
Theoretical Computer Science 38 (1985) 193-222
North-Holland

193

AN INVESTIGATION OF CONTROLS FOR CONCURRENT
SYSTEMS BASED ON ABSTRACT CONTROL LANGUAGES

H.D. BURKHARD
Sektion Mathematik, Humboldt- Uniuersitiit, 1086 Berlin, Postfach 1297, German Democratic
Republic

Communicated by G. Mirkowska
Received June 1984
Revised November 1984

Abstract. The behaviour of the controlled system determines the control. This concise statement
summarizes our approach to the investigation of controls. Using abstract languages to define the
behaviour and subbehaviour of a system, and therewith the behaviour of the uncontrolled and
of the controlled system, we are able to describe and to study different types of control rules and
properties to be realized by control like deadlock avoidance, liveness and fairness.

Introduction

Control is one of the central problems in studies of concurrent systems and
programs. It is inherent in conflict resolution, scheduling, synchronization, program
semantics, wherever decisions concerning choices are made. There is a common
understanding about control, but general definitions and considerations are missing.

From its use in literature, two aspects appear: application of certain control rules
(queues, priorities, choice of maximal sets of concurrently performable actions, etc),
and controls which are defined as restrictions of the behaviour in order to enforce
properties like deadlock avoidance, termination and fairness. The second approach
may be misleading, for example: ‘The choice of all fair executions’ appears as an
obscure notation from the viewpoint of control (cf. Section 6 of this paper). Both
aspects should be considered on a common base since realizations of properties by
control rules (e.g. fairness by queues) are an important subject. Moreover, some
notions can appear under both aspects: we may have controls realized by priorities
and controls realizing properties.

Two observations are essential in order to come to general considerations of
controls:

(1) Control is considered as a restriction with respect to the behaviour of the
system to be controlled.

(2) Each restriction of the behaviour of the uncontrolled system determines a
control in the sense that all decisions of the control are well-defined.

0304-3975/85/$3.30 @ 1985, Elsevier Science Publishers B.V. (North-Holland)

‘@msn sv wogmn3 u0yrsue.x~ (a~~s~u~umwpuou) aq~ sf (b)d t J x 0 :J pue saumu
uo~)~SuI?.Il JO 1% aql s! J. ‘0 3 “6 a]e)s [q!u~ aqJ ql!M Salels JO 1% aql SF 0 3JaqM

‘(ob ‘j‘b ‘J) = s 1cq pauyap SI s zuawfs UO~J~SUV~~ v Vas!M)uauodwro~ poowapun am
S.IOJSA .MAO SUO~JE?~~J pm suogmadg ‘({m} n N 3 v t uo~suaunp ua~r8 30) (v ‘ * * * ‘v)

JOl%3A aq1 a1ouap 3M V leg -0 U! 1 JO sa3uamn330 30 .mqwnu ay1 sa1ouap (I)%

-a-! ‘,J n .+J 3 n ammnbas B 30 ro~mn -yy!.md ay] a)ouap 9~ 1 ({ cv} n fq) 3 fly &J
‘JE? lSOulp3, sa1ouap

m/j ‘,h.WI.I @lruyUr, SalOUap ,E :(V)d 6q pa)OUap Si V 13s I? JO ~asmMod XfJ_

.{Minv+J.3nIn}=:~alayM ‘(7 5$ v m&L 3+4=:(7)YPV

Icq pauyap SF 7 a%en%el
e 30 amaraypv aq~_ .{a ZI n :7 3 a~ 1 n} =: 7 Aq pa~ouap s! (saxyad) uo~~w~au~%s
~sgg 01 lwdsa3 qlr~ *. 5 7 a8vn8uv~ v so amsop ayc~ -,nn = R L#M ,n amanbas ‘t?
sls!xa amy) 31 ‘(n zi n) ,J n *J 3 n JO XI&~ a s! *J 3 n amanbas v -PJOM ICldwa ayl
salouap a ‘J laqeydle ayl raao muanbas (a~tuyu!) ai~uy II’E! 30 13s aqi sr (,J,) *L

:pasn am suo~)l?~ou %U~MOIIOJ aIjJ
3wa1sfis paIIO.IJuoD 30 s~slCpiXn? ay1

01 paua3aJd aq Aeui SIOJJUO:, 30 uo~~~~aua% ay’, JFXJJ suaddey 11 -(su.wrCs pa~~o.wo~
e$m.uo$ne 30 sa!padoJd ‘sa~~~ap ~o.xluo~ SE e)w.uo)nt! a]~uy Aq s~o.x~uo:, 30 suoge
-ZfIIW 'S[OJlUOD JO WI~lS~X~) SlInSaJ ~lfJqt?p!3ap t.fl!M IEap SUOll%S OMl 1SEI ayJ,

TWIaA~I pUr! 33UEp~OAE

~~olpeap ~03 paz~ammy~ axe pua ls!xa op Aaql lnq ‘saiwdold ssau.1~1~3 103 isixa iou
‘pmua% II! ‘op SIOJNIOD yms JOQUO:, r.mo3fun e kq, pazg~a.~ aq um ICwdold IefDads
e 01 %u~puodswo~ suogtmxa 11~ waylays uralqoId ay:, sa~?%~~sa~u~ s uo$ms

~~.~a~slCs pa~~o~~uo:, ayj 103 luma~a~ aq JOU paau u.wsrCs palIowown ayi ~03
sllnsa uo!la~y!~a~ putz ‘S~OJJUO:, .xapun pamsad IOU ale sa!wdoJd JE~J lunomg OIU~
aqe) 01 wy auo pm~.1a8 III ‘(p uorpas) 310.1 lua)Jodurr UE &Id swm~auya~ qms
JO lap.10 aqll~yl MOqS ~jeys 3M *sa!padoJd lua.xag~p az~~-33.1 01 lap~o LIP S~OJI)UO:,JO

sluaurauya~aS~Mdalsal~~~lSaAU~ola~qea~ea~-(~uo~l~a~)sad~llua~a~~pjo s~o~luo3

a.IeduroD ~133 3~ ‘s~o~luo3 lnoqt? yeads 01 y~0~a1.ue.g aIqT?l~ns ‘I? %.IJAT?~ snu
'3la ‘Sl~ns~~ hlg~qt?p!3ap ayl 01 1DadsaJ ql!~ WJOJ

aIqt?i!ns e UT ua~fi? aq 01 pasoddns am sa%en%ue~ ayl Q.ua~srCs e 30 amlcm~s ayl 01
ama~a3a~ lnoy)jM sa%sn%ue~ aql Quo %uFsn pauIlo3Jad aq UBD suo~~~~apysuo:, 6um.1
aI!qM TWI.I~E?~ pue SSaUaA!I ‘33UEp~OAE Y3OIpE3p JO sum~qo~d aq, UO St? IIaM SE?

‘slau gad a1y.1~ JO samanbas faulty 30 saih?n%u??l ayl uo pus Sa%??t&T?l az@aJ ayl
uo lnd ST s!seyduIa 1ePads *(~-1 suog~as) saIdpuI”d IOJNIOD 30 uogou aq, %ursn
saSkn%uel 30 sag!w’e~ %u!puodsauoD ayl 1cq pau!tuexa aq UBD sura~slCs larDads

~uO~le~U~u~%aS 113~lru~ 01 1Dadw q)!M

pasop aq 01 pasoddns a.~e saZkn%ue~ ayl ‘auras lCue)e mofmyaq ayl amangu~ ICeru
10.11~03 ax~!S *swalqoJd qms kmu 103 1001 lua~ua~uo:, a ale ;mojAeyaq ~w.~alx~

aql %U~Q$DSap Sa%an%ut?[1wJlsqa ‘Jaded s!yl u! MOqS 1113~s 3M sv .paurur~xa aq I.XE?D

IOJlUO:, JO suIaIqord q3rqM ~nO!At3yaq ayl JO suogdumap ay’, uo spuadap I! MON
wsodmd mo “03 palCoIduxa s! IOJ~UO:, pue InorAeyaq U%Mlaq amapuodsam~ S~J_

Controls for concurrent systems

we put

195

“m, 4 := {!A f(4, uo := q,Elq .,m: 09
7

for qEQ, UE T*, TV T.
The language Ls of S is given by Ls := {u If< qo, u) # 0). S is called $nite if Q and

T are finite sets. The family of languages of finite transition systems is the family
of the prefix closed regular languages which we denote by PREG.

