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A B S T R A C T

A well-known mixture approach treats magnetorheological materials as mixtures composed of a fluid con-
tinuum and an equivalent solid continuum. In the framework of extended irreversible thermodynamics,
this obtains a complete physical-mathematical model characterized by interesting evolutionary constitutive
equations which, in the pre-yield region, show the co-presence of elastic, viscoelastic, and viscoplastic
behaviors. Due to its high computational complexity, it is necessary to find a qualitatively corresponding model
that, under the same conditions, provides easy-to-implement evolutionary constitutive equations. In this paper,
the authors verify the correspondence of the simple shear flow and thinning behavior of the Herschel–Bulkley
plastic component (predominant in the pre-yielding region) from a known experimental model with a reduced
computation load with elastoviscoplastic generalization under the framework of generalized standard materials.

1. Introduction to the problem

Magnetorheological Fluids (MR Fluids), consisting of polarizable
fine particles of suspended ferromagnetic material in mineral oil or
aqueous solution, are controllable fluids whose rheological charac-
teristics change abruptly and reversibly depending on the impressed
magnetic field 𝐇 [1–4]. In the absence of 𝐇, these fluids behave as
liquids with a viscosity comparable to that of mineral oils. Applying 𝐇,
a magnetic moment is induced on the particles which forces the dipoles
to join in chains, parallel to the lines of force of 𝐇, to form columns
that reduce fluid mobility and increase viscosity [5,6]. To overcome the
friction that arises from the mutual movement of the columns, we need
to overcome a threshold of shear stress, 𝜏0 (yield stress), depending on
the impressed 𝐇 [7]. Varying |𝐇|, 𝜏0 will vary, controlling the fluid’s
ability to transmit forces [8,9]. To determine the intended use of a
device containing MR fluid, the pre-yielding phase assumes particu-
lar importance. From a theoretical point of view, in recent decades,
scientific research has produced sophisticated and complete but com-
putationally prohibitive models [10–14]. Among them, Chen & Yeh’s
model stands out1 in the framework of Extended Irreversible Thermo-
dynamics (EIT) in the sense of Jou et al. [15] considered MR material

∗ Corresponding author.
E-mail addresses: mario.versaci@unirc.it (M. Versaci), apalumbo@unime.it (A. Palumbo).

1 Elaborated by K.C. Chen, National Chi-Nan University (Taiwan) & C.S. Yeh, National Taiwan University (Taiwan).
2 𝛾̇ is a tensor that becomes a scalar in the rheometer direction.
3 𝜏 is a tensor, but, in the rhemometer direction, it can be considered scalar.
4 Elaborated by D.S. Resiga, University of Timisoara (Romania).

to be a mixture of a fluid continuum and an equivalent solid continuum
and obtained evolutionary constitutive equations. This model, around
the yield, explicitly highlights the co-presence of elastic, viscoelastic,
and viscoplastic behaviors [16]. In parallel, researchers have worked
hard on the experimental modeling of industrial interest to formulate
models with low computational complexity that are respectful of the
different macroscopic behaviors of MR fluids when the shear rate in
the rheometer direction, 𝛾̇, is variable2 [17–19]. These models fix the
electrical current 𝐼 (scalar value) and fit experimental measurements
of shear stress in the rheometer direction, 𝜏,3 depending on both 𝛾̇ and
temperature 𝜃, producing the so-called flow curves, 𝜏(𝛾̇ , 𝜃), which are
significantly related to the magnetorheological behavior of the fluid.
Usually, 𝜏(𝛾̇ , 𝜃) provides evidence of quasi-linear behavior within a
given shear rate value, indicated by 𝛾̇∗, beyond which the non-linearity
is markedly evident. So, for 𝛾̇ < 𝛾̇∗, Newtonian models are used, while
for 𝛾̇ > 𝛾̇∗, the modeling takes place through plastic formulations. Then,
we consider 𝜏(𝛾̇ , 𝜃) as a weighted sum of two models; the first one
is Newtonian, while the second one is non-linear so that for 𝛾̇ > 𝛾̇∗,
plasticity prevails. For example, in the D.S. Resiga model [20],4 the
plastic contribution is modeled by means of a Herschel–Bulkley ap-
proach. It therefore appears necessary to find a link between theoretical
completeness and experimental pragmatism in order to obtain, at least
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in principle, translations with a low computational load of theoretical
models that are difficult to implement. In particular, in this work,
we provide evidence of the qualitative link between the theoretical
mixture model elaborated by Chen & Yeh and the experimental D.S.
Resiga model in simple shear flow with thinning behavior. However,
it is observed that, in the pre-yield region, the D.S. Resiga model is
identified only by the power-law Herschel–Bulkley plastic component,
which is not evolutionary and, moreover, does not explicitly manifest
the co-presence of elastic, viscoelastic, and viscoplastic behaviors as
evidenced, under the same conditions, by the Chen & Yeh model.
Hence, the need to generalize the Herschel–Bulkley plastic component
of the D.S. Resiga model to achieve its elastoviscoplastic formulation
(EVP) suitable for qualitative comparison with the Chen & Yeh model.
This was possible by using the framework of the Generalized Standard
Materials (GSMs) according to the Halphen & Nguyen approach [21].
The correspondence between the two models was then formalized by
means of a set of propositions with qualitative statements.

The paper is organized as follows: Section 2 shows the main results
of the Chen & Yeh theoretical model, which was to formulate, in the
framework of the EIT, evolutionary constitutive equations that are valid
in the pre-yield region . Section 3, describes, in detail, the structure of
the D.S. Resiga experimental model, specifying its particularization in
the pre-yield region. Section 4 reports, in the framework of the GSMs,
the 3𝐷 dimensionless EVP generalization of the Herschel–Bulkley plas-
tic component of the D.S. Resiga model obtaining, even in this case,
evolutionary constitutive equations that are useful for the comparison
with the theoretical model. Section 5 highlights the importance, if the
comparison is feasible, for the theoretical model to be formulated in the
framework of the EIT and for the experimental model to be structured
within the GSMs. The details of the qualitative correspondence between
the two approaches are provided . In particular, two Remarks justify
the operational choices related to the plasticity criteria function, and
subsequently, five Propositions with qualitative statements detail the
correspondence between the theoretical model and the experimental
one under the chosen operating conditions. Since the adopted approach
implies a simplification of the Herschel–Bulkley EVP generalization,
Section 6 reports some numerical tests which, by comparison with two
benchmarks that are well-known in literature, show that the loss of
information contained in this simplification can be considered negli-
gible. Finally, some summary considerations and future perspectives
conclude the work. To facilitate reading, Tables 1 and 2 provide lists
of the symbols used and the acronyms exploited.

2. Chen & Yeh mixture model: An overview

2.1. Positions and velocities

MR materials, under the effect of external |𝐇| are endowed with
a body-centered tetragonal structure with lower energy with respect
to other structures [16] . Chen & Yeh considered MR material to be
a mixture composed by a fluid continuum, 𝐹 , and an equivalent solid
continuum, 𝑆, that simultaneously occupy the same region of space.
𝑆 and 𝐹 continua are indicated by the material points 𝜉𝐹 and 𝜉𝑆 ,
respectively. In addition, the material points are identified by their
position vectors 𝜉𝐹𝛼 and 𝜉𝑆𝛼 . For each instant 𝑡, positions are assigned
to material points 𝑥𝐹𝑖 = 𝑥𝐹𝑖 (𝜉

𝐹
𝛼 , 𝑡) and 𝑥𝑆𝑖 = 𝑥𝑆𝑖 (𝜉

𝑆
𝛼 , 𝑡). According the

hypotheses made above, 𝑥𝑖 = 𝑥𝐹𝑖 = 𝑥𝑆𝑖 , from which the velocity vectors
are determined to be

𝑣𝐹𝑖 =
𝑑𝐹 𝑥𝐹𝑖
𝑑𝑡

; 𝑣𝑆𝑖 =
𝑑𝑆𝑥𝑆𝑖
𝑑𝑡

(1)

with

𝑑𝑆
𝑑𝑡

= 𝑑
𝑑𝑡

+ (𝑣𝑆𝑘 − 𝑣𝑘)
𝜕
𝜕𝑥𝑘

= 𝑑
𝑑𝑡

−
(𝜌𝐹 𝑣𝑅𝑘

𝜌

) 𝜕
𝜕𝑥𝑘

(2)

𝑑𝐹
𝑑𝑡

= 𝑑
𝑑𝑡

+ (𝑣𝐹𝑘 − 𝑣𝑘)
𝜕
𝜕𝑥𝑘

= 𝑑
𝑑𝑡

+
(𝜌𝑆𝑣𝑅𝑘

𝜌

) 𝜕
𝜕𝑥𝑘

(3)

material derivatives for fixed 𝜉𝐹𝛼 and 𝜉𝑆𝛼 , respectively, and the usual
summation convention for the double contraction of indices is used.
𝜌𝐹 , 𝜌𝑆 and 𝜌 indicate the densities of the fluid, solid, and the whole
mixture, so that 𝜌 = 𝜌𝐹 + 𝜌𝑆 , the mean velocity of the mixture, at
(𝑥𝑖, 𝑡), is written as 𝑣𝑖 = 𝑥̇𝑖 =

𝑑𝑥𝑖
𝑑𝑡 = 1

𝜌 (𝜌
𝐹 𝑣𝐹𝑖 + 𝜌𝑆𝑣𝑆𝑖 ), while the diffusion

velocities are defined as 𝑣𝑖
𝐹 = 𝑣𝐹𝑖 − 𝑣𝑖; 𝑣𝑖

𝑆 = 𝑣𝑆𝑖 − 𝑣𝑖, and the relative
velocity vector of the fluid to the solid is given by 𝑣𝑅𝑖 = 𝑣𝐹𝑖 − 𝑣𝑆𝑖 . Since
the solid continuum in [16] is considered to be a set of magnetizable
particles, and exploiting the concept of ‘‘intermediate state’’ proposed
by Lee [22,23] to decompose the solid continuum deformation, we
denote the position of the material point in the solid continuum in
the reference, released intermediate, and final positions as 𝜉𝑆𝛼 , 𝑋𝑆

𝐼 , and
𝑥𝑆𝑖 , respectively. Physically, intermediate states occur when the current
stress state is annulled and the hyperelastic response of the material
is characterized. In addition, to take into account the displacements
between each of the two different states, three vectors, 𝐮𝑆 , 𝐮𝑆𝑃 , and
𝐮𝑆𝐸 (with 𝐮𝑆𝑃 + 𝐮𝑆𝐸 = 𝐮𝑆 , 𝜉𝑆 + 𝐮𝑆𝑃 = 𝑋𝑆 and 𝜉𝑆 + 𝐮𝑆 = 𝑥) are
introduced. Specifically,

𝑢𝑆𝑖 (𝑥𝑖, 𝑡) = 𝑥𝑖 − 𝛿𝑖𝛼𝜉𝑆𝛼 (4)

𝑢𝑆𝑖 = 𝑢𝑆𝐸𝑖 + 𝛿𝑖𝐾𝑢𝑆𝑃𝐾 (5)

𝑢𝑆𝐸𝑖 = 𝑥𝑖 − 𝛿𝑖𝐾𝑋𝑆
𝐾 . (6)

The intermediate state, obviously, is an artificial state that is exploited
to separate plastic and elastic deformation.

2.2. Velocity gradient tensor and elastic strain tensors

If we indicate the elastic and plastic components of the velocity
gradient tensor 𝐿𝑆𝑖𝑗 by 𝐿𝑆𝐸𝑖𝑗 and 𝐿𝑆𝑃𝑖𝑗 , respectively, the following relation
yields

𝐿𝑆𝑖𝑗 =
𝜕𝑣𝑆𝑖
𝜕𝑥𝑗

= 𝐿𝑆𝐸𝑖𝑗 + 𝐹𝑆𝐸𝑖𝐼 𝐿𝑆𝑃𝐼𝐽 (𝐹
𝑆𝐸
𝑗𝐽 )−1 = 𝐿𝑆𝐸𝑖𝑗 + 𝐿𝑆𝑃𝑖𝑗 (7)

where 𝐿𝑆𝐸𝑖𝑗 = 𝑑𝑆
𝑑𝑡

(

𝜕𝑥𝑖
𝜕𝑋𝑆𝐼

) 𝜕𝑋𝑆𝐼
𝜕𝑥𝑗

, 𝐿𝑆𝑃𝐼𝐽 = 𝑑𝑆
𝑑𝑡

( 𝜕𝑋𝑆𝐼
𝜕𝜉𝑆𝛼

)

𝜕𝜉𝑆𝛼
𝜕𝑋𝑆𝐽

and 𝐹𝑆𝐸𝑖𝐼 = 𝜕𝑥𝑖
𝜕𝑋𝑆𝐼

.

