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Abstract

We present an improved online algorithm for coloring interval graphs with bandwidth. This problem has recently been studied
by Adamy and Erlebach and a 195-competitive online strategy has been presented. We improve this by presenting a 10-competitive
strategy. To achieve this result, we use variants of an optimal online coloring algorithm due to Kierstead and Trotter.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Interval graphs are of interest as they are used to model the structure of many problems in a variety of fields. One
classical well-studied problem is the issue of vertex coloring of interval graphs. Features of containment associated
with intervals are well exploited to design efficient algorithms and fast implementations to optimally color interval
graphs (see [6]). Interval graphs are used to model many resource allocation problems (see book [6]). Each interval
corresponds to a request for the usage of a resource exclusively for a certain period of time. In this paper we consider
the issue of online coloring a set of intervals based on some relaxed properties (two adjacent vertices may get the same
color as long as an additional condition is not violated).

Online algorithms are motivated by environments where the inputs occur in a sequence and need to be serviced without
any knowledge of the future inputs. Online interval coloring algorithms are one example of many such algorithms that
are of much interest (see book [3]). The problem of coloring interval graphs with bandwidths (CIB) is a generalization
of the interval graph coloring problem (CI). In the generalization, each interval has a bandwidth in (0, 1]. These
bandwidths are referred to as bandwidths. A valid coloring is one that satisfies the condition that, for every r on the
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real line, for every color c, the set of intervals colored c, containing r have bandwidth that sum up to at most 1. Clearly,
when each interval has bandwidth 1, we get the interval graph coloring problem. We refer to a coloring satisfying the
above condition as a bandwidth satisfying coloring. A coloring that assigns different colors to the end points of each
edge is simply referred to as a valid coloring.

Online coloring of intervals with bandwidth has been of recent interest in [1] and, as been remarked there, is a
simultaneous generalization of two other problems:
(1) Online Bin Packing, the study of which dates back to work of Johnson in the early 1970s [7]. If all intervals

have the same left and right endpoints would correspond to Bin Packing where each color represents
a bin.

(2) Online Coloring of Interval graphs (CI), introduced by Kierstead and Trotter [10].
Note: Online coloring of intervals and online coloring of interval graphs are one and the same.An interval corresponds

to a vertex and there is an edge between two vertices if and only if the corresponding intervals intersect. The chromatic
number of the interval graph is the same as the maximum clique size which is attained at a point where the largest
number of intervals intersect.

Motivation: CIB is motivated by many applications. One example is that of a network with line topology that consists
of links, where each link has channels with constant capacity (all the channels have the same capacity c). The channels
can be either an all-optical WDM (wavelength-division multiplexing) network or an optical network supporting SDM
(space-division multiplexing). The connection requests between two points, say from a to b, request bandwidth, and
the total requests assigned to a channel must not exceed the capacity of the channel on any of the links that connect
a and b.

Previous work: Online coloring algorithms for interval graphs have been well studied. The best known algorithm
is in [8,10] which uses at most 3� − 2 colors where � denotes the maximum clique size in the interval graph. It is
also shown to be an optimal online algorithm in [10]. Another approach to solving online coloring is to use the First
fit: allot the smallest valid color to each vertex. Much research has been done analyzing the simple First Fit algorithm
for the CI problem. An upper bound of 40 on the competitive ratio was given first by Kierstead, and later improved
to 25.72 by Kierstead and Qin [9]. Lower bounds for First Fit was also studied and Chrobak and Slusarek [4] obtain
a constant lower bound between 4.4 and 4.5. Coloring intervals with bandwidth (CIB) was introduced by Adamy and
Erlebach [1]. Their work uses a combination of the optimal online algorithm and the First Fit approach. This algorithm
was shown to achieve a constant competitive ratio of 195 [1]. Subsequently, an improved analysis, by Pemmaraju and
Raman [12], shows that the competitive ratio of the Adamy–Erlebach algorithm is 35. As argued in [1] First Fit for
CIB can perform arbitrarily bad. They also show that First Fit gets a competitive ratio of 192 if all intervals have
bandwidth �1/2.

1.1. Our results

Our results for the CIB follow by a careful adaptation of an online algorithm due to Kierstead and Trotter [10] for
coloring interval graphs.

