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Abstract

The paper presents a new proof-number (PN) search algorithm, called PDS–PN. It is a
two-level search (like PN2), which performs at the 8rst level a depth-8rst proof-number and
disproof-number search (PDS), and at the second level a best-8rst PN search. Hence, PDS–PN
selectively exploits the power of both PN2 and PDS. Experiments in the domain of Lines of Ac-
tion are performed. They show that within an acceptable time frame PDS–PN is more e ective
for really hard endgame positions than �� and any other PN-search algorithm.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Most modern game-playing computer programs successfully use �� search [12] with
enhancements for online game playing [11]. However, the enhanced �� search is some-
times not su@cient to play well in the endgame. In some games, such as chess, this
problem is solved by the use of endgame databases [18]. Due to memory constraints
this is only feasible for endgames with a relatively small state-space complexity, al-
though nowadays the size may be considerable. An alternative approach is the use
of a specialised binary (win or non-win) search method, such as proof-number (PN)
search [3]. The latter method is inspired by the conspiracy-number algorithm [14,15,22].
In many domains PN search outperforms �� search in proving the game-theoretic value
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of endgame positions. The PN-search idea is a heuristic, which prefers expanding shal-
low subtrees over wide ones. PN search or a variant thereof has been successfully
applied to the endgame of Awari [3], chess [7], checkers [23] and Shogi [24]. Since
PN search is a best-8rst search, it has to store the whole search tree in memory. When
the memory is full, the search has to end prematurely. To overcome this problem PN2

was proposed in [2], as an algorithm to reduce memory requirements in PN search. It
is elaborated upon in [6]. Its implementation and testing for chess positions is exten-
sively described in [8]. PN2 performs two levels of PN search, one at the root and one
at the leaves of the 8rst level. As in the B* algorithm [5], a search process is started
at the leaves to obtain a more accurate evaluation. Although it uses far less memory
than PN search, it is still a best-8rst search algorithm with the disadvantage that the
search can end prematurely because of memory exhaustion. Recently, the idea behind
the MTD(f) algorithm [19] is successfully applied in PN variants: try to construct a
depth-8rst algorithm behaving as its corresponding best-8rst algorithm. In 1995, Seo
formulated a depth-8rst iterative-deepening version of PN search, later called PN* [24].
The advantage of this variant is that there is no need to store the whole tree in mem-
ory. The disadvantage is that PN* is slower than PN [21]. Other depth-8rst variants
are PDS [16] and df-pn [17]. Although their generation of nodes is even slower than
PN*’s, they are building smaller search trees. Hence, they are in general slightly more
e@cient than PN*.
In this paper, we provide details on a new PN-search algorithm, called PDS–PN. It

is a two-level algorithm combining a 8rst-level PDS with a second-level PN search.
The algorithm is tested on endgame positions in the domain of Lines of Action (LOA),
with emphasis on really hard problems.
The remainder of this paper is organised as follows. In Section 2, we explain the

working of PDS–PN by elaborating on PDS and the idea of two-level search algorithms.
Then, in Section 3, the results of experiments with PDS–PN in the domain of Lines of
Action are given. Finally, in Section 4, we present our conclusions and propose topics
for further research.

2. PDS–PN

In this section we give a description of PDS–PN search, which is a two-level search
with PDS at the 8rst level and PN at the second level. In Section 2.1 we motivate
why we developed the method. In Section 2.2 we describe the 8rst-level PDS, and in
Section 2.3 we provide background information on the second-level technique.

2.1. Motivation

We were motivated to develop the PDS–PN algorithm by the clear advantage that
PDS is traversing a depth-8rst tree instead of a best-8rst tree. Hence, PDS is not
restricted by the available working memory. As against this, PN has the advantage of
being fast compared to PDS.
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The PDS–PN algorithm is designed to combine the two advantages. At the 8rst
level, the search is a depth-8rst search, which implies that PDS–PN is not restricted by
memory. At the second level the focus is on fast PN. It is a complex balance, but we
expect that PDS–PN would be faster than PDS and PDS–PN would not be hampered by
memory restrictions. Since the expectation on the e ectiveness of PDS–PN is di@cult
to prove we have to rely on experiments (see Section 3). In the next two subsections
we start describing PDS–PN. The pseudocode is given in the Appendix.