Throughout the paper we assume without loss of generality that the transition
systems are initially connected, i.e. we have

A Petri net N is defined by N = (P, T, F, V, mo) where P and T are the finite
nonempty sets of places and transitions, respectively. F c (P x T) u (T x P) is the
flow relation and V: F+ N\(O) is the multiplicity function, rnoe NP is the initial
marking.

The vectors t-, t+ E @ are defined by

t-(p) := if (p, t) E F then V((p, t)) else 0,

t+(p):=if (t,p)EFthen V((t,p))elseO.

A transition t E T is firable at a marking m E lWp if t-s m, the firing of t leads to
the new marking m + At with At := tf - t-. A transition sequence IA = t, . . . t,, is firable
at m if each transition ti (i=l,. . . , n) is firable at rn+Alr+- - *+Ati_ra The firing
of u leads from m to m +Au where Au;= At, + - - -+At,.

The language LN of a Petri net N is the language of all ‘firing sequences’ of N,
i.e. of all sequences u E T* which are firable at m,. The family of all those languages
is denoted by FNL.

1. Control principles

We consider (controlled or uncontrolled) systems by means of their behaviour,
given by languages L over a finite fixed alphabet T with card(T) a 2. We suppose
these languages to be nonempty and closed with respect to initial segmentation.
The control of a system is regarded as a restriction of its possibilities, thus the
language L’ of a controlled system is always a subset of the language L of the
original (uncontrolled) system.

Definition 1.1. CONT:= {LIEI # L = Ls T*} is the family of all control languages
over T.

cont(L) := P(L) n CONT is the family of all control languages for a (control)
language L E CONT.

196 H. D. Burkhard

Since the behaviour of a control (the decision to be made with respect to L) is
defined by a language L’ E cant(L), the family cont(L) describes all the possible
controls of the system with the behaviour given by L. Having a special way to
perform controls (like scheduling disciplines), we obtain a special subset of cont(L).
Having also in mind special conditions to be satisfied (like fairness, conflict resol-
ution, etc.), we are going to study subsets of cant(L).

Definition 1.2. A control principle is a mapping

c: CONT-, P(CONT)

with c(L) c cant(L) for all LE CONT.
A control principle c is called extensional if there exists a subset C c CONT such

that the following holds:

c(L)=P(L)nC=cont(L)nC.

Notation. c(C’) = ULECI c(L) for C’S CONT.

Properties like liveness can be defined by abstract languages, and a controlled
system is live (or not live) independent of the original uncontrolled system. Hence,
live controls can be studied by a corresponding extensional control principle (see
Definition 1.4 below). Other coritrols like controls in order to resolve conflicts are
defined by non-extensional control princples (see Definition 3.5).

Corollary 1.3. (1) If c is extensional, then it is monotonous, i.e.

L’ C L” implies c(L’) c c(L”).

(2) If c is extensional, then the corresponding set C is uniquely determined by

C = c(T”) = c(CONT).

Definition 1.4. The extensional control principles

c = dfr, live, imp, fair, just, pfin, preg, prec, pren, fnl

are defined by the corresponding sets C s CONT, which for L E CONT fulfil:
(1) LEDFR iff VuEL 3tE T: utEL.
(2) LELIVE iff VtE T VUE L ~U’E T*: uu’tE L.
(3) LE IMP iff VW E Adh(L): 7r, = W.
(4) LEFAIR iff Vtc TVwEAdh(L):

(3%Ew:utEL)+?7w(t)=o.
(5) LEJUSTiff Vtc T VwEAdh(L):

(vY4mv:UtE L)-,?T,(t)=w
(6)-(10) PFIN (PREG, PREC, PREN) denotes the family of all nonempty

prefix-closed finite (regular, recursive, recursively enumerable) languages, FNL is
the family of the firing languages of finite Petri nets.

Controls for concurrent systems 197

Remark. Note that LIVE and IMP depend on the alphabet T.

By dfr(L) and live(L) we can consider the deadlockfree and live controls, respec-
tively, which exist for the system described by the language L. By imp(L), fair(L),
just(L) we have specified the controlled systems satisfying the fairness notions given
in [18]: impartiality, fairness and justice. The control principle preg assigns all prefix
closed regular sublanguages to a given language, thus, it describes all controls where
the controlled system can be modelled by a finite transition system. Similarly, fnl(L)
describes those controls for L where the controlled system can be modelled by a
Petri net.

To make our intensions more apparent, we consider the problem of the five
philosophers as given by the Petri net N in Fig. 1.

Fig. 1.

Deadlocks are possible in this net, e.g. after the execution of the sequence
u = tht{ titit& This fact is expressed by LN ti DFR.

As is well-known, a deadlock-free solution of the problem can be obtained by
synchronizing the actions tf and t:! for each i = 0, . . . ,4. Hence we have L, E dfr(LN)
for

L1:= LN n({t’t’ 0 09 t’t” 1 1, t’ 2 f" 2, t’t’ 3 3, t’P}*l{go, 4 4 g,, g,, g3, g4}*),

and L1 describes a possible deadlock-free solution (control) of the problem.

198 H. D. Burkhard

Another deadlock-free solution can be described by

L2 := { @igot’ t”g t’ t”g t’ t”g t’ t”g }” E dfr(LN). 11 122 233 344 4

This solution (being very restrictive) is even impartial (L2 E imp(&)) while the
solution given by L, was not.

Obviously, there are many different deadlock-free solutions under the aspects of
control (i.e. by restrictions of the possibilities) for the problem of the five philosoph-
ers. We can study these solutions by the family dfr(L,). In the same way we can
study fair solutions by the family fair (LN), etc.

We are then able to investigate:
(a) Combinations of different properties by families c(L,,,) n c’(LN) (see Defini-

tion 3.2 below), e.g., fair (LN) n dfr(LN) describes the fair and deadlock-free sol-
utions.

(b) Comparisons of controls for a given property: There exists a special (least
restrictive) deadlock-free solution of the problem such that all other deadlock-free
solutions are more restricting the possibilities of the philosophers than this special
solution. A related result does not hold for the fair solutions (see Section 6).

(c) Comparisons of controls of different types: Fair solutions need not be live
and vice versa.

Corollary 1.5
(1) LEDFR zj-Vuc L 3wEAdh(L): UEW.
(2) LELIVE i$Vu~L3w~Adh(L):uc_w~~~=o.
(3) L E PFIN if Adh(L) = 8.

Proposition 1.6. If L E PREG u FNL, then we have:
(1) LEDFR iflVue L 3u’, VE T*: uu’v”EAdh(L),
(2) LE LIVE ifl Vu E L au’, v E T*: uu’v“’ E Adh(L) A 7rD 2 1.

Proof. We only prove (2), the proof of (1) being similar. If LE LIVE, then there
exists a w E Adh(L) with u c w and n;, = w (by Corollary l-5(2)). We decompose
W =ul.i~u~... such that 7rUi 2 1 for all i = 1, 2, 3,

If L = Ls for the finite transition system S = (T, Q, J qO) (in the case L E PREG),
then we consider a state sequence ql, q2, q3, . . . where ql Ef(qo, U> and qi+l Ef(qi, Ui)

for all i = 1,2,3, Since Q is finite, we have some j > i > 0 with qj = qti If L = LN
for the Petri net N = (P, T, F, V, mo) (in the case FNL), then we consider the sequence
of the markings m,, m2, m3, . . . where mi := m,+ Auu, . . . q. We have some j > i > 0
with mj 2 mi.