Considering (7) again, we decompose 𝐿𝑆𝑖𝑗 in its symmetric part, 𝐿𝑆(𝑖𝑗),
and its antisymmetric one, 𝐿𝑆[𝑖𝑗]:

𝐿𝑆(𝑖𝑗) = 𝐷𝑆
𝑖𝑗 = 𝐷𝑆𝐸

𝑖𝑗 + 𝐹𝑆𝐸(𝑖𝐼 𝐿
𝑆𝑃
𝐼𝐽 (𝐹

𝑆𝐸
𝑗)𝐽 )

−1 = 𝐷𝑆𝐸
𝑖𝑗 +𝐷𝑆𝑃

𝑖𝑗 (8)

𝐿𝑆[𝑖𝑗] = 𝛺𝑆
𝑖𝑗 = 𝛺𝑆𝐸

𝑖𝑗 + 𝐹𝑆𝐸[𝑖𝐼 𝐿
𝑆𝑃
𝐼𝐽 (𝐹

𝑆𝐸
𝑗]𝐽 )

−1 = 𝛺𝑆𝐸
𝑖𝑗 +𝛺𝑆𝑃

𝑖𝑗 (9)

from which it is clear that 𝐿𝑆(𝑖𝑗) takes both elongations and distortions
(𝐷𝑆𝐸

𝑖𝑗 , 𝐷𝑆𝑃
𝑖𝑗 ) into account, while 𝐿𝑆[𝑖𝑗] takes rotations (𝛺𝑆𝐸

𝑖𝑗 , 𝛺𝑆𝑃
𝑖𝑗 ) into

account.
The Lagrangian elastic strain tensor,

𝐸𝑆𝐸𝐼𝐽 = 1
2

( 𝜕𝑥𝑖
𝜕𝑋𝑆

𝐼

𝜕𝑥𝑖
𝜕𝑋𝑆

𝐽

− 𝛿𝐼𝐽
)

, (10)

and Eulerian elastic strain tensor,

𝑒𝑆𝐸𝑖𝑗 = 1
2

(

𝛿𝑖𝑗 −
𝜕𝑋𝑆

𝐾
𝜕𝑥𝑖

𝜕𝑋𝑆
𝐾

𝜕𝑥𝑗

)

= 𝐸𝑆𝐸𝐼𝐽
𝜕𝑋𝑆

𝐼
𝜕𝑥𝑖

𝜕𝑋𝑆
𝐽

𝜕𝑥𝑗
, (11)

can be used as strain measures, from which
𝑑𝑆
𝑑𝑡
𝐸𝑆𝐸𝐼𝐽 = 𝐷𝑆𝐸

𝑖𝑗
𝜕𝑥𝑖
𝜕𝑋𝑆

𝐼

𝜕𝑥𝑗
𝜕𝑋𝑆

𝐽

(12)

and
𝑑𝑆
𝑑𝑡
𝑒𝑆𝐸𝑖𝑗 = 𝐷𝑆𝐸

𝑖𝑗 − 𝑒𝑆𝐸𝑘𝑗 𝐿
𝑆𝐸
𝑘𝑖 − 𝑒𝑆𝐸𝑘𝑖 𝐿

𝑆𝐸
𝑘𝑗 (13)

where

𝑒𝑆𝐸𝑖𝑗 = 1
2
(𝑢𝑆𝐸𝑖,𝑗 + 𝑢𝑆𝐸𝑗,𝑖 − 𝑢𝑆𝐸𝑘,𝑖 𝑢

𝑆𝐸
𝑘,𝑗 ) (14)

and ,𝑖 ≡ 𝜕
𝜕𝑥𝑖

stands for the partial derivatives by coordinates. In
particular, (14) represents the link between the elastic deformation and
the displacement gradient.
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Table 1
List of the exploited symbols.

Symbol Description

𝐇, 𝐁, magnetic field, magnetic induction,

𝐄, 𝐼 electrostatic field and electrical current

𝛾̇, 𝜏0 shear rate in the rheometer direction and yield stress

𝛾̇∗ shear rate in the rheometer direction around the transition from Newtonian
to plastic behavior

𝜃, 𝜃0 temperature and room temperature

𝜉𝑆 , 𝜉𝐹 positions of the solid and fluid continua

𝑥𝑆𝑖 , 𝑥𝐹𝑖 assigned positions to solid and fluid material points

𝜉𝑆𝛼 , 𝑋𝑆
𝐼 , 𝑥𝑆𝑖 reference, intermediate, and final positions of the material points in the

solid continuum

𝑣𝑆𝑖 , 𝑣𝐹𝑖 velocity vectors of solid and fluid

𝜌𝑆 , 𝜌𝐹 , 𝜌 densities of the solid, fluid, and mixture

𝑣𝑖, 𝑣𝑅𝑖 velocity of the mixture and relative velocity vector

𝑣𝑆𝑖 , 𝑣𝐹𝑖 diffusion velocities of the solid and fluid

𝑝𝐹 equilibrium pressure of the fluid

𝐿𝑆𝑖𝑗 velocity gradient tensor

𝐿𝑆𝐸𝑖𝑗 , 𝐿𝑆𝑃𝑖𝑗 elastic and plastic components of the velocity gradient tensor

𝐿𝑆(𝑖𝑗), 𝐿
𝑆
[𝑖𝑗] symmetric antisymmetric part of 𝐿𝑆𝑖𝑗

𝛺𝑆
𝑖𝑗 , 𝛺𝑆𝐸

𝑖𝑗 , 𝛺𝑆𝑃
𝑖𝑗 vorticity tensor referring to the solid continuum and its elastic and

plastic parts

𝑒𝑆𝐸𝑖𝑗 , 𝐸𝑆𝐸
𝐼𝐽 Eulerian and Lagragian elastic strain tensors

𝜏𝑖𝑗 stress tensor

𝜏𝑆𝑖𝑗 , 𝜏𝐹𝑖𝑗 solid and fluid stress tensors

𝜏𝐹𝑆𝑖𝑗 , 𝜏𝐹𝐵 stress tensors referring to the shear and bulk parts of the fluid

𝜏𝑆𝑅𝑖𝑗 , 𝜏𝑆𝐷𝑖𝑗 reversible and dissipative parts of the solid stress tensor

𝑀𝑆
𝑖 magnetization

𝑀𝑆𝑅
𝑖 , 𝑀𝑆𝐷

𝑖 reversible and dissipative parts of the magnetization

𝑒𝑖𝑗𝑘 alternative tensor

𝜖0, 𝜇0 permittivity and permeability in a vacuum

𝑃𝑖 momentum supply to the solid

𝑓𝑆𝑖 , 𝑓𝐹𝑖 external body forces of the solid and fluid

𝑈𝑆 , 𝑈𝐹 internal energy densities of the solid and fluid

𝑞𝑆𝑖 , 𝑞𝐹𝑖 heat fluxes of the solid and fluid

ℎ𝑆 , ℎ𝐹 internal heat sources of the solid and fluid

𝜂𝑆 , 𝜂𝐹 entropy densities of the solid and fluid

𝑆𝑆𝑖 , 𝑆𝐹𝑖 entropy fluxes of the solid and fluid

𝑆𝑖, 𝜂 entropy flux and entropy density of the mixture

𝐻 Helmotz free energy of the mixture

𝜏𝛼𝛽 characteristic times

𝜇, 𝜇𝑆 , 𝜇𝐵 viscosity, shear and bulk viscosities

𝐾, 𝑛 consistency parameter and power law index

𝜋𝑝, 𝜋0 viscosity in the rheometer direction and total viscosity

𝜁 , 𝑇 , 𝛴, 𝛱 relaxation time, characteristic time of the shear flow,

characteristic stress of the flow and slowdown parameter

 potential for dissipation in the SG framework

𝜕𝐷 sub-differential of a tensor 𝐷

𝑉 , 𝐿 characteristic velocity and length of the flow

𝜖𝑖𝑗 , 𝜖𝐸𝑖𝑗 , 𝜖𝑃𝑖𝑗 elastic deformation tensor and its elastic and plastic parts

|E|, |E𝐸 |, |E𝑃 | matrix norm of 𝜖𝑖𝑗 , 𝜖𝐸𝑖𝑗 , 𝜖𝑃𝑖𝑗 , respectively

𝜔 parameter of elasticity

(𝜏𝑖𝑗 )𝑑 deviatoric part of 𝜏𝑖𝑗
|T𝑑 | matrix norm of (𝜏𝑖𝑗 )𝑑
𝑎𝜏𝑖𝑗
𝑡

Gordon–Schowalter derivative

𝑘𝑛(𝑠) plasticity criteria function

𝑅𝑒, 𝑊 𝑒, 𝐵𝑖 Reynolds, Weissenberg, and Bingham numbers

𝛩 frequency
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Table 2
List of the exploited acronyms.

Acronym Description

MR magnetorheological
EIT extended irreversible thermodynamics
EVP elastoviscoplastic
𝐹 fluid fraction
𝐸 elastic component
𝑃 plastic component
𝐹𝐵 bulk part of the fluid
𝐹𝑆 shear part of the fluid
𝐻𝐵 Herschel–Bulkley
𝑁 Newtonian
𝑆 solid fraction
𝐺𝑆𝑀 generalized standard material

2.3. Stress tensors

It is assumed that the fluid stress tensor is a symmetric tensor,
𝜏𝐹𝑖𝑗 = 𝜏𝐹𝑗𝑖 , while for the stress tensor of the solid continuum, due to
the application of the external 𝐇, 𝜏𝑆𝑖𝑗 ≠ 𝜏𝑆𝑗𝑖 . Then, the following further
decompositions are assumed:

𝜏𝐹𝑖𝑗 = 𝜏𝐹𝑗𝑖 = −𝑝𝐹 𝛿𝑖𝑗 + 𝜏𝐹𝐵𝛿𝑖𝑗 + 𝜏𝐹𝑆𝑖𝑗 , 𝜏𝐹𝑆𝑖𝑖 = 0 (15)

𝜏𝑆𝑖𝑗 = 𝜏𝑆𝑅𝑖𝑗 + 𝜏𝑆𝐷𝑖𝑗 = 𝜏𝑆𝑅(𝑖𝑗) + 𝜏
𝑆𝑅
[𝑖𝑗] + 𝜏

𝑆𝐷
𝑖𝑗 , 𝜏𝑆𝐷𝑖𝑗 = −𝜏𝑆𝐷𝑗𝑖 (16)

in which the superscripts 𝐹𝐵 and 𝐹𝑆 refer to the bulk of the fluid and
the shear fluid, respectively; 𝑆𝑅 and 𝑆𝐷 represent, respectively, the
reversible part and dissipative part of the solid continuum (represented
by an antisymmetric tensor). Again, in (15), 𝑝𝐹 is the equilibrium pres-
sure of the fluid, while 𝜏𝐹𝐵 and 𝜏𝐹𝑆𝑖𝑗 are the quantities induced in the
non-equilibrium state due to the dissipative viscous mechanical forces,
and, obviously they vanish at equilibrium. In addition, considering the
angular momentum balance, the antisymmetric part of the stress is
associated with the magnetization 𝑀𝑆

𝑖 , 𝜏𝑆[𝑖𝑗] = −𝑀𝑆
[𝑖𝐵

𝑆
𝑗], 𝐵𝑆𝑗 being the

magnetic induction [16]. Moreover, by decomposing the magnetization
into a reversible part, 𝑀𝑆𝑅

𝑖 , and a dissipative part 𝑀𝑆𝐷
𝑖 , that is 𝑀𝑆

𝑖 =
𝑀𝑆𝑅

𝑖 +𝑀𝑆𝐷
𝑖 , it is possible to write

𝜏𝑆𝑅[𝑖𝑗] = −𝑀𝑆𝑅
[𝑖 𝐵

𝑆
𝑗]; 𝜏𝑆𝐷[𝑖𝑗] = −𝑀𝑆𝐷

[𝑖 𝐵
𝑆
𝑗]. (17)

2.4. Field equations

Since MR fluids are composed of magnetizable particles in min-
eral oil, in [16] it is postulated that the fluid continuum is the non-
magnetizable fraction of the material, while the solid continuum is
sensitive to the actions due to the external 𝐇. In such a context,
Maxwell equations can only be written for the solid continuum:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐵𝑆𝑖,𝑖 = 0
𝜖0𝐸𝑆𝑖,𝑖 = 0

𝑒𝑖𝑗𝑘𝐸𝑆𝑘𝑗 +
𝜕𝐵𝑆𝑖
𝜕𝑡 = 0

1
𝜇0
𝑒𝑖𝑗𝑘𝐵𝑆𝑘,𝑗 − 𝜖0

𝜕𝐸𝑆𝑖
𝜕𝑡 = 𝑒𝑖𝑗𝑘𝑀𝑆

𝑘,𝑗

(18)

where 𝑒𝑖𝑗𝑘 is the alternative tensor, and 𝐸𝑆𝑖 , 𝐵𝑆𝑖 , 𝜖0, and e 𝜇0 denote
the electrostatic field, the magnetic induction, the permittivity, and the
permeability in the vacuum, respectively. If there are no chemical re-
actions, the balanced equations of mass, linear momentum, and energy
for the fluid continuum can be written as follows:
⎧

⎪

⎨

⎪

⎩

𝜕𝜌𝐹

𝜕𝑡 + (𝜌𝐹 𝑣𝐹𝑘 ),𝑘 = 0; 𝜌𝐹
𝑑𝐹 𝑣𝐹𝑖
𝑑𝑡 = 𝜏𝐹𝑗𝑖,𝑗 − 𝑃𝑖 + 𝜌

𝐹 𝑓𝐹𝑖

𝜌𝐹 𝑑𝐹𝑈𝐹

𝑑𝑡 = 𝜏𝐹𝑗𝑖𝑣
𝐹
𝑖,𝑗 − 𝑞

𝐹
𝑖,𝑖 + 𝜌

𝐹ℎ𝑓 + 𝑃𝑖𝑣𝐹𝑖
(19)

while, for the solid continuum, they are
⎧

⎪

⎨

⎪

⎩

𝜕𝜌𝑆

𝜕𝑡 + (𝜌𝑆𝑣𝑆𝑘 ),𝑘 = 0; 𝜌𝑆
𝑑𝑆𝑣𝑆𝑖
𝑑𝑡 = 𝜏𝑆𝑗𝑖,𝑗 + 𝐵

𝑆
𝑗,𝑖𝑀

𝑆
𝑗 + 𝑃𝑖 + 𝜌𝑆𝑓𝑆𝑖

𝜌𝑆 𝑑𝑆𝑈𝑆

𝑑𝑡 = 𝜏𝑆𝑗𝑖𝑣
𝑆
𝑖,𝑗 − 𝑞

𝑆
𝑖,𝑖 −𝑀

𝑆
𝑖
𝑑𝑠𝐵𝑆𝑖
𝑑𝑡 + 𝜌𝑆ℎ𝑆 − 𝑃𝑖𝑣𝑆𝑖

(20)

where 𝑃𝑖 denotes the momentum supply to the solid; 𝑓𝐹𝑖 and 𝑓𝑆𝑖 are
the external body forces of the fluid and solid respectively; 𝑈𝐹 and
𝑈𝑆 represent the internal energy densities of the fluid and the solid
respectively; 𝑞𝐹𝑖 and 𝑞𝑆𝑖 are the heat fluxes of the fluid and the solid,
respectively; and ℎ𝐹 and ℎ𝑆 denote the internal heat sources of the
fluid and solid respectively. By combining (19) with (20), we obtain
the following balanced equations:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜌 𝑑𝑈𝑑𝑡 = 𝜏𝐹𝑗𝑖𝑣
𝐹
𝑖,𝑗 + 𝜏

𝑆
𝑗𝑖𝑣

𝑆
𝑖,𝑗 − 𝑞𝑖,𝑖 −𝑀

𝑆
𝑖
𝑑𝑆𝐵𝑆𝑖
𝑑𝑡 + 𝜌ℎ + 𝑃𝑖(𝑣𝐹𝑖 − 𝑣𝑆𝑖 )

𝜌𝑈 = 𝜌𝐹𝑈𝐹 + 𝜌𝑆𝑈𝑆 ; 𝜌ℎ = 𝜌𝐹ℎ𝐹 + 𝜌𝑆ℎ𝑆

𝑞𝑖 = 𝑞𝐹𝑖 + 𝑞𝑆𝑖 + 𝜌𝐹𝑈𝐹 (𝑣𝐹𝑖 − 𝑣𝑖) + 𝜌𝑆𝑈𝑆 (𝑣𝑆𝑖 − 𝑣𝑖).

