Theoretical Computer Science 38 (1985) 193-222 193
North-Holland

AN INVESTIGATION OF CONTROLS FOR CONCURRENT
SYSTEMS BASED ON ABSTRACT CONTROL LANGUAGES

H.D. BURKHARD

Sektion Mathematik, Humboldt- Universitdt, 1086 Berlin, Postfach 1297, German Democratic
Republic

Communicated by G. Mirkowska
Received June 1984
Revised November 1984

Abstract. The behaviour of the controlled system determines the control. This concise statement
summarizes our approach to the investigation of controls. Using abstract languages to define the
behaviour and subbehaviour of a system, and therewith the behaviour of the uncontrolled and
of the controlled system, we are able to describe and to study different types of control rules and
properties to be realized by control like deadlock avoidance, liveness and fairness.

Introduction

Control is one of the central problems in studies of concurrent systems and
programs. It is inherent in conflict resolution, scheduling, synchronization, program
semantics, wherever decisions concerning choices are made. There is a common
understanding about control, but general definitions and considerations are missing.

From its use in literature, two aspects appear: application of certain control rules
(queues, priorities, choice of maximal sets of concurrently performable actions, etc),
and controls which are defined as restrictions of the behaviour in order to enforce
properties like deadlock avoidance, termination and fairness. The second approach
may be misleading, for example: ‘The choice of all fair executions’ appears as an
obscure notation from the viewpoint of control (cf. Section 6 of this paper). Both
aspects should be considered on a common base since realizations of properties by
control rules (e.g. fairness by queues) are an important subject. Moreover, some
notions can appear under both aspects: we may have controls realized by priorities
and controls realizing properties.

Two observations are essential in order to come to general considerations of
controls:

(1) Control is considered as a restriction with respect to the behaviour of the
system to be controlled.

(2) Each restriction of the behaviour of the uncontrolled system determines a
control in the sense that all decisions of the control are well-defined.

0304-3975/85/%$3.30 © 1985, Elsevier Science Publishers B.V. (North-Holland)

194 H.D. Burkhard

This correspondence between behaviour and control is employed for our purposes.
Now it depends on the descriptions of the behaviour which problems of control
can be examined. As we shall show in this paper, abstract languages describing the
external behaviour are a convenient tool for many such problems. Since control
may influence the behaviour at any time, the languages are supposed to be closed
with respect to initial segmentation.

Special systems can be examined by the corresponding families of languages
using the notion of control principles (Sections 1-3). Special emphasis is put on
the regular languages and on the languages of firing sequences of finite Petri nets,
as well as on the problems of deadlock avoidance, liveness and fairness. While
many considerations can be performed using only the languages without reference
to the structure of a system, the languages are supposed to be given in a suitable
form with respect to the decidability results, etc.

Thus having a suitable framework to speak about controls, we can compare
controls of different types (Section 3). We are able to investigate stepwise refinements
of controls in order to realize different properties. We shall show that the order of
such refinements plays an important role (Section 4). In general one has to take
into account that properties are not preserved under controls, and verification results
for the uncontrolled system need not be relevant for the controlled system.

Section 5 investigates the problem whether all executions corresponding to a
special property can be realized by a uniform control. Such controls do, in general,
not exist for fairness properties, but they do exist and are characterized for deadlock
avoidance and liveness.

The last two sections deal with decidability results (existence of controls, realiz-
ations of controls by finite automata as control devices, properties of automata
controlled systems). It happens that the generation of controls may be preferred to
the analysis of controlled systems.

The following notations are used:

T* (T*) is the set of all finite (infinite) sequences over the alphabet T, e denotes
the empty word. A sequence u € T* is a prefix of ve T*uU T* (u = v), if there exists
a sequence v’ with v =uv’. The closure of a language L < T* with respect to initial
segmentation (prefixes) is denoted by L={u|3ve L: ucv}. The adherence of a
language L is defined by

Adh(L):={w|we T*awc L}, where w:={ulue T*rucw}.

The powerset of a set A is denoted by P(A); 3™ denotes ‘infinitely many’, V=
denotes ‘almost all’.

By m,e (NU{w})T we denote the Parikh-vector of a sequence ve T*U T, i.e.
m,(t) denotes the number of occurrences of ¢t in v. By a we denote the vector
(a,...,a) (of given dimension; aeNuU {w}). Operations and relations over vectors
are understood componentwise. A transition system S is defined by S = (T, Q, £, o),
where Q is the set of states with the initial state go€ Q, T is the set of transition
names and f: Q X T - P(Q) is the (nondeterministic) transition function. As usually,

Controls for concurrent systems 195

we put

flg,e)=1q}, flgu)= U flq,0),
q'ef(qu)
forge Q, ue T* teT.

The language Lg of S is given by Lg = {u|f(qo, u) #0}. S is called finite if Q and
T are finite sets. The family of languages of finite transition systems is the family
of the prefix closed regular languages which we denote by PREG.

Throughout the paper we assume without loss of generality that the transition
systems are initially connected, i.e. we have

Q= g*f(qo, u).

A Petri net N is defined by N=(P, T, F, V, my) where P and T are the finite
nonempty sets of places and transitions, respectively. F< (P X T)u (T X P) is the
flow relation and V:F-N\{0} is the multiplicity function, moeN¥ is the initial
marking.

The vectors t~, t" €N¥ are defined by

t (p)=if (p, t)e F then V((p, t)) else 0,
t"(p)=if (¢, p) € F then V((t, p)) else 0.

A transition te T is firable at a marking m eNF if t~ < m, the firing of t leads to
the new marking m+ At with At:=t" —¢". A transition sequence u =1, ... t, is firable
at m if each transition ¢; (i=1,..., n) is firable at m+A¢t,+- - -+ At,_,. The firing
of u leads from m to m+ Au where Au:=At;+- - -+ At,.

The language Ly of a Petri net N is the language of all ‘firing sequences’ of N,
i.e. of all sequences u € T* which are firable at m,. The family of all those languages
is denoted by FNL.

1. Control principles

We consider (controlled or uncontrolled) systems by means of their behaviour,
given by languages L over a finite fixed alphabet T with card(T)=2. We suppose
these languages to be nonempty and closed with respect to initial segmentation.
The control of a system is regarded as a restriction of its possibilities, thus the
language L' of a controlled system is always a subset of the language L of the
original (uncontrolled) system.

Definition 1.1. CONT:={L|@# L= L< T*} is the family of all control languages
over T.

cont(L):= P(L)n CONT is the family of all control languages for a (control)
language L€ CONT.

196 H.D. Burkhard

Since the behaviour of a control (the decision to be made with respect to L) is
defined by a language L'econt(L), the family cont(L) describes all the possible
controls of the system with the behaviour given by L. Having a special way to
perform controls (like scheduling disciplines), we obtain a special subset of cont(L).
Having also in mind special conditions to be satisfied (like fairness, conflict resol-
ution, etc.), we are going to study subsets of cont(L).

Definition 1.2. A control principle is a mapping

¢:CONT~ P(CONT)

with ¢(L) < cont(L) for all Le CONT.

A control principle c is called extensional if there exists a subset C <€ CONT such
that the following holds:

c(LYy=P(L)n C =cont(L)n C.
Notation. ¢(C')=J cc ¢(L) for C'< CONT.

Properties like liveness can be defined by abstract languages, and a controlled
system is live (or not live) independent of the original uncontrolled system. Hence,
live controls can be studied by a corresponding extensional control principle (see
Definition 1.4 below). Other controls like controls in order to resolve conflicts are
defined by non-extensional control princples (see Definition 3.5).

Corollary 1.3. (1) If c is extensional, then it is monotonous, Le.
L'< L" implies c(L") < ¢(L").
(2) If c is extensional, then the corresponding set C is uniquely determined by
C =¢(T*)=c(CONT).
Definition 1.4. The extensional control principles
¢ = dfr, live, imp, fair, just, pfin, preg, prec, pren, fnl

are defined by the corresponding sets C < CONT, which for Le CONT fulfil:
(1) LeDFR iff Vue L 3te T: ute L.
(2) LeLIVEiff Vte TVueL3u'e T*: uu'te L.
(3) LeIMP iff Vwe Adh(L): =, = w.
(4) LeFAIR if Vie TVwe Adh(L):
(3ucw:ute L)> m,(1t) = .
(5) LeJUST iff Vie T Vwe Adh(L):
(Vucw:uteL)»> 7, (1) =w.
(6)-(10) PFIN (PREG, PREC, PREN) denotes the family of all nonempty
prefix-closed finite (regular, recursive, recursively enumerable) languages, FNL 1is
the family of the firing languages of finite Petri nets.

