
Theoretical Computer Science 363 (2006) 69–75
www.elsevier.com/locate/tcs

An efficient algorithm for online square detection

H.F. Leunga, Z.S. Pengb, H.F. Tingb,∗
aDepartment of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong

bDepartment of Computer Science, The University of Hong Kong, Hong Kong

Abstract

A square is a string that can be divided into two identical substrings. The problem of square detection has found applications in
areas such as bioinformatics and data compression. There are many offline algorithms for the problem. In this paper, we give the
first online algorithm for deciding whether a string contains a square. Our algorithm runs in total O(h log2 h) time where h is the
length of the longest prefix of the input string that does not contain a square.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Online algorithms; Squares; Square-free detection; String processing

1. Introduction

Given a string T = t1t2 . . . tn of characters from some alphabet �, we say that T is a square if it is the concatenation
of two identical substrings, or more precisely, if t1t2 . . . t�n/2� = t�n/2�+1 . . . tn−1tn. We say that T contains a square if
it has a substring ti ti+1 . . . tj that is a square. T is square-free if it has no such substring. Square-free strings, as well as
their detection, have found important applications in areas such as bioinformatics [4,6,13], data compression [24] and
formal language theory [5,23,22,16,17].

The problem of detecting squares in a string has been studied extensively in the literature. There are several O(n log n)-
time offline algorithms for determining whether a string of n characters is square-free [18,8,20]. When the alphabet � is
fixed (i.e., when � has a constant number of characters), the time complexity can be reduced to O(n) [8,20]. However,
it was proved in [19] that for general �, any algorithm for the problem must run in �(n log n) time. Besides determining
whether a string is square-free, there are also algorithms that find all the squares in a string. Apostolico and Preparata
[3] and Crochemore [7] gave O(n log n)-time algorithms for finding all squares in a string of length n; their algorithms
assume that the alphabet � is totally ordered. Main and Lorentz [19] later showed that for general �, we can find all
the squares in the same time bound. More recently, Stoye and Gusfield gave a much simpler O(n log n)-time algorithm
for the problem [25]. They also considered the case when the alphabet � is fixed and gave a linear time algorithm that
finds all the (essentially different) squares in a string [12]. Both of their algorithms use suffix trees. There are also
randomized algorithm [21] and parallel algorithms [1,9,10,2] for square detection.

∗ Corresponding author.
E-mail address: hfting@cs.hku.hk (H.F. Ting).

0304-3975/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2006.06.011

http://www.elsevier.com/locate/tcs
mailto:hfting@cs.hku.hk

70 H.F. Leung et al. / Theoretical Computer Science 363 (2006) 69 –75

In this paper, we initiate the study of online algorithms for square detection and give the first online algorithm for
determining whether a string is square-free. The study is motivated by our research on using local search to solve
some classical constraint satisfaction problems [14,15,26]. Local search is efficient in general. However, there is no
guarantee that it stops; the search can be trapped in some infinite loop. It can be shown that such loop corresponds
to a square in some string whose characters encode the states of the search. To avoid wasting time in an infinite
loop, we need to detect squares in the string online. More precisely, every time the search makes a move and a new
character is added to the string, we need to determine if there is any square in the new string. We stop if there is a
square.

Our online algorithm for determining whether a string is square-free works for general alphabet �. In other words,
we do not make any assumption on � and given any two characters in �, we can only decide whether they are equal or
not (i.e., = or �=). Given any input string T, our algorithm reads T character by character. After reading a new character,
it checks immediately whether there is a square in the string. If the first square in T ends at the hth position of T, our
algorithm stops after reading the first h characters and reports the square. The whole process runs in O(h log2 h) time.
Recall that for general alphabet, any offline algorithm for deciding whether a string is square-free runs in �(n log n)

time where n is the length of T. In general, n can be much larger than h.
The paper is organized as follows. Section 2 gives the definitions and notations necessary for our discussion. Section

3 describes the main procedure of our algorithm, and Section 4 shows how to use this procedure to detect the first
square of the input string. Section 5 gives concluding remarks.

2. Preliminaries

For any string X, we let |X| denote the length of X, which is defined to be the number of characters in X. Given
another string X′, let XX′ denote the concatenation of X and X′, which is the string obtained by appending X′ at the
end of X. We say that a string is a square if it is the concatenation of two identical strings. We say that a string is a
pseudo-square with center G if it is equal to XGX for some string X. Note that a square is a pseudo-square with an
empty string as its center. Furthermore, a pseudo-square may have different centers. For example, the string aabbbbaa
is a pseudo-square with center bbbb, and is also a pseudo-square with center abbbba. In particular, every string is a
pseudo-square with center equal to itself.