(21)

On the other hand, the local version of the second law of the
thermodynamics for both solid and fluid continua can be written as
follows:
⎧

⎪

⎨

⎪

⎩

𝜌𝐹 𝑑𝐹 𝜂𝐹

𝑑𝑡 + 𝑆𝐹𝑖,𝑖 − 𝜌
𝐹 ℎ𝐹

𝜃 ≥ 0

𝜌𝑆 𝑑𝑆 𝜂𝑆

𝑑𝑡 + 𝑆𝑆𝑖,𝑖 − 𝜌
𝑆 ℎ𝑆

𝜃 ≥ 0
(22)

where both the continua are assumed to be at the same temperature 𝜃,
while 𝜂𝐹 , 𝜂𝑆 , 𝑆𝐹𝑖 , and 𝑆𝑆𝑖 represent the entropy densities of the fluid
and the solid and the entropy fluxes of the fluid and solid, respectively.
By introducing the entropy density 𝜂 and the entropy flux 𝑆𝑖 of the
mixture, both previous equations can be combined to achieve the
following system:

⎧

⎪

⎨

⎪

⎩

𝜌𝜃 𝑑𝜂𝑑𝑡 + 𝜃𝑆𝑖,𝑖 − 𝜌ℎ ≥ 0
𝜌𝜂 = 𝜌𝐹 𝜂𝐹 + 𝜌𝑆𝜂𝑆

𝑆𝑖 = 𝑆𝐹𝑖 + 𝑆𝑆𝑖 + 𝜌𝐹 𝜂𝐹 (𝑣𝐹𝑖 − 𝑣𝑖) + 𝜌𝑆𝜂𝑆 (𝑣𝑆𝑖 − 𝑣𝑖).

(23)

If, finally, one introduces the Helmotz free energy of the mixture,
𝐻 = 𝑈 − 𝜂𝜃, Eqs. (21) and (23) can be rearranged as the following
inequality:

− 𝜌𝑑𝐻
𝑑𝑡

− 𝜌𝜂 𝑑𝜃
𝑑𝑡

+ 𝜃𝑆𝑖,𝑖 + 𝜏𝐹𝑗𝑖𝑣
𝐹
𝑖,𝑗 + 𝜏

𝑆
𝑗𝑖𝑣

𝑆
𝑖,𝑗 − 𝑞𝑖,𝑖 −𝑀

𝑆
𝑖
𝑑𝑆𝐵𝑆𝑖
𝑑𝑡

+𝑃𝑖𝑣𝑅𝑖 ≥ 0. (24)

To obtain, on the one hand, a more general thermodynamic theory
of MR fluids and, on the other hand, to achieve evolutionary constitu-
tive equations, it is imperative to frame the approach in the framework
of the EIT [15] in which the Helmotz free energy depends on both a
set of conserved variables, 𝜃, 𝜌𝐹 , 𝑒𝑆𝐸𝑖𝑗 , 𝐵𝑆𝑖 , and some fluxes, 𝑞𝑖, 𝑀𝑆𝐷

𝑖 ,
𝑣𝑅𝑖 , 𝜏𝐹𝑆𝑖𝑗 , 𝜏𝐹𝐵 :

𝐻 = 𝐻( 𝜃, 𝜌𝐹 , 𝑒𝑆𝐸𝑖𝑗 , 𝐵
𝑆
𝑖

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

; 𝑞𝑖,𝑀𝑆𝐷
𝑖 , 𝑣𝑅𝑖 , 𝜏

𝐹𝑆
𝑖𝑗 , 𝜏𝐹𝐵

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑓𝑙𝑢𝑥𝑒𝑠

). (25)

By exploiting the material derivatives by virtue of (2) and (3), we
have

𝑑𝐻
𝑑𝑡

= 𝜕𝐻
𝜕𝜃

𝑑𝜃
𝑑𝑡

+ 𝜕𝐻
𝜕𝜌𝐹

𝑑𝐹 𝜌𝐹

𝑑𝑡
+ 𝜕𝐻
𝜕𝑒𝑆𝐸𝑖𝑗

𝑑𝑆𝑒𝑆𝐸𝑖𝑗
𝑑𝑡

+ 𝜕𝐻
𝜕𝐵𝑆𝑖

𝑑𝑆𝐵𝑆𝑖
𝑑𝑡

+ 𝜕𝐻
𝜕𝑞𝑖

𝑑𝑞𝑖
𝑑𝑡

+

(26)

+ 𝜕𝐻
𝜕𝑀𝑆𝐷

𝑖

𝑑𝑆𝑀𝑆𝐷
𝑖

𝑑𝑡
+ 𝜕𝐻
𝜕𝑣𝑅𝑖

𝑑𝑣𝑅𝑖
𝑑𝑡

+ 𝜕𝐻
𝜕𝜏𝐹𝑆𝑖𝑗

𝑑𝐹 𝜏𝐹𝑆𝑖𝑗
𝑑𝑡

+ 𝜕𝐻
𝜕𝜏𝐹𝐵

𝑑𝐹 𝜏𝐹𝐵

𝑑𝑡
+ 1
𝜌
𝑣𝑅𝑘𝐴𝑘

with

𝐴𝑘 = −𝜌𝑆 𝜕𝐻
𝜕𝜌𝐹

𝜌𝐹,𝑘 + 𝜌
𝐹 𝜕𝐻
𝜕𝑒𝑆𝐸𝑖𝑗

𝑒𝑆𝐸𝑖𝑗,𝑘 + 𝜌
𝐹 𝜕𝐻
𝜕𝐵𝑆𝑖

𝐵𝑆𝑖,𝑘 + 𝜌
𝐹 𝜕𝐻
𝜕𝑀𝑆𝐷

𝑖

− 𝜌𝑆 𝜕𝐻
𝜕𝜏𝐹𝑆𝑖𝑗

𝜏𝐹𝑆𝑖𝑗,𝑘 − 𝜌
𝑆 𝜕𝐻
𝜕𝜏𝐹𝐵

𝜏𝐹𝐵,𝑘 . (27)

As with classical thermodynamics (reversible), the generalized en-
tropy density, 𝜂, the equilibrium pressure of the fluid, 𝑝𝐹 , the reversible
stress of the solid, 𝜏𝑆𝑅𝑖𝑗 , and the reversible part of magnetization, 𝑀𝑆𝑅

𝑖 ,

4
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are defined as follows:

𝜂 = − 𝜕𝐻
𝜕𝜃

, 𝑝𝐹 = 𝜌𝜌𝐹 𝜕𝐻
𝜕𝜌𝐹

, 𝜏𝑆𝑅𝑖𝑗 = 𝜌
( 𝜕𝐻
𝜕𝑒𝑆𝐸𝑖𝑗

− 2 𝜕𝐻
𝜕𝑒𝑆𝐸𝑖𝑘

𝑒𝑆𝐸𝑘𝑗
)

,

𝑀𝑆𝑅
𝑖 = −𝜌 𝜕𝐻

𝜕𝐵𝑆𝑖
.

(28)

Note that from (17) and exploiting the definitions of the reversible
parts of the solid and the magnetization in (28), it makes sense to write

𝜏𝑆𝑅(𝑖𝑗) = 𝜌
( 𝜕𝐻
𝜕𝑒𝑆𝐸𝑖𝑗

− 𝜕𝐻
𝜕𝑒𝑆𝐸𝑖𝑘

𝑒𝑆𝐸𝑘𝑗 − 𝜕𝐻
𝜕𝑒𝑆𝐸𝑗𝑘

𝑒𝑆𝐸𝑘𝑖
)

(29)

𝜏𝑆𝑅[𝑖𝑗] = −𝜌
( 𝜕𝐻
𝜕𝑒𝑆𝐸𝑖𝑘

𝑒𝑆𝐸𝑘𝑗 − 𝜕𝐻
𝜕𝑒𝑆𝐸𝑗𝑘

𝑒𝑆𝐸𝑘𝑖
)

= −𝑀𝑆𝑅
[𝑖 𝐵

𝑆
𝑗] = 𝜌 𝜕𝐻

𝜕𝐵𝑆[𝑖
𝐵𝑆
𝑗]. (30)

Obviously, Eq. (30) shows that the elastic deformation for the solid
continuum is directly proportional to the magnetization induced by the
external |𝐇|. 𝐷𝐹

𝑖𝑗 indicates the tensor that takes the elongations of the
fluid into account, and the decomposition of the stress tensor permits
the stress powers to be written as

𝜏𝐹𝑗𝑖𝑣
𝐹
𝑖,𝑗 = −𝑝𝐹 𝑣𝐹𝑖,𝑖 + 𝜏

𝐹𝐵𝑣𝐹𝑖,𝑖 + 𝜏
𝐹𝑆
𝑖𝑗 𝐷𝐹

𝑖𝑗 (31)

𝜏𝑆𝑗𝑖𝑣
𝑆
𝑖,𝑗 = 𝜏𝑆𝑅(𝑗𝑖)𝐷

𝑆𝐸
𝑖𝑗 + 𝜏𝑆𝑅(𝑗𝑖)𝐷

𝑆𝑃
𝑖𝑗 −𝑀𝑆𝐷

[𝑗 𝐵
𝑆
𝑖]𝛺

𝑆
𝑖𝑗 −𝑀

𝑆𝑅
[𝑗 𝐵

𝑆
𝑖]𝛺

𝑆
𝑖𝑗 . (32)

Moreover, in the linear approximation, the derivatives of free en-
ergy with respect to the fluxes can be expressed by the following
equations:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝜌 𝜕𝐹𝜕𝑞𝑖
= 𝜆11𝑞𝑖 + 𝜆12𝑀𝑆𝐷

𝑖 + 𝜆13𝑣𝑅𝑖

𝜌 𝜕𝐹
𝜕𝑀𝑆𝐷

𝑖
= 𝜆21𝑞𝑖 + 𝜆22𝑀𝑆𝐷

𝑖 + 𝜆23𝑣𝑅𝑖

𝜌 𝜕𝐹
𝜕𝑣𝑅𝑖

= 𝜆31𝑞𝑖 + 𝜆32𝑀𝑆𝐷
𝑖 + 𝜆33𝑣𝑅𝑖

𝜌 𝜕𝐹
𝜕𝜏𝐹𝑆𝑖𝑗

= 𝜆4𝜏𝐹𝑆𝑖𝑗

𝜌 𝜕𝐹
𝜕𝜏𝐹𝐵 = 𝜆5𝜏𝐹𝐵

(33)

where 𝜆𝑖𝑗 = 𝜆𝑗𝑖 are scalars depending on the variables conserved by
means of 𝜃, 𝜌𝐹 and both the algebraic invariants of 𝑒𝑆𝐸𝑖𝑗 and 𝐵𝑆𝑖 . It is
worth highlighting that 𝜆𝑖𝑗 = 𝜆𝑗𝑖 is a consequence of the equality of the
mixed derivatives of the free energy after applying Schwarz’s theorem,
and 𝜆4 and 𝜆5 do not explicitly depend on 𝐵𝑆𝑖 . Under the assumption
of linear approximation, 𝜆𝑖𝑗 functionally depends on 𝜃, 𝜌𝐹 and 𝑒𝑆𝐸𝑖𝑖 ,
i.e., the conserved variables are explicit in Eq. (33). So, taking into
account (26), (28), (31), (32), and (33), inequality (24) can be rewritten
as follows:

𝜏𝑆𝑅𝑗𝑖 𝐿
𝑆𝑃
𝑖𝑗 + 𝑞𝑖𝑋

𝑞
𝑖 +𝑀

𝑆𝐷
𝑖 𝑋𝑀

𝑖 + 𝑣𝑅𝑖 𝑋
𝑣
𝑖 + 𝜏

𝐹𝑆
𝑖𝑗 𝑋𝐹𝑆

𝑖𝑗 + 𝜏𝐹𝐵𝑋𝐹𝐵 ≥ 0 (34)

where 𝑋𝑞
𝑖 , 𝑋𝑀

𝑖 , 𝑋𝑣
𝑖 , 𝑋𝐹𝑆

𝑖𝑗 , and 𝑋𝐹𝐵 are the thermodynamic forces
defined by

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑋𝑞
𝑖 = − 𝜃,𝑖

𝜃 − 𝜆11
𝑑𝑞𝑖
𝑑𝑡 − 𝜆21

𝑑𝑆𝑀𝑆𝐷
𝑖

𝑑𝑡 − 𝜆31
𝑑𝑣𝑅𝑖
𝑑𝑡

𝑋𝑀
𝑖 = −

𝑑𝑆𝐵𝑆𝑖
𝑑𝑡 − 𝐵𝑆𝑗 𝛺

𝑆
𝑗𝑖 − 𝜆12

𝑑𝑞𝑖
𝑑𝑡 − 𝜆22

𝑑𝑆𝑀𝑆𝐷
𝑖

𝑑𝑡 − 𝜆32
𝑑𝑣𝑅𝑖
𝑑𝑡

𝑋𝑣
𝑖 = 𝑃𝑖 − 𝐴𝑖 − 𝜆13

𝑑𝑞𝑖
𝑑𝑡 − 𝜆23

𝑑𝑆𝑀𝑆𝐷
𝑖

𝑑𝑡 − 𝜆33
𝑑𝑣𝑅𝑖
𝑑𝑡

𝑋𝐹𝑆
𝑖𝑗 = 𝐷𝐹

𝑖𝑗 − 𝜆4
𝑑𝐹 𝜏𝐹𝑆𝑖𝑗
𝑑𝑡

𝑋𝐹𝐵 = 𝑣𝐹𝑖,𝑖 − 𝜆5
𝑑𝐹 𝜏𝐹𝐵

𝑑𝑡 .