Controls for concurrent systems 197

Remark. Note that LIVE and IMP depend on the alphabet T.

By dfr(L) and live(L) we can consider the deadlockfree and live controls, respec-
tively, which exist for the system described by the language L. By imp(L), fair(L),
just(L) we have specified the controlled systems satisfying the fairness notions given
in [18]: impartiality, fairness and justice. The control principle preg assigns all prefix
closed regular sublanguages to a given language, thus, it describes all controls where
the controlled system can be modelled by a finite transition system. Similarly, fnl(L)
describes those controls for L where the controlled system can be modelled by a
Petri net.

To make our intensions more apparent, we consider the problem of the five
philosophers as given by the Petri net N in Fig. 1.

Fig. 1.

Deadlocks are possible in this net, e.g. after the execution of the sequence
u =yt t5t5ty. This fact is expressed by Ly € DFR.

As is well-known, a deadlock-free solution of the problem can be obtained by
synchronizing the actions ¢! and ¢} for each i =0, ..., 4. Hence we have L; € dfr(Lxn)
for

L,= Ly n({toto, t1t], t213, 313, tﬁtﬁ}il{go, 81, 82, &3, g4}*),

and L, describes a possible deadlock-free solution (control) of the problem.

198 _ H.D. Burkhard

Another deadlock-free solution can be described by

Ly={tot580t 111811515 821315 83 tat i 8a}™ € AfT(Ln).

This solution (being very restrictive) is even impartial (L,€imp(Ly)) while the
solution given by L, was not.

Obviously, there are many different deadlock-free solutions under the aspects of
control (i.e. by restrictions of the possibilities) for the problem of the five philosoph-
ers. We can study these solutions by the family dfr(Ly). In the same way we can
study fair solutions by the family fair (Ly), etc.

We are then able to investigate:

(a) Combinations of different properties by families c¢(Ly) N ¢'(Ln) (see Defini-
tion 3.2 below), e.g., fair (Ly) n dfr(Ly) describes the fair and deadlock-free sol-
utions.

(b) Comparisons of controls for a given property: There exists a special (least
restrictive) deadlock-free solution of the problem such that all other deadlock-free
solutions are more restricting the possibilities of the philosophers than this special
solution. A related result does not hold for the fair solutions (see Section 6).

(¢) Comparisons of controls of different types: Fair solutions need not be live
and vice versa.

Corollary 1.5
(1) LeDFR iff Vue L 3we Adh(L): uc=w.
(2) LeLIVE iff Vue L 3we Adh(L): ucCwa 7, = .
(3) LePFIN iff Adh(L)=9.

Proposition 1.6. If Le PREGuU FNL, then we have:
(1) LeDFR iff Vue L 3u',ve T*: uu'v® € Adh(L),
(2) LeLIVE iff Vue L 3u',ve T*: uu’'v” e Adh(L)r 7, = 1.

Proof. We only prove (2), the proof of (1) being similar. If Le LIVE, then there
exists a we Adh(L) with u=w and n, = @ (by Corollary 1.5(2)). We decompose
W= uuu,...such that =, =1 forall i=1,2,3,....

If L= Lg for the finite transition system S = (T, Q, f, q,) (in the case L€ PREG),
then we consider a state sequence q,, ¢, qs, - - - where q; € f(qo, u) and q;., € f(q;, u;)
forall i=1,2,3,.... Since Q is finite, we have some j>i>0 with g;=¢q,. If L= Ly
forthe Petrinet N =(P, T, F, V, m,) (inthe case FNL), then we consider the sequence
of the markings m,, m,, m,, ... where m; == my+ Auu, ... u. We have some j>i>0
with m;=m,

In both cases, we choose u''=u, ... u;, v'=1u;,, ... u; (note that Av =0 in the case
of the Petri nets) and then we have uu'v” € Adh(L) and 7=, =1.

It is trivial that the given condition implies Le LIVE. U

Controls for concurrent systems 199
2. Decidability of liveness and fairness conditions

Theorem 2.1. The problems ‘L € DFR (LIVE, IMP, FAIR, JUST)?” are decidable for
languages L ¢ PREG U FNL.

The decidability for the case L€ PREG was proved in [10].

Without loss of generality we can assume that L is given by L= Lg where
S =(T, Q, f, q0) is a finite (initially connected) transition system with card(f(q, t)) < 1
for all ge Q, te T (i.e. S works deterministically). Then we have:

LeDFR iff Vge Q3teT:f(q,t)#0,
LeLIVE ifft Vge QVte Tue T*:|u|<card(Q) A f(q, ut) 9,
LeIMP iff L™ g,

where
Ly :={v|3qeQ:qef(q v)nm, 21},
LgFAIR iff L #g,
where
Ly ={v|3qc Q:qecf(q,v)A3te T:m,(t)=0nf(q, 1) #0},
Lg JUST iff L=,
where

Lyt={v|3qeQ:qef(qv)rnte TVv'cv:7,(t)=0nf(q, v't) #B}.

Obviously, the languages Lg™, L&, and L} are regular and all the conditions
are decidable.

Now, let L be the language Ly of the firing sequences of a Petri net N =
(P, T, F, V, m,). The problems “Le DFR?”’ and “Le LIVE?” are decidable since
the reachability problem is decidable [17]): We have Ly £ DFR iff a dead marking
is reachable in N, and Ly € LIVE iff the initial marking m, is live (the equivalence
to the reachability problem was shown in [15]).

The further proof uses the coverability tree 7o = (S, E, u) of the Petri net N,
which can be defined as follows [6]:

(i) S’ T* is the set of nodes,
(ii) w:8' > (NuU{w})” is the node labelling function,
(iii) E:=={(r,rt){re T*ate T ar, rte S’} is the set of directed edges,
(iv) S’ and u are defined recursively:
(0) ee S’, u(e):=m, (e is the root of the tree),
(1) If re 8" and wu(r)# u(s) for all proper prefixes s of r, then rte S’ for
all te T with ¢t < pu(r).

200 H.D. Burkhard

For these rt the function u, is defined by

1) ifds=r: w(s)<su(r)+Ata
p(rt)(p)= Ap(s)(p) <(u(r)+At)(p),
(u(r)+At)(p) otherwise (whereby w +n=w).

(2) No other r are in S’
Some leaves of the tree are called loop ends, they are given by

Si={rlreS'rn3szr:u(r)=pu(s)}

The corresponding nodes with the identical labels are called loop starts and are
given by

So={s|seS'A3r:scr:u(r)=u(s)).

By the identification of the loop ends with their corresponding loop starts we get
the transition system S(N) = (T, S, f, e) where

S:= S,\Sl,

{rt} ifrtes,
flr,t)=4{s} ifrteS,as=rau(rt)=pu(s),
1) otherwise.

S(N) is finite (since 7 is finite) and deterministic, i.e. card(f(r, ¢))<1 for all re S,
te T

Lemma 2.2. (1) LN - LS(N)-

(2) If f(s,v)={s"} in S(N) and u(s)(p)=w iff u(s’)(p)=w for all pc P, then a
sequence u € T™ with uv € Ly can be constructed.

Proof. (1) corresponds to a well-known property of 7 (cf. Lemma (2) in [6]).

To prove (2), we know that v is firable with respect to the finite coordinates of
w(s) (by the construction of S(N))). By Lemma (3) in [6], we can construct a
sequence u € Ly with

=u(s)(p) ifuls)(p)#o,

(mq+ Au)(p){am(p) if u(s)(p)=o,

where m is an arbitrarily chosen marking. If we choose m sufficiently large, we can
construct u such that v is firable in my+ Ay, 1.e. uve Ly, 0O

Lemma 2.3. The condition
(*) JueT*3ve Ly:uv®eAdh(L)

is decidable for regular languages L, and languages L € FNL. Such sequences u, v can
be constructed if they exist.

Controls for concurrent systems 201

Proof. We suppose L= Ly for N=(P, T, F, V, m,) and consider the corresponding

transition system S(N)=(T, S, f, e). We show that the condition (*) is equivalent
to the condition

(»*) IseSJve L, f(s,v)#0rAv=0.

If uv” € Adh(Ly), then we have Av=0, and, by Lemma 2.2(1), we have f(s, v) #§
where f(e, u) ={s}. Hence, (*) implies (**). If f(s, v) #0 and Av=0, then we have
f(s, v") # @ for all i eN. There must exist a number i such that it holds for f(s, v') =

{s'}, f(s', v) ={s"}:
VpeP:u(s)=weous")(p)=w

(since the number of w-coordinates cannot decrease if we go futher in S(N)). Thus,
we can apply Lemma 2.2(2) and find a sequence u such that uv € Ly. It follows that
uv® € Adh(Ly) since Av =0. The next step is to show that (*«) is decidable, i.e. the
problem “L, # @7 is decidable for

L={v|lve Lyan Av=0a3s€ S: f(s, v) #H}.