Upper and lower bounds for CIB: We give an online algorithm for the CIB problem with a competitive ra-
tio of 10. The algorithm is strongly influenced by the 3-competitive algorithm for CI by Kierstead and Trotter
[10]. We design a new online algorithm to color intervals with bandwidth. Our approach is similar to that in [1]
where the requests are classified into two classes based on the bandwidth. In [1] one subproblem is colored us-
ing the first fit, and the other using the optimal online coloring algorithm. Each subproblem uses a distinct set of
colors.

In our approach, we classify the input into three classes, again based on bandwidth. We then appropriately apply
variants of the optimal online algorithm to each class, operating on a different set of colors for each class. The online
algorithm is modified to suit the needs of each class, and this modification is what leads to an improved performance.

We present online coloring algorithms for intervals with bandwidth in different ranges. We give a 2m
m−2 competitive ratio

for coloring intervals with bandwidth in the range of
[
0, 1

m

]
, m integer �3. We show an online coloring algorithm for

intervals with bandwidth in the range of
[ 1

m
, 1

2

]
with a competitive ratio of (m − 1). The third class is formed by those

intervals with bandwidths in the range
( 1

2 , 1
]
. On this class we use the optimal algorithm for online coloring intervals

graphs which guarantees a competitive ratio of 3.
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Lower bounds: We give a lower bound of 4
3 on the competitive ratio of any online algorithm for intervals with

bandwidth in [a, b] for any 0�a, b�1. This means that even if all intervals have very small bandwidth the lower
bound is strictly greater than 1.

Outline of paper: In Section 2 we present the preliminaries. In Section 3 the 10 competitive algorithm is presented.
In Section 4 we present the lower bound for small bandwidth intervals. Finally, we present some conclusions and open
problems in Section 5.

2. Preliminaries

For a set of intervals in the real line P = {Ii : 1� i�n}, we can associate a graph denoted by G(P ). In this graph,
there are as many vertices as the number of intervals in P . Each interval is associated with a unique vertex and vice
versa. Two vertices are adjacent if there is a non-empty intersection between the corresponding intervals. Throughout
the paper, we use the words interval and vertex interchangeably for ease of presentation. In particular, when we deal
with properties of the underlying interval graph we think of the intervals as vertices.

For an undirected graph G, �(G) denotes the size of the maximum cardinality clique in G. �(G) denotes the
max{degree of u : u ∈ V (G)}. For a weighted graph G, which is a graph where each vertex has a weight, �∗(G)

denotes the largest weighted clique in G. The size of weighted clique is the sum of the weights of the vertices in the
clique. Let P be a collection of intervals. We now define three notions of density with respect to the collection P . For
a positive integer r , the density of r is defined to be D(r) = |{I ∈ P : r ∈ I }|. The density of an interval I is defined
as D(I) = min{D(r) : r ∈ I }. The density of P , D(P ), is defined as max{D(I) : I ∈ P }. We present the following
crucial lemma from [8] for the sake of clarity.

Lemma 2.1. Let P be a collection of intervals and G = G(P ). If D(P ) = 1 then �(G)�2 and �(G)�2.

Proof. Since D(P ) = 1, every interval I has a point r such that the point is present exclusively in I . I.e., D(I) = 1 for
every I ∈ P . Therefore, if �(G)�3 then there would exist 3 intervals I1, I2, I3 corresponding to vertices in G which
form a triangle (a 3-clique). In any three such intervals, one of them, say I1, is contained in the union of the other two.
Each point of I1 is contained in either I2 or I3 (some point are contained in both I2 and I3, but we do not need this
fact here). It follows that D(I1)�2. This contradicts the hypothesis that D(P ) = 1. Therefore, �(G)�2. Similarly,
a vertex of degree at least 3 implies that there is an interval which is contained in the union of at most two other intervals.
This would violate the hypothesis that D(P ) = 1. Therefore, �(G)�2. �

2.1. Online coloring interval graphs

It is well known that an interval graph can be colored optimally with as many colors as the size of its largest clique. The
algorithm first orders the vertices according to the leftmost point of the intervals associated with them. In other words,
the first vertex in the order is one whose leftmost point is the smallest. Then the vertices are considered according to the
constructed order and greedily colored: every interval is assigned to the smallest valid color. The coloring problem for
interval graphs becomes more challenging when we consider the problem of designing online algorithms. Here, along
with the input interval graph, an order � = v1, . . . , vn is presented. The algorithm must color the vertices according
to � and use as few colors as possible. Below we present the online coloring algorithm due to Kierstead and Trotter
for interval graphs which uses at most 3� − 2 colors. The algorithm partitions the vertices into sets, and every set is
colored with 3 colors, using a different set of colors for each set. The algorithm can also be visualized as running in
two phases: in the first phase an arrangement of the intervals satisfying certain properties is computed. In the second,
the arrangement is 3-colored to obtain a coloring of the interval graph.