(35)

Inequality (34) shows that the motion of the solid continuum con-
tributes to dissipation by means of the term 𝜏𝑗𝑖𝐿𝑆𝑃𝑖𝑗 , which results
from the elastic stress multiplied by the plastic part of the velocity
gradient of the solid; this is compatible with the yield condition when
a shear force is applied in excess. 𝜏𝑆𝑅𝑖𝑗 , obviously, corresponds to the
yield stress and the third condition in (28), and it is relevant for the
deformation of the solid continuum (magnetic-induced). The terms
𝑞𝑖𝑋

𝑞
𝑖 and 𝑀𝑆𝐷

𝑖 𝑋𝑀
𝑖 represent the dissipation due to heat conduction

and the irreversible magnetization, respectively. The quantity of 𝑣𝑅𝑖 𝑋
𝑣
𝑖 ,

a term typically associated with the mixture approach, describes the
diffusive dissipation. The last two terms, 𝜏𝐹𝐵𝑋𝐹𝐵 and 𝜏𝐹𝑆𝑖𝑗 𝑋𝐹𝑆

𝑖𝑗 , repre-
sent the dissipation from the motion of the viscous fluid continuum.
Then, 𝜏𝐹𝐵 and 𝜏𝐹𝑆𝑖𝑗 represent the mechanical stresses related to FB and
FS, respectively, generating the motion of the viscous fluid. 𝜏𝐹𝐵 does
not need the subscripts 𝑖𝑗 , since is related to the bulk of fluid, while
𝜏𝐹𝑆𝑖𝑗 , being related to the shear condition, needs the subscripts 𝑖𝑗 . The
main advantage of the mixture approach is in the computation of the
diffusive dissipation which is included in the dissipation inequality and
is useful for evaluating the evolution of the magnetized particles.

2.5. Evolutionary constitutive equations

To form evolutionary constitutive equations, it is necessary to de-
termine the link between the generalized fluxes and generalized forces.
This link, according the Chen & Yeh model [16], is linear:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑞𝑖 = 𝜇𝑞𝑞𝑋𝑞
𝑖 + 𝜇

𝑞𝑀𝑋𝑀
𝑖 + 𝜇𝑞𝑣𝑋𝑣

𝑖
𝑀𝑆𝐷

𝑖 = 𝜇𝑀𝑞𝑋𝑞
𝑖 + 𝜇

𝑀𝑀𝑋𝑀
𝑖 + 𝜇𝑀𝑣𝑋𝑣

𝑖
𝑣𝑅𝑖 = 𝜇𝑣𝑞𝑋𝑞

𝑖 + 𝜇
𝑣𝑀𝑋𝑀

𝑖 + 𝜇𝑣𝑣𝑋𝑣
𝑖

𝜏𝐹𝐵 = 𝜇𝐵𝑋𝐹𝐵

𝜏𝐹𝑆𝑖𝑗 = 𝜇𝑆𝑋𝐹𝑆
𝑖𝑗 .

(36)

Finally, by combining (36) with (35), we obtain the following
evolution problem:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝜏𝑞𝑞 𝑑𝑞𝑖𝑑𝑡 + 𝜏𝑞𝑀
𝑑𝑆𝑀𝑆𝐷

𝑖
𝑑𝑡 + 𝜏𝑞𝑣

𝑑𝑣𝑅𝑖
𝑑𝑡 + 𝑞𝑖 = − 1

𝜃 𝜇
𝑞𝑞𝜃,𝑖 − 𝜇𝑞𝑀 𝐷̂𝑆𝐵𝑆𝑖 + 𝜇𝑞𝑣𝑃 𝑖

𝜏𝑀𝑞 𝑑𝑞𝑖
𝑑𝑡 + 𝜏𝑀𝑀 𝑑𝑆𝑀𝑆𝐷

𝑖
𝑑𝑡 + 𝜏𝑀𝑣 𝑑𝑣

𝑅
𝑖
𝑑𝑡 +𝑀𝑆𝐷

𝑖 = − 1
𝜃 𝜇

𝑀𝑞𝜃,𝑖
−𝜇𝑀𝑀 𝐷̂𝑆𝐵𝑆𝑖 + 𝜇𝑀𝑣𝑃 𝑖

𝜏𝑣𝑞 𝑑𝑞𝑖𝑑𝑡 + 𝜏𝑣𝑀
𝑑𝑆𝑀𝑆𝐷

𝑖
𝑑𝑡 + 𝜏𝑣𝑣

𝑑𝑣𝑅𝑖
𝑑𝑡 + 𝑣𝑅𝑖 = − 1

𝜃 𝜇
𝑣𝑞𝜃,𝑖 − 𝜇𝑣𝑀 𝐷̂𝑆𝐵𝑆𝑖 + 𝜇𝑣𝑣𝑃 𝑖

𝜆4𝜇𝑆
𝑑𝐹 𝜏𝐹𝑆𝑖𝑗
𝑑𝑡 + 𝜏𝐹𝑆𝑖𝑗 = 𝜇𝑆𝐷𝐹

𝑖𝑗

𝜆5𝜇𝐵
𝑑𝐹 𝜏𝐹𝐵

𝑑𝑡 + 𝜏𝐹𝐵 = 𝜇𝐵𝑣𝐹𝑖,𝑖

(37)

in which 𝐷̂𝑆𝐵𝑆𝑖 =
𝑑𝑆𝐵𝑆𝑖
𝑑𝑡 + 𝐵𝑆𝑗 𝛺

𝑆
𝑗𝑖 and 𝑃 𝑖 = 𝑃𝑖 − 𝐴𝑖, while 𝜏𝛼𝛽 , 𝛼, 𝑎𝑛𝑑𝛽 =

𝑞,𝑀, 𝑣 are characteristic times. In addition, from the two last equations
in (36), it is clear that both 𝜇𝐵 and 𝜇𝑆 represent viscosities (for further
details, see [16]).

2.6. The mixture model in the pre-yield region and the evolutionary consti-
tutive equations

In the pre-yield region, the deformation of the fluid continuum and
the solid continuum are so small that it is possible to assume that

𝐷𝑆𝑃
𝑖𝑗 = 0; 𝑣𝐹𝑖 = 𝑣𝑆𝑖 = 𝑣𝑖. (38)

Then, inequality (34) can be reduced, despite the effects of heat and
irreversible magnetization, to the following inequality:

𝜏𝐹𝑆𝑗𝑖 𝑋
𝐹𝑆
𝑖𝑗 + 𝜏𝐹𝐵𝑋𝐹𝐵 ≥ 0 (39)

in which
⎧

⎪

⎨

⎪

⎩

𝑋𝐹𝑆
𝑖𝑗 = 𝐷𝐹

𝑖𝑗 − 𝜆4
𝑑𝐹 𝜏𝐹𝑆𝑖𝑗
𝑑𝑡

𝑋𝐹𝐵 = 𝑣𝐹𝑖,𝑖 − 𝜆5
𝑑𝐹 𝜏𝐹𝐵

𝑑𝑡

(40)

implying that MR materials, in the pre-yield region, behave as viscous
fluid or viscoelastic bodies, dissipating energy due to their viscosity.
However, in the post-yield region, condition (38) cannot take place,
and inequality (34) characterizes the mechanisms of energy dissipa-
tion. This indicates that MR materials behave as viscoplastic fluids in
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the post-yield region. From inequality (39) and taking into account
Eq. (40), we can write

− 𝜏𝐹𝑆𝑖𝑗 𝜆4
𝑑𝐹 𝜏𝐹𝑆𝑖𝑗
𝑑𝑡

− 𝜏𝐹𝐵𝜆5
𝑑𝐹 𝜏𝐹𝐵

𝑑𝑡
+ 𝜏𝐹𝑆𝑖𝑗 𝐷𝐹

𝑖𝑗 + 𝜏
𝐹𝐵𝑣𝐹𝑖,𝑖 ≥ 0. (41)

In addition, the evolution model (37) can be reduced to the follow-
ing equations:

⎧

⎪

⎨

⎪

⎩

𝜆4𝜇𝑆
𝑑𝐹 𝜏𝐹𝑆𝑖𝑗
𝑑𝑡 + 𝜏𝐹𝑆𝑖𝑗 = 𝜇𝑆𝐷𝐹

𝑖𝑗

𝜆5𝜇𝐵
𝑑𝐹 𝜏𝐹𝐵

𝑑𝑡 + 𝜏𝐹𝐵 = 𝜇𝐵𝑣𝐹𝑖,𝑖.
(42)

In the following section, inequality (41) and Eq. (42) are exploited
in a comparison with the experimental model.

The following remark justifies the use of the EIT framework for the
mixture approach.

Remark 2.1. The mixture model proposed by Chen & Yeh in [16]
for the pre-yield region, has as its hinge, the system of evolutionary
differential equations (42). This formulation makes sense in the EIT
framework where the Helmotz free energy, 𝐻 , depends on (25). If,
instead, the approach was framed under classical thermodynamics, the
functional dependence of 𝐻 would be

𝐻 = 𝐻( 𝜃, 𝜌𝐹 , 𝑒𝑆𝐸𝑖𝑗 , 𝐵
𝑆
𝑖

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
conserved variables

;
⏟⏟⏟
no fluxes

) (43)

which would produce constitutive relations instead of evolutionary
constitutive equations for the dissipative fluxes.

Remark 2.2. As we operate in the pre-yield region, 𝑣𝐹𝑖 = 𝑣𝑆𝑖 = 𝑣𝑖, from
both (2) and (3), we can write
𝑑𝑆
𝑑𝑡

= 𝑑
𝑑𝑡

;
𝑑𝐹
𝑑𝑡

= 𝑑
𝑑𝑡

(44)

so that system (42) becomes

⎧

⎪

⎨

⎪

⎩

𝜆4𝜇𝑆
𝑑𝜏𝐹𝑆𝑖𝑗
𝑑𝑡 + 𝜏𝐹𝑆𝑖𝑗 = 𝜇𝑆𝐷𝐹

𝑖𝑗

𝜆5𝜇𝐵
𝑑𝜏𝐹𝐵

𝑑𝑡 + 𝜏𝐹𝐵 = 𝜇𝐵𝑣𝐹𝑖,𝑖.
(45)

Then, for 𝑖 = 𝑗 = 1 and 𝑖 = 𝑗 = 2, system (45) can be written in the
following form:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜆4𝜇𝑆
𝑑𝜏𝐹𝑆11
𝑑𝑡 = −𝜏𝐹𝑆11 + 𝜇𝑆𝐷𝐹

11

𝜆4𝜇𝑆
𝑑𝜏𝐹𝑆22
𝑑𝑡 = −𝜏𝐹𝑆22 + 𝜇𝑆𝐷𝐹

22

𝜆5𝜇𝐵
𝑑𝜏𝐹𝐵

𝑑𝑡 = −𝜏𝐹𝐵 + 𝜇𝐵𝑣𝐹1,1 + 𝜇
𝐵𝑣𝐹2,2.

(46)

It is worth nothing the fact that in (46), both 𝜇𝑆 and 𝜇𝐵 physically
represent viscosities.

3. D.S. Resiga experimental model

3.1. Structure of the model

Experimental investigations have revealed that MR materials be-
have as quasi-Newtonian fluids with low shear rates in the rheometer
direction, 𝛾̇, while, for high shear rates, their behavior can be assumed
to be plastic [7,21]. The D.S. Resiga model, to grasp both aspects,
weights the Newtonian behavior 𝜏𝑁 (𝛾̇) = 𝜇𝛾̇ with the plastic behavior
according to the Herschel–Bulkley formulation, 𝜏𝐻𝐵(𝛾̇) = 𝜏0+𝐾

(

𝛾̇
𝛾̇∗

)1−𝑛

(𝐾 a consistency parameter) to obtain, by varying the temperature 𝜃,
the following power-law model [20]:

𝜏(𝛾̇ , 𝜃) =
{

𝜏𝑁 (𝛾̇)𝑊1

( 𝛾̇
𝛾̇∗

)

+ 𝜏𝐻𝐵(𝛾̇)𝑊2

( 𝛾̇
𝛾̇∗

)}

𝜃0
𝑒
𝐸𝑎
𝑅 ( 1𝜃 −

1
𝜃0

)
= (47)

=
{

𝜇𝛾̇𝑊1

( 𝛾̇
𝛾̇∗

)

+
[

𝜏0 +𝐾
( 𝛾̇
𝛾̇∗

)1−𝑛]
𝑊2

( 𝛾̇
𝛾̇∗

)}

𝜃0
𝑒
𝐸𝑎
𝑅 ( 1𝜃 −

1
𝜃0

)

in which

1. 𝜇 and 𝜏0 represent the viscosity and the yield stress, respec-
tively [7,20,21];

2. For the fluids with shear-thinning behavior, 𝑛 < 1;
3. 𝜃0 is the room temperature, while 𝐸𝑎 is the activation energy for

the viscous flow;
4. 𝛾̇∗ is the shear rate around the transition from Newtonian to

plastic behavior;
5. The weighting functions 𝑊1(𝛾̇) and 𝑊2(𝛾̇) with 𝑊1(𝛾̇) +𝑊2(𝛾̇) =

1, must be continuous with continuous derivatives in order to
ensure smooth transitions between two different behaviors;

6. 𝑊1(𝛾̇)≫ 𝑊2(𝛾̇) for low shear rates (where Newtonian behavior is
dominant), while 𝑊1(𝛾̇) ≪ 𝑊2(𝛾̇) for high shear rates (in which
the plastic behavior prevails).

3.2. The experimental model in the pre-yield region

Model (47), in the pre-yield region, is equivalent to the Herschel–
Bulkley model because 𝑊1(𝛾̇) is negligible. However, around the yield
point, the simple power-law expression of the Herschel–Bulkley part of
the D.S. Resiga model is not sufficient to highlight the co-presence of
elastic, viscous, and plastic behaviors for which this component cannot
represent the evolutionary constitutive equations of the theoretical
model (42). Therefore, it is necessary to generalize the Herschel–
Bulkley component to obtain its 3𝐷 EVP version, which is able to
model the evolution of 𝜏 through a system of evolutionary differential
equations. This is possible in the GSM framework.

4. EVP fluids & GSMs

Constitutive equations for MR fluids must be objective 5 and must
satisfy the second principle of thermodynamics. This is a difficult task,
so we introduce GSMs as a robust and reliable framework in which MR
fluids can be modeled meeting the two above-mentioned requirements.