2.2. First-level: proof-number and disproof-number search

PDS–PN is a two-level search like PN2. At the 8rst level a PDS search is performed,
denoted pn1. For the expansion of a pn1 leaf node, not stored in the transposition table,
a PN search is started, denoted pn2.
Proof-number and Disproof-number Search (PDS) [16] is a straightforward exten-

sion of PN*. Instead of using only proof numbers such as in PN*, PDS uses disproof
numbers too. PDS exploits a method called multiple-iterative deepening. Instead of
iterating only in the root such as in ordinary iterative deepening, PDS iterates in all
interior nodes. The advantage of using the multiple-iterative-deepening method is that
in most cases it accomplishes to select the most-proving node (see below), not only in
the root, but also in the interior nodes of the search tree. To keep iterative deepening
e ective, the method is enhanced by storing the expanded nodes in a TWOBIG trans-
position table [9]. PDS uses two thresholds in searching, one for the proof numbers
and one for the disproof numbers. A proof number of a node represents the minimum
number of leaf nodes which have to be proved in order to prove the node. Analogously,
a disproof number of a node represents the minimum number of leaves which have to
be disproved in order to disprove the node. Because the goal of the tree is to prove a
forced win, winning nodes are regarded as proved. Lost or drawn nodes are regarded
as disproved. Therefore, proved nodes have proof number 0 and disproof number ∞,
since no leaves have to be proved anymore to prove the win, and no number of leaves
to be expanded su@ces to disprove the node. Analogously, disproved nodes have proof
number ∞ and disproof number 0. The proof number of an internal AND node is equal
to the sum of its childrens’ proof numbers, since to prove an AND node all the children
have to be proved. The disproof number of an AND node is equal to the minimum
of its childrens’ disproof numbers, since to disprove an AND node only one child has
to be disproved. Analogously, the disproof number of an internal OR node is equal to
the sum of its childrens’ disproof numbers. Its proof number is equal to the minimum
of its childrens’ proof numbers. To select the next node to expand (the most-proving
node) the following holds: in an OR node the child with the lowest proof number is
selected as successor, and in an AND node the child with the lowest disproof number
is selected as successor.
PDS uses two thresholds for a node, one as a limit for proof numbers and one for

disproof numbers. Once the thresholds are assigned to a node, the subtree rooted in
that node is stopped to be searched if both the proof number and disproof number
are larger than or equal to the thresholds or if the node is proved or disproved. The
thresholds are set in the following way. Initially, the proof-number threshold, pnt, and
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disproof-number threshold, dnt, of a node are equal to the node’s proof number, pn,
and disproof number, dn. If it seems more likely that the node can be proved than
disproved (called proof-like), the proof-number threshold is increased. If it seems more
likely that the node can be disproved than proved (called disproof-like), the disproof-
number threshold is increased. In passing we note that it is easier to prove a tree in
an OR node, and to disprove a tree in an AND node. Below we repeat Nagai’s [16]
heuristic to determine proof-like and disproof-like.
In an interior OR node n with parent p (direct ancestor) the solution of n is proof-

like, if the following condition holds:

pntp ¿ pnp AND (pnn 6 dnn OR dntp 6 dnp) (1)

otherwise, the solution of n is disproof-like.
In an interior AND node n with parent p (direct ancestor) the solution of n is

disproof-like, if the following condition holds:

dntp ¿ dnp AND (dnn 6 pnn OR pntp 6 pnp) (2)

otherwise, the solution of n is proof-like.
When PDS does not prove or disprove the root given the thresholds, it increases

the proof-number threshold if its proof number is smaller than or equal to its disproof
number, otherwise it increases the disproof-number threshold. Finally, we remark that
only expanded nodes are evaluated. This is called delayed evaluation (cf. [2]). The
expanded nodes are stored in a transposition table. The proof and disproof number of
a node are set to unity when not found in the transposition table.
PDS is a depth-8rst search algorithm but behaves like a best-8rst search algorithm.