By @(L)={m(u)|ue L} we denote the set of the Parikh-vectors corresponding to
a language L. Then we have L,=Lon L,n|Jes Ly, ie. (L) =a(Lo)nw(Ly)
Uses (L), where L,={v|Av=0} and L, ={v|f(s, v) #0}.

Obviously, the sets 7(L,), w(L,), w(L) are all computable semilinear sets (L,,
L, are regular, m(L,) contains the nonnegative integer solutions of a system of linear
inequalities with integer coefficients). Hence, #(L,) is a computable semilinear set
and “mw(L,) #07’ is decidable.

In conclusion: Condition (*) holds if we can start with a sequence v e L, in some
state s of S(N), whereby Av=0. [

Remark. It can be shown that condition (*) holds iff

Jse S, ve Ly f(s,v)={s}rAv=0,
whereby Lj:={v"v'v’|ieNAv'v"=ve Ly} (since each infinite path through S(N)
has to pass through some loop start infinitely often). Thus it suffices to look for
cyclic paths through the loop starts in S(N) which are labelled by a sequence ve L;
with Av=0.

Now we continue the proof Theorem 2.1 by the application of Lemma 2.3 to the
cases IMP, FAIR, JUST, where Lc FNL, i.e. L=Ly for N=(P, T, F, V, m,).

We have Ly ¢ IMP iff there exists an infinite sequence w = t,t,t; ... in Adh(Ly)
with 7, # o, i.e. 1;#t for some te T and all i that are greater than some keN.
There must exist i, jeN with j>i=k such that At ...t =0 (since there is an
infinite non-decreasing subsequence in (my+At, ... ;);cn). Hence there exist u:=
ty...l, U=ty ... such that uv” e Adh(Ly) and m,(t) =0. Since the reverse is

202 H.D. Burkhard

trivial, we have:
LygIMP iff 3u,ve T*: uv” e Adh(Ly) A 7, # 1, i.€.
iff ue T*3ve L,: uv® € Adh(Ly),

where Lo={v|r, #1} is regular.

The last condition is decidable by Lemma 2.3.

We have Ly £ FAIR iff there exists an infinite sequence w = ugu,u, ... (u; € T*)
in Adh(Ly) and some t€ T such that u,...u;te Ly for all ieN and 7,,(7) # o, i.c.
we can assume , (t) =0 for all i=1. Using the same argument as in the proof
concerning IMP, we can find j>i=1 with Ay, ... 4;=0, and then we can show
(with u=ug... 0, V=1t ...U):

Ly 2 FAIR iff u, ve T* 3te T: uv® € Adh(Ly)
Am,()=0AVieN:uv'te Ln.

The last condition implies (by Lemma 2.2(1) and with regard to the corresponding
transition system S(N)=(T, S, f, e)):

Jue T*3Jve Ly: uv® € Adh(Ly),

where .
Lo={v|3te TAse S: m,(1)=0rf(s, t) =0 A f(s, v) #0)}.

We show that both conditions are equivalent: the crucial point is that uv” € Adh(Ly),
ve L,, does not imply uv‘te Ly for any i € N. We must step back to the application
of Lemma 2.2(2) as in the proof of Lemma 2.3. By uv” € Adh(Ly) we have Av=0
and there exists some number i such that w(f(s,v')) and u(f(s, v'*")) coincide
with respect to their w-coordinates. Now we can apply Lemma 2.3, but we choose
the marking m (cf. the proof of Lemma 2.2(2)) so large that we get a sequence u’
such that both v and ¢ are firable in mo+Au’, i.e. u'v, u'te Ly for all ieN.

This proves that Ly £ FAIR holds iff there exist u € T*, v € L, with uv” € Adh(Ly).
This condition is decidable by Lemma 2.3 since

Lo=U[{vlfrv(t)=0}ﬁ U {vlf(s,v)?fﬂ}]

te T seS, f(s,1)#0
is regular.
Finally, we have Ly £ JUST iff there exists an infinite sequence w = t,1,¢;... in
Adh(Ly), a transition t€ T and some keN such that t,# ¢t and ¢, ... t;t € Ly for all
i> k. Similar to the preceding proofs we can show:

Ly 2JUST iff 3u, veT*3te T: uv” € Adh(Ly)

A (t)=0AVieNVvCv: uv'v'te Ly
Furthermore, we have

Ln2JUST iff 3ue T* Jve L, uv® e Adh(Ly),

o

Binkntheek

y

Controls for concurrent systems 203

where

Ly={v|3teT3seS: m,(t)=0nf(s,0) #BAVv'=v: f(5, 0't) #0}.

The proof is similar to the analogous proof for fairness, but now we have to choose
the marking m so large that v and all sequences v't for v'= v become firable in
my+ Au'.

Lo=UJ [{U,Tru(t) =0} U {v|f(s, v) @AV = v: f(5, 0'1) #ﬂ}]

teT

is regular and thus Lemma 2.3 is applicable. [

Remark. One can show by similar arguments as given, concerning the remark after
Lemma 2.3 that

LeIMP iff 3ve L™ : Av=0,
L FAIR iff Jve LP": Av=0,
LeJUST iff Jve LI Av=0,

where the languages Lg™, LP", L™ are defined for S(N) in the same way as for
S in the proof part “L e PREG”.

3. Relations between live and fair controls

The properties corresponding to extensional control principles are properties of
the controlled systems only, they do not depend on the original uncontrolled systems.
The language {a}* is contained in fair({a}*), but also in fair({a, b}*), fair({a, b, c}*),
etc. The definition of fair(L) may be insufficient to meet the intensions of a fair
control: We have {a}* € fair({a, b}*) although b is infinitely often enabled by a*
with respect to the uncontrolled system given by {a, b}*. Hence it might be better
to consider ‘relative fairness’ and ‘relative justice’ with respect to the uncontrolled
system (given by L).

Definition 3.1
L'erfair(L) iff Vie TVwe Adh(L'): (3%ucw: ute L)-» 7,(1) = w.
L'erjust(L) iff Vie TVwe Adh(L'): (V u=w: ute L)-> 7,(1) = w.
Remark. Referring to a fixed language L (i.e. to a special given uncontrolled system),
there exists the possibility to define an extensional control principle by C := rfair(L)

(rjust(L)). Advantages may then arise by the application of properties of extensional
control principles (cf. Section 5).

204 H.D. Burkhard

In the sequel we sometimes refer to imp, fair, just, rfair, rjust shortly as the
fairness control principles. Since some fairness can be enforced by restrictions to
finite languages, it is interesting to study those controls which are fair and deadlock-
free or which are fair and non-blocking (cf. Definition 3.5 below).

Thus, we are interested in the study of controls which realize several properties.
We are also interested in the preservation of the properties of a control principle ¢
by another control principle ¢’ (for example: all live controls are deadlock-free).
This leads to the following definition:

Definition 3.2. The conjunction c&c' of two control principles ¢, ¢’ is defined by
c&c'(Ly==c(L)nc'(L) forall Le CONT.
The control principle ¢ is covered by ¢', c<¢’, iff we have

c(Lyc c¢'(L) forall Le CONT.

Obviously, c&c’'=<c, ¢/, i.e. the properties realized by ¢ and ¢’ are preserved by
c&c’. We also have the following corollary.

Corollary 3.3. If c,, ¢, are extensional, then we have:
(1) asq if Cic G,
(2) c¢=c,&c, is extensional with C=C,n C,.

Theorem 3.4. For card(T) =3 we have the relations between the control principles dfr,
live, imp, fair, just, pfin, rfair, and rjust as represented by Fig. 2. (It also represents
the relations between the families DFR, LIVE, IMP, FAIR, JUST, PFIN.)

Proof. It immediately follows from the definitions that
live < dfr,
pfin < imp < rfair < fair < just,
rfair < rjust < just.

Furthermore, for u € L e DFR ~ IMP there exists some we Adh(L) with ucw (by
Corollary 1.5(1)) and 7, = @ (by the definition of IMP). This implies L€ LIVE by
Corollary 1.5(2). Thus, we have DFRNIMP < LIVE, i.e. dfr&imp <live.

It remains to show the inequalities. Since it can be proved that live&imp =
live&rfair = live&fair holds for card(T) =2, we consider the alphabet T ={aq, b, c}
concerning 2"-4" (the numbers refer to the position in Fig. 2):

2" L:={ab}* - {aabc}* € (LIVE n FAIR)\IMP,
hence L € live&rfair(L) (note that L € rfair(L) iff L € FAIR)
and L imp(L), i.e. live&rfair % imp.

