐝

i,v
V +𝐌

i
V ∶ 𝐝𝜃

+𝐒
i
 ∶ 𝐅T

M𝐝i𝐅M +𝐌
i
 ∶ 𝐝𝜃

)

= 𝜃�̇� + 3𝛼𝜃 �̇�𝜃𝜂 + �̇�𝜂 + 3𝛼𝜃 �̇�𝛹 + �̇� − R + ∇.𝐐 (37)

With respect to Eq. (33) and given that 𝜂 = 𝜂
(

𝐂i,
V ,𝐂i

 , 𝜃, 𝜉
m, 𝜉f

)

:

�̇� =
𝜕𝜂

𝜕𝐂m,
V

∶ �̇�m,
V +

𝜕𝜂
𝜕𝐂m


∶ �̇�m

 +
𝜕𝜂

𝜕𝐂f ,
V

∶ �̇�f ,
V +

𝜕𝜂
𝜕𝐂f



∶ �̇�f
 +

𝜕𝜂
𝜕𝜃

�̇� +
𝜕𝜂
𝜕𝜉m

�̇�m +
𝜕𝜂
𝜕𝜉f

�̇�f

=
∑

i=m and f

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎢

⎣

𝛼𝜃
𝜕
(

𝐅i,vT
V 𝐂i,

V 𝐅i,v
V 𝐒

i
V ∶ 𝐈

)

𝜕𝐂i,
V

− 3𝛼𝜃
𝜕𝛹
𝜕𝐂i,

V

− 𝜕2𝛹
𝜕𝜃𝜕𝐂i,

V

⎤

⎥

⎥

⎥

⎦

∶ �̇�i,
V

+

⎡

⎢

⎢

⎢

⎣

𝛼𝜃
𝜕
(

𝐂i
𝐒

i
 ∶ 𝐈

)

𝜕𝐂i


− 3𝛼𝜃
𝜕𝛹
𝜕𝐂i



− 𝜕2𝛹
𝜕𝜃𝜕𝐂i



⎤

⎥

⎥

⎥

⎦

∶ �̇�i


⎫

⎪

⎬

⎪

⎭

+
𝜕𝜂
𝜕𝜃

�̇�

+
𝜕𝜂
𝜕𝜉m

�̇�m +
𝜕𝜂
𝜕𝜉f

�̇�f (38)

Also combining equations (27), (28), (29), (33), (35) and (38), the
thermo-visco-hyperelastic-damage (TVHD) coupling heat equation is:
(

�̇� + 3𝛼𝜃 �̇�𝜂
)

𝜃 = I − ∇.𝐐 + R (39)

where 𝐐 can be defined using the Duhamel’s law of heat conduction:

𝐐 = −𝐅−1
M 𝜅0𝐅−T

M Grad𝜃 (40)

in which 𝜅0 is the conductivity coefficient. To solve the partial differ-
ential equation (39), the thermal boundary conditions can be expressed
as:

−𝜅0
𝜕𝜃b
𝜕n

= h
(

𝜃b − 𝜃∞
)

(41)

where 𝜃b, n, h are the temperature level, normal unit vector and heat
transfer coefficient on the boundary respectively and 𝜃∞ is the ambient
temperature.

2.4. Energy functions and flow rules

In most researches, hyperelasticity and visco-hyperelasticity are
based on the existence of a free energy function [50–55].

In this study, the free energy function (25), is decoupled into the
mechanical (𝛹M) and thermal (𝛹 𝜃) contributions as:

𝛹 = 𝛹M

(

𝐂m,
V ,𝐂m

 ,𝐂
f ,
V ,𝐂f

 , 𝜃,𝐀0, 𝜉
m, 𝜉f

)

+ 𝛹 𝜃 (𝜃) (42)

2.4.1. Thermal free energy function
The thermal contribution is defined as [34]:

𝛹 𝜃 (𝜃) = −∫

𝜃

𝜃ref
Cvol

(

�̂�
) (

𝜃 − �̂�
) d�̂�

�̂�
(43)

where Cvol and 𝜃ref are the specific heat capacity at constant volume
and the reference temperature.