By using transposition tables PDS su ers from the graph-history-interaction problem
(cf. [10]). However, in the current PDS algorithm we ignore this problem, since we
believe that it is less relevant for the game of LOA (see Section 3.1) than for chess.

2.2.1. A detailed description
A detailed step-by-step example of the working of PDS is given in Fig. 1.
A square denotes an OR node, and a circle denotes an AND node. The numbers at

the upper side of a node denote the proof-number threshold (left) and disproof-number
threshold (right). The numbers at the lower side of a node denote the proof number
(left) and disproof number (right).
In the 8rst iteration (top of Fig. 1), threshold values of the root A are set to unity.

A is expanded, and nodes B and C are generated. The proof number of A becomes 1
and the disproof number becomes 2. Because both numbers are larger than or equal to
the threshold values the search stops.
In the second iteration (middle of Fig. 1), the proof-number threshold is incremented

to 2, because the proof number of A (i.e., 1) is the smaller one of both A’s proof number
and disproof number (i.e., 2). We again expand A and re-generate B and C. The proof
number of A is below its proof-number threshold and we continue searching. Now we
have to select the child with minimum proof number. Because B and C have the same
proof number, the left-most node B is selected. Initially, we set the proof-number and
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Fig. 1. An illustration of PDS.

disproof-number threshold of B to its proof and disproof number (both 1). Because B
is an AND node we have to look whether the solution of B is disproof-like by checking
condition 2. The disproof-number threshold of A is not larger than its disproof number
(both are 2), therefore the solution of B is not disproof-like but proof-like. Thus, the
proof-number threshold of B has to be incremented to 2. Next, node B is expanded
and the nodes D, E, F and G are generated. The search in node B is stopped because
its proof number (i.e., 4) and disproof number (i.e., 1) are larger than or equal to the
thresholds (i.e., 2 and 1, respectively). Node B is stored in the transposition table with
proof number 4 and disproof number 1. Then the search backtracks to A. There we
have to check whether we still can continue searching A. Since the proof number of A
is smaller than its threshold, we continue and subsequently we select C, because this
node has now the minimum proof number. The thresholds are set in the same way as
in node B. Node C has two children H and I . The search at node C is stopped because
its proof number (i.e., 2) and disproof number (i.e., 1) are not below the thresholds.
C is stored in the transposition table with proof number 2 and disproof number 1. The
search backtracks to A and is stopped because its proof number (i.e., 2) and disproof
number (i.e., 2) are larger than or equal to the thresholds. We would like to remark
that at this moment B and C are stored because they were expanded.
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In the third iteration (bottom of Fig. 1) the proof-number threshold of A is incre-
mented to 3. Nodes B and C are again generated, but this time we can 8nd their proof
and disproof numbers in the transposition table. The node with smallest proof num-
ber is selected (C with proof number 2). Initially, we set the proof-number threshold
and disproof-number threshold of C to its proof and disproof number (i.e., 2 and 1,
respectively). Because C is an AND node we have to look whether the solution is
disproof-like by checking condition 2. The disproof-number threshold of A is not larger
than its disproof number (both are 2), therefore the solution is not disproof-like but
proof-like. Thus, the proof-number threshold of C has to be incremented to 3. C has
now proof-number threshold 3 and disproof-number threshold 1. Nodes H and I are
generated again by expanding C. This time the proof number of C (i.e., 2) is below
the proof-number threshold (i.e., 3) and the search continues. The node with minimum
disproof number is selected (i.e., H). Initially, we set the proof-number threshold and
disproof-number threshold of H to its proof and disproof number (i.e., both 1). Be-
cause H is an OR node we have to look whether the solution is proof-like by checking
condition 1. The proof-number threshold of C (i.e., 3) is larger than its proof number
(i.e., 2), therefore the solution is proof-like. Hence, the search expands node H with
proof-number threshold 2 and disproof-number threshold 1. Nodes J and K are gen-
erated. Because the proof number of H (i.e., 1) is below its threshold (i.e., 2), the
node with minimum proof number is selected. Because J is an AND node we have to
look whether the solution of J is disproof-like by checking condition 2. The disproof-
number threshold of H (i.e., 1) is not larger than its disproof number (i.e., 2), therefore
the solution of J is not disproof-like but proof-like. J is expanded with proof-number
threshold 2 and disproof number threshold 1. Since node J is a terminal win position
its proof number is set to 0 and its disproof number set to ∞. The search backtracks to
H . At node H the proof number becomes 0 and the disproof number ∞, which means
the node is proved. The search backtracks to node C. The search continues because the
proof number of C (i.e., 1) is not larger than or equal to the proof-number threshold
(i.e., 3). We select now node I because it has the minimum disproof number. The
thresholds of node I are set to 2 and 1, as was done in H . The node I is a terminal
win position; therefore, its proof number is set to 0 and its disproof number to ∞. At
this moment the proof number of C is 0 and the disproof number ∞, which means
that the node is proved. The search backtracks to A. The proof number of A becomes
0, which means that the node is proved. The search stops at node A and the tree is
proved.
At the leaves of the 8rst-level search tree, the second-level search is called. The