Controls for concurrent systems 205

Fig. 2.

3" L:={ab}* - {c}* - {aabc}*, L' = {ab}* - {aabc}*,
with L' € live&fair&rjust(L) and L' rfair(L)
(consider (ab)®), i.e. live&fair&rjust % rfair.

4 L:={a, b, c}*, L' ={ab}* - {aabc}*,
with L' e live&fair(L)\rjust(L), i.e. live&fair & rjust.

It suffices to consider T ={aq, b} for the remainder:

5. L:={aa}*-{ab}* e (LIVE A JUST)\FAIR,
hence L € live&rjust(L)\ fair(L), i.e. live&rjust & fair.

6" live&just % fair by the example given for 5,
L:={a, b}*, L':= {aa}* - {ab}*,
with L' e live&just(L)\rjust(L), i.e. live&just & rjust.

7" {a, b}* € LIVE\JUST, hence live & just.

2" L= {a}* e (DFR N FAIR)\(LIVEU IMP),
hence L € dfr&rfair(L), i.e. dfr&rfair < live, imp.

3. L={aa}*-{b}, L''={a}*,
with L' e dfr&fair&rjust(L), L' ¢ live(L) U rfair(L),
hence dfr&fair&rjust % live, rfair.

4'; L:={a, b}*, L':={a}*,
with L' e dfr&fair(L), L' ¢ live(L) U rjust(L),
hence dfr&fair % live, rjust.

206 H.D. Burkhard

5" L:={aa}* - {b}* € (DFRNJUST)\(LIVE U FAIR),
hence dfr&just £ live, fair.

6" For the example of 4’ we also have L' dfr&just(L),
hence dfr&just £ live, rjust.

7" L:={a}* - {b}* € DFR\(LIVE n JUST), hence dfr live, just.

2-7: Examples can be constructed from the corresponding languages for 2'-7':
we can consider Lu{b, ba} and L'u{b, ba}, for example, such that the
new languages are not contained in DFR. [

Remark. The theorem concerns the consideration of all languages from CONT. If
we restrict the consideration to special classes of languages, then some of the control
principles may coincide.

Further (non-extensional) control principles of interest are the control principles
‘conflict resolution’ and ‘non-blocking’:

Definition 3.5

L'ecrs(L) iff Vut,ut'eL':t,t'e Tat#t'>utt'e L.

L'enbl(L) iff VueL':(3te T:ute L)>(3t'e T:ut'e L').

We remark that our notion of conflict resolution concerns only (binary) conflicts
where one action can loose its concession by performing another action: if such a
case appears in L, then the conflict resolving control has to decide which one of
the conflicting actions can be performed. It is a disadvantage of the non-deterministic
interleaving by the consideration of abstract languages L < T™ that it does not allow
to study the control with respect to conflicts as in the Petri net examples of Fig. 3.

N

Fig. 3.

The consideration of languages over the alphabet (P(T))* can be helpful to study
such conflicts (cf. [7, 8] and the example of Fig. 5 in this paper).

We furthermore remark that our conflict resolution concerns only the conflicts in
the uncontrolled system, the controlled system may have new conflicts: we have,
for example, {a, b} crs({ab, ba}). This would be excluded if we considered the

Controls for concurrent systems 207

extensional control principle ‘persistency’ given by
LePERS iff Vut,ut'e L:t,'e Tat#t' > utt'e L.

By the notion of non-blocking we exclude termination by control when the uncontrol-
led system can work further. The following corollary holds.

Corollary 3.6
(1) dfr<nbl
(2) Le DFR iff nbl(L)=dfr(L).
(3) Le DFR iff nbl&pfin(L) =0.

Theorem 3.7. Suppose c € {cont, dfr, live, imp, fair, just, pfin, preg}. Then the problems
“L'e c¢(L)? are decidable for L, L' PREG and L, L' e FNL, respectively.

Proof. We have L'econt(L) iff L'< L, and the inclusion problems are decidable
for languages from PREG and FNL, respectively (for FNL by reduction to the
liveness problem [16]). For the extensional control principles ¢ we have L'e ¢(L)
iff L'e cont(L) A L'e C for the corresponding sets C. Hence, the results for ¢ = dfr,
live, imp, fair, just are consequences of Theorem 2.1.

In the same way, “L’ e pfin(L)?” is decidable since “L’'e PFIN?” is decidable (in
the case Ly € FNL we have Ly € PFIN iff Lgny€ PFIN, where S(N) is the finite
transition system constructed in the proof of Theorem 2.1. The decidability of “L’e
PREG?” for L'e FNL was shown in [21]. (Remark: The problem “L’e FNL?” for
L' e PREG is an open problem.) [J

Some further results have been shown in [11]: Theorem 3.7 also holds

(a) for L, L'e PREG U FNL (by proving the decidability of the inclusion problem
for languages L, L'e PREGU FNL),

(b) for ce {rfair, rjust, crs, nbl}.

4. Controls by finite automata

Since control devices often work as finite automata we consider finite non-
deterministic automata

A-_—(P(T), TZZ, h, ZO)

as control automata, where P(T), T, Z are the finite nonempty sets of inputs, outputs
and states, respectively, z,€ Z is the initial state and h: Z X P(T)-> P(T X Z) is the
non-deterministic output/next-state function with

h(z, 9) =9,
@ {t|3z":(t,z)eh(z, U)}c U forall ze Z, U e P(T)\{0}.

(The last condition ensures that the control by automata works non-blocking.)

208 H.D. Burkhard

The control automaton A and the system to be controlled form an interactive
system: the automaton A receives as input the set U of all actions from T which
could be performed in the next step by the system and decides by its output te U
which action can be performed. A can be considered as an R-robot working in the
environment L in the sense of [4]. Related controls of the internal behaviour are
studied in [1]. Controls of Petri nets by control automata have been studied in [7, 8]
and [12]. Obviously, the concept of control automata is powerful enough to modelize
priority rules and fifo-queues, for example. But it may fail with respect to the control
of concurrent work (realizing ‘Max-Semantics’ [19], for example). Again, this may
lead to the examination of languages over the alphabet P(T) (in this case the control
automata may receive inputs from P(P(T)) giving information about concurrently
performable sets of actions and it decides in favour of a set of actions to be performed
concurrently by an output from P(T), cf. [7, 8]).

We define the following according to our interpretation of control by automata.

Definition 4.1. Let A=(P(T), T, Z, h, z,) be a control automaton. The result of the
control of Le CONT by A is the language L/ A with

ecL/A,
t,...t,eL/A iff 3z,,....,2,€ ZVi=0,...,n—1:
(tis1, Zi+l)€h(zia{t|t1 ... tte L}).

For a nonempty class aut of control automata we define the control principle aut
by

aut(L)={L/A| A€ aut}.

Proposition 4.2. The control principles aut are not extensional and it holds that
aut <nbl.

Proof. We have aut=nbl since the control automata A work non-blocking by
definition. The non-extensionality follows by:

Lemma 4.3. If c<nbl and ¢c(CONT) DFR, then c is not monotonous (and hence
not extensional by Corollary 1.3(1)).

Proof. If ¢ was monotonous, then L€ ¢c(CONT) would imply L€ ¢(T*). But, there
exists a language L€ ¢(CONT) with L¢ DFR and hence L nbl(T*), i.e. L& ¢(T¥)
since c<nbl. [

To characterize the results of automata controls we have the following theorem.

Theorem 4.4. Let autl denote the class of all control automata. Then it holds:

Controls for concurrent systems 209

PREG = autl(PREG),
FNL ¢ aut1(FNL) 2 PREC = aut1(PREC) 2 PREN & aut1(PREN),
PREG and autl(FNL) (as well as PREG and FNL) are incomparable

Proof. We have L= L/A for A=(P(T), T, {zo}, h, zo) with h(z,, U):= U x{z,} for
all U e P(T). Thus, the following lemma holds.

Lemma 4.5. C < autl(C) for all C < CONT.

This and some intuitive arguments (using Church’s thesis) prove all the left-to-right
inclusions and also PREC = autl(PREC). Now we consider the language Ls of a
deterministic transition system S=(T, Q,f, q;) under the control of the control
automaton A=(P(T), T, Z, h, z,). From S and A we define the transition system
S'=(T,QxZ,f", (g, z0)) with Lg.= Lg/ A in the following way:

For qe Q, ze Z, te T we put

(g, 2),t)={(q',2)|q' e f(q, 1) A (¥, 2) € h(z,{t|f(q, 1) % B})}.