2.4.2. Mechanical free energy function
The mechanical free energy function consists of the isotropic (ma-

trix, 𝛹
m
M) and the anisotropic (fiber, 𝛹

f
M) parts:

𝛹M

(

𝐂i,
V ,𝐂i

 , 𝜃,𝐀0, 𝜉
m, 𝜉f

)

= 𝛹
m
M

(

𝐂m,
V ,𝐂m

 , 𝜃, 𝜉
m
)

+ 𝛹
f
M

(

𝐂f ,
V ,𝐂f

 , 𝜃,𝐀0, 𝜉
f
)

(44)

Additionally, each parts of the mechanical free energy function in-
volves pure elastic (𝛹

m
 and 𝛹

f
 for matrix and fiber respectively) and

viscous (𝛹
m
V and 𝛹

f
V for matrix and fiber respectively) divisions. This

method has been applied in another studies [56,57]. While the pure
elastic response handles quasi-static (equilibrium) loads, the viscous
contribution explains the rate dependency (non-equilibrium):

𝛹
m
M

(

𝐂m,
V ,𝐂m

 , 𝜃, 𝜉
m
)

= 𝛹
m

(

𝐂m
 , 𝜃, 𝜉

m) + 𝛹
m
V

(

𝐂m,
V , 𝜃, 𝜉m

)

(45)

and

𝛹
f
M

(

𝐂f ,
V ,𝐂f

 , 𝜃,𝐀0, 𝜉
f
)

= 𝛹
f

(

𝐂f
 , 𝜃,𝐀0, 𝜉

f) + 𝛹
f
V

(

𝐂f ,
V , 𝜃,𝐀0, 𝜉

f
)

(46)

2.4.2.1. Isotropic response. The isotropic free energy function has been
decoupled into pure elastic and viscous parts as stated earlier. The
pure elastic is also related to isochoric (𝛹

m,ich
 ) and volumetric (𝛹

m,vol
 )

responses:

𝛹
m

(

𝐂m
 , 𝜃, 𝜉

m) = 𝛹
m,ich
 + 𝛹

m,vol
 (47)

The first part depends on the pure elastic right Cauchy–Green tensor
(𝐂m

 ), temperature (𝜃) and matrix damage (𝜉m). The other part depends
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on the temperature and Jacobian JM = det
(

𝐅M
)

that presents volume
change. As the majority of soft tissues are composed of water, they
are usually assumed to be incompressible [22,58] and hence 𝛹

m,vol


in Eq. (47) can be neglected.
The matrix damage parameter (𝜉m) is used to relate the undamaged

(�̃�m
 ) and damaged (𝛹

m
 ) energy functions:

𝛹
m

(

𝐂m
 , 𝜃, 𝜉

m) =
(

1 − 𝜉m
)

�̃�m

(

𝐂m
 , 𝜃

)

(48)

To take into account the temperature effect, the temperature-dependent
Ogden model is selected [34]:

�̃�m
 =

∞
∑

j=1

𝜇j (𝜃)
𝛼j

(

𝜆1,
𝛼j + 𝜆2,

𝛼j + 𝜆3,
𝛼j − 3

)

(49)

where 𝜇j (𝜃) = 𝜇j
(

𝜃ref
)

+𝜂m
(

𝜃 − 𝜃ref
)

and 𝜇j, 𝜂m, 𝛼 are material parame-
ters and 𝜃ref is the reference temperature. In this equation 𝜆i, (i = 1, 2, 3)
are the elastic principal stretches of the isochoric part. The material
parameters of the Ogden model should satisfy the 𝜇j𝛼j ≥ 0 condition
[59].

