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A B S T R A C T

We discuss some recent results on biological and bio-inspired morphing, and use them to identify promising
research directions for the future. In particular, we consider issues related to morphing at microscopic scales
inspired by unicellular organisms. We focus on broad conceptual principles and, in particular, on morphing
approaches based on the use of Gauss’ theorema egregium (Gaussian morphing). We highlight some connections
with biological cell envelopes containing filaments and motors, and discuss ideas for the implementation of
Gaussian morphing in surfaces actuated by active shearing or stretching.

1. Introduction

Interest in shape-shifting structures has clear motivations and a rela-
tively long history. Bimetallic strips, plates or shells, used as
temperature-activated morphable structures (thermostats) provide but
one popular example. They have been modeled in the linear response
regime in the pioneering paper [1], more recently in the nonlinear
regime in [2], and have been used innumerable times, for example
in the dome-shaped electric kettle switches by Taylor [3]. A variant
of this idea, namely, exploiting conformational changes for functional
adaptation is provided by deployable structures. Here the conformation
in the translocation phase is as compact as possible to minimize trans-
portation costs (broadly interpreted), while conformation during the
service phase satisfies different functional requirements. Arrays of solar
panels for harvesting solar energy in space provide one example: they
need to be compactly folded to be launched by satellite rockets, they
have to maximize area for maximal energy collection when in orbit [4].
But exactly the same idea applies equally well to biomedical devices
such as stents. Valuable information on the mechanics of deployable
structures is in [5].

More recently, the problem of shape-shifting structures has acquired
a biological twist, with a great perceived potential for new applications
in bio-medical engineering. On the biology side, organisms use the pos-
sibility of changing conformation in many ways that are fundamental
for biological functions. One of them is motility, and cell motility in
particular, whose study has been made possible by recent advances in
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microscopy techniques. The new observations now available provide us
with a rich source of inspiration for novel shape-shifting mechanisms.
One example comes from the study of the swimming strategies of
unicellular organisms, from bacteria, to sperm cells, algae, microbes,
and parasites, see e.g., [6–16] and the references cited therein for a
very conspicuous body of literature. Here, executing a shape change
while immersed in a fluid is used to extract propulsive forces from
the resistance that the fluid offers to the swimmer, which stirs the
fluid around when it deforms its body. But the topic is much broader
including, for example, the shape changes driven by the mitotic spindle
when a cell divides [17].

While there is a clear biological interest in understanding the mech-
anisms by which nature has solved the problem of controlling shape at
the micrometer scale, this topic is also of great appeal for bio-medical
engineering applications. Here, a new generation of minimally invasive
diagnostic and surgical tools could be designed based on concepts
bio-inspired by the motility of cells and micro-organisms that profi-
ciently navigate inside the human body [18]. Quoting [19], it would
be interesting in surgery if you could swallow your surgeon. Biologi-
cal swimming and crawling have been studied extensively under this
perspective, see e.g. [20–23], and contributions from our own team in-
clude [24–31]. More generally, the topic is of interest in Soft Robotics,
a new paradigm in the design of robotic systems capable of operating
outside the clean and predictable environment of a factory, having to
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deal with the challenges of unstructured environments, uneven terrains,
unpredictable interactions with living beings and humans [32].

Engineering structures are often thin and slender objects, with one
dimension much smaller than the other two (2d membranes, plates,
and shells) or two dimensions much smaller than the other one (1d
rods). In these cases, shape control arises from control of curvature.
In the 2d case, there are two main avenues to achieve this. The first
one operates by inducing differential strains along the thickness, as
in Timoshenko’s bimetallic strips quoted above and in modern soft
variants, see e.g. [33–36]. The second one operates by controlling in-
plane stretches and exploiting Gauss’ theorema egregium. This second
avenue, based on the fact that Gaussian curvature is associated with
derivatives of the components of the metric tensor, i.e., differential
stretches of the mid-surface, has received a lot of attention in the recent
literature, see e.g., [37–40] and many others. We call Gaussian morphing
this second strategy, namely, the idea of controlling curvature (shape)
of a thin two-dimensional structure through modulated stretching of
the mid-surface (via prescription of the metric tensor).

Many results are available on how this Gaussian morphing principle
is at work in biological structures [41–44], and on how it can be
exploited in artificial structures, e.g., by using hydrogels or nematic
elastomers [45,46]. But work is still required to move beyond the proof
of concept stage, towards the reliable design and the accurate control
of the response of shape-shifting active structures. It is our opinion, and
the main point we wish to make in this paper, that this endeavor will
benefit from a clearer appreciation of how the problem of shape control
(both the so called direct problem of controlling shape, and the so
called inverse problem of determining an actuation strategy capable of
realizing a desired shape) is intimately linked to a notion of embodiment,
namely, the specification of a concrete mechanism by which the change
of metric is enforced. In the absence of this ingredient, the problem
is ill-defined. Our point of view on the subject has been shaped by
working at the intersection of many diverse perspectives: understand-
ing of biological organisms by quantitative mathematical modeling of
the forces that they exert to control shape on one side, and, on the other
side, the attempt to reproduce these mechanisms in concrete physical
prototypes by using modern manufacturing techniques.