To satisfy our convention that transition systems are initially connected, we can
restrict the state set to the set Q"= ..+ f"((go, 20), u) < Q X Z and restrict f* with
respect to Q' X T and obtain S/A= (T, Q', f, qo). The verification of Lg,, = Ls/A
is left to the reader. Since S/ A is finite if S is finite, we have autl(PREG) < PREG.
It remains to show the following inequalities:
e FNL # autl(FNL):
L:=Tabbaa} € aut1(FNL) (easy to verify), but L ¢ FNL (since abbaa € Ly implies
my=a , my+Aabba=a", by addition: 2my+2Aab=2a",i.e. my+Aab=a" and
hence aba e Ly).
e autl(FNL) # PREC since even PREG £ aut1(FNL).
e PREN # autl(PREN):
Let M be a recursively enumerable but not recursive subset of N and L=
{t,...t,|neNAVi=1,... n:if ig M then t,= a else t,c{a, b}}.
Then, for A= (P({aq, b}),{a, b},{z}, h, zo) with h(z,,{a})=1{(a, z,)}, h(z,,
{a, b}) ={(b, z5)}, we have L/A=w with w(i):=if i¢ M then a else b.
Thus, L€ PREN but L/ A ¢ PREN (otherwise M would be recursive).
e PREG % aut1(FNL):
L:=1b}-{a}* U {a} e PREG, but L& aut1(FNL), since L = Ly/ A for some control
automaton A and some Petri net N would imply {a}*< Ly (note that L< Ly
implies Aa =0), and this would imply L ¢ nbl(Ly), i.e. L £ aut1(Ly) by Proposition
4.2.
e autl(FNL) « PREG since even FNL ¢ PREG (well-known). [

Remark. ¢(PREG) & PREN holds for ¢ =dfr, live, imp, fair, just, rfair, rjust, crs,
nbl. We can consider, for example, L:=w with w(i)=if i€ M then a else b, such
that Le c({a, b}*) but LZ PREN if M is a not recursively enumerable subset of N.

210 H.D. Burkhard

The following proposition is useful for the realization of controls by automata
studied in Section 7.
Proposition 4.6. Let autl denote the class of all control automata. Then it holds that
preg&nbl < autl.
Proof. Let L' preg&nbl(L) be given by L'= Lg, where S=(T, Q, £, q,) is a finite

deterministic transition system. Then we have L'=L/A for A:=(P(T), T, Q, h, q,)
with

{(t,g")|te Unq'ef(q, 1)} ifthissetisnotempty,
U x{q} otherwise,
forqe Q, Ue P(T). O

h(q, U)={

5. Stepwise refinements of controls

Definition 5.1. The superposition c*c’' of two control principles ¢, ¢’ is defined by
c*xc'(L)=c(c'(L)) for all Le CONT.

The superposition of control principles reflects the stepwise construction of
controls, e.g. aut*crs*live means first construction of a live system, then resolution
of conflicts and finally realization by an automaton from aut. The goal is to obtain
a control from aut&crs&live. But it turns out that such stepwise refinements need
not result in controls satisfying the desired properties, for example: conflict resolution
for a live system need not result in a live system (consider {a}* € crs({a, b}*) showing
that crs *live < crs&live is not true). This observation is important for some analyzing
methods too: the verification of some properties for an uncontrolled system is in
general not relevant with respect to the controlled system (cf. [12] for the study of
liveness and deadlock avoidance in Petri nets working under conflict resolving firing
rules). The positive aspect of this observation is the possibility to control systems
in order to satisfy properties which do not hold for the uncontrolled system.

Concerning the preservation of properties by stepwise refinements we use the
following notions.

Definition 5.2. A control principle ¢ is left-invariant iff ¢'*c=<c for all control
principles ¢'.
A control principle c is right-invariant iff ¢*¢'< ¢ for all control principles c'.

Corollary 5.3. (1) c is left-invariant iff cont* c =< c iff cont*c=c.
(2) c is right-invariant iff ¢ *cont < c iff ¢*cont = c iff ¢ is monotonous.
(3) Extensional control principles are right-invariant.

Controls for concurrent systems 211

Proof. We prove the equivalences for right-invariant control principles; the corre-
sponding proofs for left-invariant control principles are similar.

c*c'< cforall ¢'implies ¢ * cont < ¢ (we choose ¢’ = cont), and ¢ * cont < ¢ implies
c*c¢'< ¢ (since ¢'<cont) for all ¢'.

Furthermore, it always holds that ¢ < ¢ *cont.

For L, < L, we have ¢(L,) = c*cont(L,) = c*cont(L,) = ¢(L,), showing that right-
invariant control principles are monotonous.

On the other hand, if ¢ is monotonous, then we have c*cont(L)< ¢(L) for all
L e CONT (since L'e cont(L) implies L' < L), showing that c is right-invariant.

Assertion (3) follows from (2) by Corollary 1.3(1). O

Note that right-invariant control principles need not be extensional as the follow-
ing proposition shows:

Proposition 5.4. (1) The control principles imp, fair, just, pfin, crs are right-invariant
and left-invariant.

(2) The control principles dfr, live, preg, prec, pren, fnl are right-invariant but not
left-invariant.

(3) The control principles rfair, rjust are left-invariant but not right-invariant.

(4) The control principles nbl and aut (for all classes aut of control automata) are
neither right-invariant nor left-invariant.

The details on the proof (using the definitions and Corollary 5.3) are left to the
reader.

It should be remarked that ¢ * ¢’ < ¢ (and similarly for ¢’* ¢ < c¢) does not guarantee
to obtain a c-control by the corresponding refinement from a ¢’-control. We may
have c¢(L") =0 for some or all L'e ¢'(L). But if ¢(L') # @ for L'e ¢'(L), then we have
L"e c(L) for all L"€ c(L'), i.e. all controls that we can obtain by the refinement
have the desired property.

In general, we make stepwise refinements by c*c¢’ in order to satisfy the c-
properties as well as the c¢’-properties, i.e. we look for c&c’-controls. The following
theorem points to such possibilities.

Theorem 5.5. (1) If ¢ is extensional, then we have c&c' < c*c'.

(2) If c is right-invariant and ¢’ is left-invariant, then we have c*c¢' < c&c'.

(3) If c is extensional and ¢’ is left-invariant, then we have c*c' = c&c'.

(4) If ¢ and ¢’ are both right-invariant (or both left-invariant), then we have
(c*xc)&(c'*c)<c&c'.

Proof. (1) We have c&c'(L)=c(L)nc'(L)y=comt(L)NnCnc'(L)=Cnc' (L) Cn
cont(c¢'(L))=c(c'(L))=c*c'(L).

(2) follows by c*c'<c and c*c'<s¢'.

(3) follows from (1) and (2).

(4) is proved similar to the proof of (2). [

)

212 H.D. Burkhard

As applications of Theorem 5.5 we have, for example, live*crs =live&crs (but
crs*live X live!) and crs*rfair < crs&rfair (but rfair*crs % rfair!). Hence, the order
of stepwise refinements may be important. We furthermore remark that we have
imp*dfr £dfr and dfr*imp=imp although imp is extensional and left-invariant
while dfr is right-invariant (even extensional). This shows that the conditions in
Theorem 5.5 are necessary.

Since the control principles aut are neither right-invariant nor left-invariant,
properties may change (and may be changed) by controlling systems by finite
automata.

Another approach to the preservation of properties is due to fixed point consider-
ations. The set C of an extensional control principle c is the greatest fixed point of
¢ (considered as a mapping from P(CONT)), and we have the following theorem.

Theorem 5.6. If c is an extensional control principle, then it holds for arbitrary control
principles c':

c'*c<c iff /(C)cC.
Proof. By c'*c<c and C=¢(T*) (by Corollary 1.3(2)) we have: ¢'(C)=
c'(c(T*))=c"*c(T*)< c(T*)=C. On the other hand, by c¢'(C)< C we have

c¢'xc(L)=c'(c(L))=c'(cont(L)n C)< C and (trivially) ¢'*c(L) < cont(L). Hence,
it holds ¢’*c(L)c cont(L)yn C=c¢c(L). O

Applications like preg*live % live are left to the reader.

6. Unitarity

Different elements in ¢(L) point to different possible c-controls for L. Nevertheless,
we may sometimes speak of ‘the’ c-control for L if there exists a language L' c(L)
such that all L"€ ¢(L) are subsets of L'. Such a maximum element represents the
least restrictive control with respect to c.

Definition 6.1. A control principle c is called unitary iff
U c(L)ee(L) forall Le CONT with c(L)#@,

i.e. iff a maximum element exists in all nonempty sets c(L).
We denote the maximum element by L.:==|_J ¢(L).