4.1. GSM framework for constitutive equations

Remark 4.1. Firstly, we split the total deformation second-order tensor
𝜖𝑖𝑗 into its elastic part, 𝜖𝑃𝑖𝑗 , and its plastic part, 𝜖𝑃𝑖𝑗 , 𝜖𝑖𝑗 = 𝜖𝐸𝑖𝑗 + 𝜖𝑃𝑖𝑗 .
Defining the norm of a generic second-order tensor 𝜖 as the matrix
norm by the square root of 𝜖 ∶ 𝜖, to give a greater understanding of
the text, it appears useful to represent 𝜖𝑖𝑗 , 𝜖𝐸𝑖𝑗 , and 𝜖𝑃𝑖𝑗 by the following
matricial notations if the symbol | ⋅ | appears in the text: E, E𝐸 , and E𝑃 ,
respectively. Similarly, 𝜖̇𝑖𝑗 , 𝜖̇𝐸𝑖𝑗 , and 𝜖̇𝑃𝑖𝑗 are represented by Ė, Ė𝐸 , and
Ė𝑃 , respectively.

Taking Remark 4.1 into account, a GSM, according to Halphen &
Nguyen’s approach [24], is completely defined by two convex function-
als [7]:

1. The free energy of the system,𝐻(𝜖𝑖𝑗 , 𝜖𝐸𝑖𝑗 ) = 𝜔|E𝐸 |2, where |E𝐸 |2 =
(𝜖𝐸𝑖𝑗 ∶ 𝜖

𝐸
𝑖𝑗 ) and 𝜔 > 0, which represents the parameter of elasticity;

2. The potential for dissipation, 𝐷(𝜖̇𝑖𝑗 , 𝜖̇𝐸𝑖𝑗 ) = 𝜑(𝜖̇𝑖𝑗 )
⏟⏟⏟

viscoelastic behavior
+ 𝜑𝑝(𝜖̇𝑖𝑗 − 𝜖̇𝐸𝑖𝑗 )

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
viscoplastic behavior

, where 𝜑(𝜖̇𝑖𝑗 ) expresses the incompressible

viscoelastic behavior and is associated with the viscosity (𝜇 ≥ 0),
while 𝜑(𝜖̇𝑖𝑗𝑃 ) expresses the viscoplastic behavior.6 In particular,
𝜑 and 𝜑𝑝 can be expressed by [7,21,25]:

𝜑(𝜖̇𝑖𝑗 ) =

{

𝜇|Ė|2 if 𝜖̇𝑖𝑖 = 0
+∞ otherwise

(48)

5 That is, invariant by change of observers.
6 𝜑𝑝 expresses the viscoplastic behavior using a strictly positive power index

(𝑛 > 0), a consistency parameter 𝐾 that is also positive, and a yield stress
𝜏0 ≥ 0.
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𝜑𝑝(𝜖̇𝑃𝑖𝑗 ) = 𝜑𝑝(𝜖̇𝑖𝑗 − 𝜖̇𝐸𝑖𝑗 ) =

⎧

⎪

⎨

⎪

⎩

2𝐾
𝑛+1 |Ė

𝑃
|

𝑛+1
+ 𝜏0|Ė

𝑃
| if 𝜖̇𝑃𝑖𝑖 = 0

+∞ otherwise
(49)

obtaining7:

(𝜖̇𝑖𝑗 , 𝜖̇𝐸𝑖𝑗 ) =

⎧

⎪

⎨

⎪

⎩

𝜇|Ė|2 + 2𝐾
𝑛+1 |Ė

𝑃
|

𝑛+1
+ 𝜏0|Ė

𝑃
| if 𝜖̇𝑃𝑖𝑖 = 0

+∞ otherwise.
(50)

(48) and (49) are very important results of in-depth theoretical
studies on the theory of complex fluids that have been confirmed
by numerous practical laboratory experiments [7,21,25]. More-
over, the following result is valid, so the non-negativity and
convexity of the functional  are guaranteed by the satisfaction
of the second law of thermodynamics.
Proposition 4.2 Convexity and Second Law of Thermodynamics
Let us consider that  ≥ 0 and  = 0 and that the heat flow is
given by the Fourier law. Then, the second law of thermodynamics
is satisfied.
Proof. See [7]. □

4.2. The constitutive laws in the framework of GSM

Since materials with plasticity do not allow the calculation of the
differential of  as 𝜑 and 𝜑𝑝 are not linear and cannot be differentiated,
the writing of GSM constitutive equations involves the sub-differential
of . So, we give the following definition:

Definition 1. Sub-differential of  Let us consider a bounded domain
in R𝑁 , 𝑁 = 1, 2, 3. The sub-differential of , indicated with 𝜕,
represents the set of all directions of the straight lines passing through
a point 𝜹0 of a curve that are below the curve itself. Formally,

𝜕(𝜹0) = {𝝈 ∈ R3×3
𝑆 ; 𝜕(𝜹0) + 𝝈 ∶ (𝜹 − 𝜹0) ≤ (𝜹), ∀𝜹 ∈ R3×3

𝑆 }

with R3×3
𝑆 representing the set of all symmetric matrices, 3 × 3.

In addition, the following important results are found.

Theorem 4.3. Let  be a convex function. 𝜹0 is a minimum of  if and
only if 0 ∈ 𝜕(𝜹0). In other terms, 𝜹0 is a minimum point of  if and only
if the straight line with no slope (indicated with 0) belong to its 𝜕.

Then, as specified above, and according to the choice of both 𝐻 and
, the constitutive laws of the material are written as follows [7,21,25]:

⎧

⎪

⎨

⎪

⎩

𝜏𝑖𝑗 ∈
𝜕𝐻
𝜕𝜖𝑖𝑗

+ 𝜕
𝜕𝜖̇𝑖𝑗

0 ∈ 𝜕𝐻
𝜕𝜖̇𝐸𝑖𝑗

+ 𝜕
𝜕𝜖̇𝐸𝑖𝑗

(51)

where 𝜏𝑖𝑗 is the total stress tensor. In addition, taking Eqs. (48) and
(49) into account, the laws (51) assume the following form:
{

𝜏𝑖𝑗 ∈ 𝜕𝜑(𝜖̇𝑖𝑗 ) + 𝜕𝜑𝑝(𝜖̇𝑖𝑗 − 𝜖̇𝐸𝑖𝑗 )
0 ∈ 2𝜔𝜖𝐸𝑖𝑗 − 𝜕𝜑𝑝(𝜖̇𝑖𝑗 − 𝜖̇

𝐸
𝑖𝑗 ).

(52)

Remark 4.4. Also, 𝜏𝑖𝑗 is a second-order tensor whose deviatoric part is
indicated by (𝜏𝑖𝑗 )𝑑 . Then, the matrix norm of (𝜏𝑖𝑗 ) and (𝜏𝑖𝑗 )𝑑 , according
to Remark 4.1, will be indicated by |T| and |T𝑑 |, respectively.

The following important result is worthwhile [7,21,25]:

7 Ė = 0 represents the condition of incompressibility of the fluid.

Theorem 4.5. Introducing the pressure 𝑝, the subdifferential 𝜕𝜑(𝜖̇𝑖𝑗 ) is
given by

𝜕𝜑(𝜖̇𝑖𝑗 ) =

{

{𝜏𝑖𝑗 , 𝜏𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 2𝜇𝜖̇𝑖𝑗}, 𝜖̇𝑖𝑖 = 0
∅ otherwise.

(53)

Taking into account both Remarks 4.1 and 4.4, the sub-differential 𝜕𝜑𝑝(𝜖̇𝑖𝑗−
𝜖̇𝐸𝑖𝑗 ) assumes the form

𝜕𝜑𝑝(𝜖̇𝑖𝑗 − 𝜖̇𝐸𝑖𝑗 )

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

{𝜏𝑖𝑗 , |T𝑑 | ≤ 𝜏0} if 𝜖̇𝑖𝑖 − 𝜖̇𝐸𝑖𝑖 = 0
{

𝜏𝑖𝑗 , 𝜏𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 2𝐾|Ė − Ė𝐸 |
𝑛−1

(𝜖̇𝑖𝑗 − 𝜖̇𝐸𝑖𝑗 ) + 𝜏0
𝜖̇𝑖𝑗−𝜖̇𝐸𝑖𝑗

|Ė−Ė𝐸 |

}

if 𝜖̇𝑖𝑗 − 𝜖̇𝐸𝑖𝑗 ≠ 0, 𝜖̇𝑖𝑖 − 𝜖̇𝐸𝑖𝑖 = 0

∅ otherwise

(54)

where (𝜏𝑖𝑗 )𝑑 is the deviatoric part of 𝜏𝑖𝑗 . In addition, the dual 𝜕𝜑∗
𝑝 of 𝜕𝜑𝑝

is characterized by the Fenchel identity [7], according to which, for any
𝜏𝑖𝑗 ∈ 𝜕𝜑𝑝(𝜖̇𝑖𝑗 − 𝜖̇𝐸𝑖𝑗 ), by 𝜑

∗
𝑝(𝜏𝑖𝑗 ) = 𝜏𝑖𝑗 ∶ (𝜖̇𝑖𝑗 − 𝜖̇𝐸𝑖𝑗 ) − 𝜑𝑝(𝜖̇𝑖𝑗 − 𝜖̇𝐸𝑖𝑗 ). In other

terms, 𝜏𝑖𝑗 ∈ 𝜕𝜑(𝜖̇𝑖𝑗 − 𝜖̇𝐸𝑖𝑗 ) is equivalent to 𝜖̇𝑖𝑗 − 𝜖̇𝐸𝑖𝑗 ∈ 𝜕𝜑∗
𝑃 (𝜏𝑖𝑗 ). Again,

from 𝜏𝑖𝑗 + 𝑝𝛿𝑖𝑗 = 2𝐾|Ė − Ė𝐸 |
𝑛−1

(𝜖̇𝑖𝑗 − 𝜖̇𝐸𝑖𝑗 ) + 𝜏0
𝜖̇𝑖𝑗−𝜖̇𝐸𝑖𝑗

|Ė−Ė𝐸 |
in (54), we obtain

|T𝑑 | = 2𝐾|Ė − Ė𝐸 |
𝑛
+ 𝜏0 so that |Ė − Ė

𝐸
| = ((|T𝑑 | − 𝜏0)∕(2𝐾))1∕𝑛. Finally,

𝜕𝜑∗
𝑝(𝜏𝑖𝑗 ) =

{

𝜖̇𝑖𝑗 − 𝜖̇𝐸𝑖𝑗 ∣ 𝜖̇𝑖𝑗 − 𝜖̇𝐸𝑖𝑗 = max
(

0,
|T𝑑 | − 𝜏0
2𝐾|T𝑑 |𝑛

)1∕𝑛
(𝜏𝑖𝑗 )𝑑

}

. (55)

Proof. For details, see [7]. □

4.3. Evolutionary constitutive equations for elastoviscoplasticity

According to Theorem 4.5, the constitutive laws (52) can be written
as follows:
{

𝜏𝑖𝑗 + 𝑝𝛿𝑖𝑗 = 2𝜇𝜖̇𝑖𝑗 + 2𝜔𝜖𝐸𝑖𝑗 , 𝜖̇𝑖𝑖 = 0
𝜖̇𝑖𝑗 − 𝜖̇𝐸𝑖𝑗 ∈ 𝜕𝜑∗

𝑝(2𝜔𝜖
𝐸
𝑖𝑗 ).

(56)

So, remembering that 𝜏𝑖𝑗 = 2𝜔𝜖𝐸𝑖𝑗 [7], we obtain the following
differential problem:

𝜏̇𝑖𝑗
2𝜔

+ max
(

0,
|T𝑑 | − 𝜏0
2𝐾|T𝑑 |𝑛

)
1
𝑛

(𝜏𝑖𝑗 )𝑑 = 𝜖̇𝑖𝑗 . (57)

As, in a large deformation regime8 𝜖̇𝑖𝑗 = 𝐷𝑖𝑗 = 1
2 (𝑣𝑖,𝑗 + 𝑣𝑗,𝑖) and

𝛺𝑖𝑗 =
1
2 (𝑣𝑖,𝑗 − 𝑣𝑗,𝑖) (vorticity tensor), system (57) becomes

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝜌
(

𝜕𝑣𝑖
𝜕𝑡 + 𝑣𝑘𝑣𝑖,𝑘

)

− (−𝑝𝛿𝑖𝑘 + 2𝐷𝑖𝑘 + 𝜏𝑖𝑘),𝑘 = 𝜌𝑔𝑖

1
𝜔

(𝑎𝜏𝑖𝑗
𝑡

)

𝑑
+ max

(

0, |T|−𝜏0
𝐾|𝑣𝑖|𝑛

)
1
𝑛 𝜏𝑖𝑗 − 2𝐷𝑖𝑗 = 0

𝑣𝑖,𝑖 = 0 in (0, 𝑇 ) ×𝛺
𝜏𝑖𝑗 (0) = (𝜏𝑖𝑗 )0 ∧ 𝑣𝑖(𝑡 = 0) = (𝑣𝑖)0 in 𝛺
𝜏𝑖𝑗 = (𝜏𝑖𝑗 )𝛤 ∧ 𝑣𝑖 = (𝑣𝑖)𝛤 on (0, 𝑇 ) × 𝜕𝛺

(58)

where
(𝑎𝜏𝑖𝑗

𝑡

)

𝑑
represents the Gordon–Schowalter derivative [26]:

(𝑎𝜏𝑖𝑗
𝑡

)

𝑑
=
𝜕𝜏𝑖𝑗
𝜕𝑡

+ 𝑣𝑘𝜏𝑖𝑗,𝑘 + 𝜏𝑖𝑘𝛺𝑘𝑗 −𝛺𝑖𝑘𝜏𝑘𝑗 − 𝑎(𝜏𝑖𝑘𝐷𝑘𝑗 +𝐷𝑖𝑘𝜏𝑘𝑗 ) (59)

in which 𝑎 ∈ [−1, 1] is the material parameter [7,21,25]. However,
model (58) is not yet suitable for comparison with the theoretical
model ((41) and (42)) due to the presence of the Gordon–Schowalter
derivative, so we need to reformulate the problem in its dimensionless
form and under the most frequent operating condition (simple shear
flow). It is worth observing that in differential modeling, the Gordon–
Schowalter derivative contributes to better fitting of the experimental
dataset, especially when shear-thinning behavior takes place.