In both cases, we choose u’:= u1 . . . ui, v := ui+l . . . uj (note that AV 20 in the case
of the Petri nets) and then we have uu’z?’ E Adh(L) and 7rU B 1.

It is trivial that the given condition implies L E LIVE. ??

Controls for concurrent systems 199

2. Decidability of liveness and fairness conditions

Theorem 2.1. The problems “L E DFR (LIVE, IMP, FAIR, JUST)?” are decidable for
languages L E PREG u FNL.

The decidability for the case L E PREG was proved in [lo].
Without loss of generality we can assume that L is given by L = Ls where

S = (T, Q, J qO) is a finite (initially connected) transition system with card(f(q, t)) G 1
for all q E Q, t E T (i.e. S works deterministically). Then we have:

LEDFR iff VqEQ3td?f(q,t)#P),

LELIVE iff VqEQVte T3u~ T*:juJ<card(Q)Af(q, ut)#@,

LeIMP iff LLmp#gl,

where

L ;mp:={v~3qEQ:qEf(q, +w”31},

Lg FAIR iff Ltir # 0,

where

L~‘:={u)3qEQ:qEf(q,v)A3tET:7r~(f)=OAf(q,t)#O},

L&JUST iff L’,““‘#&

where
Ljust ._

0 --{+.j@:qEf(q, V)A%E TvU'~t':fl,(t)=oAf(q, dt)#@}.

Obviously, the languages Limp, LFi’, and Lp are regular and all the conditions
are decidable.

Now, let L be the language L N of the firing sequences of a Petri net N =
(P, T, F, V, mo). The problems “L E DFR?” and “L E LIVE?” are decidable since
the reachability problem is decidable [171: We have LN ti DFR iff a dead marking
is reachable in N, and LN E LIVE iff the initial marking m. is live (the equivalence
to the reachability problem was shown in [lS]).

The further proof uses the coverability tree TN = (S’, E, p) of the Petri net N,
which can be defined as follows [6]:

(i) S’ c T* is the set of nodes,
(ii) p : S’+ (N u {w}) ’ is the node labelling function,

(iii) E := {(r, r?) 1 r E T* A t E T A r, rf E S’} is the set of directed edges,
(iv) S’ and p are defined recursively:

(0) e E S’, p(e) := m. (e is the root of the tree),
(1) If r E S’ and F(r) f p(s) for all proper prefixes s of r, then rt E S’ for
all TV T with t-<p(r).

200 H. D. Burkhard

For these rt the function p, is defined by

0 if3sEr: p(s)<p((~)+Af~
/44(P) := * P(S)(P) < (p(r) + At)(p),

(p(r)+Al)(~) otherwise(wherebyw+n=w).

(2) No other r are in S’.
Some leaves of the tree are called loop ends, they are given by

S,:={r(rES’A3s5r:~(T)=~(S)}.

The corresponding nodes with the identical labels are called loop starts and are
given by

By the identification of the loop ends with their corresponding loop starts we get
the transition system S(N) = (T, S, f; e) where

s := S’\S,,

1 {rt} if rtE S,
f(r, t):= {s} ifrtESIAScrA~(Tt)=~(S),

(3 otherwise.

S(N) is finite (since 7N is finite) and deterministic, i.e. card(f(r, t)) < 1 for all r E S,
tE 2-I

Lemma 2.2. (1) LN E LStNj.
(2) Iff(s,u)={s’} inS(lV) and p(s)(p)=0 i_trp(s’)(p)=ofor allpEP, then a

sequence u E T* with uv E LN can be constructed.

Proof. (1) corresponds to a well-known property of TN (cf. Lemma (2) in [6]).
To prove (2), we know that v is firable with respect to the finite coordinates of

p(s) (by the construction of S(N))). By Lemma (3) in [6], we can construct a
sequence u E LN with

ho+ AU)(P) >m(p) 1 =PW(P) ib(s)(p) f 0,

iftLW(p) = w,

where 111 is an arbitrarily chosen marking. If we choose M sufficiently large, we can
construct u such that v is firable in mo+ Au, i.e. uv E LN. El

Lemma 2.3. The condition

(*) SUE T*3v~L~:uu~~Adh(L)

is decidable for regular languages Lo and languages L E FNL. Such sequences u, v can
be constructed if they exist.

Controls for concurrent systems 201

Proof. We suppose L = LN for N = (P, T, F, V, m,) and consider the corresponding
transition system S(N) = (T, S,J e). We show that the condition (*) is equivalent
to the condition

(**) ~~ES~~EL~:~(~,~)#P)AAC\~O.

If uvw E Adh(&), then we have Au a 0, and, by Lemma 2.2(l), we have f(s, v) # p)
where f(e, u) = {s}. Hence, (*) implies (**). If f(s, v) # 0 and Au 2 0, then we have
f(s, vi) # 0 for all i E N. There must exist a number i such that it holds for f(s, vi) =
{s’}, f(s’, v) = { Sn}:

(since the number of o-coordinates cannot decrease if we go futher in S(N)). Thus,
we can apply Lemma 2.2(2) and find a sequence Z.J such that uv E LN. It follows that
uv“’ E Adh(LN) since Au 2 0. The next step is to show that (**) is decidable, i.e. the
problem “Ll # 0?” is decidable for

By G):={ ()I /TT u u E L} we denote the set of the Parikh-vectors corresponding to
a language L. Then we have L, = Lo n L2 A USES L,, i.e. r(L,) = rr(&,) n 7r(L2) n
USES n(L,), where L,={v~Av~O} and L,={vlf(s, v)#O}.

Obviously, the sets m(&), 7r(L2), rr(L,) are all computable semilinear sets (L,,
L, are regular, r(L2) contains the nonnegative integer solutions of a system of linear
inequalities with integer coefficients). Hence, IT is a computable semilinear set
and “7r(L,) # 0?” is decidable.

In conclusion: Condition (*) holds if we can start with a sequence v E L,, in some
state s of S(N), whereby Av 3 0. Cl

Remark. It can be shown that condition (*) holds iff

whereby Lh:= {v”vi?Yl i E&4 A v’v”= o E L,} (since each infinite path through S(N)
has to pass through some loop start infinitely often). Thus it suffices to look for
cyclic paths through the loop starts in S(N) which are labelled by a sequence v E LI,
with Au 2 0.

Now we continue the proof Theorem 2.1 by the application of Lemma 2.3 to the
cases IMP, FAIR, JUST, where LE FNL, i.e. L = LN for N = (P, T, F, V, m,).

We have LN e IMP iff there exists an infinite sequence w = t1 t2f3 . . . in Adh(L,)
with rr,,, # o, i.e. ti # t for some t E T and all i that are greater than some k E N.
There must exist i, j E N with j> i 3 k such that Ati+* . . . tj 20 (since there is an
infinite non-decreasing subsequence in (m,+ At, . . . ti)icN)a Hence there exist u :=
t, . . . ti, V := ti+l * e m Zj such that uv” E Adh(LN) and n;(t) = 0. Since the reverse is

202 H. D. Burkhard

trivial, we have:

LN & IMP iff 3u, v E T* : uvw E Adh(LN) A 7rV 3 1, i.e.

iff 3u E T” 3v E Lo: u1.9’ E Adh(L,),

where Lo := {v 1 n” 3 1) is regular.
The last condition is decidable by Lemma 2.3.
We have LN & FAIR iff there exists an infinite sequence w = uoul u2 . . . (ui E 7’“)

in Adh(LN) and some t E T such that u. . . . ujt E LN for all i E N and I, # w, i.e.
we can assume 7rui(t) = 0 for all i 2 1. Using the same argument as in the proof
concerning IMP, we can find j> i B 1 with AUi+l . . . Uj 20, and then we can show
(with U~=UO~~~Ui~ V~=Ui+~.*aUj):

L,$FAIR iff 3u,v~T*3t~ T: uv”EAdh(LN)

Arr,(t)=OhViEN:uv?E LW

The last condition implies (by Lemma 2.2(1) and with regard to the corresponding
transition system S(N) = (T, S, f, e)):

where

L,:={V)3tE T%ES:7&(t)=hf(S, t)#P)Af(S, V)#@}.