Corollary 6.2. Ifcis extensional and C is closed under arbitrary unions, then c is unitary.

Proposition 6.3. (1) dfr, live and nbl are unitary.
(2) imp, fair, just, pfin, preg, prec, pren, fnl, rfair, rjust and crs are not unitary.

Controls for concurrent systems 213

Proof. (1) DFR and LIVE are closed under arbitrary unions, hence dfr and live
are unitary by Corollary 6.2; nbl is unitary since we always have Le nbl(L).

(2) Concerning c € {imp, fair, just, rfair, rjust} we consider L:= {a, b}* where we
have: | ¢(L) = L, since u(ab)® € c(L)and hence uc|_J c(L)forall ue Lbut L& ¢(L)
(since a“ € Adh(L)).

Concerning c € {pfin, preg, prec, pren} we consider a not recursively enumerable
infinite sequence w (as in the proof of Theorem 4.4, for example). Then we have
me c(L) for all ucw, but | Jc(L)=L¢c(L), where L:==w.

Finally, for c € {fnl, crs}, we may consider L:={b} - {a}*u {a}, where {b} - {a}*
and {a} are in ¢(L), but { Je(L)=Lgc(L). O

Remarks. (1) Since the fairness control principles are not unitary, it makes no sense
(in general) to speak of ‘the’ fair control of concurrent systems as it is sometimes
suggested by the ‘choice of all fair computations’ in order to perform controls.

(2) There is a remarkable difference between crs and the other non-unitary control
principles. In crs(L) we always have maximal elements such that each L'ecrs(L)
is covered by a maximal element. This means that, in order to ‘improve’ a control
by making it less restrictive, we can always find a (relatively) best control in crs(L).
In general, this is not the case for the other non-unitary control principles: there
we can improve the controls by making them less restrictive and there need not
exist an end of such improvements (or: in the last resort, the resulting control will
not have the corresponding properties anymore). As examples we may consider the
sequence of finite languages {a'} and the sequence of fair languages |;<; a’(ba)®
for ieN.

(3) The notion of unitarity was defined regarding all languages from CONT. It
might be interesting for which classes of languages the control principles mentioned
in Proposition 6.3(2) become unitary (trivial example: preg is unitary with respect
to the class PREG, since |_J preg(L) = Le preg(L) for all L€ PREG).

Now we are going to study Ly and L;;,., We only formulate the results (and the
proofs) for L;,.. The same results hold for L, if we omit the statements about the
occurrences of te€ T and replace live by dfr.

Theorem 6.4. We have, for Lg;,.,={u|3we Adh(L):ucwa m, = @},
(1) Livey = Liive iff live(L) # @,
(2) Livey =90 iff live(L) =,
(3) Lagivey={ul|3u’, ve T*: uu'v® € Adh(L) A 7,=1} iff Lc PREGUFNL.

Proof. (1), (2): We suppose live(L) # 0. If uel|Jlive(L), then we have ue L' for
some L’e live(L). By Corollary 1.5(2), there exists an infinite sequence w € Adh(L’) <
Adh(L) with u= w and 7,, = @ such that u € L;.,. Thus we have [live(L) € Lgiye),
by the definition of L., and hence (by Corollary 1.5(2)) L, € LIVE.

214 H.D. Burkhard

Furthermore, L., is contained in L and therefore L;,.)clive(L), i.e. Lgje) S
U live(L) = Lye.

If we suppose u e L) #0, then we have we Adh(L) with =, = @ such that
welive(L) # .

(3) If Le PREGuU FNL, then we have

AweAdh(L):ucwanr,=w iff Ju’, ve T*:uu'v° e Adh(L) A 7, =1
(by the same proof as for Proposition 1.6(2)). O

Theorem 6.5. It holds for live(L) # :
(1) If Le PREG, then L;,.€ PREG.
(2) If Le FNL, then L;,.c€ PREC (but in general £ FNL).
(3) LePREC does not imply L,.€ PREC.

Proof. (1) For L= Lg where S=(T, Q, f, g,) is a finite transition system we put

Q' ={ql|3gc QI , veT*:q'cf(q u)rq' cf(q, V)7, =1},
f,:=_ﬂQ‘xTy
S'=(T, Q', f, qo) (note that go€ Q’ since live(L) # 9).

Then it can be proved that L,.= Ly hence L;,.€ PREG. Note that Q' (and hence
S’) can be constructed since it suffices to regard u’, v with length not greater than

card(Q).
(2) By Theorem 6.4 we have

ue L, iff 3u'e T*3ve Ly: uu'v® € Adh(L),

where L,={v|m,=1} is a regular language. Thus, we can apply Lemma 2.3 and
show that L. is recursive. Theorem 6.7 will show that L;,. need not be in FNL.

(3) We consider a recursive set M =N xN with the property that the set {n|Vie
N: (n, i) e M} is not recursively enumerable. Then we have:

L={a"(ba)"[neNaVi<m:(n, i)e M}e PREC,

Li.={a"(ba)™|m, neNaVieN: (n,i)e M} PREN. O

Corollary 6.6. The problem “live(L) # 0" is decidable for L€ PREG U FNL.

Proof. By Theorem 6.4 we have live(L) # @ iff L.y # 9, i.e. iff e € Ly, Referring
to the proof of Theorem 6.5 we have e € L., iff goc Q' in the case of L€ PREG
and e€ L. iff 3u’'e T* Jve Ly u'v” € Adh(L) in the case Le FNL. We remark
that this result for FNL has been proved also in [20, Theorem 3.12] and in [9,
Theorem 2]. [

Controls for concurrent systems 215

Theorem 6.7. (1) There exists a language L e FNL for card(T) =3 with live(L) # @
and live&fnl = 0.
(2) For Le PREGuU FNL with live(L) # @ we have live&preg(L) # §.

Proof. (1) For the Petri net N of Fig. 4 we have L,;,. ={abbaac}* € FNL (cf. the
proof of FNL # autl(FNL) of Theorem 4.4) and live(L) ={L..} (=dfr(L)).

4-0-
e

Fig. 4.

(2) is a consequence of Theorem 6.4(3): For u=ec L;,. we have u’, v with
u'v” € Adh(L) and =, =1, hence {u'} - {v}¥elive(L). O

In conclusion of Theorem 6.7, the Petri net model may be not sufficient to model
live controlled Petri nets as long as we do not use additional transitions as in [20].
But there are possibilities to model Petri nets under certain live controls by finite
transition systems or to model certain live controls by finite control automata (cf.
Theorem 7.3(2) below).

Remark. The non-unitarity of the fairness control principles can be regarded as the
consequence of the freedom to have arbitrarily long delays. Following some ideas
in[14] we can consider delay functions d : T* X T - N and define impartiality, fairness
and justice with respect to a given delay function d by

Led-IMP iff Vie TVuve L: |o|>d(u, t) > m,(1)>0,
Le d-FAIR iff Vte TVuve L:

card({v'|v'svauv'te L})>d(u, t)> 7,(1)>0,
Led-JUST iff Vte TVuve L:

(lv|>d(u, t) AVv'cv: uv'te L) > 7, (t) > 0.

Then the extensional control principles d-imp, d-fair, d-just are unitary.

We have | J4 d-IMP=1IMPand | J, d-JUST =JUST, butonly |_J; d-FAIR ¢ FAIR
(cf. [9]), i.e. fairness is not completely expressible by delay functions in the given
way. Similar results hold for the analogously definable non-extensional control
principles d-rfair and d-rjust.

216 H.D. Burkhard

7. Existence of controls

By the problem *“c(L)#@?” we ask for the existence of controls (spec1ﬁed by ¢)
for given systems (specified by L).

Theorem 7.1. It holds for arbitrary languages L ¢ CONT:
(1) ¢(L)#0 for ce{imp, fair, just, rfair, rjust}.
(2) c&nbl(L)# 0 for c e {fair, just, rfair, rjust}.
(3) c&dfr(L)#0 iff dfr(L) # @ for c € {fair, just}.
(4) imp&dfr(L)# @ iff live(L) # 0.
(5) imp&nbl(L) # 0 iff imp&dfr(L) # @ v pfin&nbl(L) # @.

Proof. (1) holds by pfin < ¢ for the fairness control principles. (2) is shown by the
application of appropriate queue regimes. Such queues can be understood as
sequences ue€ T* with m,<1, for example. The actions ¢ appearing in u (i.e.
m,(t)=1) are the waiting actions. If we have the actual queue u and the set U of
actually performable actions (in the uncontrolled system), then the work is defined
as follows.