Also, the matrix viscous response, 𝛹
m
V which is related to the elastic

part of viscous right Cauchy–Green tensor (𝐂m,
V ), temperature and

matrix damage, can be obtained with a similar manner [24]:

𝛹
m
V
(

𝐂m
 , 𝜃, 𝜉

m) =
(

1 − 𝜉m
)

�̃�m
V

(

𝐂m,
V , 𝜃

)

(50)

Substituting the elastic principal stretches of the viscous response
𝜆i,V(i = 1, 2, 3):

�̃�m
V =

∞
∑

j=1

𝜇V
j (𝜃)

𝛼Vj

(

𝜆1,V
𝛼Vj + 𝜆2,V

𝛼Vj + 𝜆3,V
𝛼Vj − 3

)

(51)

where 𝜇V
j (𝜃) = 𝜇V

j
(

𝜃ref
)

+ 𝜂m
(

𝜃 − 𝜃ref
)

. In this relation 𝜇V, 𝜂m and 𝛼V

are material properties.

2.4.2.2. Anisotropic response. The anisotropic energy function (𝛹
f
M) is

also decoupled into the pure elastic (𝛹
f
 ) and viscous (𝛹

f
V) parts in a

similar method. The undamaged elastic (�̃� f
 ) and the viscous responses

(�̃� f
V) are affected by damage of fiber 𝜉f as:

𝛹
f

(

𝐂f
 , 𝜃,𝐀0, 𝜉

f) =
(

1 − 𝜉f
)

�̃� f
 (52)

𝛹
f
V

(

𝐂f ,
V , 𝜃,𝐀0, 𝜉

f
)

=
(

1 − 𝜉f
)

�̃� f
V (53)

where 𝐂f
 is fiber’s pure elastic right Cauchy–Green tensor and 𝐂f ,

V is
elastic part of fiber’s viscous right Cauchy–Green tensor.

The temperature-independent function for elastic part is the one
proposed by Gasser et al. [14]. This function is improved by considering
the martial parameters as temperature dependent, hence, a new term
showing the temperature effect is added:

�̃� f

(

𝐂f
 , 𝜃,𝐀0

)

=

⎧

⎪

⎨

⎪

⎩

k1 (𝜃)
2k2

[

ek2
(

I∗f4,−1
)2

− 1

]

if I∗f4, > 0

0 otherwise
(54)

where k1 (𝜃) = k1
(

𝜃ref
)

+𝜂f
(

𝜃 − 𝜃ref
)

, in which k1, 𝜂f and k2 are material
parameters and If ,ich4, is the isochoric fourth strain invariant that depends
on the elastic right Cauchy–Green deformation tensor 𝐂f

 :

If ,ich4, = J−2∕3M a0 ⊗ a0 ∶ 𝐂f


Also,

�̃� f
V

(

𝐂f ,
V , 𝜃,𝐀0

)

=

⎧

⎪

⎨

⎪

⎩

kv1 (𝜃)
2kv2

[

ek
v
2

(

If ,ich4, −1
)2

− 1

]

if If ,ich4, > 0

0 otherwise
(55)

where kv1 (𝜃) = kv1
(

𝜃ref
)

+ 𝜂f
(

𝜃 − 𝜃ref
)

, in which kv1 , 𝜂f and kv2 are
material parameters and If ,ich4, is the isochoric fourth strain invariant
that depends on the viscous right Cauchy–Green deformation tensor
𝐂f ,
V .

The viscous deformation gradient 𝐅i,v
V and damage characterize

the history dependent effects. To complete the constitutive descrip-
tion, the evolutions of these internal state variables must be specified
constitutively.