8 Devices with MR fluids work under large deformations.
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4.4. Dimensionless formulation and plasticity

Indicating, with 𝑉 and 𝐿, respectively, the characteristic velocity
and the length of the flow, let us introduce the following definitions [7,
21,25]:

Definition 2. Viscosity 𝜋𝑝 and Total Viscosity 𝜋0:

𝜋𝑝 = 𝐾
(𝐿
𝑉

)1−𝑛
𝜋0 = 𝜇 + 𝜋𝑝. (60)

Definition 3. Relaxation Time, Characteristic Time of the Shear Flow,
Characteristic Stress of the Flow and Slowdown Parameter:

𝜁 =
𝜋𝑝
𝜔

𝑇 = 𝐿
𝑉

𝛴 =
(𝜇 + 𝜋𝑝)𝑉

𝐿
𝛱 = 𝜋𝑝∕𝜋0 ∈ (0, 1]. (61)

Definition 4. Weissenberg, Bingham, and Reynolds Numbers:

𝑊 𝑒 =
𝜁𝑉
𝐿

= 𝜆𝛾̇ 𝐵𝑖 =
𝜏0𝐿
𝜋0𝑉

𝑅𝑒 =
𝜌𝑉 𝐿
𝜋0

. (62)

If we take the above-defined parameters into account, problem (58)
is reduced to the resolution of the following differential problem in the
unknowns 𝑣𝑖, 𝜏𝑖𝑗 and 𝑝 [7,21]:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑅𝑒
(

𝜕𝑣𝑖
𝜕𝑡 + 𝑣𝑘𝑣𝑖,𝑘

)

− 𝑉 𝐿
𝜋0

(−𝑝𝛿𝑖𝑘 + 2𝐷𝑖𝑘 + 𝜏𝑖𝑘),𝑘 =
𝑉 𝐿
𝜋0
𝜌𝑔𝑖

𝑊 𝑒
𝑎𝜏𝑖𝑗
𝑡 + 𝑘𝑛(|T𝑑 |)𝜏𝑖𝑗 − 2𝛱𝐷𝑖𝑗 = 0

𝑣𝑖,𝑖 = 0 in (0, 𝑇 ) × (−1, 1)

𝜏𝑖𝑗 (0) = (𝜏𝑖𝑗 )0 ∧ 𝑣𝑖(𝑡 = 0) = (𝑣𝑖)0 in (−1, 1)

𝜏𝑖𝑗 = (𝜏𝑖𝑗 )𝛤 on ∧ 𝑣𝑖 = (𝑣𝑖)𝛤 (0, 𝑇 ) × 𝜕(−1, 1)

𝑘𝑛(𝑠) = max
(

0, 𝑠−𝐵𝑖
(2𝛱)1−𝑛 𝑠𝑛

)1∕𝑛
∀𝑠 ≥ 0

(63)

where 𝑘𝑛(𝑠) represent the plasticity criteria function.

4.5. EVP model of simple shear flow

A Simple Shear Flow condition is established when, for 𝑡 = 0, the
fluid is at rest (𝜏𝑖𝑗 (0) = 0) and, moreover, a constant shear rate in the
rheometer direction, 𝛾̇, is applied. In this case, there is a 2𝐷 flow, and
in addition,

𝑊 𝑒 = 𝜉𝛾̇, 𝐵𝑖 = 𝜏0∕(𝜋0𝛾̇), ∇𝑣𝑖 = ([0, 1]; [0, 0]), 𝑠 = |T𝑑 |. (64)

Then, under these conditions, the system (63) is reduced to finding
𝜏11, 𝜏22 and 𝜏12 of 𝜏, such that ∀𝑡 > 0 [7,21,25]:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑊 𝑒 𝑑𝑑𝑡

⎛

⎜

⎜

⎜

⎝

𝜏11
𝜏22
𝜏12

⎞

⎟

⎟

⎟

⎠

+ (𝑊 𝑒𝑎 + 𝑘𝑛(|T𝑑 |))I
⎛

⎜

⎜

⎜

⎝

𝜏11
𝜏22
𝜏12

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

0
0
𝛱

⎞

⎟

⎟

⎟

⎠

𝜏𝑖𝑗 (0) = 0

(65)

where I represents the identity matrix. Since

𝑎 =
⎛

⎜

⎜

⎝

0 0 −(1 + 𝑎)
0 0 1 − 𝑎

1−𝑎
2 − 1+𝑎

2 0,

⎞

⎟

⎟

⎠

(66)

we obtain

𝑊 𝑒𝑎 + 𝑘𝑛(|T𝑑 |)I =
⎛

⎜

⎜

⎜

⎝

𝑘𝑛(|T𝑑 |) 0 −𝜁 𝛾̇(1 + 𝑎)

0 𝑘𝑛(|T𝑑 |) 𝜁 𝛾̇(1 − 𝑎)

𝜁 𝛾̇ 1−𝑎
2 −𝜁 𝛾̇ 1+𝑎

2 𝑘𝑛(|T𝑑 |)

⎞

⎟

⎟

⎟

⎠

. (67)

Then, (65) becomes

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜁 𝛾̇ 𝑑𝑑𝑡

⎛

⎜

⎜

⎜

⎝

𝜏11
𝜏22
𝜏12

⎞

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎝

𝑘𝑛(|T𝑑 |) 0 −𝜁 𝛾̇(1 + 𝑎)
0 𝑘𝑛(|T𝑑 |) 𝜁 𝛾̇(1 − 𝑎)

𝜁 𝛾̇ 1−𝑎
2 −𝜁 𝛾̇ 1+𝑎

2 𝑘𝑛(|T𝑑 |)

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

𝜏11
𝜏22
𝜏12

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

0
0
𝛱

⎞

⎟

⎟

⎟

⎠

𝜏𝑖𝑗 (0) = 0

(68)

or equivalently,

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜁 𝛾̇ 𝑑𝜏11𝑑𝑡 + 𝑘𝑛(|T𝑑 |)𝜏11 − 𝜁 𝛾̇(1 + 𝑎)𝜏12 = 0

𝜁 𝛾̇ 𝑑𝜏22𝑑𝑡 + 𝑘𝑛(|T𝑑 |)𝜏22 + 𝜁 𝛾̇(1 − 𝑎)𝜏12 = 0

𝜁 𝛾̇ 𝑑𝜏12𝑑𝑡 + 𝜁 𝛾̇ 1−𝑎
2 𝜏11 − 𝜁 𝛾̇

1+𝑎
2 𝜏22 + 𝑘𝑛(|T𝑑 |)𝜏12 = 𝛱

𝜏𝑖𝑗 (0) = 0.

(69)

5. Correspondence between the Chen & Yeh mixture model and
the D.S. Resiga Model: The details

Before detailing the correspondence between the theoretical and
experimental models, we need to establish some operating conditions.
For this purpose, let us introduce Proposition 5.1 with Remarks 5.2 and
5.3, which are useful for the following part of the paper.

Proposition 5.1. The solution to problem (69) in simple shear flow and
for 𝑡 → +∞ tends to a constant value (for 𝐵𝑖 ≥ 0). In addition, if 𝑛 ≤ 1,
𝜏12 significantly decreases (as 𝑡 increases).

Proof. See [7,25]. □

Under usual industrial operating conditions and in a simple shear
flow regime, the time is sufficiently long and, moreover, for the mate-
rials governed by the Herschel–Bulkley EVP models, Proposition 5.1 is
yielded, showing that 𝜏12, under the same conditions, can be considered
negligible. Then, in accordance with Proposition 5.1, system (79) is
simplified as follows:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜁 𝛾̇ 𝑑𝜏11𝑑𝑡 + 𝑘𝑛(|T𝑑 |)𝜏11 = 0

𝜁 𝛾̇ 𝑑𝜏22𝑑𝑡 + 𝑘𝑛(|T𝑑 |)𝜏22 = 0

𝜁 𝛾̇ 1−𝑎
2 𝜏11 − 𝜁 𝛾̇

1+𝑎
2 𝜏22 = 𝛱

𝜏𝑖𝑖(0) = 0.

(70)

5.1. Some useful remarks

Remark 5.2. From system (63), we have 𝑘𝑛(𝑠) = max
(

0, 𝑠−𝐵𝑖
(2𝛱)1−𝑛 𝑠𝑛

)1∕𝑛
,

∀𝑠 ≥ 0. Then, taking into account that 𝑛 ≥ 0, 𝛱 = 𝜋𝑝
𝜋0

∈ (0, 1] and
𝜋0 = 𝜇 + 𝜋𝑝, the following two cases may occur:

1.
𝑠 − 𝐵𝑖

(2𝛱)1−𝑛𝑠𝑛
> 0 (71)

2.
𝑠 − 𝐵𝑖

(2𝛱)1−𝑛𝑠𝑛
≤ 0. (72)

If inequality (72) occurs, 𝑘𝑛(𝑠) = 0, considering (70), we can write

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑𝜏11
𝑑𝑡 = 𝑑𝜏22

𝑑𝑡 = 0

𝜁 𝛾̇ 1−𝑎
2 𝜏11 − 𝜁 𝛾̇

1+𝑎
2 𝜏22 = 𝛱

𝜏𝑖𝑖(0) = 0

(73)

obtaining that 𝜏11 and 𝜏22 are both null. In other words, even if the MR
fluid was subjected to 𝐇, it would not develop shear stress, establishing
an unacceptable physical condition. Then, we yield inequality (71) so
we can write

max
(

0, 𝑠 − 𝐵𝑖
(2𝛱)1−𝑛 𝑠

)

= 𝑠 − 𝐵𝑖
(2𝛱)1−𝑛 𝑠

(74)

from which

𝑘𝑛(𝑠) = max
(

0, 𝑠 − 𝐵𝑖
(2𝛱)1−𝑛𝑠𝑛

)
1
𝑛 = 𝑛

√

𝑠 − 𝐵𝑖
(2𝛱)1−𝑛𝑠𝑛

. (75)

8
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Fig. 1. HB EVP: the plasticity criteria function 𝑘𝑛(𝑠) for increasing values of 𝑛. The
red line refers to 𝑛 = 1.

Remark 5.3. It is interesting to make the scaling version of (75). In
other words,

𝑘𝑛(𝑠) =

(

𝐵𝑖( 𝑠𝐵𝑖 − 1)

𝐵𝑖𝑛(2𝛱)1−𝑛( 𝑠𝐵𝑖 )
𝑛

)
1
𝑛

=
( 𝐵𝑖
2𝛱

)
1−𝑛
𝑛

( 𝑠
𝐵𝑖 − 1

( 𝑠𝐵𝑖 )
𝑛

)
1
𝑛

, (76)

from which

( 𝐵𝑖
2𝛱

)
𝑛−1
𝑛 𝑘𝑛(𝑠) =

( 𝑠
𝐵𝑖 − 1

( 𝑠𝐵𝑖 )
𝑛

)
1
𝑛

. (77)

Fig. 1 displays 𝑘𝑛(𝑠) versus 𝑠∕𝐵𝑖, highlighting different behaviors
depending on the operative conditions for various values of 𝑛 (shear-
thinning or shear-thickening) (see also [21,25]). It is easy to observe
that, if 𝑛 < 1, the function is continuous with both its left and right
derivatives being equal to zero. Then, the function is smooth for 𝑛 <
1. Conversely, for 𝑛 > 1 and 𝑠

𝐵𝑖 < 2, the function is not smooth.
These differences are displayed in Table 3. In particular, to ensure the
smoothing behavior of 𝑘𝑛(𝑠) for each 𝑠, we need to establish a shear-
thinning regime (𝑛 < 1) for industrial applications. Moreover, if 𝑠

𝐵𝑖 < 2,
taking into the definition of the Bingham number, we have

𝑠 <
2𝜏0
𝜋0𝛾̇

. (78)

In other words, when establishing a fixed value of 𝜏0, 9 𝑠 becomes
bounded. Otherwise, if 𝑠

𝐵𝑖 > 2, it follows that 𝑠 > 2𝜏0
𝜋0 𝛾̇

, so 𝑠 becomes
unbounded, proving to be uncontrollable. Now, we focus our attention
on 𝑠

𝐵𝑖 < 2, highlighting that 𝑘𝑛(𝑠) < 𝑘1(𝑠). This means that, under the
above conditions, 𝑘1(𝑠) represents a sort of upper-bound condition of
plasticity.

In our study 𝑠 = |T𝑑 |, for the reasons explained in Remark 5.3,
we formalize the correspondence between the theoretical model and
the experimental one by means of 𝑘1(|T𝑑 |). Then, system (70) can be
written as follows:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜁 𝛾̇ 𝑑𝜏11𝑑𝑡 + 𝑘1(|T𝑑 |)𝜏11 = 0

𝜁 𝛾̇ 𝑑𝜏22𝑑𝑡 + 𝑘1(|T𝑑 |)𝜏22 = 0

𝜁 𝛾̇ 𝑑𝜏12𝑑𝑡 + 𝜁 𝛾̇ 1−𝑎
2 𝜏11 − 𝜁 𝛾̇

1+𝑎
2 𝜏22 = 𝛱

𝜏𝑖𝑗 (0) = 0.

(79)

9 That is, establishing the intended use of the manufacture.

The following Proposition suggests how to write the plasticity cri-
teria function under the chosen operating conditions.

Proposition 5.4. Under shear-thinning conditions and for 𝑛 = 1,
𝑘1(|T𝑑 |)𝜏𝑖𝑗 = 𝜏𝑖𝑗 −

𝐵𝑖
|T𝑑 |

𝜏𝑖𝑗 .