We show that both conditions are equivalent: the crucial point is that uvw E Adh(LN),
v E Lo, does not imply uvit E LN for any i E N. We must step back to the application
of Lemma 2.2(2) as in the proof of Lemma 2.3. By uvw E Adh(LN) we have Au 2 0
and there exists some number i such that p(f(s, vi)) and p((f(s, vi+‘)) coincide
with respect to their o-coordinates. Now we can apply Lemma 2.3, but we choose
the marking m (cf. the proof of Lemma 2.2(2)) so large that we get a sequence u’
such that both v and t are firable in m,+ Au’, i.e. u’v, u’t E LN for all i E N.

This proves that LN ~4 FAIR holds iff there exist u E T*, v E Lo with uvw E Adh(LN).
This condition is decidable by Lemma 2.3 since

Lo= IJ
IE7- [

{v~~&)=O}n u blf(4 v)ffo
sEs,_f(s,t)#0 1

is regular.
Finally, we have LN & JUST iff there exists an infinite sequence w = tlf2f3 . . . in

Adh(LN), a transition t E T and some k E N such that ti # t and t1 . . . tit E LN for all
i > k. Similar to the preceding proofs we can show:

LN e JUST iff 3u, v E T* 3t E T: uv“’ E Adh(LN)

Furthermore, we have

A 7r,(t) = 0 A vi E N VV’C V: UViV’t E &.

LN @JUST iff 3u E T” 3v E Lo: uv” E Adh(LN),

Controls for concurrent systems 203

where

L(+={ul3tET3sES: ?r,(t)=OAj-(s, 21)#0Avv’mxf(.s, u’t)#QJ}.

The proof is similar to the analogous proof for fairness, but now we have to choose
the marking m so large that v and all sequences v’t for D’E u become firable in
mO+ Au’.

Lo= u {VITJt)=O}n IJ {vJf(s, u)fP)Avu’Eu:f(s, u’t)#@}
tET SGS I

is regular and thus Lemma 2.3 is applicable. Cl

Remark. One can show by similar arguments as given, concerning the remark after
Lemma 2.3 that

LEIMP iff ~YEL~~~: AvaO,

LgFAIR iff 3u~LF~:Ava0,

L e JUST iff 3u E Lj”“‘* 0 .Az-0,

where the languages Lbmp, Lpi’, L’,““’ are defined for S(N) in the same way as for
S in the proof part “LE PREG”.

3. .Relations between live and fair controls

The properties corresponding to extensional control principles are properties of
the controlled systems only, they do not depend on the original uncontrolled systems.
The language {a}* is contained in fair({a}*), but also in fair({a, 6}*), fair({a, b, c}*),

etc. The definition of fair(L) may be insufficient to meet the intensions of a fair
control: We have {a}* E fair({a, b}“) although b is infinitely often enabled by a“’
with respect to the uncontrolled system given by {a, b}*. Hence it might be better
to consider ‘relative fairness’ and ‘relative justice’ with respect to the uncontrolled
system (given by L).

Definition 3.1

L’Erfair(L) iff VtE TVwEAdh(L’): (amu&w: utE L)+v,(t)=o.

L’E rjust(L) iff Vt E T VW E Adh(L’): (V”u E w: ut E L) + w,,,(t) = o.

Remark. Referring to a fixed language L (i.e. to a special given uncontrolled system),
there exists the possibility to define an extensional control principle by C := rfair(L)
(rjust(L)). Ad vantages may then arise by the application of properties of extensional
control principles (cf. Section 5).

204 H. D. Burkhard

In the sequel we sometimes refer to imp, fair, just, rfair, rjust shortly as the
fairness control principles. Since some fairness can be enforced by restrictions to
finite languages, it is interesting to study those controls which are fair and deadlock-
free or which are fair and non-blocking (cf. Definition 3.5 below).

Thus, we are interested in the study of controls which realize several properties.
We are also interested in the preservation of the properties of a control principle c
by another control principle c’ (for example: all live controls are deadlock-free).
This leads to the following definition:

Definition 3.2. The conjunction c&c’ of two control principles c, c’ is defined by

c&c’(L) := c(L) n c’(L) for all L E CONT.

The control principle c is covered by c’, cd c’, ifI we have

c(L) s c’(L) for all L E CONT.

Obviously, c&c’ G c, c’, i.e. the properties realized by c and c’ are preserved by
c&c’. We also have the following corollary.

Corollary 3.3. If q, c2 are extensional, then we have:

(1) c, S c2 if C, E C,,

(2) c := c,&c, is extensional with C = C, n C,.

Theorem 3.4. For card(T) B 3 we have the relations between the control principles dfr,
live, imp, fair, just, pfin, rfair, and rjust as represented by Fig. 2. (It also represents
the relations between the families DFR, LIVE, IMP, FAIR, JUST, PFIN.)

Proof. It immediately

live s dfr,

follows from the definitions that

pfin d imp s rfair d fairs just,

rfair d rjust G just.

Furthermore, for u E LE DFRn IMP there exists some w E Adh(L) with u c w (by
Corollary lS(1)) and ?T, = o (by the definition of IMP). This implies LE LIVE by
Corollary lS(2). Thus, we have DFRn IMPS LIVE, i.e. dfr&imp s live.

It remains to show the inequalities. Since it can be proved that live&imp =
live&fair = live&fair holds for card(T) = 2, we consider the alphabet T = {a, b, c}
concerning 2”-4” (the numbers refer to the position in Fig. 2):

2”: L := { ab}” - {aabc}” E (LIVE n FAIR)\IMP,
hence L E live&rfair(L) (note that L E rfair(L) iff L E FAIR)
and L ti imp{ L), i.e. live&fair g imp.

Controls for concurrent systems

just 7

205

3”:

dfr

Fig. 2.

L := {ab}* - {c}* - {aabc}", L’:= {ab}” - {aabc}“,
with L’ E live&fair&rjust(L) and L’ti rfair(L)
(consider (ab)“), i.e. live&fair&just s rfair.

4”: L := (a, 6, c)*, L’ := (ab)” * (aabc)*,
with L’ E live&fair(L)\rjust(L), i.e. live&fair 6 rjust.

It suffices to consider T = {a, 6) for the remainder:

5”:

6”:

7”:

2’:

I. 3.

4’:

L := { aa}” - { a6}* E (LIVE n JUST)\FAIR,
hence L E live&rjust(L)\fair(L), i.e. live&just g fair.

live&just $ fair by the example given for S’,
L:= (a, 6)*, L’:= {aa)* - {ab)*,
with L’ E live&just(L)\rjust(L), i.e. live&just $ rjust.

{a, 6)” E LIVE\ JUST, hence live 6 just.

L:={~}*E(DFR~FAIR)\(LIVEUIMP),
hence L E dfr&rfair(L), i.e. dfr&rfair 6 live, imp.

L:= {aa}” - {b}, L’:= {a}*,
with L’ E dfr&fair&rjust(L), L’ E live(L) u rfair(L),
hence dfr&fair&rjust $ live, rfair.

L:= (a, b}“, L’:= (a)*,
with L’ E dfr&fair(L), L’& live(L) u rjust(L),
hence dfr&fair g live, rjust.

H. D. Burkhard 206

). 5.