2.4.3. Viscous flow rule
The viscous flow rule is used to evaluate 𝐅i,v

V [60]:

𝐥
i,v,ich
V = �̇�i,v,ich

V 𝐅−i,v,ich
V = �̇� i,v𝐍i,v i = m and f (56)

where �̇� i,v is the accumulated viscous strain rate and 𝐍v is the direction
tensor of viscous flow:

𝐍i,v =
σi,devV

‖

‖

‖

σi,devV
‖

‖

‖

=
σi,devV

√

tr
(

σi,devV σi,devV

)

i = m and f (57)

Here σi,devV is the deviatoric part of the Cauchy stress tensor and ‖

‖

‖

σi,devV
‖

‖

‖

is the effective viscous flow stress by the Frobenius norm. Many studies
consider the viscous strain rate as a function of effective viscous flow
stress [61,62]:

�̇� i,v = �̇� i, v
(

‖

‖

‖

σi,devV
‖

‖

‖

)

i = m and f (58)

�̇� i,v = �̇� i,v0
|

|

|

𝜆i,vV − 1 + 𝜁 i||
|

ni ⎛
⎜

⎜

⎝

‖

‖

‖

σi,devV
‖

‖

‖

𝜏 i0

⎞

⎟

⎟

⎠

zi
(

𝜃
𝜃ref

)𝛿i

i = m and f (59)

where �̇� i,v0 , 𝜁 i, 𝜏 i0, z
i, ni and 𝛿i are material parameters and 𝜆i,vV is the

viscous stretch:

𝜆i,vV =
√

1
3
tr
(

𝐅i,v,ich
V 𝐅i,v,ich,T

V

)

i = m and f (60)

in which 𝐅i,v,ich
V is the isochoric part of 𝐅i,v

V .

2.4.4. Rate dependent damage
According to the formulation, it is necessary to calculate the dam-

age at each stage. Equations for damage evolution must satisfy some
important conditions which are given by Peña [63]. In the majority
of studies, the damage criterion is defined based on the distortional
(isochoric) energy (�̃� i,ich) as [35,64,65]:

𝜑i =
√

2�̃� i,ich
(

𝐂i (t)
)

− pit = 𝛯 i
t − pit ≤ 0 i = m and f (61)

where pit is the damage threshold at the current time [64]. With respect
to Eq. (61), 𝜑i = 0 defines the outer boundary of the undamaged
volume.

Damage evolution has an irreversible rate equation as [64]:

d𝜉i

dt
= 𝜒 i ⟨𝛤

(

𝜑i)⟩ h
i (
𝛯 i
t , 𝜉

i) i = m and f (62)

dpit
dt

= 𝜒 i ⟨𝛤
(

𝜑i)⟩ = 𝜒 i ⟨𝛤
(

𝛯 i
t − pit

)⟩

i = m and f (63)

where 𝜒 is the damage viscosity coefficient, ⟨⋅⟩ denotes the Macaulay
bracket, 𝛤

(

𝜑i) is the viscous damage flow function and h
i

is the
damage evolution function. Linear viscous damage can be considered
as 𝛤

(

𝜑i) = 𝜑i and ṗit = 𝜒 i𝜑i [64,65]. It is common to assume h
i

to be independent of 𝜉i [35,65]. Damage can be evaluated using an
exponential function [65]:

h
i
= aibi exp

[

ai
(

𝛯 i
0 − 𝛯 i

t
)]

i = m and f (64)

where ai and bi are material parameters and 𝛯 i
0 denotes the charac-

teristic initial damage threshold for matrix and fiber. In this study, we
couple damage with temperature using an Arrhenius-type temperature
term as:

h
i (
𝛯 i
t , 𝜃

)

= h
i (
𝛯 i
t
)

exp
(

−
𝜃ref
𝜃

)

i = m and f (65)

where 𝜃ref is the reference temperature.
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Fig. 3. Sample preparation and experimental setup.

3. Numerical solution method

The developed model can be employed to predict the fibrous soft
tissue’s temperature and rate dependent behavior. For this purpose,
solving the described equations is essential. Firstly, we calculate the
material parameters of these equations using a metaheuristic optimiza-
tion technique. We also obtain experimental data using a set of uniaxial
cyclic tests on bovine round muscle. In the following, we explain the
solution method for the uniaxial form of the model.