Proof. By multiplying both sides of (75) by 𝜏𝑖𝑗 and taking into account
that in our case, 𝑠 = 𝑘𝑛(|T𝑑 |), we have10:

𝑘𝑛(|T𝑑 |)𝜏𝑖𝑗 =
(

(|T𝑑 | − 𝐵𝑖)
(2𝛱)1−𝑛 |T𝑑 |𝑛

)1∕𝑛

𝜏𝑖𝑗 =
1

|T𝑑 |
(|T𝑑 | − 𝐵𝑖)

1
𝑛

(2𝛱)
1−𝑛
𝑛

𝜏𝑖𝑗

=
(2𝛱)

𝑛−1
𝑛

|T𝑑 |

(

|T𝑑 | − 𝐵𝑖
)

1
𝑛 𝜏𝑖𝑗 (80)

from which, taking Remark 5.3 (that is, 𝑛 = 1) into account, we obtain

𝑘1(|T𝑑 |)𝜏𝑖𝑗 =
1

|T𝑑 |
(|(𝜏𝑖𝑗 )𝑑 | − 𝐵𝑖)𝜏𝑖𝑗 = 𝜏𝑖𝑗 −

𝐵𝑖
|T𝑑 |

𝜏𝑖𝑗 . □ (81)

It is important to underline the fact that system (70) (although
in a simplified version) governs fluids through the Herschel–Bulkley
formulation in the framework of the GSM. So, it makes sense to rewrite
(70) in the following form:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜁 𝛾̇
𝑑𝜏𝐹11
𝑑𝑡 + 𝑘1(|T𝑑 |)𝜏𝐹11 = 0

𝜁 𝛾̇
𝑑𝜏𝐹22
𝑑𝑡 + 𝑘1(|T𝑑 |)𝜏𝐹22 = 0

𝜁 𝛾̇
𝛱

1−𝑎
2 𝜏𝐹11 −

𝜁 𝛾̇
𝛱

1+𝑎
2 𝜏𝐹22 = 1

𝜏𝑖𝑗 (0) = 0

(82)

which, taking into account the decomposition (15) and supposing that
𝑝𝐹 is constant, can be written as

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜁 𝛾̇
𝑑𝜏𝐹𝑆11
𝑑𝑡 + 𝜁 𝛾̇ 𝑑𝜏

𝐹𝐵

𝑑𝑡 = −𝑘1(|T𝑑 |)𝜏𝐹𝑆11 − 𝑘1(|T𝑑 |)𝜏𝐹𝐵 + 𝑘1(|T𝑑 |)𝑝𝐹

𝜁 𝛾̇
𝑑𝜏𝐹𝑆22
𝑑𝑡 + 𝜁 𝛾̇ 𝑑𝜏

𝐹𝐵

𝑑𝑡 = −𝑘1(|T𝑑 |)𝜏𝐹𝑆22 − 𝑘1(|T𝑑 |)𝜏𝐹𝐵 + 𝑘1(|T𝑑 |)𝑝𝐹

𝜁𝛾̇
𝛱

1−𝑎
2 𝜏𝐹11 −

𝜁 𝛾̇
𝛱

1+𝑎
2 𝜏𝐹22 = 1

𝜏𝑖𝑗 (0) = 0

(83)

and by separating the contributions due to 𝐹𝑆 and 𝐹𝐵, we can write

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝜁 𝛾̇
𝑑𝜏𝐹𝑆11
𝑑𝑡 = −𝑘1(|T𝑑 |)𝜏𝐹𝑆11 + 𝑘1(|T𝑑 |)𝑝𝐹

𝜁 𝛾̇
𝑑𝜏𝐹𝑆22
𝑑𝑡 = −𝑘1(|T𝑑 |)𝜏𝐹𝑆22 + 𝑘1(|T𝑑 |)𝑝𝐹

𝜁 𝛾̇ 𝑑𝜏
𝐹𝐵

𝑑𝑡 = −𝑘1(|T𝑑 |)𝜏𝐹𝐵

𝜁𝛾̇
𝛱

1−𝑎
2 𝜏𝐹11 −

𝜁 𝛾̇
𝛱

1+𝑎
2 𝜏𝐹22 = 1

𝜏𝑖𝑗 (0) = 0.

(84)

Now, let us proceed with the comparison between system (84) and
system (46). In other words, the following results are valid.

Proposition 5.5. The terms 𝜁 𝛾̇
𝑑𝜏𝐹𝑆11
𝑑𝑡 , 𝜁 𝛾̇

𝑑𝜏𝐹𝑆22
𝑑𝑡 , and 𝜁 𝛾̇

𝑑𝜏𝐹𝐵

𝑑𝑡 in the system

(84) correspond, qualitatively, to the terms 𝜆4𝜇𝑆
𝑑𝜏𝐹𝑆11
𝑑𝑡 , 𝜆4𝜇

𝑆 𝑑𝜏𝐹𝑆22
𝑑𝑡 and

𝜆5𝜇𝐵
𝑑𝜏𝐹𝐵

𝑑𝑡 in system (46).

Proof. Taking into account the first equation in (60) and the first
equation in (61), the terms 𝜁 𝛾̇

𝑑𝜏𝐹𝑆11
𝑑𝑡 , 𝜁 𝛾̇

𝑑𝜏𝐹𝑆22
𝑑𝑡 , and 𝜁 𝛾̇ 𝑑𝜏

𝐹𝐵

𝑑𝑡 in (84) can
be easily written as follows:

𝜁 𝛾̇
𝑑𝜏𝐹𝑆11
𝑑𝑡

=
𝛾̇
𝜔
𝐾
(𝐿
𝑉

)1−𝑛

⏟⏞⏞⏞⏟⏞⏞⏞⏟
viscosity

𝑑𝜏𝐹𝑆11
𝑑𝑡

; (85)

10 This is possible because 𝑘𝑛(|T𝑑 |) is a scalar.
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Table 3
Function criteria of plasticity 𝑘𝑛(𝑠): characteristics of smoothing for different fluid
behaviors (shear-thinning and shear-thickening).

𝑠
𝐵𝑖
< 2 𝑠

𝐵𝑖
> 2

𝑛 > 1 (shear-thickening) 𝑘𝑛(𝑠) > 𝑘1(𝑠) no smooth 𝑘𝑛(𝑠) < 𝑘1(𝑠) smooth
𝑛 < 1 (shear-thinning) 𝑘𝑛(𝑠) < 𝑘1(𝑠) smooth 𝑘𝑛(𝑠) > 𝑘1(𝑠) smooth

𝜁
𝑑𝜏𝐹𝑆22
𝑑𝑡

=
𝛾̇
𝜔
𝐾
(𝐿
𝑉

)1−𝑛

⏟⏞⏞⏞⏟⏞⏞⏞⏟
viscosity

𝑑𝜏𝐹𝑆22
𝑑𝑡

;

𝜁 𝛾̇ 𝑑𝜏
𝐹𝐵

𝑑𝑡
=
𝛾̇
𝜔
𝐾
(𝐿
𝑉

)1−𝑛

⏟⏞⏞⏞⏟⏞⏞⏞⏟
viscosity

𝑑𝜏𝐹𝐵

𝑑𝑡

where it is observed that 𝐾
(

𝐿
𝑉

)1−𝑛
is a viscosity. In addition, with 𝛾̇

being the shear rate, it can be considered a function of the mechanical
tension and, consequently, 𝛾̇

𝜔 in (85) represents a function of the
deformations. On the other hand, in the terms

𝜆4𝜇
𝑆
𝑑𝜏𝐹𝑆11
𝑑𝑡

; 𝜆4𝜇
𝑆
𝑑𝜏𝐹𝑆22
𝑑𝑡

; 𝜆5𝜇
𝐵 𝑑𝜏𝐹𝐵

𝑑𝑡
(86)

present in (46), 𝜆4 and 𝜆5 are characterized by the following explicit
functional dependence (for details, see system (33)):
{

𝜆4 = 𝜆4(𝜌𝐹 , 𝜃, 𝑒𝑆𝐸𝑖𝑗 )
𝜆5 = 𝜆5(𝜌𝐹 , 𝜃, 𝑒𝑆𝐸𝑖𝑗 )

(87)

where 𝑒𝑆𝐸𝑖𝑗 represents the Eulerian elastic strain tensor. Then, the terms
(86) become

𝜆4(𝜌𝐹 , 𝜃, 𝑒𝑆𝐸𝑖𝑗 ) 𝜇𝑆
⏟⏟⏟
viscosity

𝑑𝜏𝐹𝑆11
𝑑𝑡

; 𝜆4(𝜌𝐹 , 𝜃, 𝑒𝑆𝐸𝑖𝑗 ) 𝜇𝑆
⏟⏟⏟
viscosity

𝑑𝜏𝐹𝑆22
𝑑𝑡

; (88)

𝜆5(𝜌𝐹 , 𝜃, 𝑒𝑆𝐸𝑖𝑗 ) 𝜇𝐵
⏟⏟⏟
viscosity

𝑑𝜏𝐹𝐵

𝑑𝑡
.

It is worth noting that the viscous terms explicitly appear in (85) and
(88) thanks to the factors 𝐾

(

𝐿
𝑉

)1−𝑛
, 𝜇𝑆 and 𝜇𝐵 , respectively. Moreover,

𝑑𝜏𝐹𝑆11
𝑑𝑡 ,

𝑑𝜏𝐹𝑆22
𝑑𝑡 and 𝑑𝜏𝐹𝐵

𝑑𝑡 are also explicit in (85) and (88). Finally, the
functional dependency of the deformation in 𝛾̇

𝜔 (see (85)) is present
in relation (88) by means of 𝜆4(𝜌𝐹 , 𝜃, 𝑒𝑆𝐸𝑖𝑗 ) and 𝜆5(𝜌𝐹 , 𝜃, 𝑒𝑆𝐸𝑖𝑗 ). □

Proposition 5.6. The term −𝑘1(|T𝑑 |)𝜏𝐹𝐵 , which appears in system (84),
qualitatively corresponds to the terms −𝜏𝐹𝐵+𝜇𝐵𝑣𝐹1,1+𝜇

𝐵𝑣𝐹2,2 in system (46).

Proof. By means of (81), we can write

− 𝑘1(|T𝑑 |)𝜏𝐹𝐵 = −𝜏𝐹𝐵 + 𝐵𝑖
|T𝑑 |

𝜏𝐹𝐵 . (89)

Since 𝐵𝑖 represents the stress yield divided by the viscous stress,
the term 𝐵𝑖

|T𝑑 |
𝜏𝐹𝐵 in (89) can be qualitatively considered as the amount

of stress tension related to the fluid deriving from the fluid bulk (in
shear-thinning behavior). In other words, qualitatively, 𝐵𝑖

|T𝑑 |
can be

considered to correspond to 𝜇𝐵𝑣𝐹1,1 + 𝜇
𝐵𝑣𝐹2,2. □

Proposition 5.7. The terms −𝑘1(|T𝑑 |)𝜏𝐹𝑆11 +𝑘1(|T𝑑 |)𝑝𝐹 and −𝑘1(|T𝑑 |)𝜏𝐹𝑆22
+𝑘1(|T𝑑 |)𝑝𝐹 in the system (84) correspond, qualitatively, to −𝜏𝐹𝑆11 +𝜇𝑆𝐷𝐹

11
and −𝜏𝐹𝑆22 + 𝜇𝑆𝐷𝐹

22 in (46), respectively.

Proof. Exploiting (81) one more time, we can write (for 𝑛 = 1)

− 𝑘1(|T𝑑 |)𝜏𝐹𝑆11 = −𝜏𝐹𝑆11 + 𝐵𝑖
|T𝑑 |

𝜏𝐹𝑆11 (90)

and

𝑘1(|T𝑑 |)𝑝𝐹 =
(

1 − 𝐵𝑖
|T𝑑 |

)

𝑝𝐹 . (91)

Then, taking into account both (90) and (91), we can write

− 𝑘1(|T𝑑 |)𝜏𝐹𝑆11 + 𝑘1(|T𝑑 |)𝑝𝐹 = −𝜏𝐹𝑆11 + 𝐵𝑖
|T𝑑 |

𝜏𝐹𝑆11 +
(

1 − 𝐵𝑖
|T𝑑 |

)

𝑝𝐹 . (92)

In addition, by exploiting the decomposition (15), (92) becomes

− 𝑘1(|T𝑑 |)𝜏𝐹𝑆11 + 𝑘1(|T𝑑 |)𝑝𝐹 = −𝜏𝐹𝑆11 + 𝐵𝑖
|T𝑑 |

𝜏𝐹𝑆11 + 𝑝𝐹
(

1 − 𝐵𝑖
|T𝑑 |

)

= (93)

= −𝜏𝐹𝑆11 + 𝐵𝑖
|T𝑑 |

(𝜏𝐹11 + 𝑝
𝐹 − 𝜏𝐹𝐵) + 𝑝𝐹

(

1 − 𝐵𝑖
|T𝑑 |

)

=

= −𝜏𝐹𝑆11 + 𝐵𝑖
|T𝑑 |

(

𝜏𝐹11 − 𝜏
𝐹𝐵 +

|T𝑑 |
𝐵𝑖

𝑝𝐹
)

and, in a similar way, we achieve

− 𝜏𝐹𝑆22 + 𝐵𝑖
|T𝑑 |

(

𝜏𝐹22 − 𝜏
𝐹𝐵 +

|T𝑑 |
𝐵𝑖

𝑝𝐹
)

. (94)

We observe that, in (93), 𝜏𝐹11−𝜏
𝐹𝐵+ |T𝑑 |

𝐵𝑖 𝑝
𝐹 , being a ‘‘net’’ mechanical

tension along a specific direction, can be considered proportional to
the gradient of the velocity of the fluid in the same direction. Then,
the term 𝐵𝑖

|T𝑑 |

(

𝜏𝐹11 − 𝜏𝐹𝐵 + |T𝑑 |

𝐵𝑖 𝑝
𝐹
)

in (93) qualitatively corresponds

to 𝜇𝑆𝐷𝐹
11 in (46). Analogously, the term 𝐵𝑖

|T𝑑 |

(

𝜏𝐹22 − 𝜏𝐹𝐵 + |T𝑑 |

𝐵𝑖 𝑝
𝐹
)

in
(94) qualitatively corresponds to 𝜇𝑆𝐷𝐹

22 in (46), from which the thesis
follows. □

Proposition 5.8. The information content present in the third equation
of the system (84) is contained, in the pre-yield region, in the dissipative
inequality of the Chen theoretical model (that is, (41)).