In this paper, we discuss Gaussian morphing within the context of
structures whose outer boundary consists of (is made of or, possibly, is
activated by) a network of 1d filaments. From the biological point of
view, this is the paradigm by which the cell envelope contains systems
resulting from mixtures of filaments and motors (for example: acto-
myosin cortex in eukaryotic cells, microtubule bundles and motors
in eukaryotic flagella, motors with microtubule and pellicle strips in
euglenids, and in Euglena gracilis in particular) or it simply consists of
complex networks of filaments, whose shape is possibly controlled by
other mechanisms, as in Lacrymaria olor, see Fig. 1. From the point of
view of engineered structures, we explore axisymmetric Gaussian mor-
phing in structures made possible by different activation mechanisms,
which we describe as changes of metric of shearing and of stretching
type. The shearing mechanism is explored with an eye to structures
made of sliding flexible strips in [48]. The stretching mechanism is
analyzed for the possible connections with the braided sheaths used
in McKibben pneumatic artificial muscles, see e.g. [49] for a review of
the underlying mechanical principles.

Finally, by modeling eukaryotic flagella as active tubular shells, we
discuss how flagellar beating can be described as an instance of the
Gaussian morphing principle. This is one of the new results contained
in this paper, see Section 7. Indeed, eukaryotic flagella are typically
described in the current biophysical literature as active rods, rather
than as active shells. Another novelty in this paper is an expanded list
of easy-to-use formulas that link actuation strain (stretching or shear)
to emerging Gaussian curvature (hence shape), in particular in the axi-
symmetric case, see Eqs. (12)–(14), the last two of which are new. We
use these formulas to show in some concrete examples that the same
shape changes can be obtained by prescribing different deformations

Fig. 1. Neck protrusion and shape changes in the microtubule meshwork of Lacrymaria
olor (top, reproduced with permission from [47]) and sliding helices in Euglena gracilis
metaboly (bottom, adapted from [48]).

of the material fibers making up the active surface. We conclude that,
in discussing problems of shape control, one crucial ingredient is the
specification of the mechanism by which the changes of the metric
tensor are enforced, i.e., the embodiment of the Gaussian morphing
principle.

2. Gaussian morphing: controlling shape of surfaces by prescrib-
ing their metric

We start by considering the reference configuration of a material
surface, namely, a two-dimensional surface immersed in R3 and its
deformations. This means that we consider a map (𝑢, 𝑣) ↦ 𝝌0(𝑢, 𝑣) ∈ R3,
where (𝑢, 𝑣) ∈ (𝐿0,𝐻0) ⊂ R2. A deformed configuration of this material
surface will be given by another map, say, (𝑢, 𝑣) ↦ 𝝌(𝑢, 𝑣) ∈ R3, again
with (𝑢, 𝑣) ∈ (𝐿0,𝐻0) ⊂ R2.

By computing the surface deformation gradient 𝑭 and the right
Cauchy–Green strain 𝑪 = 𝑭 𝑇𝑭 , we obtain the metric tensors of the
material surface in the reference and deformed configurations as

𝑪0 = 𝑔0 =
[

𝝌0,𝑢 ⋅ 𝝌0,𝑢 𝝌0,𝑢 ⋅ 𝝌0,𝑣
𝝌0,𝑢 ⋅ 𝝌0,𝑣 𝝌0,𝑣 ⋅ 𝝌0,𝑣

]

(1)

and

𝑪 = 𝑔 =
[

𝝌 ,𝑢 ⋅ 𝝌 ,𝑢 𝝌 ,𝑢 ⋅ 𝝌 ,𝑣
𝝌 ,𝑢 ⋅ 𝝌 ,𝑣 𝝌 ,𝑣 ⋅ 𝝌 ,𝑣

]

=
[

𝐸 𝐹
𝐹 𝐺

]

, (2)

where a comma denotes partial differentiation.
We are interested in inducing controlled changes of the shape of

the material surface by generating changes of lengths and angles of its
material fibers through actuation, described by changes of the metric
tensor from its reference value 𝑔0 to a new value 𝑔. The possibility of
changing curvature (morphing) of a surface by acting on its metric is
recognized by a remarkable theorem by Gauss, his celebrated theorema
egregium, stating that the Gaussian curvature 𝐾 of a surface (the product
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of its principal curvatures) can be computed by differentiating the
components of its metric tensor as

− 𝐸𝐾 = (𝛤 2
12),𝑢 − (𝛤 2

11),𝑣 + 𝛤
1
12𝛤

2
11 + 𝛤

2
12𝛤

2
12 − 𝛤

2
11𝛤

2
22 − 𝛤

1
11𝛤

2
12, (3)

where 𝛤 𝛼𝛽𝛾 , 𝛼, 𝛽, 𝛾 = 1, 2, are the Christoffel symbols, see [50]. The
interpretation of Gauss’ theorem as a morphing scheme is contained
in the pioneering work [37].

We will discuss examples that are motivated by shape changes
exhibited by unicellular organisms (cell motility). These can be inter-
preted as the result of changes of the metric of the material surface
that describes their cell envelope. Progress in the available manufac-
turing techniques is starting to enable us to replicate these morphing
mechanisms in prototypes, so that Gauss theorem can become a tool to
engineer deployable or shape-shifting structures (Gaussian morphing),
in particular those which are inspired by biological organisms (bio-
inspired Gaussian morphing). Since shells can exhibit high stiffness
thanks to the high resistance (by stretching) to loads trying to modify
their Gaussian curvature (resistance by shape) this also opens up the
way to the design of structures whose stiffness properties can be tuned
according to needs (adaptable structures).