3.1. Uniaxial solution algorithm

The solution steps can be employed in an incremental approach:

1. Initial deformation gradient, temperature and damage are
known/measured (initial conditions);

2. Calculate elastic and viscous stresses at tn using Eqs. (31) and
(32) (See Appendix for the uniaxial solution);

3. Using an ODE solver to solve Eqs. (56), (57) and (59), calculate
𝐅i,v
V at tn+1. In this paper, we use the Runge–Kutta method [66].

4. Calculate 𝛯 i
tn+1

=
√

2�̃� i,ich
(

𝐂i
(

tn+1
))

i = m and f ;
5. Check damage criterion 𝜑i

tn+1
= 𝛯 i

tn+1
− pit i = m and f :

5.1. If 𝜑i > 0 (damage is taking place) then update damage
parameters employing equations (62), (63) and (65). For
this purpose, Ju [64] proposed the backward Euler finite
difference method:

𝛥𝜒 i
tn+1

= 𝜒 i (tn+1 − tn
)

i = m and f (66)

Table 1
Thermal material properties tissue [69].
𝜃 (◦C) 25 30 35 40 45

Cvol (
J

kg ◦C
) 3627 3629 3631 3634 3637

𝛼𝜃 (
1
◦C
) 2.4 × 10−4 2.6 × 10−4 2.9 × 10−4 3.2 × 10−4 3.4 × 10−4

pitn+1 =
pitn + 𝛥𝜒 i

tn+1
𝛯 i
tn+1

1 + 𝛥𝜒 i
tn+1

i = m and f (67)

𝜉itn+1 = 𝜉itn + 𝛥𝜒 i
tn+1

𝜑i
tn+1

h
i
tn+1

i = m and f (68)

5.2. If 𝜑i ≤ 0 then:

𝜉itn+1 = 𝜉itn i = m and f (69)

6. Calculate 𝜂 and �̇� using Eqs. (33) and (38). For this aim, we take
the thermal constants presented in Table 1.

7. Calculate intrinsic dissipation (I) employing equation (35);
8. Solve partial differential equation (39) for 𝜃tn+1 distribution.

In this paper, we use a combination of the backward finite
difference and the four stage Lobatto IIIA formula [67]. Also,
we take the conductivity coefficient to be equal to 0.4 W/m K
[68].
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Table 2
Samples description and case study numbers (Part (a) are used to obtain the constitutive parameters; Part (b) and (c) are
used to validate the results).

Table 3
Characteristics of the GA.

GA type Continuous

Population size 30
Mutation rate 0.2
Pairing method Rank weighting
Selection rate 0.5

3.2. Obtaining constitutive parameters using the genetic algorithm

As a metaheuristic technique, we develop the well-known contin-
uous Genetic Algorithm (GA) to calculate the 28 unknown material
parameters in the model. This method was successfully used previously
for determining the material properties in tissues [70–72]. Based on
the natural evolution, GA optimizes the initial random population of
material parameters by a proper selecting rule.

In the first step, GA generates an initial random population. In the
next action, the objective function (O) is evaluated and data are sorted
based on their fitness. In this paper, the objective function is defined
using the least square error between the experimental data (σExp) and
model predictions (σModel):

O =

√

√

√

√

√

√

1
N

N
∑

j=1

⎛

⎜

⎜

⎝

∫
tend,j
0

‖

‖

‖

σModel
j − σExpj

‖

‖

‖

dt

max ‖‖
‖

σExpj
‖

‖

‖

⎞

⎟

⎟

⎠

2

(70)

where N is the total number of experiments used to obtain constitutive
parameters, tend,j is time at the end of each experiment and ‖⋅‖ denotes

Table 4
Calculated biomechanical properties for (a) Matrix and (b) Fibers of bovine round
muscle.