Formally, let vi be the current vertex to be colored. Below, we identify a position, p(vi), for vi depending
on p(v1), . . . , p(vi−1). To decide the value of p(vi) we consider the following graph which is defined for each
integer k�0: Gk(vi) is the induced subgraph of G on the vertex set {vj ∈ V (G) : j < i, p(vj )�k, {vi, vj } ∈
E(G)}.

Theorem 2.2 (Kierstead and Trotter [10]). Algorithm 1 uses 3w − 2 colors where w is the max cardinality of the
clique.
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The proof of Kierstead and Trotter is based on the following properties:
Properties of p(v):

Algorithm 1. Online coloring interval graphs.
AKT(Interval vi)

1: p(vi) = the smallest non-negative integer r such that �(Gr(vi))�r .
2: Let SameP (vi) = {v|p(v) = p(vi)}
3: color(vi) = f ×p(vi) such that no element of SameP (vi) has been assigned color f ×p(vi) where f ∈ {1, 2, 3}.

1. For each v, p(v)�� − 1.
2. For a number j , consider the collection P of intervals corresponding to the vertices of the induced graph on

{v|p(v) = j}. This collection has density equal to 1. From Lemma 2.1 it follows that the maximum vertex degree
in this graph is at most 2.

3. p(vi) depends only on the vertices which were considered prior to vi and color(vi) depends on the color of at most
two of its neighbors on the line p(vi). Further, vertices with p(v) = 0, all get the same color, as they form an
independent set. Consequently, it follows that the two phases can be performed online and at most 3� − 2 colors
are used.

3. Upper bounds

Recall that the bandwidth of each interval is a number in (0, 1]. The goal is to use the minimum number of colors to
color the vertices of an interval graph such that, for each color c, the weight of the maximum weight clique is bounded
by 1 in the graph induced by the vertices assigned c. The algorithm should be an online strategy, in the sense that at each
time step (decided by the algorithm), an input pair consisting of an interval and its bandwidth requirement is presented
to the algorithm. This request should be serviced by assigning a color before the next request can be presented.

3.1. Upper bound for the case of small bandwidths

Algorithm 2. ASmall.

ASmall(Integer m �3, Interval I)

1: �∗ = Weight of a maximum clique on all intervals processed thus far, including I .

2: j =
⌈
�∗ · 2m

m−2

⌉
;

3: pass I to Aj ;

Algorithm 3. Aj .

Aj

Init /*First call*/
Bj = Bj−1 ∪ Cj−1;
Cj = ∅;
For a new interval I ,

1: if �∗(Bj ∪ {I })�(j − 1)
( 1

2 − 1
m

)
then

2: Bj = Bj ∪ I ;
pass I to Aj−1;

3: else
4: Cj = Cj ∪ I ;

Color I with the color j ;
5: end if
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In this section we consider the case when the bandwidths are in the range
[
0, 1

m

]
, m�3. To handle this case we

present the algorithm, ASmall, that will be shown in Theorem 3.1 to be 2 competitive asymptotically.

Algorithm Aj . Formally, for each j �0, Aj is associated with two sets of intervals, Bj and Cj . When Aj is first used,
the sets Bj and Cj are defined, recursively, as follows:
• Bj = Bj−1 ∪ Cj−1;
• Cj = ∅.

Subsequently, Aj maintains an online partition of the intervals into Bj and Cj . When a new interval I is presented,
Aj puts I into one of two sets: Aj puts I into the set Bj , if �∗(Bj ∪ {I })�(j − 1)

( 1
2 − 1

m

)
, otherwise, Aj puts I into

Cj . If I is put into the set Bj , it is colored by Aj−1 . Otherwise, it is colored j in the set Cj . Note that for every j , Cj

contains the set of all intervals that were colored by Aj with j and Bj contains the set of all intervals that were colored
by a color smaller than j .