The input of our algorithm is a string T = t1t2t3 . . . tn of characters. For any integer 1� i�j �n, we let Ti...j denote
the substring ti ti+1 · · · tj . For any i���j , we say that the substring Ti...� is a prefix of Ti...j . We say that the substring
T�...j is a suffix of Ti...j . A suffix is a square suffix if it is a square, and is a pseudo-square suffix if it is a pseudo-square.
Note that to solve our square detection problem, it suffices to check, after reading each character Th, whether T1...h has
a square suffix. The following fact suggests an approach for checking suffix square.

Fact 1. Let Ti...j be any substring of T. Suppose that Ti...j has a pseudo-square suffix YGY. If the string of the next |G|
characters T(j+1)...(j+|G|) is equal to the center G, then T1...(j+|G|) has a square suffix XX where X = YG.

In the next section, we describe an efficient procedure Dcenter(i, j) for the following task: after reading character
Th for each h > j , determine whether T(j+1)...h is equal to the center of some pseudo-square suffix of Ti...j . Note
that if there is such pseudo-square suffix YGY, then by Fact 1, we conclude that T1...h has a square suffix YGYG. In
Section 4, we describe an online algorithm Dsquare for finding the first square of T (and thus determining whether
T is square-free). Roughly speaking, Dsquare invokes a small, but sufficient number of instances of Dcenter
such that if T1...h has a suffix square, then there must be an instance Dcenter(i, j) running where T(j+1)...h is
equal to the center of some pseudo-square suffix of Ti...j . Then, Dcenter(i, j) will detect the corresponding suffix
square.

3. The procedure Dcenter

In this section, we describe the procedure Dcenter(i, j), which checks the centers in the substrings Ti...j . In our
discussion, we assume that Ti...j is square-free. When we describe our algorithm Dsquare in the next section, we will
verify that for each instance Dcenter(i, j) invoked by Dsquare, Ti...j is indeed square-free.

H.F. Leung et al. / Theoretical Computer Science 363 (2006) 69 –75 71

For any pair (a, b) where i�a�b�j , we say that (a, b) is a center boundary for Ti...j if Ta...b is the center of
some pseudo-square suffix of Ti...j . Below, we give a high level description of Dcenter(i, j):

Build a list L of center boundaries for Ti...j . Then, after reading character Th for each j + 1�h�2j − i + 1,
check if there is a center boundary (a, b) ∈ L such that Ta...b = T(j+1)...h. If there is such (a, b), stop and report
that Ta...b = T(j+1)...h.

Note that Dcenter(i, j) can stop after reading T2j−i+1 because for any h > 2j − i + 1, the length of Ti...j is smaller
than that of T(j+1)...h and T(j+1)...h cannot possibly be equal to the center of any pseudo-square of Ti...j . Since L may
have as many as �((j − i)2) entries, a straightforward implementation of the procedure is not efficient. To reduce the
running time, we show in Section 3.1 that we only need to store O(j − i) center boundaries in L. Furthermore, we show
that we can construct this shorter list of center boundaries in O(j − i) time. Then, in Section 3.2, we explain how to
check the entries in L efficiently so that the procedure Dcenter(i, j) runs in total O((j − i) log(j − i)) time.

3.1. A short list of center boundaries

Given any center boundary (a, b) for Ti...j , we say that (a, b) is minimal if there is no shorter center boundary for
Ti...j that starts at a, or more precisely, if for any a�� < b, (a, �) is not a center boundary for Ti...j . Note that there
are only O(j − i) minimal center boundaries for Ti...j . The following lemma suggests that it should be no use for
Dcenter(i, j) to check those center boundaries that are not minimal.

Lemma 1. Suppose that Dcenter(i, j) stops and reports that Ta...b = T(j+1)...h after reading Th. Then, (a, b) must
be a minimal center boundary.