We build a sequence v from those actions which belong to U and are not in the
queue u. Then the first action ¢ from uv with t€ U is performed next and the queue
u’ for the following step is built by deleting ¢ from uv.

Different queue regimes are founded on different possibilities to build the sequen-
ces v. If they are built in some regular way, the queue regimes can be performed
by finite control automata (with the queues as states).

Obviously, we obtain (relatively) fair and non-blocking controls by the queue
regimes as described above. If all those actions not appearing in U (they are actually
not performable in the uncontrolled system) are additionally deleted from the queue
u' during the reorganization step, then we get a (relatively) justice and non-blocking
control. (Petri nets under related firing rules have been studied in [5].) We mention
that the results of such controls for a language L are in d-fair(L) and d-just(L),
respectively, where d(u, t) =card(T)—1 for ue T* te T

(3) If dfr(L)# @, then the application of the queue regimes defined in the proof,
part (2), to a language L’edfr(L) results in a language L"e c*dfr(L). We have
L"e dfr(L) since the queue regimes work non-blocking, and we have L"e ¢(L), i.e.
L" € c&dfr(L), since fair and just are right-invariant (by Proposition 5.4). We remark
that dfr(L) # @ does not imply dfr&rfair(L) # @ and dfr&rjust(L) # @, respectively
(example: L:=Ta}* - {b}).

(4) If imp&dfr(L) # @, then live(L) # @ by Theorem 3.4. If live(L) # @, then there
exists a we Adh(L) with 7, = @ (by Theorem 6.4, i.e. w € imp&dfr(L).

(5) Wesuppose L' € imp&nbl(L) # @. If imp&dfr(L) =@, then L' & dfr(L), i.e. there
exists an u€ L' such that utre L’ for all te T. It follows by L'enbl(L) that even
utZ L for all te T, and hence we have {u} € pfin&nbl(L) # §.

Controls for concurrent systems 217

The reverse direction follows by

imp&nbl(L) 2 imp&dfr(L) u pfin&nbl(L). O

For those of the control principles ¢ mentioned in Theorem 7.1 where ¢(L) may
be empty (corresponding controls need not exist for each system), we can decide
the existence of controls in the case of finite transition systems and Petri nets.

Theorem 7.2. The problems “c(L)#@?’ are decidable for L PREGuU FNL and
c € {dfr, live, imp&dfr, fair&dfr, just&dfr, pfin&nbl, imp&nbl}.

Proof. The result for live was given by Corollary 6.6 and as mentioned before
Theorem 6.4, the result holds for dfr, too. The results for imp&dfr, fair&dfr, just&dfr
follow then immediately by Theorem 7.1(3)(4).

We have pfin&nbl(L) # @ iff L& DFR by Corollary 3.6(3), hence the problem is
decidable for the case pfin&nbl by Theorem 2.1.

Finally, the result holds for imp&nbl as a consequence of Theorem 7.1(5). OO

Remark. The problems “rfair&dfr(L) # @?” and “rjust&dfr(L) = @#?” are also deci-
dable for languages L€ PREG (by using methods as in the proof of Theorem 2.1),
the problems are open for languages Le FNL.

Theorem 7.3. (1) A control automaton A can be constructed for each control principle
c € {fair, just, rfair, rjust} such that L/ A € c&nbl(L) holds for all L CONT.

(2) A control automaton A can be constructed for each c € {dfr, live, pfin&nbl,
imp&nbl, imp&dfr, fair&dfr, just&dfr} and each language L€ PREG U FNL such
that L/ A € c(L) holds if ¢c(L) # 0.

Proof. (1) As mentioned in the proof for Theorem 7.1(2), certain queue regimes
can be realized by control automata A such that each system can be controlled by
A in the sense of (relative) fairness and (relative) justice, respectively.

(2) If live(L)#0 (and similarly if dfr(L)# @), then there exists some L'e
live&preg(L) by Theorem 6.7(2).

Following the proofs up to Lemma 2.3 we find that such languages L' can be
constructed in the form L'=uv® with L'e preg&nbl(L). A corresponding control
automaton A with L/ A= L’ can then be constructed according to Proposition 4.6
(note that the proof of Proposition 4.6 is constructive). If pfin&nbl(L) # @, then a
sequence u with {u} € pfin&nbl(L) can be found (trivially by successive tests) and
then we can apply Proposition 4.6 again.

If imp&nbl(L)# @, then we have @ # imp&dfr(L)u pfin&nbl(L) < imp&nbl(L)
(cf. Theorem 7.1(5), and we can decide whether imp&dfr(L) # @ or pfin&nbi(L) # ¢
holds (by Theorem 7.2); then we can proceed as for imp&dfr and for pfin&nbl,
respectively.

218 H.D. Burkhard

If imp&dfr(L) # @, we have live(L) # @ by Theorem 7.1(4) and (as shown above)
we can find L' = uv® e live(L). Obviously, it holds that L' € imp&dfr(L) and we can
proceed as for live. Finally, if fair&dfr(L) # @ and just&dfr(L) # @, respectively, then
we have dfr(L) # @ and we can find some L' € dfr(L) where L’ is of the form L' = uv®
such that Proposition 4.6 can be applied (all proofs similar to the proof for live).
Since w e fair&dfr(L) (€ just&dfr(L)) for all we Adh(L), the proof is finished. [l

Remark. Theorem 7.3(2) also holds for c e {rfair&dfr, rjust&dfr} in the case Le
PREG. It does not hold in the case Le FNL [11].

The fact that the control automata with respect to the control princples of Theorem
7.3(2) must be constructed individually for the languages L € PREG U FNL (while
we have uniform control automata in the case of Theorem 7.3(1)) corresponds to
the result in [12] that there exists no conflict resolving regular firing strategy for
Petri nets which supports deadlock avoidance and liveness, respectively.

Remark. There exist Petri nets N such that the maximum element in live(Ly) cannot
be realized under the control of our control automata (i.e. for L= Ly we have
live(L) # @, but there exists no control automaton A with L/A= L, .; the same
holds for dfr). An example is given by Fig. 5.

b a
E—(D—]

2

Fig. 5.

Since the input information of a control automaton A is always U = {a, b} or
U =@, no such control automaton can produce

L/A= Ly.={ulue{a, b}* \Vvzu: w,(a)> m,(b)=0}.

It is interesting to note that the situation changes if we use automata recognizing
differences concerning concurrent firability (by inputs {{a, b}} for m(p)=2 and
{{a}, {b}} for m(p)=1 as in [7] for example): Such automata can realize a control
resulting in L. for the net of Fig. 5 (but again, they cannot do so if we add a
run place to the net such that the transitions a and b are never concurrently firable).

While we are able to construct automata controls for the control principles referred
to in Theorem 7.3 in the case of Petri nets (with possibly great effort), we are not
able to decide whether a given control automaton for a Petri net realizes a correspond-
ing control. This can be understood in that sense that the construction of an
appropriate control may be easier than the verification of a property for a given
control. We prove this by the following theorem.

Controls for concurrent systems 219

Theorem 7.4. We suppose that card(T) is sufficiently large. (The exact lower bound
is unknown. The method of proof gives lower bounds between 2n and 6n + 47 depending
on the control principles, where n is the number of states of a deterministic counter
machine computing a function with a non-recursive domain.)

(1) Let A be a control automaton such that L/ Accrs(L) for all Le FNL (i.e. A
represents a conflict resolution rule for Petri nets). Then, for each control principle
c € {dfr, live, imp, imp&dfr, imp&nbl, pfin, pfin&nbl}, the problems “L/Ae c¢(L)?”
are undecidable for L€ FNL.

(2) For each control principle ce{dfr, live, imp, fair, just, rfair, rjust,
imp&nbl, . . ., rjust&nbl, imp&dfr, . . ., rjust&dfr, pfin, pfin&nbl, preg, crs} the prob-
lems “L/Ac c(L)?’ are undecidable for L€ FNL and arbitrary control automata A.

Proof. The proof uses the simulation of deterministic counter machines by automata
controlled Petri nets. For more details of such simulations the reader is referred to
[7, 8, 11]. Throughout the proof, all results for a control principle ¢ are results for
c&nbl by Proposition 4.2.

(1) There are counter machines M with two counters such that the Halting
problem is undecidable with respect to different initial counter contents. If M has
n states and A=(P(T), T,Z, h, z,) is a control automaton whereby card(T)=
3n+28, then a Petri net N can be constructed such that M is simulated in some
sense by N under the control of A if Ly/Ae€crs(Ly). Different initial counter
contents of M can be simulated by different initial markings in N. By the simulation
we obtain Ly /A € pfin(Ly) iff the initial marking of N corresponds to initial counter
contents of M for which M stops. We obtain Ly/A e dfr(Ly) iff M does not stop
for the corresponding initial counter contents. The undecidability of the Halting
problem implies the undecidability of ‘Ly/A € ¢c(Ly)’ for ¢ = dfr, pfin, pfin&nbl.