One example of the paradigm just illustrated, analyzed in detail
in [43,44,48,51], is a local simple shear arising from the sliding of
pellicle strips making up the cell envelope of euglenids, namely

𝑔 =
[

1 + 𝛾2 𝛾
𝛾 1

]

(shearing mechanism). (4)

Here 𝛾 = 𝛾(𝑢, 𝑣) ∈ R is the local simple shear between material fibers
aligned with the coordinate lines (the direction of the centerline of the
pellicle strips in the case of euglenids), an area preserving deformation.
The same mechanism powers flagellar and ciliary beating in eukaryotic
cells, where molecular motors induce relative sliding between parallel
bundles of microtubules arranged in space along the outer cylindrical
envelope of the flagellum (the distinctive 9+2 structure, which is highly
conserved across all eukaryotic organisms, see [52]). Substituting (4)
into (3) we obtain

𝐾 =
(

𝛾,𝑢 − 𝛾𝛾,𝑣
)

,𝑣 (shearing mechanism). (5)

Another example, motivated by observations of the deformations
of Lacrymaria olor in [47], is also at work in the braided sheaths of
pneumatic artificial muscles of McKibben type [49]. It consists of a
stretch with principal directions along the coordinate lines

𝑔 =
[

𝜆2 0
0 𝜇2

]

(stretching mechanism), (6)

where 𝜆 = 𝜆(𝑢, 𝑣) ∈ (0,+∞) and 𝜇 = 𝜇(𝑢, 𝑣) ∈ (0,+∞) are the
stretches along the 𝑢− and 𝑣−coordinate lines, respectively. These are
typically the diagonals in the rhombus-shaped unit cell of a meshwork
which deforms as a pantograph in the sheath of a McKibben or in an
array of biofilaments in the cell envelope. It is conceivable to use the
same mechanism actively, in order to induce the corresponding shape
changes in an active shape-shifting engineered surface.

The deformation associated with (6) is area preserving if 𝜆𝜇 = 1, in
which case it is called a pure shear. Substituting (6) into (3) we obtain

𝐾 = − 1
𝜆𝜇

(

(𝜆,𝑣
𝜇

)

,𝑣
+
(𝜇,𝑢
𝜆

)

,𝑢

)

(stretching mechanism) (7)

in the general case while, in the area-preserving case, we have

𝐾 = −
(

𝜆𝜆,𝑣
)

,𝑣 −
(

𝜇𝜇,𝑢
)

,𝑢 (stretching mechanism, 𝜆𝜇 = 1). (8)

3. Gaussian morphing of axisymmetric surfaces

We focus now on axisymmetric shape-shifting surfaces. As reference
configuration 𝑆0, we consider the cylinder of radius 𝑅0 such that

𝝌0(𝑢, 𝑣) =
{

𝑅0 cos
(

𝑢
𝑅0

)

, 𝑅0 sin
(

𝑢
𝑅0

)

, 𝑣
}

, 𝑢 ∈ (0, 𝐿0), 𝑣 ∈ (0,𝐻0),

(9)

where 𝐿0 = 2𝜋𝑅0. This has the identity matrix as metric tensor 𝑔0 and
zero Gaussian curvature 𝐾0 = 0, in agreement with formulas for 𝑔 and
𝐾 in the previous section obtained by setting either 𝛾 = 0 or 𝜆 = 𝜇 = 1.

We are then interested in deformed configurations with axisymmet-
ric shape 𝑆, which can be written by assigning a generating curve
{𝑟(𝑣), 𝑧(𝑣)} in the symmetry plane and an azimuthal displacement 𝜓(𝑣),
leading to

𝝌(𝑢, 𝑣) =
{

𝑟(𝑣) cos
(

𝑢
𝑅0

+ 𝜓(𝑣)
)

, 𝑟(𝑣) sin
(

𝑢
𝑅0

+ 𝜓(𝑣)
)

, 𝑧(𝑣)
}

,

𝑢 ∈ (0, 𝐿0), 𝑣 ∈ (0,𝐻0). (10)

Substituting (10) into (2) we obtain
[

(𝑟∕𝑅0)2 𝑟2𝜓 ′∕𝑅0
𝑟2𝜓 ′∕𝑅0 𝑟′2 + 𝑧′2 + 𝑟2𝜓 ′2

]

=
[

𝐸 𝐹
𝐹 𝐺

]

= 𝑔, (11)

where a prime (⋅)′ denotes differentiation with respect to 𝑣. Clearly,
since the left hand side in the last equation depends only on 𝑣, only
metric tensors 𝑔 = 𝑔(𝑣) that are independent of 𝑢 (axi-symmetric
actuation) are compatible with (10). In these circumstances, Eqs. (5),
(7), and (8) from the last section simplify to

𝐾 = −
(

𝛾𝛾,𝑣
)

,𝑣 (shearing mechanism), (12)

𝐾 = 1
𝜆𝜇

(

1
𝜇2
𝜆,𝑣𝜇,𝑣 −

1
𝜇
𝜆,𝑣𝑣

)

(stretching mechanism), (13)

𝐾 = −
(

𝜆𝜆,𝑣
)

,𝑣 (stretching mechanism, 𝜆𝜇 = 1), (14)

respectively.
We would like to compute the axisymmetric shapes that can result

from axisymmetric actuation patterns either in simple shear, 𝛾 = 𝛾(𝑣),
or in pure shear 𝜆 = 𝜆(𝑣), 𝜆𝜇 = 1. From Eq. (11) we immediately see
that, since 𝐸 = (𝑟∕𝑅0)2, whenever the metric 𝑔 is constant, then the
axisymmetric surface 𝝌 is a cylinder of radius 𝑟 = 𝐸1∕2𝑅0, a special
instance of a surface with zero Gaussian curvature 𝐾 = 0. This case of
constant metric 𝑔 is the simplest to examine, and we shall consider this
case first.