(a) 𝜇 (kPa) 𝛼 𝜇 v (kPa) 𝛼v 𝜂m ( kPa
K
) 𝛿m �̇�m,v

0 (s−1)
27.00 5.80 96.00 2.50 −800 1.70 0.59

zm nm 𝜏m0 (MPa) 𝜁m bm 𝜒m am

1.20 1.60 5.40 0.55 2.60 1000 2.40

(b) k1 (kPa) k2 kv1 (kPa) kv2 𝜂f ( kPa
K
) 𝛿f �̇� f ,v0 (s−1)

28.00 0.87 120.00 6.40 −300 3.00 0.64

zf nf 𝜏f0 (MPa) 𝜁 f bf 𝜒 f af

0.39 0.62 370.00 0.79 5.90 99 8.92

the Euclidean norm. Also:

σModel = σm + σf = JM𝐅M

(

𝐒
m
 + 𝐒

m
V + 𝐒

f
 + 𝐒

f
V

)

𝐅T
M (71)

σExp =

⎡

⎢

⎢

⎢

⎣

ForceExp
Area0

(

1 + 𝛥Lexp

L0

)

0 0

0 0 0
0 0 0

⎤

⎥

⎥

⎥

⎦

(72)

in which ForceExp, Area0, L0 and 𝛥Lexp are the force, initial cross-
sectional area, initial length and change in the length respectively all
measured during the tests.

Later, GA eliminates the inappropriate half of the population mem-
bers. Among the surviving members, the algorithm chooses parents
who will generate new data. We adopt the rank weighting technique

7
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Fig. 4. Experimental cyclic tension test results vs. model predictions.

in which selecting depends on the rank probability (Pn) [73]:

Pn =
Npop
2 − n + 1

∑

Npop
2

n=1 n

(73)

where Npop is the population size. Each parent pair produces two new
members with continuous crossover operator; therefore, Npop remains
fixed. Our next move is to apply the mutation operator and evaluate
the value of the objective function for the new members [73]. The
above steps have been repeated until the solution converged. The GA
parameters are defined in the results section.

4. Experimental procedure

A set of 39 uniaxial tensile cyclic experiments are performed at
different levels of temperature and strain rates, parallel and normal
to the tissue’s fiber. For this purpose, in this study, we used bovine
muscle because of its consistent muscle fiber orientation [74,75]. The
temperature levels are 25 ◦C, 35◦C, and 45 ◦C. Also, the strain rates
are 0.02% mm/mm/s and 0.2% mm/mm/s. The temperature levels are
selected based on the range of temperature used in the hyperthermia
procedure.

Slices of test tissues were cut with a thickness of 5 mm using a
predesigned fixture. Then, we punched samples by the mold (Fig. 3a)

8
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Fig. 5. Validating results (experimental cyclic tension test results vs. model predictions).

Fig. 6. Temperature evolution with stretch ratio predicted using developed model and experimental measurements; Initial temperature = 25 ◦C , strain rate = 1.8% s−1 and loading
direction parallel to the fibers.

into a dog bone shape (Fig. 3b) to minimize the end effects due to the
clamping force. The punches were done parallel to the tissue’s fiber (𝛽 =
0◦) and normal to them (𝛽 = 90◦). We used a bio-bath of saline solution
to prevent dehydration at high-temperature levels. The experiments
were performed employing a uniaxial tensile testing machine. The
specimens were mounted between two predesigned clamps (Fig. 3c)
and then connected to the testing machine (Fig. 3d). Each test was
repeated three times.

Table 2 summarizes the test conditions and loading pattern for
each sample. The resultant load and displacement data of the samples
were used to calculate stress and stretch ratio (the average values of
initial length (L0) and cross-sectional area (Area0) were 45.0 mm and
62.5 mm2 respectively; Eq. (72)).

Also, to validate the temperature variation predicted by solving Eq.
(39), we carried out a tensile test is carried out at 25 ◦C and with the

strain rate of 1.8% mm/mm/s. Temperature elevation during the test
was measured and compared to the calculated values.