The result concerning liveness was proved in [12] by construction of an appropriate
net N’ from N, thereby we need card(T)=6n+47. (The net N’ is constructed in
such a way that Ly./ A €live(Ly-) iff the underlying counter machine does not stop
for the corresponding intial counter contents, whereby only the assumption Ly/A€
crs(Ln-) is made concerning A.)

The result for imp&dfr follows by Theorem 7.1(4).

The net N constructed in [7] for the simulation of M has a ‘stop-place’ p,,, such
that the net N becomes dead during the simulation run iff the place p;,,, is marked
indicating that M stops. Now, we add a transition ¢ to N which takes a token from
Pswp and then we have for the new net N”: Ly./ A is impartial (and also nonblocking
with respect to Ly-) if M stops (by pfin<imp), but it is not impartial if M does
not stop (by neglecting the new transition t).

(2) Since (1) is a stronger result, it remains to prove (2) for c = fair, just, rfair,
rjust (implying the result for fair&nbl, . . ., rjust&nbl), fair&dfr, . . . , rjust&dfr, preg,
and crs. We can use the simulation of deterministic counter machines by a priority
firing rule (cf. [16]) which can easily be realized by control automata having only
one state. The simulating net does not need more than 2n transitions. Again, we

220 H.D. Burkhard

can construct to a deterministic counter machine M (for which the Halting problem
is not decidable) and a control automaton A= (P(T), T,{z,}, h, z,) realizing a
deterministic priority firing rule over T with card(T)=2n) a Petri net N with a
place py,p that can be marked by one token iff M stops. The net N becomes dead
during a simulation run iff p,, is marked. The proof can be finished by appropriate
simple supplements of N and A as given in [11]. O

Remark. The stronger result in Theorem 7.4(1) cannot hold for ¢ =fair,. .., rjust,
fair&nbl, . . ., rjust&nbl (otherwise we would contradict Theorem 7.3(1)). By related
arguments, Theorem 7.3(1) cannot hold for the control principles referred to in
Theorem 7.4(1) if we consider conflict resolving automata. Moreover, the result as
in Theorem 7.4(1) cannot hold for crs (since, for example, all deterministic control
automata work conflict resolving). The problem whether an assertion as in Theorem
7.4(1) holds is open for ¢ = preg, fair&dfr, ..., rjust&dfr.

Finally, the properties which are undecidable for automata controlled Petri nets
can be proved to be decidable in the case of finite transition systems (and thus, for
bounded Petri nets, too).

Theorem 7.5. Let c be a control principle as in Theorem 7.4(2). The problem “L/ A€

c(L)?” is decidable for arbitrary languages L € PREG and arbitrary control automata
A '

Proof. We have L/Ae€ PREG for all L PREG and all control automata A by
Theorem 4.4. Hence, Theorem 7.5 is a consequence of Theorem 3.7 and the related
results for c € {rfair, rjust, crs, nbl} proved in [11]. O

8. Conclusions

It was shown that many problems of control can be studied on a very high level
of abstraction. This framework should be useful to study and to compare different
approaches to systems, controls and their properties, as for example given in [1, 3,
5,12, 13, 14, 18, 19].

The use of our approach is restricted by considering systems to be equivalent if
they have the same external behaviour regarding abstract languages (but there may
be possibilities for different controls based on different internal structures). In some
cases this problem can be overcome by other notions of external behaviour. To be
closer to concurrency, the alphabet T may be chosen as the powerset of another
set of actions. In such models the max-semantics [19, 5] can be considered (with
appropriate definitions reflecting liveness and fairness properties). Another approach
to concurrency by partially ordered sequences may lead to the study of the corre-
sponding behaviour and controls with regard to languages of partially ordered
sequences. The general notion of control principles opens the way to further

Controls for concurrent systems 221

examinations of properties like invariance and unitarity; stochastic controls may
be studied by measuring the sets c¢(L).

Acknowledgment

I want to express my thanks to P.H. Starke and H.W. Pohl for various helpful
discussions.

References

[1] A. Arnold and M. Nivat, Controlling behaviours of systems, some basic concepts and some
applications, in: P. Dembinski, ed., Mathematical Foundations of Computer Science, Lecture Notes
in Comp. Sci. 88 (Springer, Berlin, 1980) 113-122.
[2] K.R. Apt, A. Pnueli and J. Stavi, Fair termination revisited—with delay, Publ. du L.IL.T.P. (Univ.
Paris VII, 1982) 82-51.
[3] E. Best, Relational semantics of concurrent programs (with some applications), Proc. IFIP TC-2
. Conf. on Formal Descriptions of Programming Concepts, Garmisch-Partenkirchen, 1982.

[4] L.Budach, Environments, labyrinths and automata, in: M. Karpinski, ed., Fundamentals of Computa-
tion Theory, Lecture Notes in Comp. Sci. 56 (Springer, Berlin, 1977) 54-64.

[5] H.D. Burkhard, Ordered firing in Petri nets, Elektron. Informationsverarbeitung und Kybernetik
17(2/3) (1981) 71-86.

[6] H.D. Burkhard, Two pumping lemmata for Petri nets, Elektron. Informationsverarbeitung und
Kybernetik 17(7) (1981) 349-362.

{7] H.D. Burkhard, What gives Petri nets more computational power, Preprint 45, Sekt. Mathematik
d. Humboldt-Univ. Berlin, 1982.

[8] H.D. Burkhard, Control of Petri nets by finite automata, Fundamenta Informaticae V1.2 (1983)
185-215.

{9] H.D. Burkhard, On the control of concurrent systems with respect to fairness and liveness conditions,
Proc. Internat. Summer School of the Programming Language LOGLAN-82, Zaboréw, Poland, 1983.

[10] H.D. Burkhard, Fair and live controls for finite transition systems, Internat. Symp. on ‘Diskrete
Mathematik’, Berlin, 1983, in: Seminarberichte der Sekt. Math. 56 (Humboldt-Univ. Berlin, 1984)
9-16.

{11] H.D. Burkhard, Untersuchung von Steuerungsproblemen nebenldufiger Systeme auf der Basis
abstrakter Steuersprachen, in: Seminarberichte der Sekt. Math. 58 (Humboldt-Univ. Berlin, 1984).

[12] H.D. Burkhard and P.H. Starke, A note on the impact of conflict resolution to liveness and deadlock
in Petri nets, Fundamenta Informaticae VIL.4 (1984).

[13] L. Czaja, Are infinite behaviours of parallel system schemata necessary?, in: A. Salwicki, ed., Logics
of Programs and Their Application, Lecture Notes in Comp. Sci. 148 (Springer, Berlin, 1983) 108-117.

[14] H. Carstensen and R. Valk, Infinite behaviour and fairness in Petri nets, in: Proc. 4th European
Workshop on Application and Theory of Petri Nets, Toulouse (1983) 104-123.

[15] M. Hack, The recursive equivalence of the reachability problem and the liveness problem for Petri
nets and vector addition systems, in: 15th Ann. Symp. on Switching and Automata Theory (1974)
156-164.

[16] M. Hack, Petri net languages, C.S.G. Memo 124, Project MAC, M.L.T., 1975.

[17] S.R. Kosaraju, Decidability of reachability in vector addition systems, in: Proc. 14th Ann. ACM
Symp. on Theory of Computing (1982) 267-281.

[18] D. Lehmann, A. Pnueli and J. Stavi, Impartiality, justice, fairness: The ethics of concurrent
termination, in: S. Even and O. Kariv, eds., Automata, Languages and Programming, Lecture Notes
in Comp. Sci. 115 (Springer, Berlin, 1981) 264-277.

[19] A. Salwicki and T. Mueldner, On the algorithmic properties of concurrent programs, in: E. Engeler,
ed., Logic of Programs, Lecture Notes in Comp. Sci. 125 (Springer, Berlin, 1981) 169-197.

222 H.D. Burkhard

[20] R. Valk and M. Jantzen, The residue of vector sets with applications to decidability problems in
Petri nets, Bericht IFI-HH-B-101/84, Fachbereich Informatik, Univ. Hamburg (earlier version in:
Proc. 4th Europ. Workshop on Applikation and Theory of Petri Nets, Toulouse (1983) 342-363).

[21] R. Valk and G. Vidal-Maquet, Petri nets and regular languages, J. Comput. System. Sci. 23(3) (1981)
299-325,