Proof. Considering the third equation in the system (84), by means of
decomposition (15), it becomes
( 1 − 𝑎

2

)

(𝜏𝐹𝑆11 − 𝑝𝐹 + 𝜏𝐹𝐵) −
( 1 + 𝑎

2

)

(𝜏𝐹𝑆22 − 𝑝𝐹 + 𝜏𝐹𝐵) = 𝛱
𝜁𝛾̇

(95)

from which, after simple algebraic calculations, we achieve

𝜏𝐹𝑆22 − 𝜏𝐹𝑆11
2

+ 𝑎
𝜏𝐹𝑆22 + 𝜏𝐹𝑆11

2
+ 𝑎𝜏𝐹𝐵 = 𝑎𝑝𝐹 − 𝛱

𝜁𝛾̇
(96)

and again,

𝜏𝐹𝑆22 (1 + 𝑎) − 𝜏𝐹𝑆11 (1 − 𝑎) + 2𝑎𝜏𝐹𝐵 = 2𝑎𝑝𝐹 − 2𝛱
𝜁𝛾̇
, (97)

from which

− 𝜏𝐹𝑆11 (1 − 𝑎) + 𝑎𝜏𝐹𝐵 + 𝜏𝐹𝑆22 (1 + 𝑎) + 𝑎𝜏𝐹𝐵 = 𝑎𝑝𝐹 − 𝛱
𝜁𝛾̇

+ 𝑎𝑝𝐹 − 𝛱
𝜁𝛾̇
. (98)

Moreover, by separating the contributions in (98) we can write

⎧

⎪

⎨

⎪

⎩

−𝜏𝐹𝑆11 (1 − 𝑎) + 𝑎𝜏𝐹𝐵 = 𝑎𝑝𝐹 − 𝛱
𝜁𝛾̇

𝜏𝐹𝑆22 (1 + 𝑎) + 𝑎𝜏𝐹𝐵 = 𝑎𝑝𝐹 − 𝛱
𝜁𝛾̇ ,

(99)

which becomes
⎧

⎪

⎨

⎪

⎩

−𝜏𝐹𝑆11 (1 − 𝑎) + 𝑎𝜏𝐹𝐵 = 𝑎𝑝𝐹 − 𝛱
𝜁𝛾̇

−𝜏𝐹𝑆22 (−1 − 𝑎) + 𝑎𝜏𝐹𝐵 = 𝑎𝑝𝐹 − 𝛱
𝜁𝛾̇ .

(100)

On the other hand, inequality (41), taking into account Remark 2.2,
can be easily rewritten as follows:

− 𝜏𝐹𝑆𝑖𝑗
(

𝜆4
𝑑𝜏𝐹𝑆𝑖𝑗
𝑑𝑡

−𝐷𝐹
𝑖𝑗

)

+ 𝜏𝐹𝐵
(

𝑣𝐹𝑖,𝑖 − 𝜆5
𝑑𝜏𝐹𝐵

𝑑𝑡

)

≥ 0. (101)

10
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Table 4
Mixture Model & HB EVP Model: qualitative correspondence among terms in the
pre-yield region and shear-thinning behavior.

D.S. Resiga Model
(see system (84))

Chen & Yeh Mixture Model
(see system (46) and inequality (41))

𝜁 𝛾̇ 𝑑𝜏
𝐹𝑆
11

𝑑𝑡
𝜆4𝜇𝑆

𝑑𝜏𝐹𝑆11

𝑑𝑡

𝜁 𝛾̇ 𝑑𝜏
𝐹𝑆
22

𝑑𝑡
𝜆4𝜇𝑆

𝑑𝜏𝐹𝑆22

𝑑𝑡

𝜁 𝛾̇ 𝑑𝜏
𝐹𝐵

𝑑𝑡
𝜆5𝜇𝐵

𝑑𝜏𝐹𝐵

𝑑𝑡

−𝑘1(|T𝑑 |)𝜏𝐹𝑆11 +
𝑘1(|T𝑑 |)𝑝𝐹

−𝜏𝐹𝑆11 + 𝜇𝑆𝐷𝐹
11

−𝑘1(|T𝑑 |)𝜏𝐹𝑆22 +
𝑘1(|T𝑑 |)𝑝𝐹

−𝜏𝐹𝑆22 + 𝜇𝑆𝐷𝐹
22

−𝑘1(|T𝑑 |)𝜏𝐹𝐵 −𝜏𝐹𝐵 + 𝜇𝐵𝑣𝐹1,1 + 𝜇
𝐵𝑣𝐹2,2

It is known that 𝑎, in the Gordon–Schowalter time derivative (see (59)),
takes into account the contributions due to the symmetric part of the
velocity gradient tensor. Then, in our case, this tensor has to be referred
to the fluid continuum (that is, 𝐷𝐹

𝑖𝑗 ). Then, qualitatively, the factors
(1 − 𝑎) and (−1 − 𝑎) in (100) can be considered to correspond to the
factors

(

𝜆4
𝑑𝜏𝐹𝑆11
𝑑𝑡 − 𝐷𝐹

11

)

and
(

𝜆4
𝑑𝜏𝐹𝑆22
𝑑𝑡 − 𝐷𝐹

22

)

in (101), respectively.
Moreover, since 𝐷𝐹

𝑖𝑗 = 1
2 (𝑣

𝐹
𝑖,𝑗 + 𝑣𝐹𝑗,𝑖), it follows that factor 𝑎 in (100)

can be considered qualitatively correspondent to
(

𝑣𝐹𝑖,𝑖 − 𝜆5
𝑑𝜏𝐹𝐵

𝑑𝑡

)

in
(101). Then, it is shown that the information content present in (97)
is contained in inequality (101), from which the thesis follows. □

Therefore, Propositions 5.1, 5.4, 5.5, 5.6, 5.7, and 5.8, together
Remarks 5.2 and 5.3, formalize the qualitative correspondence between
the EVP experimental model and the theoretical model. The obtained
correspondences are summarized in Table 4. It is worth emphasizing
that, after this study, it is possible to use a simplified experimental
version (and therefore easily implemented) of the theoretical approach
characterized by prohibitive computational costs. However, it is pos-
sible to formalize this qualitative correspondence between the models
by taking into account the statement of Proposition 5.1, according to
which, under the assumed operating conditions, the terms containing
𝜏12 in the experimental model (see, system (69)) can be neglected.
This simplification produces an inevitable loss of information content,
whatever the low power index, 𝑛, is. Section 6 deals with the assessment
(qualitative) of the effects derived from this simplification by means of
some numerical tests, and these results are compared with those of two
well-known benchmarks from the literature [21].

6. Some significant tests

In this section, we present two numerical tests that are achieved
by fixing particular values of 𝐵𝑖, 𝑎, 𝑊 𝑒, and 𝛱 and varying 𝑛, as
reported by two well-known benchmarks from the literature [25]. The
implementations were made using Matlab® (Release 2017a) by means
of Runge–Kutta techniques. The following Remark was particularly
useful.

Remark 6.1. By exploiting Proposition 5.1, the following equation can
be obtained [21]:

|T𝑑 |2 =
1
2
(𝜏11 − 𝜏22)2 + 2𝜏212 =

1
2
(𝜏11 − 𝜏22)2. (102)

In addition, due to the isotropic pressure contribution, 𝑝𝐹 , it is not
possible to directly measure both 𝜏11 and 𝜏22. What can be measured
is the difference between these quantities as the pressure elides. Then,
after introducing the new variable 𝜓 = 𝜏11−𝜏22

2 , we can write

𝑘𝑛(|T𝑑 |) =
𝑛
√

√

2𝜓 − 𝐵𝑖

𝑛
√

(2𝛱)1−𝑛(
√

2)𝑛𝜓𝑛
. (103)

It is worth noting that the experimental data have always shown a
positive value of 𝜏11−−𝜏22 [7,25], so 𝜓 is always positive. In accordance
with (70), the second equation is subtracted from the first one, and
taking into account (103), we obtain the following Cauchy’s problem:

⎧

⎪

⎨

⎪

⎩

𝑑𝜓
𝑑𝑡 = −

𝑛
√

√

2𝜓−𝐵𝑖

𝜁𝛾̇2
2−𝑛
2𝑛 𝛱

1−𝑛
𝑛

𝜓(0) = 0
(104)

which has a unique solution, since the function −
𝑛
√

√

2𝜓−𝐵𝑖

𝜁𝛾̇2
2−𝑛
2𝑛 𝛱

1−𝑛
𝑛

and its

first derivative are continuous functions that ensure the absence of
ghost solutions in the numerical tests. We also observe that, by means of
the usual techniques of integrations of ordinary differential equations,
the analytical solution of (104) can be written as follows:

𝜓(𝑡) =

√

2
2

( (

2
𝛾̇

)
𝑛

−1+𝑛

×

((

𝑛
√

2𝜁 𝑛

(1 − 𝑛)𝛱
−1+𝑛
𝑛

(

−
𝐵𝑖𝛾̇ 𝑛

√

2𝜁𝑛

2(−1 + 𝑛)𝛱
−1+𝑛
𝑛

+ 𝑡

)−1) 𝑛
−1+𝑛

)−1

+ 𝐵𝑖

)

(105)

whose structure is not very suitable for industrial applications. Then,
we carry out numerical tests to achieve some interesting results of
industrial interest.

6.1. Case 1: Simple shear flow for 𝐚 = 𝐖𝐞 = 𝐁𝐢 = Π = 𝟏

The evolution of 𝜓(𝑡) in (104), starting from 𝜓(0) = 011 for 𝐵𝑖 = 𝑎 =
𝑊 𝑒 = 𝛱 = 1 and in the presence of shear-thinning behavior (𝑛 < 1)
is shown in Fig. 2(a) when 𝑛 increases. The achieved solutions mono-
tonically increase and tend toward a constant value when 𝑡 → +∞, so
that, for a sufficiently long 𝑡, the highlighted evolution overlaps with
the well-known literature benchmarks [21]. However, in comparison
with the results obtained in [21], in all of the cases considered, the
transitory phenomenon evolves with a lower time constant so that, in
this study, the fluid responds faster to the stress compared to when
𝜏12 has not been neglected [21]. To emphasize this aspect, Fig. 3(a)
displays a suitable zoomed in version of Fig. 2(a), also highlighting that,
starting from 𝑡 = 0, the solution for 𝑛 = 1 does not represent the upper-
bound solution (region A in Fig. 3(a)), while in region B, this condition
is restored. The reduced time constant values are due to the fact that
the model (70) is simplified with respect to (69) so the missing terms
in (70) produced in [21] delay the response. In addition, the absence
of 𝜏12 in (70) does not allow us to highlight any fluctuations at the start
of evolution. The same simplification, on the other hand, produces an
effect on 𝜏22. In fact, using the third equation of the system (70), for
𝑎 = 1, we obtain 𝜏22 = −𝛱

𝜁𝛾̇ , from which it is clear that, under the same
operating conditions, 𝜏22 is a constant value.

6.2. Case 2: Simple shear flow for 𝐚 = 𝟎, 𝐖𝐞 = 𝐁𝐢 = Π = 𝟏

As for Case 1, the evolution of 𝜓(𝑡) in (104) with a null initial
condition is displayed in Fig. 2(b) for an increasing 𝑛 and 𝑎 = 0, 𝑊 𝑒 =
𝐵𝑖 = 𝛱 = 1. Also, in this case, the monotonically increasing behavior
was confirmed under the same conditions in [21], showing a tendency
to move toward a constant value for 𝑡 → +∞, whatever the values of
𝐵𝑖 and 𝑛 are. As in the previous case, the time constant is reduced
compared to the one obtained in [21], with consequent achievement
of the regime condition in a reduced amount of time. Moreover, also
in this case, the absence of 𝜏𝐹12 in (70) produces a strong decay in the
fluctuations in the initial phase. The zoom displayed in Fig. 3(b) also
highlights that the solution for 𝑛 = 1 in the right neighborhood of

11 In other terms, it is supposed that the MR fluid is stressed starting from
the rest condition, when 𝑡 = 0.
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Fig. 2. As 𝑛 increases, the 𝜓(𝑡) evolution with 𝐵𝑖 = 𝑊 𝑒 = 𝛱 = 1 is as follows: (a) when 𝑎 = 1; (b) 𝑎 = 0.

Fig. 3. Suitable zoomed-in versions of (a) Fig. 2(a) and (b) Fig. 2(b), respectively.

the origin does not represent the upper-bound solution (region A in
Figure). However, compared to the previous case, the solution for n = 1
becomes an upper-bound solution when a longer time frame is used and
also produces higher solution values. It can therefore be deduced that
the case elaborated in this subsection is less consistent with the results
obtained in [21], as the lack of fluctuations causes the solution obtained
to be stable, unlike the instability shown in [21]. Finally, for 𝑎 = 0,
from the third equation in (70) we can easy see that 𝜓 = 𝛱

𝜁𝛾̇ , which
represents the value of 𝜓(𝑡) when the regime condition is established.

7. Conclusions and perspectives

In this work, a search for correspondence between the theoretical
mixture model for MR fluids solved in simple shear flow mode proposed
by Chen & Yeh [16] and a experimental model of industrial interest
proposed by D.S. Resiga [20] containing two components – Newtonian
(elastic) & Herschel–Bulkley (plastic) – was conducted. Since, in the
application field, the yield stress control determines the intended use
of the product, we focused on the pre-yield region, limiting ourselves
to considering only the plastic Herschel–Bulkley component (in pre-
yielding, the elastic component is negligible) in the D.S. Resiga model.
However, given the structures of both models, it was possible to ver-
ify the correspondence between by framing, on the one hand, the

theoretical model in the EIT framework and, on the other hand, con-
structing the EVP generalization of the Herschel–Bulkley component of
the experimental model in the GSM framework. Within these contexts,
both models provided evolutionary constitutive equations, allowing a
comparison to be conducted between them. Following a simplification
of the Herschel–Bulkley EVP model due to the fact that in the operating
conditions some terms can be considered negligible, the results showed
good adherence of information content between the two approaches
that, qualitatively, can be considered to be corresponding (at least
in the chosen operating conditions). This allowed us to consider the
EVP 3𝐷 component of Herschel–Bulkley to be an easily implementable
alternative of the theoretical mixture model that presents prohibitive
computational costs under the chosen operating conditions. Moreover,
the numerical tests showed that the simplification implemented in the
EVP model of Herschel–Bulkley produces a tolerable loss of information
content. However, the qualitative analysis presented in this work is only
a starting point for more in-depth research in which the quantitative
aspect must be imperatively explored in order to differentiate the
‘‘bulk’’ component from the ‘‘shear’’ one, as the two are differentiated in
detail in the theoretical mixture model. Finally, in the pre-yield region,
the link 𝜏0 − 𝐁 must be specified in both models to connect 𝐁 (and
therefore the necessary electric current 𝐼 in the coil) to guarantee the
intended use of the product containing the MR material. In the near
future, this link into account should be investigated to reformulate the

12
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mixture model by introducing magnetic induction related to the fluid
continuum so that, in the pre-yield region, the required link 𝜏0 −𝐁 can
be highlighted.
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