5. Results

5.1. Experimental results and obtaining constitutive parameters

As mentioned before, experiments have been done in different
test conditions (Table 2). The output of each experiment is a load–
displacement variation diagram. These results are divided into two
parts. The results of the first set of tests are introduced to the GA code
to determine the material properties of the model (Table 2(a)) and
the results of the second set is used to validate the results (Table 2(b)
and (c)). Table 3 defines the characteristics of the GA. The calculated
material parameters are listed in Table 4. Fig. 4 compares the model
prediction and the experimental results used to determine the material
properties.
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Fig. 7. Experimental cyclic tension test results vs. predictions with and without the thermal damage effect.

5.2. Model validation

As mentioned before, experimental data are divided into two parts.
Those categorized in Table 2(a) are used to obtain the material param-
eters; while the second category (Table 2(b)) is employed to validate
the model predictions. The model stress–stretch predictions and the
experimental results are compared in Fig. 5. It can be seen that there is
good agreement between experimental data and the model predictions
with a maximum error of 6.72%:

Error =
‖

‖

‖

σModel − σExp‖‖
‖

‖

‖

σExp‖
‖

× 100% (74)

The sources of this error can be divided in three reasons: (I) slight ran-
domness of the fiber directions and fiber’s homogeneity, (II) accuracy
of the measuring equipment and (III) compromise in the optimization
technique.

According to the TVHD coupling partial differential equation
(Eq. (39)), mechanical effects will cause temperature change in the
tissue. To investigate the capability of the developed model to predict
this effect, the temperature rise of a sample in a tensile test is measured
and compared to the model predictions (Fig. 6). This experiment is
carried out with 𝛽 = 0◦ and �̇� = 1.8% mm∕mm∕s. It can be seen that
there is good agreement between the calculated results and test data.

5.3. Discussion

In this section we study the effect of different parameters including
the strain rate and the sample initial temperature. Figs. 4 and 5 reflect
the effect of strain rate and temperature on the stress–stretch behavior
of the tissue. These figures show that by increasing the temperature
level and/or decreasing the strain rate, the tissue softens and deforms
with lower applied stress levels. For example, at �̇� = 2 × 10−4 1∕s, by
increasing the temperature from 25 ◦C to 45 ◦C (cases studies N25R1
and N45R1) the required stress to stretch the tissue to 𝜆 = 1.16, reduces
from 62.3 to 47.5 kPa. On the other hand, at 25 ◦C, by increasing the
strain rate from 2×10−4 1∕s to 2×10−3 1∕s, the required stress to stretch
the tissue to 𝜆 = 1.16, increases from 62.3 to 94.2 kPa.

Also, these figures show the stress–stretch behavior for the tissues
with different fiber directions: 𝛽 = 0◦ and 𝛽 = 90◦. The results show that

when the loading direction is normal to the fibers, the tissue behaves
softly. In other words, the required stress to stretch the tissue reduces
significantly. For example, at �̇� = 2 × 10−4 1∕s and 25◦C, by changing
the load direction from 𝛽 = 0◦ and 𝛽 = 90◦, (cases studies N25R1 and
P25R1) the required stress to stretch the tissue to 𝜆 = 1.16, increases
from 62.3 to 81.6 kPa.

To demonstrate the importance of the thermal damage effects, Fig. 7
presents results based on the existing damage model without or with
thermal effects in terms of one tensile test results (Case P45R1). The
maximum error with thermal damage effects is 1.96%, and this figure
shows that ignoring thermal effects on the fiber and matrix will increase
the error to 28.25% and 37.81% respectively. Ignoring the thermal
effects on both matrix and fiber damage which is Peña’s model [65]
in the form of Eq. (64), produces a 68.03% error compared with
the experimental data. Additionally, the results show that the thermal
damage effect on the matrix is more significant than the fiber.

Fig. 8 represents the isochronous stress contours with the initial
temperature and strain rate. As can be seen, when the direction of the
load is parallel with fibers, the stress is more dependent on the strain
rate and temperature. Also, at high strain rates, stress variation with
temperature is approximately steady.