The main property of the sub algorithm Aj is that it uses one color, namely j . Therefore, algorithms A1, A2, . . . , Aj

use a total of j colors. The value j , at any point in time, depends on the maximum total bandwidth of intersecting
intervals presented to the algorithm up to that time instant. Recall that the sum of bandwidths of intersecting intervals is
the weight of a clique in the corresponding weighted interval graph. The algorithm Aj is used as long as the maximum
total bandwidth among a set of intervals maintained by Aj , denoted by k, is below j

( 1
2 − 1

m

)
. Since we deal with an

online process, k increases over time. When k increases to more than j
( 1

2 − 1
m

)
, then ASmall can no longer use Aj to

color the newly presented interval, so it uses the next algorithm Aj+1.

Theorem 3.1. ASmall is 2m
m−2 competitive.

Analysis: Clearly, the above scheme is an online strategy, as it processes a request fully before considering the next.
Our interest is in the number of colors that are used by the strategy, and the correctness of the result. The number of
colors used is at most 2m

m−2 times the optimum. The reason is that any bandwidth satisfying assignment uses at least

��∗� colors, and our algorithm above uses j =
⌈
�∗ · 2m

m−2

⌉
colors.

Correctness: We are left to prove that every set Cj , can be colored by one color only. We next show that for each j

the weight of any clique in Cj is at most 1.
Let t be the time interval I had been given a color. Denote by B(j,t) and C(j,t) be the sets Bj and Cj at time t ,

respectively.
A critical point p in interval I ∈ C(j,t) colored at time t , is a point with a total bandwidth of more than (j−1)

( 1
2 − 1

m

)
in B(j,t) ∪ C(j,t). For every colored interval there is at least one critical point.

Lemma 3.2. For every I ∈ C(j,t) and every critical point p ∈ I , where I is colored at time t , the total bandwidth at
p of intervals in C(j,t) does not exceed 1

2 for every j and t .

Proof. Proof by contradiction; assume that there is a critical point, p ∈ I ∈ C(j,t), where the weighted clique of
intervals in C(j,t) is more than 1

2 . Since p is a critical point, by definition �∗(B(j,t) ∪ I ) > (j − 1)
( 1

2 − 1
m

)
at point p.

Since b(I )� 1
m

, the weighted clique of B(j,t) at p is greater than (j − 1)
( 1

2 − 1
m

) − 1
m

. Since �∗(C(j,t)) > 1
2 in p we

get that �∗(B(j,t) ∪ C(j,t)) > (j − 1)
( 1

2 − 1
m

) − 1
m

+ 1
2 = j

( 1
2 − 1

m

)
. But this contradicts the property that Aj only

deals with intervals with a total bandwidth that does not exceed j
( 1

2 − 1
m

)
. Therefore, our assumption is false. Hence

the lemma holds. �

Lemma 3.3. For every j and t , �∗(C(j,t))�1.

Proof. Proof by contradiction, assume that there is a weighted clique of more than 1 in C(j,t) at point pj . But this
means that either the first critical point to the left of pj , or the first critical point to the right of pj , has a total bandwidth
of more than 1

2 . By Lemma 3.2, this is not possible. �

Taking t to be the time the last interval is colored, it follows that the algorithm produces a bandwidth satisfying
coloring.
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This concludes the proof of Theorem 3.1.

Remark 1. ASmall can be modified reducing slightly the number of colors used to
⌈
�∗ · 2m

m−2

⌉
−

(⌊
2m

m−2

⌋
− 1

)
. We

let Aj use the first color only for integer values of j �
(

2m
m−2 − 1

)
. This can be done since

(
2m

m−2 − 1
) ( 1

2 − 1
m

)
�1.

This means that the weight of no clique in Bj ∪ Cj for j �
(

2m
m−2 − 1

)
exceeds 1.

Remark 2. Note that we have proved that algorithms in a larger family (which include ASmall) are 2m
m−2 competitive.

The family contains all algorithms such that, given an interval I find some j satisfying �∗(Bj+1 ∪ {I })�j
( 1

2 − 1
m

)
and �∗(Bj ∪ {I }) > (j − 1)

( 1
2 − 1

m

)
and colors I with j .