6’:

7’:

2-7:

L:={~~}*~{~}*E(DFR~JUST)\(LIVE~FAIR),
hence dfr&just P live, fair.

For the example of 4’ we also have L’ E dfr&just(L),
hence dfr&just S live, rjust.

L := ia}* - {b}* E DFR\(LIVE n JUST), hence dfr g live, just.

Examples can be constructed from the corresponding languages for 2’-7’:
we can consider Lu {b, ba} and L’u { 6, ba}, for example, such that the
new languages are not contained in DFR. Cl

Remark. The theorem concerns the consideration of all languages from CONT. If
we restrict the consideration to special classes of languages, then some of the control
principles may coincide.

Further (non-extensional) control principles .of interest are the control principles
‘conflict resolution’ and ‘non-blocking’:

Definition 3.5

L’ E crs(L)

L’ E nbl(L)

iff Vut, ut’.E L’: t, t’E T A t # t’-+ utt’E L.

iff Vue L’:(3te T:utE L)+(3t’e T:ut’E L’).

We remark that our notion of conflict resolution concerns only (binary) conflicts
where one action can loose its concession by performing another action: if such a
case appears in L, then the conflict resolving control has to decide which one of
the conflicting actions can be performed. It is a disadvantage of the non-deterministic
interleaving by the consideration of abstract languages Lc TX that it does not allow
to study the control with respect to conflicts as in the Petri net examples of Fig. 3.

The consideration of languages over the alphabet (P(T))* can be helpful to study
such conflicts (cf. [7,8] and the example of Fig. 5 in this paper).

We furthermore remark that our conflict resolution concerns only the conflicts in
the uncontrolled system, the controlled system may have new conflicts: we have,
for example, I-E crs(?ab,). This would be excluded if we considered the

Controls for concurrent systems 207

extensional control principle ‘persistency’ given by

LEPERS iff Vut, ut’E L: t, t’E TA tf t’+utt’E L.

By the notion of non-blocking we exclude termination by control when the uncontrol-
led system can work further. The following corollary holds.

Corollary 3.6
(1) dfrs nbl.
(2) L E DFR i$ nbl(L) = dfr(L).
(3) L E DFR i# nbl&pfin(L) = 0.

Theorem 3.7. Suppose c E {cant, dfr, live, imp, fair, just, pfin, preg}. Then theproblems
“L’ E c(L)?” are decidable for L, L’ E PREG and L, L’ E FNL, respectively.

Proof. We have L’ E cont(L) iff L’ E L, and the inclusion problems are decidable
for languages from PREG and FNL, respectively (for FNL by reduction to the
liveness problem [161). For the extensional control principles c we have L’ E c(L)
iff L’E cont(L) A L’ E C for the corresponding sets C. Hence, the results for c = dfr,
live, imp, fair, just are consequences of Theorem 2.1.

In the same way, “L’ E pfin(L)?” is decidable since “L’ E PFIN?” is decidable (in
the case LN E FNL we have LN E PFIN iff LSCNJ E PFIN, where S(N) is the finite
transition system constructed in the proof of Theorem 2.1. The decidability of “L’ E
PREG?” for L’E FNL was shown in [21]. (Remark: The problem “L’E FNL?” for
L’E PREG is an open problem.) Cl

Some further results have been shown in [111: Theorem 3.7 also holds
(a) for L, L’ E PREG u FNL (by proving the decidability of the inclusion problem

for languages L, L’ E PREG u FNL),
(b) for c E {rfair, rjust, crs, nbl}.

4. Controls by finite automata

Since control devices often work as finite automata we consider finite non-
deterministic automata

A = (P(T), T z, h, 20)

as control automata, where P(T), T, 2 are the finite nonempty sets of inputs, outputs
and states, respectively, z. E 2 is the initial state and h : 2 x P(T) + P(T x 2) is the
non-deterministic output/next-state function with

W,0) =0,

p,z{t13z’:(t,z’)Eh(z, U)}G U forallzE5 u~W’)\{0).

(The last condition ensures that the control by automata works non-blocking.)

208 H. D. Burkhard

The control automaton A and the system to be controlled form an interactive
system: the automaton A receives as input the set U of all actions from T which
could be performed in the next step by the system and decides by its output t E U

which action can be performed. A can be considered as an R-robot working in the
environment L in the sense of [4]. Related controls of the internal behaviour are
studied in [11. Controls of Petri nets by control automata have been studied in [7,8]
and [121. Obviously, the concept of control automata is powerful enough to modelize
priority rules and fifo-queues, for example. But it may fail with respect to the control
of concurrent work (realizing ‘Max-Semantics’ [19], for example). Again, this may
lead to the examination of languages over the alphabet P(T) (in this case the control
automata may receive inputs from P(P(T)) giving information about concurrently
performable sets of actions and it decides in favour of a set of actions to be performed
concurrently by an output from P(T), cf. [7,8]).

We define the following according to our interpretation of control by automata.

Definition 4.1. Let A = (P(T), T, 2, h, z,) be a control automaton. The result of the
control of L E CONT by A is the language L/A with

e E L/A,

t, . . . t,e L/A iff 3z,,.. . .,z,EZVi=O,. . ., n-l:

For a nonempty class aut of control automata we define the control principle aut

bY

aut(L) := {L/A 1 A E aut}.

Proposition 4.2. The control principles aut are not extensional and it holds that
aut d nbl.

Proof. We have autsnbl since the control automata A work non-blocking by
definition. The non-extensionality follows by:

Lemma 4.3. If c s nbl and c(CONT) G DFR, then c is not monotonous (and hence
not extensional by Corollary 1.3(l)).

Proof. If c was monotonous, then LE c(CONT) would imply LE c(T”). But, there
exists a language L E c(CONT) with L& DFR and hence La nbl(T*), i.e. L+? c(TX)
since csnbl. Cl

To characterize the results of automata controls we have the following theorem.

Theorem 4.4. Let autl denote the class of all control automata. Then it holds:

Controls for concurrent systems 209

PREG = aut 1 (PREG),
FNL~autl(FNL)~PREC=autl(PREC)~PREN~autl(PREN),
PREG and autl(FNL) (as well as PREG and FNL) are incomparable

Proof. We have L = L/A for A = (P(T), T, {z,), h, zO) with h(zO, U) := U x { zO} for
all U E P(T). Thus, the following lemma holds.

Lemma 4.5. C E autl(C) for all C s CONT.

This and some intuitive arguments (using Church’s thesis) prove all the left-to-right
inclusions and also PREC = autl(PREC). Now we consider the language LS of a
deterministic transition system S = (T, Q, f, qJ under the control of the control
automaton A = (P(T), T, 2, h, zJ. From S and A we define the transition system
S’ := (T, Q x 2, f, (qO, zO)) with LSf = LJA in the following way:

ForqEQ,zEZ,tETweput

f’h z), t’):={(q’, z')]q'Ef(q, t’h O’, z’k hk Olf(a t)f0)>}.

To satisfy our convention that transition systems are initially connected, we can
restrict the state set to the set Q’:= UuET* $((qO, zO), u) E Q x 2 and restrict f with
respect to Q’ x T and obtain S/A := (T, Q’,$, qO). The verification of LS,,, = L,/A
is left to the reader. Since S/A is finite if S is finite, we have autl(PREG) E PREG.

It remains to show the following inequalities:
?? FNLZ autl(FNL):

L := { abbaa} E autl (FNL) (easy to verify), but L Ed FNL (since abbua E L, implies
m,aa -, m,,-t Aabba 2 a-, by addition: 2m,-,+ 2Aab 2 2a-, i.e. m,+ Ahab z a- and
hence aba E LN).

?? autl(FNL) # PREC since even PREG g autl (FNL).
?? PREN # autl(PREN):

Let M be a recursively enumerable but not recursive subset of N and L :=
{t,... &(nEI+JhVi=l,... , n: if ieA4 then ti=a else tje{a, b}}.