4. Cylinders from cylinders

When 𝐾 = 𝐾0 = 0, the axisymmetric morphing surface can be
developed onto a plane both before and after actuation. Following Ar-
royo and DeSimone [44], in order to study the shape change 𝑆0 ↦ 𝑆
induced by the change of metric 𝑔0 ↦ 𝑔, it is useful to analyze the
process by first cutting 𝑆0 along a direction parallel to the cylinder axis
and unfolding it (isometrically) to a plane, then deform this plane with
a two-dimensional affine map 𝜱(𝑢, 𝑣) inducing the (spatially uniform)
change of metric 𝑔0 ↦ 𝑔
[

𝜱,𝑢 ⋅𝜱,𝑢 𝜱,𝑢 ⋅𝜱,𝑣
𝜱,𝑢 ⋅𝜱,𝑣 𝜱,𝑣 ⋅𝜱,𝑣

]

= 𝑔 =
[

𝐸 𝐹
𝐹 𝐺

]

, (15)

and then roll-up (isometrically) the deformed plane on a cylinder of
radius 𝑟 = 𝐸1∕2𝑅0. The case associated with a shearing mechanism is

𝜱(𝑢, 𝑣) = 𝑹𝜙
𝒆3

(

𝑢𝒆1 + (𝑣 + 𝛾𝑢)𝒆2
)

, 𝑔 =
[

1 + 𝛾2 𝛾
𝛾 1

]

, (16)

where 𝑹𝜙
𝒆3

is a rotation with axis 𝒆3 and angle 𝜙 = tan−1(𝛾). Metrics of
this type were considered and extensively studied in [43,44]. Another
notable example is the case associated with a stretching mechanism,
and is given by

𝜱(𝑢, 𝑣) = 𝜆𝑢𝒆1 + 𝜇𝑣𝒆2, 𝑔 =
[

𝜆2 0
0 𝜇2

]

. (17)

Substituting (17) into (11) we obtain
[

(𝑟∕𝑅0)2 𝑟2𝜓 ′∕𝑅0
𝑟2𝜓 ′∕𝑅0 𝑟′2 + 𝑧′2 + 𝑟2𝜓 ′2

]

=
[

𝜆2 0
0 𝜇2

]

= constant, (18)
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which gives 𝑟 = 𝜆𝑅0, while the functions 𝜓(𝑣) and 𝑧(𝑣) are determined
by solving the differential equations

𝜓 ′ = 0, (19)

and

𝑧′ = ±𝜇. (20)

Hence, by setting the integration constants 𝜓(0) and 𝑧(0) equal to zero
and selecting the plus sign in (20) (solutions to (18) are determined up
to a rigid motion allowing for translations along 𝐞3, rotations about 𝐞3,
and ± inversion along 𝐞3, which are here fixed), we have 𝜓(𝑣) = 0 and
𝑧(𝑣) = 𝜇𝑣.

We are interested in the conformational changes of networks of
material curves on 𝑆0, when a metric change 𝑔0 ↦ 𝑔 transforms 𝑆0
into 𝑆. We consider the 2𝑁 lines

𝑢(𝑘)(𝑣) = 𝑘2𝜋
𝑁
𝑅0 ± tan(𝜗0)𝑣, 𝑘 = 0,… , 𝑁 − 1 (21)

and their images in the reference and deformed configurations

𝝌 (𝑘)
0 (𝑣) = 𝝌0(𝑢(𝑘)(𝑣), 𝑣)

=
{

𝑅0 cos
(

1
𝑅0

𝑢(𝑘)(𝑣)
)

, 𝑅0 sin
(

1
𝑅0

𝑢(𝑘)(𝑣)
)

, 𝑣
}

, 𝑣 ∈ (0,𝐻0)

(22)

and
𝝌 (𝑘)(𝑣) = 𝝌(𝑢(𝑘)(𝑣), 𝑧(𝑣))

=
{

𝜆𝑅0 cos
(

1
𝑅0

𝑢(𝑘)(𝑣)
)

, 𝜆𝑅0 sin
(

1
𝑅0

𝑢(𝑘)(𝑣)
)

, 𝜇𝑣
}

,

𝑣 ∈ (0,𝐻0).

(23)

Curves (22) are circular helices with radius 𝑅0, screw axis parallel to
𝒆3, and pitch angle 𝜗0. Curves (23) are circular helices with radius 𝜆𝑅0,
screw axis parallel to 𝒆3, and pitch angle tan−1(𝜆 tan(𝜗0)∕𝜇) (when 𝜗0 =
𝜋∕4, the angular pitch of (23) is tan−1(𝜆∕𝜇)). These are all illustrated in
Fig. 2.

5. Axisymmetric surfaces with non-constant metric

We turn now to more general axisymmetric surfaces 𝑆 of the form
(10), obtained by axisymmetric actuation, i.e., by nonconstant metrics
𝑔 depending only on the ‘‘vertical’’ coordinate 𝑣 (the coordinate along
the symmetry axis) and not on the ‘‘azimuthal’’ coordinate 𝑢. The
case of simple shear (4) has been discussed in detail in [44]. In fact,
metrics of this type were considered in [43,44] and extensively studied
in [43,44,48,51] in connection with the morphing mechanism of the
pellicle of euglenids. In particular, Arroyo and DeSimone [44] give
the complete atlas of the axisymmetric shapes of constant Gaussian
curvature surfaces (cylinders, cones, spheres, spindles, and pseudo-
spheres) achievable by axisymmetric shearing, and solve the inverse
problem of finding which shear actuation patterns, i.e., which metric
of the type (16), are capable of realizing each given shape.