3.2. Upper bound for the case of middle bandwidth

Let � = v1, . . . , vn be the ordering of the vertices of G. Here, we consider the case where for every interval
vi , 1

m
< b(vi)� 1

2 . The coloring strategy described below uses as many colors as the size of the largest unweighed
clique, � formed by intervals whose bandwidth is in

( 1
m

, 1
2

]
. The color of vi , denoted by color(vi), is decided based

on color(v1), . . . , color(vi−1). To identify the color of vi , we use the following graph which is defined for each in-
teger k�0: Gk(vi) is the induced subgraph of G on the vertex set {vj ∈ V (G) : j < i, color(vj )�k, {vi, vj } ∈ E(G)}.

Algorithm 4. Online coloring interval graphs with bandwidths in
( 1

m
, 1

2

]
.

Amiddle(Integer m, Interval vi)

1: color(vi) = the smallest non-negative integer r such that �(Gr(vi))�r .

In other words, the above algorithm ignores the bandwidth requirements, i.e., treats all these bandwidths as 1, and applies
only the first two steps of Algorithm 1. Exactly � colors are used to color the vertices based on this arrangement. As
the bandwidths are at most 1

2 , we have obtained a bandwidth satisfying coloring. Recall that � denotes the size of the
largest clique in the graph induced by the intervals in question.

Lemma 3.4. The above strategy outputs a bandwidth satisfying coloring using at most � colors.

Proof. As argued in Section 2.1, for each y ∈ {0, 1, . . . ,� − 1}, the interval graph formed by intervals in the set
{v|color(v) = y} does not have a clique with more than 2 vertices. Further, for each v, color(v)�� − 1. Clearly, at
most � colors are used, and the coloring is bandwidth satisfying as each bandwidth requirement is at most 1

2 . Hence
the lemma is proved. �

To compare with the optimum bandwidth satisfying assignment, we give a lower bound on the number of colors in
an optimum bandwidth satisfying coloring in terms of the number of colors in an optimum valid coloring.

Lemma 3.5. The number of colors used by an optimum bandwidth satisfying coloring is at least 1
m−1 times the number

of colors used in an optimum valid coloring which is at least �.

Proof. In any optimum bandwidth satisfying solution, the largest clique size among monochromatic vertices is m− 1.
If it exceeds m, then such a solution would not be feasible, as the clique weight would be more than 1 due to the
bandwidths being more than 1

m
. To obtain a valid coloring, we optimally color each color class using at most m − 1

colors. The number of colors used is at most m − 1 times the optimum bandwidth satisfying coloring. Therefore, the
optimum valid coloring is at most (m−1) times the optimum bandwidth satisfying coloring. In other words, an optimum
bandwidth satisfying coloring uses at least 1

m−1 times the number of colors used by an optimum valid coloring. �

Number of colors used: From the previous two lemmas it follows that the online algorithm uses at most m − 1 times
the number of colors used by an optimum bandwidth satisfying coloring. The above result is a specific case of a more
general algorithm called STEADY in [5]. Consequently, the algorithm is (m − 1) competitive.
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3.3. Upper bound for the case of high bandwidth

Here, we consider the case where every interval has bandwidth of strictly higher than 1
2 .

Algorithm AKT. The algorithm is to simply color the intervals ignoring the bandwidth requirements. As in [1] we
apply Kierstead and Trotter’s online algorithm to color each interval. From the analysis of [10] it follows that the
number of colors used is at most 3 times the optimum number of colors.

Theorem 3.6. A bandwidth satisfying coloring output by AKT uses at most three times the optimum number of colors.

Proof. The proof follows from the fact that any valid bandwidth satisfying coloring of the vertices is a valid coloring

of the set of intervals. The reason being that each bandwidth is more than 1
2 . It is now a well known fact that Kierstead

and Trotter’s online interval coloring algorithm [10] is 3 competitive. Hence the theorem holds. �

3.4. Online strategy and an upper bound for the CIB problem

The colors to be assigned are split into three disjoint classes C1, C2, and C3. These classes are determined in an
online fashion. The classes are built dynamically, when a new color is required the first unused color is assigned. When
a color is assigned to one of the three classes it can no longer be assigned to any of the other classes.

We perform an online partition of the intervals into 3 disjoint subsequences, S1, S2, and S3 according to their
bandwidth. For every interval I :
• I ∈ S1 if b(I )� 1

4 ;
• I ∈ S2 if 1

4 < b(I)� 1
2 ;

• I ∈ S3 if b(I ) > 1
2 .