characteristics of the pn2 search are described in Section 2.3.

2.3. Second level: PN search

The PN search of the second level, denoted pn2 search, is bounded by the number of
nodes that may be stored in memory. The number is a fraction of the size of the pn1-
search tree, for which we take the current number of nodes stored in the transposition
table of the PDS search. Preferably, this fraction should start small, and grow larger
as the size of the 8rst-level search tree increases. A standard model for this growth
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Fig. 2. Schematical sketch of PDS–PN.

is the logistic-growth model [4]. The fraction f(x) is therefore given by the logistic
growth function, x being the size of the 8rst-level search:

f(x) =
1

1 + e(a−x)=b
(3)

with parameters a and b, both strictly positive. The parameter a determines the tran-
sition point of the function: as soon as the size of the 8rst-level search tree reaches
a, the second-level search equals half the size of the 8rst-level search. Parameter b
determines the S-shape of the function: the larger b, the more stretched the S-shape
is. The number of nodes y in a pn2-search tree is restricted by the minimum of this
fraction function and the number of nodes which can still be stored. The formula to
compute y is

y = min(x × f(x); N − x) (4)

with N the maximum number of nodes to be stored in memory.
The pn2 search is stopped when the number of nodes stored in memory exceeds y or

the subtree is (dis)proved. For details on PN search we refer to [3]. After completion
of the pn2-search tree, only the root of the pn2-search tree is stored in the transposition
table of the PDS search. We would like to remark that for pn2-search trees immediate
evaluation (cf. [2]) is used. This two-level search is schematically sketched in Fig. 2.
In the second-level search proved or disproved subtrees are deleted. If we do not

delete proved or disproved subtrees in the pn2 search, the number of nodes searched
becomes the same as y. When we include deletions the second-level search can continue
on average considerably longer. Preliminary results have shown that deleting proved
or disproved subtrees in the pn2 search causes a signi8cant reduction in the number of
nodes investigated [25].

3. Experiments

In this section we compare ��, PN2, PDS and PDS–PN search with each other. All
experiments have been performed in the framework of the tournament program MIA



518 M.H.M. Winands et al. / Theoretical Computer Science 313 (2004) 511–525

(Maastricht In Action). 1 It has been written in Java and runs on every well-known
operating system. For �� MIA performs a depth-8rst iterative-deepening search us-
ing a TWODEEP transposition table [9], neural-network move ordering [13] and killer
moves [1]. For PDS and PDS–PN MIA uses a TWOBIG transposition table. In Section
3.1 we brieNy describe the game of LOA. In Section 3.2 we compare PDS–PN with
��, PN2 and PDS on a set of 488 LOA positions. A second comparison of PDS–PN
with PN2 and PDS is made in Section 3.3. In Section 3.4 we compare PDS–PN with
PN2 on a set of really hard LOA problems.