Here, we consider the metric given by (6), restricting attention to
the area-preserving case of 𝜆𝜇 = 1 (pure shear) for simplicity. From
[

(𝑟∕𝑅0)2 𝑟2𝜓 ′∕𝑅0
𝑟2𝜓 ′∕𝑅0 𝑟′2 + 𝑧′2 + 𝑟2𝜓 ′2

]

=
[

𝜆2 0
0 1∕𝜆2

]

, (24)

where 𝜆 = 𝜆(𝑣) and a prime denotes derivative with respect to 𝑣, we
obtain

𝑟(𝑣) = 𝜆(𝑣)𝑅0, (25)

𝜓 ′(𝑣) = 0, (26)

and

𝑧′(𝑣) = ± 1
𝜆(𝑣)

√

1 − (𝑅0𝜆𝜆′)2, (27)

which can be solved with real 𝑧(𝑣) provided that

𝜆|𝜆′| ≤ 1
𝑅0

. (28)

This is a necessary condition for the embeddability of a metric of the
form (6) in the axisymmetric case.

We start by seeking surfaces of zero Gaussian curvature 𝐾 = 0, more
general than the cylinders of the previous section, which arise when
𝜆′ = 0. We thus have

0 = −
(

𝜆𝜆′
)′ = −1

2
(𝜆2)′′, (29)

which implies that 𝜆(𝑣)𝜆′(𝑣) = 𝐶, a constant such that |𝐶| ≤ 1∕𝑅0.
Hence,

𝑧′(𝑣) = 𝑑𝑧
𝑑𝑣

= ± 1
𝜆(𝑣)

√

1 − 𝑅2
0𝐶

2 (30)

and, using (25), we deduce that

𝑑𝑟
𝑑𝑧

=
𝑑𝑟
𝑑𝑣
𝑑𝑧
𝑑𝑣

= ±
𝑅0𝜆(𝑣)𝜆′(𝑣)
√

1 − 𝑅2
0𝐶

2
= ±

√

√

√

√

𝑅2
0𝐶

2

1 − 𝑅2
0𝐶

2
=∶ ± tan(𝜙), (31)

which shows that 𝑆 is a cone with axis parallel to 𝒆3 and opening angle
𝜙 (measured clockwise from the 𝒆3 axis). This angle tends to zero when
𝐶 → 0, and to 𝜋∕2 when 𝐶 → ±1∕𝑅0.

Moreover, it follows from (29) that 𝜆2(𝑣) is a linear function of
𝑣 ∈ (0,𝐻0). Thus, we can write 𝜆 as

𝜆 = �̃�(𝜉) =
√

𝐴(1 − 𝜉) + 𝐵𝜉, 𝜉 ∶= 𝑣
𝐻0

∈ (0, 1), �̃�(0) =
√

𝐴,

�̃�(1) =
√

𝐵
(32)

and integrate (30) to obtain

𝑧(𝑣) = 𝑧(0) ±𝐻0

√

1 − 𝑅2
0𝐶

2
∫

𝑣∕𝐻0

0

𝑑𝑥
√

𝐴(1 − 𝑥) + 𝐵𝑥
. (33)

Furthermore, from 𝜆𝜆′ = (𝜆2)′∕2 = 𝐶, we obtain

𝐶 = 𝐵 − 𝐴
2𝐻0

, (34)

so that the embeddability condition |𝐶| ≤ 1∕𝑅0 is equivalent to

|𝐵 − 𝐴| −
2𝐻0
𝑅0

≤ 0. (35)

Setting all the integration constants to zero and choosing the posi-
tive sign in the previous formulas, we obtain the parametrization of 𝑆
as

𝜆(𝑣) =

√

𝐴
(

1 − 𝑣
𝐻0

)

+ 𝐵 𝑣
𝐻0

, (36)

𝑟(𝑣) = 𝜆(𝑣)𝑅0, (37)

𝜓(𝑣) = 0, (38)

and

𝑧(𝑣) =

√

𝐴(1 − 𝑅2
0𝐶

2)

𝐶

(√

1 − 𝑣
𝐻0

+ 𝐵
𝐴

𝑣
𝐻0

− 1
)

, (39)

which describes a truncated cone with opening angle given by (31) and
radii at the rim of the surface equal to 𝑟(0) = 𝑅0

√

𝐴 and 𝑟(𝐻0) = 𝑅0
√

𝐵.
Here 𝐴 = 𝜆2(0), 𝐵 = 𝜆2(𝐻0), 𝐶 = (𝐵 − 𝐴)∕(2𝐻0) and 𝐴, 𝐵 must be such
that |𝐵 − 𝐴| − 2𝐻0∕𝑅0 ≤ 0.

The images of the circular helices (22) after deformation are ob-
tained by substituting the previous formulas into

𝝌 (𝑘)(𝑣) = 𝝌(𝑢(𝑘)(𝑣), 𝑧(𝑣))

=
{

𝑟(𝑣) cos
(

1
𝑅0

𝑢(𝑘)(𝑣)
)

, 𝑟(𝑣) sin
(

1
𝑅0

𝑢(𝑘)(𝑣)
)

, 𝑧(𝑣)
}

,

𝑣 ∈ (0,𝐻0)