Algorithm CIB.
Run in parallel the following online algorithms, where m = 4.

• Asmall on S1 using colors from C1;
• AMiddle on S2 using colors from C2;
• AKT on S3 using colors from C3;

Theorem 3.7. Algorithm CIB is 10-competitive.

Completing the analysis: We have split the input sequence into three cases. Each of the three cases has been handled
by a separate algorithm operating with a separate set of colors. We have also shown that Kierstead and Trotter’s online
coloring algorithm can be modified to perform competitively on each case. If the optimum for the three cases are
O1, O2, and O3, respectively, then the optimum number of colors used by a bandwidth satisfying coloring is no less
than each of the three optima. Using this fact and our analysis of the algorithms for each of the three cases, it follows

that the online algorithm outlined above uses at most 3 + 2m
m−2 + m − 1 times the optimum number of colors used by a

bandwidth satisfying assignment. This expression gives the smallest value for m = 4, we conclude that our algorithm
is 10-competitive.

This completes the proof of Theorem 3.7.

4. Lower bounds for small bandwidth

Kierstead and Trotter [10] proved a lower bound of 3 for the CI problem. Since CIB is a generalization for CI, this
lower bound also applies here. However, what if all the intervals were very small?

In this section we present a lower bound on the competitive ratio of deterministic strategies. In particular, we prove
a lower bound of 4

3 on the competitiveness of any deterministic online strategy, by constructing a sequence of requests
of the same bandwidth b ∈ [d, e] for any 0�d, e�1. If d and e are larger than 1

2 then we can simply use the lower
bound of Kierstead and Trotter [10]. So it becomes interesting if d and e are very small.

The remainder of this section is devoted to the lower bound stated in Theorem 4.1.
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Theorem 4.1. There is a lower bound of 4
3 on the competitive ratio for online coloring of intervals with bandwidth,

for any restriction of the interval bandwidths to [d, e], 0�d �e�1

Proof. We choose a bandwidth b ∈ [d, e], all the presented intervals in the following construction would have bandwidth
b. If there is an n such that bn = 1, then the number of colors that the optimal offline algorithm uses equals the maximum
total bandwidth of the intersecting intervals in the construction. Note that if there is no integer n and a value b, such
that bn = 1 then the optimal offline algorithm cannot utilize the maximum capacity of each color. Every color used by
the optimal offline algorithm, as well as every color used by any online algorithm, has a maximum total bandwidth of
1 − � for some � < b. For simplicity, we assume that bn = 1, otherwise the total bandwidth given should be a factor
of 1 − � for some � < b.

We give the following construction in phases.
Phase 1: Present identical intervals [0, c] with total bandwidth k each of bandwidth b. The first 2

3k colors used by
the online algorithm will be considered the color class A. Any other color is in the color class denoted by Ā. Note that

different online algorithms produce different sets of A and Ā. The intervals presented in this phase can be colored by
k colors by the optimal offline algorithm.

Phase 2: In this phase we present intervals that do not intersect with any intervals of the first phase. I.e., their left
endpoint is strictly greater than c. We present the intervals in two sets each with total bandwidth k. We first present the
intervals in Set 1, then the intervals in Set 2.

Set 1: Present intervals with total bandwidth k. The left endpoint of all the intervals are larger than c. When intervals
are presented we follow this rule: present the interval [�x1 , �x1

] with bandwidth b, such that for every interval [�i1 , �i1
]

previously colored in the color class A by the coloring algorithm, �x1 < �i1 and �x1
> �i1

. Also for every interval
[�j1 , �j1

] with color in the color class Ā, �x1 > �j1 , and �x1
< �j1

.

Set 2: Present intervals with a total bandwidth of k. The left endpoints of all the intervals are larger than any of the
right endpoint of intervals in Set 1. In this way the intervals of this set do not intersect with any of the intervals of the
first set. When intervals are presented in this set we follow a similar but opposite rule: present the interval [�x2 , �x2

] with
bandwidth b, such that for every interval [�i2 , �i2

] previously colored in the color class A by the coloring algorithm,
�x2 > �i2 and �x2

< �i2
. Also for every interval [�j2 , �j2

] with color in the color class Ā, �x2 < �j2 , and �x2
> �j2

.