Then, for A := UW, bl), {a, bl, Cd, h, zJ with h(z~, 04) = {(a, zd, h(zO,
{a, bH = {(b, z& we have L/A=G with w(i):=if i&M then Q else b.
Thus, LE PREN but L/A e PREN (otherwise M would be recursive).

?? PREG P autl(FNL):
L := {b} - {a}” u {a} E PREG, but L G autl(FNL), since L = LN/ A for some control
automaton A and some Petri net N would imply {a}” c LN (note that Lc_ LN
implies Au 2 0), and this would imply L & nbl(LN), i.e. L @ autl(LN) by Proposition
4.2.

?? autl(FNL) P PREG since even FNLG PREG (well-known). Cl

Remark. c(PREG) g PREN holds for c = dfr, live, imp, fair, just, rfair, rjust, crs,
nbl. We can consider, for example, L := G with w(i) = if i E M then a else b, such
that L E c({ Q, b}*) but L & PREN if M is a not recursively enumerable subset of N.

210 H. D. Burkhard

The following proposition is useful for the realization of controls by automata
studied in Section 7.

Proposition 4.6. Let autl denote the class of all control automata. Then it holds that

preg&nbl 9 aut 1.

Proof. Let L’ E preg&nbl(L) be given by L’ = LS, where S = (T, Q, f, q,) is a finite
deterministic transition system. Then we have L’ = L/A for A := (P(T), T, Q, h, qO)
with

h(q, U)=
{(t, q’) 1 t E U A q’Ef(q, t)} if this set is not empty,

Ux{qI otherwise,

forq@, UEP(T). Cl

5. Stepwise refinements of controls

Definition 5.1. The superposition c* c’ of two control principles c, c’ is defined by
c * c’(L) := c(c’(L)) for all L E CONT.

The superposition of control principles reflects the stepwise construction of
controls, e.g. aut * crs * live means first construction of a live system, then resolution
of conflicts and finally realization by an automaton from aut. The goal is to obtain
a control from aut&crs&live. But it turns out that such stepwise refinements need
not result in controls satisfying the desired properties, for example: conflict resolution
for a live system need not result in a live system (consider {a}* E crs({a, b}*) showing
that crs * live s crs&live is not true). This observation is important for some analyzing
methods too: the verification of some properties for an uncontrolled system is in
general not relevant with respect to the controlled system (cf. [12] for the study of
liveness and deadlock avoidance in Petri nets working under conflict resolving firing
rules). The positive aspect of this observation is the possibility to control systems
in order to satisfy properties which do not hold for the uncontrolled system.

Concerning the preservation of properties by stepwise refinements we use the
following notions.

Definition 5.2. A control
principles c’.

A control principle c is

principle c is left-invariant iti c’* c d c for all control

right-invariant iff c * C’S c for all control principles c’.

Corollary 5.3. .(1) c is left-invariant if cant * c d c if cant * c = c.
(2) c is right-invariant if c * cant Q c ifl c * cant = c i&T c is monotonous.
(3) Extensional control principles are right-invariant.

Controls for concurrent systems 211

Proof. We prove the equivalences for right-invariant control principles; the corre-
sponding proofs for left-invariant control principles are similar.

c * c’ d c for all c’ implies c * cant s c (we choose c’ := cant), and c * cant G c implies
c * c’s c (since c’d cant) for all c’.

Furthermore, it always holds that c d c * cont.
For L, c Lz we have c(L,) = c * cont(L,) c c * cont(L2) = c(L2), showing that right-

invariant control principles are monotonous.
On the other hand, if c is monotonous, then we have c *cant(l) c c(L) for all

LE CONT (since L’ E cont(L) implies L’ c L), showing that c is right-invariant.
Assertion (3) follows from (2) by Corollary 1.3(1). El

Note that right-invariant control principles need not be extensional as the follow-
ing proposition shows:

Proposition 5.4. (1) 7’he control principles imp, fair, just, pfin, crs are right-invariant
and left-invariant.

(2) The control principles dfr, live, preg, prec, pren, fnl are right-invariant but not
left-invariant.

(3) The control principles rfair, rjust are left-invariant but not right-invariant.
(4) The control principles nbl and aut (for all classes aut of control automata) are

neither right-invariant nor left-invariant.

The details on the proof (using the definitions and Corollary 5.3) are left to the
reader.

It should be remarked that c * c’ s c (and similarly for c’* c s c) does not guarantee
to obtain a c-control by the corresponding refinement from a c’-control. We may
have c(L’) = P, for some or all L’ E c’(L). But if c(L’) # 0 for L’ E c’(L), then we have
L”E c(L) for all L”E c(L’), i.e. all controls that we can obtain by the refinement
have the desired property.

In general, we make stepwise refinements by c* c’ in order to satisfy the c-
properties as well as the c’-properties, i.e. we look for c&c’-controls. The following
theorem points to such possibilities.

Theorem 5.5. (1) If c is extensional, then we have c&c’ s c * c’.
(2) If c is right-invariant and c’ is left-invariant, then we have c* C’S c&c’.
(3) If c is extensional and c’ is left-invariant, then we have c* c’ = c&c’.
(4) If c and c’ are both right-invariant (or both left-invariant), then we have

(c * c’)&(c’* c) s c&c’.

Proof. (1) We have c&c’(L) = c(L) n c’(L) = cont(L) n C n c’(L) = C n c’(L) E C n
cont(c’(l)) = c(c’(L)) = c*c’(L).

(2) follows by c*c’dc and C*C’GC’. ’

(3) follows from (1) and (2).
(4) is proved similar to the proof of (2). •i

212 H. D. Burkhard

As applications of Theorem 5.5 we have, for example, live* crs = live&crs (but
crs * live 6 live !) and crs * rfair s crs&rfair (but rfair * crs 6 rfair !). Hence, the order
of stepwise refinements may be important. We furthermore remark that we have
imp * dfr % dfr and dfr* imp g imp although imp is extensional and left-invariant
while dfr is right-invariant (even extensional). This shows that the conditions in
Theorem 5.5 are necessary.

Since the control principles aut are neither right-invariant nor left-invariant,
properties may change (and may be changed) by controlling systems by finite
automata.

Another approach to the preservation of properties is due to fixed point consider-
ations. The set C of an extensional control principle c is the greatest fixed point of
c (considered as a mapping from P(CONT)), and we have the following theorem.

Theorem 5.6. If c is an extensional control principle, then it holds for arbitrary control
principles c’:

c’*cSc ifl c’(C)r C.

Proof. By c’ * c < c and C = c(T*) (by Corollary 1.3(2)) we have: c’(C) =
c’(c(T*)) = c’* c(T*) c c(T*) = C. On the other hand, by c’(C) E C we have
c’* c(L) = c’(c(L)) = c’(cont(L) 0 C) c C and (trivially) c’* c(L) E cont(L). Hence,
it holds c’* c(L) 5 cant(L) n C = c(L). Cl

Applications like preg* live 6 live are left to the reader.

6. Uaitarity

Different elements in c(L) point to different possible c-controls for L. Nevertheless,
we may sometimes speak of ‘the’ c-control for L if there exists a language L’ E c(L)
such that all L” E c(L) are subsets of L’. Such a maximum element represents the
least restrictive control with respect to c.

Definition 6.1. A control principle c is called unitary iff

uc(L)~c(L) forall L~C0NTwith c(L)#p),

i.e. iff a maximum element exists in all nonempty sets c(L).
We denote the maximum element by L, := U c(L).

Corollary 6.2. If c is extensional and C is closed under arbitrary unions, then c is unitary.

Proposition 6.3. (1) dfr, live and nbl are unitary.
(2) imp, fair, just, pfin, preg, prec, pren, fnl, rfair, rjust and crs are not unitary.