3.1. Lines of Action

LOA is a two-person zero-sum chess-like connection game with perfect information.
The details of this game are described in [20]. An interesting property of the game is
that it is not suitable for building endgame databases. Although reasonable e ort has
been undertaken to construct adequate evaluation functions for LOA [26], experiments
have shown that these are not very good predictors in the case of forced wins [25].
Therefore, LOA seems an appropriate test domain for PN-search algorithms.

3.2. Comparing the algorithms on a test set

In the experiments with PN2, PDS and PDS–PN all nodes evaluated during the
search are counted; for the �� depth-8rst iterative-deepening searches nodes at depth i
are counted only during iteration i. We adopted this method from [2]. It makes a general
comparison possible. The maximum number of nodes searched is 50,000,000. The limit
corresponds roughly to tournament conditions. The maximum number of nodes stored
in memory is 1,000,000. The parameters (a; b) of the growth function used in PN2 are
set at (1800K, 240K) according to the suggestions in [8]. Our experiments revealed
that the best parameter con8guration for the growth function of PDS–PN is (450K,
300K). The smaller value of a corresponds with the smaller pn1 trees resulting from
the use of PDS–PN instead of PN2. The fact that PDS is much slower than PN is an
important factor too.
��, PN2, PDS and PDS–PN are tested on a set of 488 forced-win LOA positions. 2

The results are given in Table 1. In the 8rst column the four algorithms are mentioned.
In the second column, we see that 382 positions are solved by ��, 470 positions by
PN2, 473 positions by PDS and 467 positions by PDS–PN. In the third and fourth
column the number of nodes and the time consumed are given for the subset of 371
positions, which all four algorithms are able to solve. This set contains no position
that only could be solved by �� search. A look at the third column shows that PDS
search builds the smallest search trees and �� by far the largest. PN2, PDS and PDS–
PN solve signi8cantly more positions than ��. This suggests that PN-search algorithms
are better endgame solvers than ��. PN2 and PDS–PN investigate more nodes than
PDS, but both are still faster in CPU time than PDS for this subset. Due to the limit

1 MIA can be played at the website: http://www.cs.unimaas.nl/m.winands/loa/.
2 The test set is found at http://www.cs.unimaas.nl/m.winands/loa/tscg2002a.zip.

http://www.cs.unimaas.nl/m.winands/loa/
http://www.cs.unimaas.nl/m.winands/loa/tscg2002a.zip
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Table 1
Comparing the search algorithms on 488 test positions with a limit of 50,000,000 nodes

Algorithm No. of positions solved 371 positions
(out of 488)

Total No. of nodes Total time (ms)

�� 382 2,645,022,391 33,878,642
PN2 470 505,109,692 3,642,511
PDS 473 239,896,147 16,960,325
PDS–PN 467 924,924,336 5,860,908

Table 2
Comparing PN2 and PDS–PN on 488 test positions with a limit of 500,000,000 nodes

Algorithm No. of positions solved 479 positions
(out of 488)

Total No. of nodes Total time (ms)

PN2 479 2,261,482,395 13,295,688
PDS–PN 483 4,362,282,235 23,398,899

of 50,000,000 nodes and the somewhat lower search e@ciency, PDS–PN solves three
positions fewer than PN2 and six fewer than PDS.
To investigate whether the memory restrictions are an actual obstacle we increase

the limit of nodes searched to 500,000,000 nodes. Now PN2 solves 479 positions and
PDS–PN becomes the best solver with a performance of 483 positions. The detailed
results are given in Table 2.
The performances of PDS–PN in Table 2 are more e ective than those of PN2, viz.

483–479. However, we should thoughtfully take into account the condition for the total
number of nodes searched and the time spent. Therefore, we continue our research in
the direction of nodes searched and time spent with the 50,000,000 nodes limit. A
reason for this decision is that the experimental time constraints are necessary for the
PDS experiments.