Proof. Suppose to the contrary that the center boundary (a, b) is not minimal. By definition, there is a center boundary
(a, �) where a�� < b, and from the facts that Ta...� is a prefix of Ta...b and Ta...b = T(j+1)...h, we conclude that T(j+1)...h

has a prefix T(j+1)...k that is equal to Ta...�. Since � < b, we have k < h. Note that the execution of Dcenter(i, j)

would have stopped after reading Tk (because T(j+1)...k is equal to the center Ta...�) and Th would not be read; a
contradiction. �

Hence, Dcenter(i . . . j) only needs to check the O(j − i) minimal center boundaries for Ti...j . Note that (i, j)

and (j, j) are the minimal center boundaries for Ti...j starting at i and j, respectively. From the assumption that Ti...j

is square-free, we can use the following lemma to identify the other minimal center boundaries.

Lemma 2. Suppose that Ti...j is square-free. Then, for any i < a�b < j , (a, b) is a minimal center boundary for
Ti...j if and only if T(b+1)...j is the longest suffix of Ti...j that is equal to a suffix of Ti...(a−1).

Proof. It can be verified from the definition that (a, b) is a minimal center boundary for Ti...j if and only if (i) the
suffix T(b+1)...j of Ti...j is equal to a suffix of Ti...(a−1) and (ii) for any � where a�� < b, T(�+1)...j is not a suffix of
Ti...(a−1). Therefore, to prove that T(b+1)...j is the longest suffix of Ti...j that is equal to a suffix of Ti...(a−1), we only
need to prove that for any i�� < a, T(�+1)...j is not equal to any suffix of Ti...(a−1).

Suppose to the contrary that there is an integer i�� < a such that T(�+1)...j is equal to some suffix Th...(a−1)

of Ti...(a−1). Since � < a, we have Y = Th...� is a prefix of Th...(a−1), and together with the fact that Th...(a−1) =
T(�+1)...j , we conclude that T(�+1)...j has a prefix, namely T(�+1)...(�+|Y |), that is equal to Th...�. Therefore, Th...(�+|Y |) =
Th...�T(�+1)...(�+|Y |) = YY is a square in Ti...j , which contradicts the assumption that Ti...j is square-free. �

The next lemma shows that we can find the longest suffixes for identifying the minimal center boundaries of Ti...j

in linear time.

Lemma 3. We can find for all i < a < j , the longest suffix of Ti...j that is equal to some suffix of Ti...(a−1) in total
O(j − i) time.

Proof. Note that given any string P1...n, there is a linear time algorithm that finds, for all 1���n, the longest prefix
of P1...n that is equal to some prefix of P(�+1)...n (e.g., [11, pp. 7–10]). By reversing Ti...j and applying this algorithm,

72 H.F. Leung et al. / Theoretical Computer Science 363 (2006) 69 –75

we can find the longest suffix of Ti...j that is equal to some suffix of Ti...(a−1) for all a between i and j in O(j − i)

time. �

3.2. Checking the list of minimal center-boundaries

After constructing the list L of minimal center boundaries for Ti...j , the procedure Dcenter(i, j) checks for
each j + 1�h�2j − i + 1, whether there is a center boundary (a, b) ∈ L such that Ta...b = T(j+1)...h. Note that
checking the list L in brute force may take quadratic time. Below, we describe a more efficient checking procedure.
Our idea is to remove the center boundaries (a, b) from L as soon as we find that Ta...b cannot be equal to T(j+1)...h

for any h.
Observe that for any (a, b) ∈ L, if we find that Ta �= Tj+1, we can remove (a, b) from L immediately because for any

h, Ta...b �= T(j+1)...h (the first characters of the two substrings are already different). In general, for any 0���b − a,
if we find that Ta+� �= Tj+�+1, we can remove (a, b) from L immediately because Ta...b �= T(j+1)...h for any h. Based
on this observation, Dcenter(i, j) checks the list L as follows.

After reading Th for each h ∈ {j + 1, j + 2, . . . , 2j − i + 1}, or equivalently, after reading Tj+�+1 for each
� ∈ {0, 1, . . . , j − i}, do the following:
• Remove all the center boundaries (a, b) from L where Ta+� �= Th (= Tj+�+1).
• Check whether there is a center boundary (a, b) remaining in L such that the length of Ta...b is equal to that

of T(j+1)...h. If such (a, b) exists, Dcenter(i, j) stops and reports that Ta...b = T(j+1)...h.
To see that the above procedure is correct, note that if Dcenter(i, j) stops without reporting anything, then there
must be no minimal center boundary (a, b) for Ti...j such that Ta...b = T(j+1)...h for some h; if there is such (a, b),
it will not be removed from L and Dcenter(i, j) can at least report Ta...b = T(j+1)...h after reading h. On the other
hand, if Dcenter(i, j) stops after reading Th and reports that Ta...b = T(j+1)...h, then by the design we have (i) Ta...b

and T(j+1)...h have the same length and (ii) Ta = Tj+1, Ta+1 = Tj+2, . . . , Tb = Th (because (a, b) remains in L after
reading Tj+1, Tj+2, . . . , Th). It follows that Ta...b is indeed equal to T(j+1)...h.