To illustrate the effect of the coupled TVHD model, Fig. 9 represents
the temperature elevation contours at 𝜆 = 1.25 concerning the initial
temperature and strain rate. This figure shows that the temperature
elevation depends on the initial temperature and strain rate. Based
on these contours, at high temperature or strain rates, the error in
calculating the temperature level ( 𝛥𝜃𝜃0 ) increases. For example, at 40 ◦C
and �̇� = 0.015 mm/mm/s, error in the uncoupled model increases to
5%. Also, under 0.005 mm/mm/s, error will be less than 2%. Assuming
the quasi-static behavior for loadings with strain rates between 10−5

to 10−1 mm/mm/s, the results show that it is necessary to employ the
coupled TVHD model to obtain more accurate results, especially in high
strain rates. It is because lower temperature elevations are critical in
soft tissues compared to the other materials.

6. Conclusions

A coupled thermo-visco-hyperelastic damage (TVHD) model is de-
veloped to predict the behavior of soft fibrous tissues. Also, the con-
stitutive parameters of the model are obtained using the experimental
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Fig. 8. Initial temperature–strain rate map with isochronous stress (kPa) contours for loading directions of (a) normal and (b) parallel to the fibers at 𝝀 = 1.25.

data and genetic algorithm based optimization technique. The results
show that:

• Comparison of the experimental data and model predictions,
reveals that it is necessary to use the developed coupled TVHD
model to obtain more accurate results.

• At high strain rate and temperature levels, the temperature
change due to the coupled thermo-mechanical effects is more
significant. This is more important for the loadings which are
parallel to the fibers.

• Not only it is essential to use the coupled TVHD model, but also,
including the thermal damage effects considerably reduces the
error of the predictions (from 68.03% to 1.96% in one case study).

• The thermal damage effect is more dominant in the matrix than
the fiber of the tissue.

• The stress in the direction of the fibers is more dependent on the
strain rate and temperature.
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Appendix. Uniaxial stress solution

For the uniaxial test, mechanical deformation gradient can be as-
sumed as follows:

𝐅M =
⎡

⎢

⎢

⎣

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

⎤

⎥

⎥

⎦

(A.1)

As mentioned before, soft tissue is supposed to be incompressible and
according to the Jacobian determinants the constraint 𝜆1𝜆2𝜆3 = 1
should be satisfied. Considering that 𝜆2 = 𝜆3:

𝐅i
M =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜆i 0 0

0 1
√

𝜆i

0

0 0 1
√

𝜆i

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜆i,V 0 0

0 1
√

𝜆i,V

0

0 0 1
√

𝜆i,V

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

×

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜆i,vV 0 0

0 1
√

𝜆i,vV

0

0 0 1
√

𝜆i,vV

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

i = m and f (A.2)
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Fig. 9. Initial temperature–strain rate map with isochronous temperature evaluation (𝛥𝜽) and error (100 𝛥𝜽
𝜽0
) contours for loading directions of (a) normal and (b) parallel to the

fibers at 𝝀 = 1.25.

The uniaxial elastic stress can be calculated employing equation (A.2)
and using Eqs. (31), (46) and (47) for matrix and (A.1), (31), (50) and
(52) for fiber:

𝐒
m
 =

(

1 − 𝜉m
)

𝜇 (𝜃)
[

(

𝜆m
)𝛼−2 − 2

(

𝜆m
)− 𝛼

2 −2
]

(A.3)

𝐒
f
 =

⎧

⎪

⎨

⎪

⎩

2k1 (𝜃)

J
2
3
M

(

I∗f4, − 1
)

[

ek2
(

I∗f4,−1
)2

− 1

]

dev
(

a0 ⊗ a0
)

if I∗f4, > 0

0 otherwise
(A.4)

The uniaxial viscous stress can be calculated employing equations (32)
and (A.2) and also using Eqs. (48) and (49) for matrix and (51) and
(53) for fiber.
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