3.3. A second comparison

For a better insight into the relation between PN2, PDS and PDS–PN we did a second
comparison. In Table 3 we provide the results of PN2, PDS and PDS–PN on a new
subset of 457 positions of the principal test set, viz. all positions the three algorithms
could solve under the 50,000,000 nodes limit condition. Now, PN2 searches 2.6 times
more nodes than PDS. The reason for the di erence of performance is that for hard
problems the pn2-search tree becomes as large as the pn1-search tree. Therefore, the
pn2-search tree is causing more overhead. However, if we look at the CPU time we
see that PN2 is almost four times faster than PDS. PDS has a relatively large overhead
of time because it performs multiple-iterative deepening at all nodes. PDS–PN searches
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Table 3
Comparing PN2, PDS and PDS–PN on 457 test positions (all solved) with a limit of 50,000,000 nodes

Algorithm Total No. of nodes Total time (ms)

PN2 1,275,155,583 9,357,663
PDS 498,540,408 36,802,350
PDS–PN 1,845,371,831 11,952,086

3.7 times more nodes than PDS but is still three times faster than PDS in CPU time.
This is because PDS–PN is focusing more on the fast PN at the second level than on
PDS at the 8rst level. PDS–PN searches more nodes than PDS since the pn2-search tree
is repeatedly rebuilt and removed. The overhead is even bigger than PN2’s overhead
because the children of the root of the pn2-search tree are not stored (i.e., this is done
to focus more on the fast PN search). It explains why PDS–PN searches 1.4 times
more nodes than PN2. Hence, our provisional conclusions are that on this set of 457
positions and under the 50,000,000 nodes condition: (1) PN2 outperforms PDS–PN,
and (2) PDS–PN is a faster solver than PDS and therefore more e ective than PDS.

3.4. Hard problems

Since the impact of the 50,000,000 nodes condition somewhat obscured our provi-
sional conclusions above and since we felt that PDS–PN had its own merits in com-
parison with PN2 we performed a new experiment with really hard LOA problems. In
this experiment PN2 and PDS–PN are tested on a di erent set of 286 really hard LOA
positions. 3 The conditions are the same as in the previous experiments except that the
maximum number of nodes searched is set at 500,000,000. The PDS algorithm is not
included because it takes too much time given the current node limit. In Table 4 we
see that PN2 solves 265 positions and PDS–PN 276. We would like to remark that
PN2 solves 10 positions, which PDS–PN does not solve. The ratio in nodes and time
between PN2 and PDS–PN for the positions solved by both (255) is roughly similar to
the previous experiments. The reason why PN2 solves fewer positions than PDS–PN
is its being restricted in working memory. We are in a delicate position since new
experiments with much more working memory are now on the list to be performed.

Table 4
Comparing PN2 and PDS–PN on 286 really hard test positions with a limit of 500,000,000 nodes

Algorithm No. of positions solved 255 positions
(out of 286)

Total No. of nodes Total time (ms)

PN2 265 10,061,461,685 57,343,198
PDS–PN 276 16,685,733,992 84,303,478

3 The test set can be found at http://www.cs.unimaas.nl/m.winands/loa/tscg2002b.zip.

http://www.cs.unimaas.nl/m.winands/loa/tscg2002b.zip
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However, we assume that the nature of PN2 with respect to using so much memory
cannot be overcome. Hence, we conclude that within an acceptable time frame PDS–PN
is a more e ective endgame solver than PN2 for really hard problems.

4. Conclusions and future research

Below we o er three conclusions and one suggestion for future research. Our 8rst
conclusion is that PN2, PDS and PDS–PN are able to solve signi8cantly more LOA
endgame problems than ��. However, we remark that PN2 is restricted by working
memory, and that PDS is four times slower than PN2 and three times slower than
PDS–PN (see Table 3), because of multiple-iterative deepening.
Our second conclusion is that the PDS–PN algorithm is almost as fast as PN2 when

the parameters for its growth function are chosen properly. Our third conclusion states
that (1) PDS–PN solves more really hard positions than PN2 within an acceptable
time frame and (2) PDS–PN is more e ective than PN2 because it does not run out
of memory for really hard problems. Hence, in summary we conclude that PDS–PN is
a more e ective endgame solver for a set of really hard problems than PDS and PN2.
Finally, we believe that an adequate challenge is testing PDS–PN in other domains

with di@cult endgames. Recently, for Shogi (Japanese chess) some of the hard prob-
lems including solutions over a few hundred ply are solved by PN* [24] and PDS
[21]. It would be interesting to test PDS–PN on these problems.
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Appendix A.