We now estimate its total running time. Suppose that Tj+r is the last character that Dcenter(i, j) reads. For
any 1�k�r , let Pk be the set of center boundaries in L just before Dcenter(i, j) reads the character Tj+k . Since
Dcenter(i, j) scans the list L once after reading each character, the total running time for the checking is O(|P1| +
|P2| + · · · + |Pr |). Note that P1 is the set of all minimal center boundaries for Ti...j and thus |P1| = O(j − i). The next
lemma gives a bound on each |Pk|.

Lemma 4. For each 1�k�r , we have |Pk| = O((j − i)/k).

Proof. Note that for any center boundary (a, b) ∈ Pk , the length of Ta...b is at least k. Below, we prove that for any two
center boundaries (a, b) and (c, d) in Pk , the substrings Ta...(a+k−1) and Tc...(c+k−1) cannot overlap. In other words,
we have either c > a + k − 1 or a > c + k − 1. This implies that there are at most (j − i + 1)/k center boundaries in
Pk and the lemma follows.

Assume to the contrary that Ta...(a+k−1) and Tc...(c+k−1) overlap. Suppose without loss of generality that a�c.
Then, we have a�c�a + k − 1. Recall that Pk is the set of entries in L just before Dcenter(i, j) reading Tj+k .
Since (a, b) ∈ Pk , Dcenter(i, j) does not remove it after reading Tj+1, Tj+2, . . . , Tj+k−1 and hence Ta = Tj+1,

Ta+1 = Tj+2, . . . , Ta+k−2 = Tj+k−1, or equivalently, Ta...(a+k−2) = T(j+1)...(j+k−1). Similarly, we have Tc...(c+k−2)

= Tj...(j+k−1) and thus Ta...(a+k−2) = Tc...(c+k−2).
Since c�a + k − 1, the substring Y = Ta...(c−1) is a prefix of Ta...(a+k−2). Together with the fact that Ta...(a+k−2)

= Tc...(c+k−2), we conclude that Tc...(c+k−2) has a prefix, namely Tc...(c+|Y |−1), that is equal to Ta...(c−1).
Thus, Ta...(c+|Y |−1) = Ta...(c−1)Tc...(c+|Y |−1) = YY is a square in Ti...j , contradicts our assumption that Ti...j is
square-free. �

Based on Lemma 4, we conclude that the total running time for the checking procedure is O(|P1|+ |P2|+ · · ·+ |Pr |)
= O((j − i)(1 + 1/2 + · · · + 1/r)). Now, we are ready to summarize our discussion and establish an upper bound on
the time complexity of Dcenter(i, j).

Theorem 5. Dcenter(i, j) runs in total O((j − i) log(j − i)) time.

H.F. Leung et al. / Theoretical Computer Science 363 (2006) 69 –75 73

Proof. By Lemmas 2 and 3, Dcenter(i, j) constructs the list L of necessary minimal center boundaries in O(j − i)

time. The total time for checking the list L (and possibly remove some of its entries) after reading each new character
is O(|P1| + |P2| + · · · + |Pr |) = O((j − i)(1 + 1/2 + · · · + 1/r)). Note that 1 + 1/2 + · · · + 1/r = O(log r) and
r �j − i. The theorem follows. �

4. The algorithm Dsquare

The basic task of Dsquare is to invoke a small, but sufficient number of instances of Dcenter so that after reading
every new character Th, it can correctly determine whether T1...h has a square suffix. The following lemma gives some
hint on identifying this small set of instances.

Lemma 6. Suppose that T1...h has a square suffix Tg...h = XX. Then, for any integers i, j where 1� i�g and
h − |X| < j < h, Ti...j has a pseudo-square suffix whose center is equal to T(j+1)...h.