(40)

and are represented in Fig. 3.
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Fig. 2. Cylindrical surfaces obtained from a referential cylinder with 𝐻0∕𝑅0 = 5 by exploiting the area preserving stretching morphing principle for 𝜆 = {0.75, 1, 1.5, 2, 2.5, 3}.
Cylindrical surfaces are decorated by blue and yellow material fibers for 𝜃0 = 𝜋∕4 and 𝑁 = 10. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 4 shows a comparison between surfaces and networks of ma-
terial lines arising form the two different actuation mechanisms. The
figure shows that the same shapes can be obtained with two different
metrics (one corresponding to a stretching mechanism, the other one
to a shearing mechanism). The two mechanisms (not the shapes) are
distinguishable because they lead to different deformations of the
networks of material lines, and lead to different displacements of
material points on the surfaces. The difference, however, is not without
subtleties. For each fixed value 𝛾 of the shearing metric 𝑔, there is a
stretching metric delivering the same shape, through stretches along
different coordinate lines, the ones along the 𝛾-dependent eigenvectors
of 𝑔. A change of coordinates transforms one metric into the other.
If, however, we insist on the fact that some curves in the reference
configuration have the character of material lines, and that the embod-
iment of the shape-shifting mechanism governs the change of lengths
and angles of material lines, then the two mechanisms by shearing and
stretching are no longer interchangeable: The embodiment reveals the
difference between the two mechanisms. A more complete discussion of
this issue, and a more complete characterization of the available shapes
(direct problem) and of the actuation patterns needed to produce them
(inverse problem) will be provided elsewhere.

6. Localized bulges

Of particular interest is the construction of localized axisymmetric
bulges. These have been used in the context of the shearing activa-
tion mechanism to mimic the traveling peristaltic waves rationalizing
metaboly (also known as amoeboid motion) in Euglenids [44,51]. Here,
we consider the following variant in the context of the stretching
activation mechanism

�̃�(𝜉) = 1 + 𝐴

(

1 − exp

[

−
(

𝜉 − 𝜉0
𝐷

)2
])

, 𝜉 ∶= 𝑣
𝐻0

∈ (−1, 1), (41)

where 𝐴 > −1 determines the strength of the bulge perturbation
with respect to the reference cylinder (9), 𝐷 > 0 determines its non-
dimensional breadth, and both satisfy embeddability constraints, while
𝜉0 ∈ (−1, 1) locates the center of the bulge along the symmetry axis.

The shapes resulting from (41) are shown in Fig. 5. They are
closely reminiscent of the patterns exhibited by the unicellular predator
Lacrymaria olor when it protrudes its neck for feeding, see Fig. 1.
Shape changes of a similar kind are also exhibited by Euglena gracilis
executing metaboly, even though the extent of the protrusions is less
extreme. There, the activation mechanism (the metric change) and the
displacements of material points on the surface (the sliding pellicle
strips) arise from a continuous one-parameter family of shears (12)
rather than stretches (13), see [44,51]. The details by which the two
unicellular organisms control their behavior are still largely unknown.

7. Non-axisymmetric shapes

Finally, we consider a shape change which is not axisymmetric,
in order to sketch a kinematic model for the axoneme, the slender
bundle of microtubules that constitutes the internal scaffold of the eu-
karyotic flagellum [52]. We emphasize that this structure is commonly
represented as a rod with spontaneous curvature, or with internal
shearing forces modeling the action of the molecular motors on the
microtubules, see e.g. [53]. We represent it here as a tubular active
shell, within the Gaussian morphing paradigm.

In this preliminary investigation, we focus on flagellar shapes in
the absence of external loads. These are typically of hydrodynamic
nature: equilibrium shapes of flagella beating in a fluid emerge from
a force balance to which they contribute. This is discussed in several
papers, for example in the seminal work by Machin [54]. Here we
neglect external loads and treat microtubules as (inextensible) fibers on
a tubular surface of radius 𝑅0, see Fig. 6. The centerline of the tubular
surface is given by the curve 𝐫(𝜁 ), parametrized by its arc length 𝜁 . For
simplicity we restrict ourselves to centerlines lying on a plane

𝐫(𝜁 ) =
{

𝑟𝑥(𝜁 ), 0, 𝑟𝑧(𝜁 )
}

.

Associated to the curve 𝐫(𝜁 ) we consider the orthonormal frame

𝐝1(𝜁 ) = {cos 𝜃(𝜁 ), 0, sin 𝜃(𝜁 )} , 𝐝2(𝜁 ) = {0, 1, 0} , and
𝐝3(𝜁 ) = {− sin 𝜃(𝜁 ), 0, cos 𝜃(𝜁 )} ,

where 𝐝3(𝜁 ) = 𝐫,𝜁 (𝜁 ) is the centerline’s unit tangent. The orthonormal
frame

{

𝐝1,𝐝2,𝐝3
}

is completely determined by the angle 𝜃 between the
centerline’s tangent 𝐝3 and the 𝑧 axis.

We use as a ‘‘template’’ for the axonemal outer surface the map

𝝍(𝜙, 𝜁) = 𝐫(𝜁 ) + 𝑅0
(

cos𝜙𝐝1(𝜁 ) + sin𝜙𝐝2(𝜁 )
)

(42)

depending on the generalized cylindrical coordinates 𝜁 and 𝜙. This
surface is actually made of nine outer microtubules, which we assume
to lie on the graph of the curves 𝜁 ↦ 𝝍(𝜙𝑘, 𝜁) for 𝜙𝑘 = 2𝜋𝑘∕9
with 𝑘 = 1, 2,… , 9. A reparametrization of (42) gives us the material
configuration of the axonemal surface

𝝌(𝑢, 𝑣) = 𝝍
(

𝑢
𝑅0

, 𝑍
(

𝑢
𝑅0

, 𝑣
))