Controls for concurrent systems 213

proof. (1) DFR and LIVE are closed under arbitrary unions, .hence dfr and live
are unitary by Corollary 6.2; nbl is unitary since we always have L E nbl(L).

(2) Concerning c E {imp, fair, just, rfair, rjust} we consider L:= {a, b}* where we
have: lJ c(L) = L, since u(ab)” E c(L) and hence u E lJ c(L) for all u E L but L g c(L)
(since a0 E Adh(L)).

Concerning c E {pfin, preg, prec, pren} we consider a not recursively enumerable
infinite sequence w (as in the proof of Theorem 4.4, for example). Then we have
itl)E c(L) for all u E w, but U c(L) = LET! c(L), where L:= 6.

Finally, for c E {fnl, crs}, we may consider L := {b} - {a}* u {a}, where {b} - {a}*

and {a} are in c(L), but U c(L) = Lti c(L). Cl

Remarks. (1) Since the fairness control principles are not unitary, it makes no sense
(in general) to speak of ‘the’ fair control of concurrent systems as it is sometimes
suggested by the ‘choice of all fair computations’ in order to perform controls.

(2) There is a remarkable difference between crs and the other non-unitary control
principles. In crs(L) we always have maximal elements such that each L’E crs(L)
is covered by a maximal element. This means that, in order to ‘improve’ a control
by making it less restrictive, we can always find a (relatively) best control in crs(L).
In general, this is not the case for the other non-unitary control principles: there
we can improve the controls by making them less restrictive and there need not
exist an end of such improvements (or: in the last resort, the resulting control will
not have the corresponding properties anymore). As examples we may consider the
sequence of finite languages {a’} and the sequence of fair languages Ujei a’(ba)”

for iEN.
(3) The notion of unitarity was defined regarding all languages from CONT. It

might be interesting for which classes of languages the control principles mentioned
in Proposition 6.3(2) become unitary (trivial example: preg is unitary with respect
to the class PREG, since lJ preg(L) = L E preg(L) for all L E PREG).

Now we are going to study Ldfr and Llive:, We only formulate the results (and the
proofs) for Llive. The same results hold for Ldfr if we omit the statements
occurrences of t E T and replace live by dfr.

about the

Theorem 6.4. We have, for Lcli,,) := {U 13 w E Adh(L) : u c w A T,,, = a~},

Cl) L(live) = Llive ifllive(L) # 0,

(2) L(live) = 0 #live(L) = 0,

C3) L(live) = I” 13 u’, v E T”: uu’vw E Adh(L) A T,, 2 1) i$ L E PREG u FNL.

Proof. (l), (2): We suppose live(L) # 0. If u E U live(L), then we have u E L’ for
some L’ E live(L). By Corollary 1.5(2), there exists an infinite sequence w E Adh(L’) c
Adh(L) with u E w and r,,, = cr) such that u E Lcli,e)* Thus we have lJ live(L) c Lcli,,),
by the definition of L c,,vej and hence (by Corollary lS(2)) Lc,;,,) E LIVE. .

214 H. D. Burkhard

Furthermore, &Ii,,) is contained in L and therefore Lcli,,) E live(L), i.e. &live) s
lJ live(L) = Liive*

If we suppose U E Lcli,,) # 0, then we have w E Adh(L) with q,,, = cr) such that
* E live(L) # 0.

(3) If L E PREG w FNL, then we have

3w E Adh(L): UEWAV~=~ iff 3u’,u~T*:uu’v”~Adh(L)~~,~l

(by the same proof as for Proposition 1.6(2)). Cl

Theorem 6.5. It holds for live(L) # 0:
(1) If L E PREG, then Llive E PREG.
(2) If L E FNL, then Llive E PREC (but in general @ FNL).
(3) L E PREC does not imply Llive E PREC.

Proof. (1) For L = LS where S = (T, Q,J q,,) is a finite transition system we put

Q’:={q)3q’~Q3u’,vET*:q’~f(q,u’)Aq’Ef(q’,v)h~”~1},

f :=f&-,

S' := (T, Q’, f, qO) (note that q. E Q’ since live(L) # 0).

Then it can be proved that LIive = L+ hence Liive E PREG. Note that Q’ (and hence
S’) can be constructed since it suffices to regard u’, v with length not greater than
card(Q).

(2) By Theorem 6.4 we have

UEL~~,, iff ~U’E T*~vELO:UU’V*EA~~(L),

where L,:={v/rr V b 1) is a regular language. Thus, we can apply Lemma 2.3 and
show that Llive is recursive. Theorem 6.7 will show that Llive need not be in FNL.

(3) We consider a recursive set M c N XN with the property that the set (n IVi E
N: (n, i) E M} is not recursively enumerable. Then we have:

L:= {a”(ba)” 1 n EN A Vi srn:(n,i)~M}~PREc,

LI,,=‘(a”(bU)“Im,nE~hViE~:(n,i)EM}~PREN. Cl

Corollary 6.6. The problem “live(L) # 0” is decidable for L E PREG u FNL.

Proof. By Theorem 6.4 we have live(L) # 0 iff Lqli,e) # 0, i.e. iff e E Lcli,,). Referring
to the proof of Theorem 6.5 we have e E Ltli,e) iff q. E Q’ in the case of L E PREG
and e E j&e) iff ~U’E T* 3v E Lo: u’v” E Adh(L) in the case L E FNL. We remark
that this result for FNL has been proved also in [20, Theorem 3.121 and in [9,
Theorem 21. Cl

Controls for concurrent systems 215

Theorem 6.7. (1) There exists a language L E FNL for card(T) 3 3 with live(L) # P,
and live&fnl = 0.

(2) For L E PREG u FNL with live(L) # 0 we have live&preg(l) # 0.

Proof. (1) For the Petri net N of Fig. 4 we have Llive = {abbaac}*& FNL (cf. the
proof of FNL # autl(FNL) of Theorem 4.4) and live(L) = {&iv,} (=dfr(L)).

Fig. 4.

(2) is a consequence of Theorem 6.4(3): For u = e E Liive we have u’, v with
u’v“’ E Adh(L) and 1~~ b 1, hence lu’) E live(L). Cl

In conclusion of Theorem 6.7, the Petri net model may be not sufficient to model
live controlled Petri nets as long as we do not use’additional transitions as in [20].
But there are possibilities to model Petri nets under certain live controls by finite
transition systems or to model certain live controls by finite control automata (cf.
Theorem 7.3(2) below).

Remark. The non-unitarity of the fairness control principles can be regarded as the
consequence of the freedom to have arbitrarily long delays. Following some ideas
in [141 we can consider delay functions d : T* x T + N and define impartiality, fairness
and justice with respect to a given delay function d by

LE d-IMP iff VIE TVUVEL: (+d(u, t)+&)>O,

L E d-FAIR iff Vtc TVUVE L:

L E d-JUST iff

card({v’lv’sv~ UV’~E L})> d(u, t)+ vv(t)>O,

tlt~ TVUVE L:

(lvl>d(u, t)/,Vv’~v: uv’t~ L)+r&)>O.

Then the extensional control principles d-imp, d-fair, d-just are unitary.
WehaveUd d-IMP=IMPandUd d-JUST=JUST,butonlyUd d-FAIRSFAIR

(cf. [9]), i.e. fairness is not completely expressible by delay functions in the given
way. Similar results hold for the analogously definable non-extensional control
principles d-rfair and d-rjust.

216 H. D. Burkhard

7. Existence of controls

By the problem “c(L) # ld?” we ask for the existence of controls (specified by c)
for given systems (specified by L).