In the first set all the intervals with colors in the color class A are contained in all intervals with color in Ā. The
second set has the property that all the intervals with color in the color class Ā are contained in all intervals with color
in A. For convenience, we arrange the intervals differently to get the structure illustrated in Figs. 1 and 2.

Phase 3: For this phase, we introduce the following notations:
• Let X be the set of all intervals colored by Ā in the first set.

Let x be the total bandwidth of set X divided by k.
• Let Y be the set of all intervals colored A in the second set.

Let y be the total bandwidth of set Y divided by k.
• Let a = max{x, y}.
• Let r1 be the right endpoint of the smallest interval in Set 1 colored with a color in A. Note that r1 is to the left of all

the right endpoints of intervals colored by color in A in Set 1.
• Let l2 be the left endpoint of the smallest interval in Set 2 colored with some color in Ā. Note that l2 is to the right

of all the right endpoints of intervals colored by color in Ā in Set 2.
After Phase 2 is completed the adversarial sequence continues. Present (1 − a)k identical intervals [r1, l2] such that

the optimal offline algorithm can still color the whole construction with only k colors. Those intervals are presented as
shown in Fig. 3. Note that in this phase the presented intervals intersect intervals from the previous phase, in particular,
all the intervals in X and Y , but do not intersect any of the intervals from Phase 1.

We claim that the online algorithm uses 4
3k colors by the end of Phase 2 or Phase 3 by the following two

lemmas.

Lemma 4.2. If the online algorithm uses less than 4
3k colors by the end of Phase 2, then both x and y are at least 1

3 .

Proof. The optimal offline algorithm can color the sequence of intervals presented in the three phases with only
k colors.
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1
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Set 1

1

2

3

4

5

6

Set 2

Color in A

Color in A

Fig. 1. Intervals colored black are in the color class Ā. The white intervals are in the color class A. The numbers inside the intervals indicate the
order of their arrival in their set. Note the rule of Set 1 is followed. Each presented interval in this set contains all the previously presented intervals
with color in the color class A. Also, each such interval is contained in every previously presented interval with color in the color class Ā. Observe
that in the second set the opposite rule is followed.

Color in A
Color in A

X

Set 1 Set 2

Y
1

2

3

4

5

6

1

2

3

4

5

6

Fig. 2. The two sets after the rearrangement. The intervals are displayed in order of size rather than in order of presentation. In this display, it can be
easily seen that intervals colored by color in A in Set 1 are all contained in intervals colored by colors in Ā in Set 1. In Set 2 the opposite is true,
every interval colored by some color in A contains all the intervals colored by colors in Ā.

X

Set 1 Set 2

Y
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1
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Color in A
Color in A

r1 l2

Fig. 3. The final coloring of phases 2 and 3, the identical intervals, colored gray, are placed in the middle of the two sets intersecting all the intervals
in Y and X. Note that the total bandwidth of the intervals presented in these phases is still k.

x� 1
3 : Recall that the color class A has only 2

3k colors. Since any online algorithm uses in Set 1 of Phase 2 at least
k colors and (1 − x)k is at least the number of colors used in A we get 1 − x� 2

3 ⇒ x� 1
3 .

y� 1
3 : 1 − y� 2

3 , otherwise the online algorithm uses more than 2
3k colors in Ā in Set 1 of Phase 2. In the first phase

the online algorithm uses exactly 2
3k colors in class A contradicting the assumption that the number of colors used by

the online algorithm in Phase 1 and 2 is less than 4
3k. This gives y� 1

3 . �

Lemma 4.3. If x and y are at least 1
3 then the online algorithm uses more than 4

3k colors by the end of Phase 3.
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Proof. Suppose y�x, hence a = max{x, y} = y (the case a = x is similar). Then, the online coloring algorithm uses:

((1 − y) + y + x)k = (1 + x)k�
(

1 + 1

3

)
k = 4

3
k.

The first inequality holds due to Lemma 4.2. �

By Lemmas 4.2 and 4.3 the online algorithm uses at least 4
3k colors. Since the optimal offline algorithm can use only

k colors that implies a lower bound of 4
3 and completes the proof of Theorem 4.1. �

5. Conclusions and open problems

In this paper we provide a 10-competitive ratio algorithm for the CIB problem, however, the lower bound for the
problem remains only 3. There is also a gap for the small bandwidth variant. For this variant we present an asymptotically
2 competitive ratio algorithm and show a lower bound of 4

3 .
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