, 𝑢 ∈ (0, 𝐿0), 𝑣 ∈ (0,𝐻0), (43)

where 𝐿0 = 2𝜋𝑅0, 𝐻0 is the microtubules’ length, and where the
function 𝑍(𝜙, 𝑣) is defined (implicitly) by the equality

𝑍
(

𝜙, 𝑉 (𝜙, 𝜁)
)

= 𝜁 with 𝑉 (𝜙, 𝜁) = ∫

𝜁

0

‖

‖

‖

𝝍 ,𝜁 (𝜙, 𝜁 ′)
‖

‖

‖

𝑑𝜁 ′. (44)

Notice that the graphs of the curves 𝜁 ↦ 𝝍(𝜙𝑘, 𝜁) do not change under
the reparametrization in (43). Moreover, from the definition of the
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Fig. 3. Truncated cones obtained from a referential cylinder with 𝐻0∕𝑅0 = 5 by exploiting the stretching morphing principle for 𝑟(0)∕𝑅0 = {1, 1.5, 2, 2.5, 3, 3.32} and 𝑟(𝐻0)∕𝑅0 = 1.
Conical surfaces are decorated by blue and yellow material fibers for 𝜃0 = 𝜋∕4 and 𝑁 = 10. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 4. A comparison between identical shapes (cylinders and truncated cones) obtained by means of either a shearing (left) or stretching (right) mechanism. All the shapes are
for 𝐻0∕𝑅0 = 5. The shorted cylinders correspond to 𝛾 =

√

3 (shearing mechanism) and to 𝜆 = 2 (stretching mechanism). Cones are both such that 𝑟(0)∕𝑅0 = 2.5 and 𝑟(𝐻0)∕𝑅0 = 1.
Surfaces are decorated by colored material fibers to highlight the embodiment of the morphing principle and to emphasize the difference between the two morphing mechanisms.

Fig. 5. Extension of a neck resembling Lacrymaria olor obtained by means of the stretching mechanism from a cylinder. Shapes are obtained by exploiting Eq. (41) with
𝐴 = {0,−0.17,−0.34,−0.51,−0.68,−0.85}, 𝐷 = 0.28, and 𝜉0 = 0.3. The referential cylinder is such that 𝐻0∕𝑅0 = 7. Surfaces are decorated by blue and yellow material fibers for
𝜃0 = 𝜋∕4 and 𝑁 = 10. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Set of surfaces mimicking several configurations of the axoneme within the flagellar beat of Chlamydomonas reinhardtii. Material fibers (microtubules) are shown in red.
The deformed configurations of the coordinate lines 𝑣 = 𝑘𝐿0∕10, with 𝑘 = 0, 1,… , 10, are shown in blue. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

function 𝑍 in (44) it follows that 𝐺 = ‖

‖

𝝌 ,𝑣‖‖
2 = 1, so microtubules

are indeed inextensible.
Axonemes are slender structures, where for most systems we have

𝑅0∕𝐻0 ∼ 10−2. Taking 𝐻0 = 1, we can exploit the fact that 𝑅0 ≪ 1
to obtain explicit approximate formulas for kinematic quantities of
interest. Direct calculations from (42) and (44) give

𝑉 (𝜙, 𝜁) = ∫

𝜁

0
1 + 𝑅0 cos𝜙𝜃,𝜁 (𝜁 ′)𝑑𝜁 ′ = 𝜁 + 𝑅0 cos𝜙𝜃(𝜁 ),

where we assumed 𝜃(0) = 0. From the previous calculation it follows
that

𝑍(𝜙, 𝑣) ≈ 𝑣 − 𝑅0 cos𝜙𝜃(𝑣).

To verify the above equation we can simply check that the first equation
in (44) is solved up to the first order in 𝑅0. Plugging the approximated
expression for 𝑍 in (43), and Taylor expanding in 𝑅0 up to the first
order, we obtain

𝝌(𝑢, 𝑣) ≈ 𝐫(𝑣) + 𝑅0

(

cos
(

𝑢
𝑅0

)

(

𝐝1(𝑣) − 𝜃(𝑣)𝐝3(𝑣)
)

+ sin
(

𝑢
𝑅0

)

𝐝2(𝑣)
)

.

Up to an error (𝑅0), the tangent vectors to the material surface are
given by

𝝌 ,𝑢 ≈ − sin
(

𝑢
𝑅0

)

(

𝐝1(𝑣) − 𝜃(𝑣)𝐝3(𝑣)
)

+ cos
(

𝑢
𝑅0

)

𝐝2(𝑣) and

𝝌 ,𝑣 ≈ 𝐝3(𝑣).

Direct calculations show that, at the same order of approximation, the
metric tensor 𝑔 associated with (43) has the form (4), with the shear
function 𝛾 given by

𝛾(𝑢, 𝑣) = sin
(

𝑢
𝑅0

)

𝜃(𝑣). (45)

Starting from the (𝑅0) approximation of the outer unit normal

𝐧 ≈ cos
(

𝑢
𝑅0

)

𝐝1(𝑣) + sin
(

𝑢
𝑅0

)

𝐝2(𝑣)

we can calculate the Gaussian curvature 𝐾 of the axonemal surface,
from its standard (extrinsic) definition. At the leading order approxi-
mation, up to an error (1), we obtain

𝐾 ≈ cos
(

𝑢
𝑅0

)

𝜅(𝑣)
𝑅0

, (46)

where 𝜅(𝑣) = 𝜃,𝑣(𝑣) is the centerline’s curvature. It is straightforward to
check that, at the same order of approximation, the expression for 𝐾
coincides with the right hand side of (5), when 𝛾 is given by (45).