Proof. Suppose that Tg...h = Tg...mT(m+1)...h where Tg...m = T(m+1)...h = X. Note that m = h − |X| and thus
m < j < h. Let T(m+1)...j = Y and T(j+1)...h = G. Since Tg...m = T(m+1)...h = T(m+1)...j T(j+1)...h = YG, we have
Tg...j = Tg...mT(m+1)...j = YGY . Therefore, Ti...j has a pseudo-square suffix Tg...j = YGY whose center is equal to
T(j+1)...h = G. �

Lemma 6 suggests that there should be many substrings Ti...j that can be used to check whether T1...h has a square
suffix. More importantly, it implies that one such Ti...j can be used to check many different T1...h and thus we do not
need to invoke too many instances of Dcenter. To specify a small set of instances that guarantees the correctness of
Dsquare, we need the following definition: for any positive integers i, j, �, we say that the pair (i, j) is an �-pair if
• the second component j is equal to k2� for some integer k, and
• the first component i is equal to max{1, j − 2�+2 + 1}.
For example, (1, 2), (1, 4), (1, 6), (1, 8), (3, 10), (5, 12) are the first six 1-pairs, and (1, 4), (1, 8), (1, 12), (1, 16),
(5, 20), (9, 24) are the first six 2-pairs.

We are now ready to give the details of Dsquare. Roughly speaking, Dsquare invokes the set of instances
Dcenter(i, j) where (i, j) is an �-pair. For simplicity, our algorithm is presented as a parallel algorithm. It should
be clear that the algorithm can be sequentialized and its running time is just the total running time of all instances of
Dcenter invoked by Dsquare.

After reading each Th, do the following steps:
if ((there is a square in T(h−3)...h) or (any of the running Dcenter

detects a square in T1...h)), report the square and stop.
� := 1;
while (2� �h) do
begin

if (h mod 2� = 0)
begin

g := max{1, h − 2�+2 + 1};
start Dcenter(g, h) for the �-pair (g, h);

end;
� := � + 1;

end;
The following lemma asserts that Dsquare determines whether T is square-free correctly.

Lemma 7. Suppose that h is the smallest integer such that T1...h contains a square suffix Tg...h = XX. Then, Dsquare
detects a square and stops after reading Th.

Proof. The lemma is obviously true if |XX|�4. Suppose that |XX| > 4. Then,
• 2� < |X|�2�+1 for some integer � > 1, and
• k2� < h�(k + 1)2� for some integer k�1.

74 H.F. Leung et al. / Theoretical Computer Science 363 (2006) 69 –75

Consider the �-pair (i, j) where i = max{1, k2� − 2�+2 + 1} and j = k2�. Note that j < h and by design, Dsquare
starts Dcenter(i, j) before Th is read. Observe that

i = max{1, j − 2�+2 + 1}� max{1, h − 2�+2 + 1}� max{1, h − 2|X| + 1}�g.

Furthermore, since |X| > 2� and h�(k + 1)2�, we have j = k2� > h − |X|. By Lemma 6, we conclude that Ti...j

has a pseudo-square suffix whose center is equal to T(j+1)...h. After Th is read, Dcenter(i, j) reports this center and
Dsquare stops. �

Based on Lemma 7, it can be verified that for every instanceDcenter(i, j) invoked byDsquare, the corresponding
substring Ti...j must be square-free; if Ti...j contains square Ta...b, then Dsquare will stop after reading Tb and will
not invoke Dcenter(i, j). Together with the implementation of Dcenter(i, j) given in Section 3, we can estimate
the total running time of Dsquare. Let h be the smallest integer such that T1...h has a square suffix. If T is square-free,
let h be length of T.

Theorem 8. Dsquare runs in O(h log2 h) time.

Proof. For any �, let �� be the total running time of the instances of Dcenter(i, j) invoked by Dsquarewhere (i, j)

is an �-pair. Note that Dsquare stops before reading T2�log h�+1 and it will not invoke Dcenter(i, j) for any �-pair
(i, j) with j > 2�log h�. It follows that ���log h� and the running time of Dsquare is O(

∑
1����log h���). Note that

for a fixed �,
• there are O(h/2�) different �-pairs (i, j) with j �h, and
• for each �-pair (i, j), Dcenter(i, j) runs in O(�2�) time (Theorem 5).
Hence, �� = O(�h) and

∑
1����log h��� = O(h log2 h). �

5. Conclusion

In this paper, we give the first online algorithm for determining whether a string T is square-free. Our algorithm
works for general alphabet. If T is square-free, our algorithm runs in O(n log2 n) time where n is the length of T. Note
that for general alphabet, any offline algorithm for determining whether T is square-free runs in �(n log n) time. It
is interesting to find out if the running time of our algorithm can be reduced to O(n log n). Another interesting open
question is to study how efficiently the online version of cube detection problem can be solved.