Below the pseudocode of PDS–PN is given. For ease of comparison we use similar
pseudocode as given in [16] for the PDS algorithm. The proof number in an OR node
and the disproof number in an AND node are equivalent. Analogously, the disproof
number in an OR node and the proof number in an AND node are equivalent. As they
are dual to each other, an algorithm similar to negamax in the context of minimax
searching can be constructed. This algorithm is called NegaPDSPN. In the following,
proofSum(n) is a function that computes the sum of the proof numbers of all the
children. The function disproofMin(n) computes the minimum of all the children.
The procedures putInTT() and lookUpTT() store and retrieve information to and
from the transposition table. isTerminal(n) checks whether a node is a win, a loss
or a draw. The function generateChildren(n) generates the children of the node.
By default, the proof number and disproof number of a node are set to unity. The
procedure findChildrenInTT(n) checks whether the children are already stored in
the transposition table. If a hit occurs for a child, its proof number and disproof number
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are set to the values found in the transposition table. The procedure PN() is just the
plain PN search. The algorithm is described in [2,6]. The function computeMaxNodes()
computes the number of nodes which may be stored for the PN search, according to
Eq. (4).

//iterative deepening at root r
procedure NegaPDSPN(r){
r.proof = 1;
r.disproof = 1;

while(true){
MID(r);

// terminate when the root is proved or disproved

if(r.proof = 0 || r.disproof = 0)
break;

if(r.proof <= r.disproof)
r.proof++;

else
r.disproof++;

}
}

//explore node n
procedure MID(n){
//Look up in the transposition table
lookUpTT(n,&proof,&disproof)
if(proof = 0 || disproof = 0
|| (proof >= n.proof && disproof >= n.disproof)){
n.proof = proof; n.disproof = disproof;
return;

}

//Terminal node
if(isTerminal(n)){
if((n.value = true && n.type = AND_NODE)
||(n.value = false && n.type = OR_NODE)){
n.proof = INFINITY; n.disproof = 0;

}
else{
n.proof = 0; n.disproof = INFINITY;

}
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putInTT(n);
return;

}

generateChildren(n);
//avoid cycles
putInTT(n);

//Multiple iterative deepening

while(true){
//Check whether the children are already stored in the TT.
//If a hit occurs for a child, give its proof number and
//disproof number the values found in the TT.
findChildrenInTT(n);

//Terminate searching when both proof and disproof number
//exceed their thresholds
if(proofSum(n) = 0 || disproofMin(n) = 0 || (n.proof <=
disproofMin(n) && n.disproof <= proofSum(n))){
n.proof = disproofMin(n);
n.disproof = proofSum(n);
putInTT(n);
return;

}

proof = max(proof,disproofMin(n));
n_child = selectChild(n,proof);

if(n.disproof > proofSum(n) && (proof_child <= disproof_child
|| n.proof <= disproofMin(n)))
n_child.proof++;

else
n_child.disproof++;

//This is the PDS-PN part
/////////////////////////////////

if(!lookUpTT(n_child)){
//Call PN search with a second argument the maximum number
//of nodes in memory
PN(n_child,computeMaxNodes());
putInTT(n_child);

}
else
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/////////////////////////////////
MID(n_child);

}
}

//Select among children
selectChild(n,proof){

min_proof = INFINITY;
min_disproof = INFINITY;
for(each child n_child){
disproof_child = n_child.disproof;
if(disproof_child != 0)
disproof_child = max(disproof_child,proof);

//Select the child with the lowest disproof_child (if there are
//plural children among them select the child with the lowest
//n_child.proof)
if(disproof_child < min_disproof || (disproof_child=min_disproof
&& n_child.proof < min_proof)){
n_best = n_child;
min_proof = n_child.proof;
min_disproof = disproof_child;

}
}
return n_best;

}
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