Formulas (45)–(46) show the relation between the relative sliding of
microtubules and the geometry of the axonemal centerline. They state
that, given a suitable microtubule shear pattern, the centerline of the
axoneme can attain any (planar) shape. Indeed, 𝛾 directly defines the
angle 𝜃, which determines centerline curve 𝐫 via the equation

𝐫,𝜁 (𝜁 ) =
{

− sin 𝜃(𝜁 ), 0, cos 𝜃(𝜁 )
}

. (47)

In Fig. 6 we show a flagellar beat (one period of a periodic time
history of axonemal surfaces) that mimics those of model organisms
such as Chlamydomonas reinhardtii [13]. An important feature of this
beat is that it is periodic but non-reciprocal: the beat is divided into
two distinct phases, namely, the power phase in which the flagellum is
more extended and the recovery phase in which it is more compact. The
lower hydrodynamic resistance characterizing the more compact shape
of the recovery phase ensures the symmetry breaking necessary to the
emergence of net displacements, even in the absence of inertia [8].

As a final remark, we observe that (45) also highlights the following
important aspect of flagellar beating. In order for a flagellum to bend,
microtubules at opposite sides of the bending plane must have shears
of opposite sign. That is, if for some fixed value of 𝑣 we have 𝛾(𝑢, 𝑣) > 0
for 0 < 𝑢 < 𝜋𝑅0, then we must have 𝛾(𝑢, 𝑣) < 0 for 𝜋𝑅0 < 𝑢 <
2𝜋𝑅0. This observation led to the conclusion that there must exist
some coordination mechanism between molecular motors acting on
opposite sides of the flagellum. In order to generate flagellar beating,
molecular motors must switch on and off, respectively, at the opposite
sides of the bending plane. In the biophysical literature this is called the
‘‘switch-point hypothesis’’. What controls the switching of activation of
axonemal motors is still a debated issue, and it is the subject of active
ongoing research [55,56].

8. Discussion and outlook

We have explored the concept of Gaussian morphing, namely, con-
trolling the shape of a thin two-dimensional structure by actively
modulating the stretching of its mid-surface both in the context of
biological systems, and with a view towards applications to engineering
devices. We have used the unifying paradigm of Gaussian morphing to
rationalize the shape-shifting abilities of some biological organisms and
structures (the unicellular predator Lacrymaria olor, the euglenid protist
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Euglena gracilis, the 9 + 2 structure of the eukaryotic flagellum), and to
draw a conceptual bridge towards some (either existing or speculative)
engineering applications (McKibben artificial muscles, active pellicle
surfaces).

One point we have not discussed explicitly is the role of bending
stiffness. Indeed, predicting shape on the basis of Gauss theorema
egregium means to disregard it entirely. This gives realistic results
for very thin, continuous elastic shells when an embeddable metric is
prescribed, and the embedding problem has a unique solution. How re-
alistic is this prediction if the metric is not embeddable (non-existence),
or if there are multiple embeddings (non-uniqueness), or if there are
dissipative (frictional, viscous, poroelastic, plastic,. . . ) internal forces,
or external resistive forces due to the presence of a surrounding fluid, or
if the thickness is not vanishingly small, or if the structure is actually
made up of discrete elements (fibers, strips, joints,. . . )? These are all
very relevant issues, but beyond the scope of this paper. We refer
to Arroyo and DeSimone [44] and Noselli et al. [48] for a discussion
of some of these issues (in particular: regularizing role of bending
stiffness in the case of non-uniqueness or non-embeddability; effects of
discreteness and specific additional elastic terms induced by torsional
and flexural stiffness of the rods when the active surface consists of
a discrete network of structural elements rather than of a continuous
surface).

Leaving the issue of bending stiffness aside, our analysis shows that
even in the simplest setting of Gaussian morphing of axisymmetric
shapes, there is a need for a more precise (mathematical) definition of
the problem of shape control (both in the so called direct and inverse
form). What are the data? And what are the unknowns? When do
solutions exist and are they unique? Our simple example summarized
in Fig. 4, and the comparison between the shape changes exhibited
by unicellular organisms (neck extension vs metaboly) show the need
of distinguishing clearly between shape control (intrinsic geometric
parameters of the target surface), control of the map prescribing how
material points are moved (parametrization of the target surface), and
mechanism of actuation (the metric tensor of the target surface). In
addition, it shows the need of including in the problem formulation
a precise description of the way specific material lines are transformed
by the morphing principle, i.e, a description of the active structures
used to enforce the metric changes (the embodiment of the Gaussian
morphing principle).

In fact, our concrete examples illustrate how the same shape can
be attained with different metrics, which means different actuation
patterns, and with different realizations, which means by inducing
different displacements of Lagrangian markers placed on the surface.
This is particularly relevant since, in any concrete implementation of
the morphing concepts we have described, these Lagrangian markers
will be identified with specific material points of the structural elements
making up the surface. Their displacement will be the negotiated
outcome of the competition between internal forces of actuation and
elastic (viscoelastic, plastic, etc. . . . ) properties resisting conformational
changes. In other words, different practical realizations (embodiments)
of the same Gaussian morphing scheme will lead to different elastic
compliance (deviation form the prescribed metric), different effective
bending stiffness competing with (sometimes hindering, sometimes reg-
ularizing) the predictions based on the theorema egregium. Ultimately,
these different embodiments of the same principle will lead to different
shape-shifting mechanisms, different realizable and realized shapes,
different performance. It is in these details that we expect to find
treasures (rather than devils, see [57]), be it in the form of a deeper
understanding of the inner workings of biological organisms, or in the
form of novel mechanisms leading to innovative engineering devices.
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