Acknowledgements

We are grateful to the anonymous referees for helpful suggestions on improving the presentation of the paper.

References

[1] A. Apostolico, Optimal parallel detection of squares in strings, Algorithmica 8 (4) (1992) 285–319.
[2] A. Apostolico, D. Breslauer, An optimal O(log log n)-time parallel algorithm for detecting squares in a string, SIAM J. Comput. 25 (6) (1996)

1318–1331.
[3] A. Apostolico, E.P. Preparata, Optimal off-line detection of repetitions in a string, Theoret. Comput. Sci. 22 (1983) 297–315.
[4] G. Benson, Tandem Repeats Finder: a program to analyze DNA sequences, Nucl. Acids Res. 27 (2) (1999) 573–580.
[5] J.A. Brzozowski, K. Culik, A. Gabrielian, Classification of noncounting events, J. Comput. System Sci. 5 (1971) 41–53.
[6] A. Castelo, W. Martins, G. Gao, TROLL–tandem repeat occurrence locator, Bioinformatics 18 (4) (2002) 634–636.
[7] M. Crochemore, An optimal algorithm for computing the repetitions in a word, Inform. Process. Lett. 12 (5) (1981) 244–250.
[8] M. Crochemore, Transducers and repetitions, Theoret. Comput. Sci. 45 (1986) 63–86.
[9] M. Crochemore, W. Rytter, Efficient parallel algorithms to test squarefreeness and factorize strings, Inform. Process. Lett. 38 (2) (1991) 57–60.

[10] M. Crochemore, W. Rytter, Usefulness of the Karp–Miller–Rosenberg algorithm in parallel computations on strings and arrays, Theoret.
Comput. Sci. 88 (1991) 59–82.

[11] D. Gusfield, Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology, Cambridge University Press, New
York, NY, 1997.

[12] D. Gusfield, J. Stoye, Linear-time algorithms for finding and representing all tandem repeats in a string, J. Comput. System Sci. 69 (2004)
525–546.

[13] R. Kolpakov, G. Bana, G. Kucherov, mreps: efficient and flexible detection of tandem repeats in DNA, Nucl. Acids Res. 31 (13) (2003)
3672–3678.

H.F. Leung et al. / Theoretical Computer Science 363 (2006) 69 –75 75

[14] J.H.M. Lee, H.F. Leung, H.W. Won, Extending GENET for non-binary constraint satisfaction problems, in: Proc. Seventh Internat. Conf. on
Tools with Artifical Intelligence, 1995, pp. 338–343.

[15] J.H.M. Lee, H.F. Leung, H.W. Won, Performance of a comprehensive and efficient constraint library based on local search. in: Proc. 11th
Australian Join Conf. on Artifical Intelligence, 1998, pp. 13–17.

[16] M. Main, An infinite square-free co-CFL, Inform. Process. Lett. 20 (2) (1985) 105–107.
[17] M. Main, W. Bucher, D. Haussler, Applications of an infinite square-free co-CFL, Theoret. Comput. Sci. 49 (1987) 113–119.
[18] M. Main, R. Lorentz, An O(n log n) algorithm for recognizing repetition, Technical Report CS-79-056, Washington State University, 1979.
[19] M. Main, R. Lorentz, An O(n log n) algorithm for finding all repetitions in a string, J. Algorithms 5 (3) (1984) 422–432.
[20] M. Main, R. Lorentz, Linear time recognition of squarefree strings, Combin. Algorithms Words 12 (1985) 271–278.
[21] M.O. Rabin, Discovering repetitions in strings, Combin. Algorithms Words, (1985) 279–288.
[22] R. Ross, R. Winklmann, Repetitive strings are not context-free, Technical Report CS-81-070, Washington State University, Pullman, WA, 1981.
[23] H.J. Shyr, A strongly primitive word of arbitrary length and its applications, Internat. J. Comput. Math. 6 (1977) 165–170.
[24] J. Storer, Data Compression: Methods and Theory, Computer Science Press, New York, NY, 1987.
[25] J. Stoye, D. Gusfield, Simple and flexible detection of contiguous repeats using a suffix tree, Theoret. Comput. Sci. 270 (2002) 843–850.
[26] J.H.Y. Wong, H.F. Leung, Solving fuzzy constraint satisfaction problems with fuzzy GENET, in: Proc. 10th IEEE Internat. Conf. on Tools with

Artifical Intelligence, 1998, pp. 180–191.