Theorem 7.1. It holds for arbitrary languages L E CONT:
(1) cuw0f or c E {imp, fair, just, rfair, rjust}.
(2) c&nbl(L) # 0 for c E {fair, just, rfair, rjust}.
(3) c&dfr(L) f 0 if dfr(L)_ f 0 for c E {fair, just}.
(4) imp&dfr(L) f 0 if live(L) # 0.
(5) imp&nbl(L) f 0 if imp&dfr(L) # 0 v pfin&nbl(L) # 0.

Proof. (1) holds by pfin d c for the fairness control principles. (2) is shown by the
application of appropriate queue regimes. Such queues can be understood as
sequences u E T* with 7r U d 1, for example. The actions t appearing in u (i.e.
g,(t) = 1) are the waiting actions. If we have the actual queue u and the set U of
actually performable actions (in the uncontrolled system), then the work is defined
as follows.

We build a sequence u from those actions which belong to U and are not in the
queue u. Then the first action t #from uv with t E U is performed next and the queue
u’ for the following step is built by deleting t from uv.

Different queue regimes are founded on different possibilities to build the sequen-
ces v. If they are built in some regular way, the queue regimes can be performed
by finite control automata (with the queues as states).

Obviously, we obtain (relatively) fair and non-blocking controls by the queue
regimes as described above. If all those actions not appearing in U (they are actually
not performable in the uncontrolled system) are additionally deleted from the queue
u’ during the reorganization step, then we get a (relatively) justice and non-blocking
control. (Petri nets under related firing rules have been studied in [S].) We mention
that the results of such controls for a language L are in d-fair(L) and d-just(L),
respectively, where d (u, t) = card(T) - 1 for u E T*, t E T.

(3) If dfr(L) f 0, then the application of the queue regimes defined in the proof,
part (2), to a language L’E dfr(L) results in a language L”E c * dfr(L). We have
L”E: dfr(L) since the queue regimes work non-blocking, and we have L”E c(L), i.e.
L” E c&dfr(L), since fair and just are right-invariant (by Proposition 5.4). We remark
that dfr(L) # 0 does not imply dfr&rfair(L) # 0 and dfr&rjust(L) # 0, respectively
(example: L := {a}* - {b}).

(4) If imp&dfr(L) # 0, then live(L) # 0 by Theorem 3.4. If live(L) # 0, then there
exists a w E Adh(L) with n;, = w (by Theorem 6.4, i.e. GE imp&dfr(L).

(5) We suppose L’ E imp&nbl(L) # 0. If imp&dfr(L) = 0, then L’ e dfr(L), i.e. there
exists an u E L’ such that ut & L’ for alrc T. It follows by L’ E nbl(L) that even
ut & L for all t E T, and hence we have {u} E pfin&nbl(L) # 0.

Controls for concurrent sysfems 217

The reverse direction follows by

imp&nbl(L) 2 imp&dfr(L) u pfin&nbl(L). Cl

For those of the control principles c mentioned in Theorem 7.1 where c(L) may
be empty (corresponding controls need not exist for each system), we can decide
the existence of controls in the case of finite transition systems and Petri nets.

Theorem 7.2. The problems “c(L) # a?” are decidable for L E PREG u FNL and
c E {dfr, live, imp&dfr, fair&dfr, justdzdfr, pfin&nbl, imp&nbl}.

Proof. The result for live was given by Corollary 6.6 and as mentioned before
Theorem 6.4, the result holds for dfr, too. The results for imp&dfr, fairdzdfr, just&dfr
follow then immediately by Theorem 7.1(3)(4).

We have pfin&nbl(L) # 0 iff Lg DFR by Corollary 3.6(3), hence the problem is
decidable for the case pfin&nbl by Theorem 2.1.

Finally, the result holds for imp&b1 as a consequence of Theorem 7.1(5). 0

Remark. The problems “rfair&dfr(L) # 0?” and “rjust&dfr(L) # a?” are also deci-
dable for languages L E PREG (by using methods as in the proof of Theorem 2.1),
the problems are open for languages L E FNL.

Theorem 7.3. (1) A control automaton A can be constructed for each control principle
c E {fair, just, rfair, rjust} such that L/A E c&nbl(L) holds for all L E CONT.

(2) A control automaton A can be constructed for each c E {dfr, live, pfin&nbl,
imp&nbl, imp&dfr, fair&dfr, just&dfr} and each language L E PREG u FNL such
that L/AEc(L) holds ifc(L)#p).

Proof. (1) As mentioned in the proof for Theorem 7.1(2), certain queue regimes
can be realized by control automata A such that each system can be controlled by
A in the sense of (relative) fairness and (relative) justice, respectively.

(2) If live(L) # 0 (and similarly if dfr(L) # 0), then there exists some L’ E
live&preg(L) by Theorem 6.7(2).

Following the proofs up to Lemma 2.3 we find that such languages L’ can be
constructed in the form L’= uu” with L’E preg&nbl(L). A corresponding control
automaton A with L/A = L’ can then be constructed according to Proposition 4.6
(note that the proof of Proposition 4.6 is constructive). If pfin&nbl(L) # 0, then a
sequence u with {u} E pfin&nbl(L) can be found (trivially by successive tests) and
then we can apply Proposition 4.6 again.

If imp&nbl(L) # 0, then we have 0 # imp&dfr(L) u pfin&nbl(L) c_ imp&nbl(L)
(cf. Theorem 7.1(5), and we can decide whether imp&dfr(L) # 0 or pfin&nbl(L) # (b
holds (by Theorem 7.2); then we can proceed as for imp&dfr and for pfin&nbl,
respectively.

218 H.D. Burkhard

If imp&dfr(L) f 0, we have live(L) # 0 by Theorem 7.1(4) and (as shown above)
we can find L’ = uu” E live(L). Obviously, it holds that L’ E imp&dfr(L) and we can
proceed as for live. Finally, if fair&dfr(L) f 0 and just&dfr(L) # 0, respectively, then
we have dfr(L) # 0 and we can find some L’ E dfr(L) where L’ is of the form L’ = uu”
such that Proposition 4.6 can be applied (all proofs similar to the proof for live).
Since $ E fair&dfr(L) (E just&dfr(L)) for all w E Adh(L), the proof is finished. Cl

Remark. Theorem 7.3(2) also holds for c E {rfairkdfr, rjust&dfr} in the case L E
PREG. It does not hold in the case LE FNL [ll].

The fact that the control automata with respect to the control princples of Theorem
7.3(2) must be constructed individually for the languages L E PREG u FNL (while
we have uniform control automata in the case of Theorem 7.3(l)) corresponds to
the result in [12] that there exists no conflict resolving regular firing strategy for
Petri nets which supports deadlock avoidance and liveness, respectively.

Remark. There exist Petri nets N such that the maximum element in live(LN) cannot
be realized under the control of our control automata (i.e. for L = LN we have
live(L) # 0, but there exists no control automaton A with L/A = Llive; the same
holds for dfr). An example is given by Fig. 5.

I

a

Fig. 5.

Since the input information of a control automaton A is always U = {a, b} or
U = 0, no such control automaton can produce

L/A= Llive={u/u~{a, b}*~Vuru: n;(a)>ro(b)30}.

It is interesting to note that the situation changes if we use automata recognizing
differences concerning concurrent firability (by inputs {{a, b}} for m(p) 2 2 and
{{a}, {b}} for m(p) = 1 as in [7] for example): Such automata can realize a control
resulting in Llive for the net of Fig. 5 (but again, they cannot do so if we add a
run place to the net such that the transitions a and b are never concurrently firable).

While we are able to construct automata controls for the control principles referred
to in Theorem 7.3 in the case of Petri nets (with possibly great effort), we are not
able to decide whether a given control automaton for a Petri net realizes a correspond-
ing control. This can be understood in that sense that the construction of an
appropriate control may be easier than the verification of a property for a given
control. We prove this by the following theorem.

Controls for concurrent systems 219

Theorem 7.4. We suppose that card(T) is suficiently large. (The exact lower bound
is unknown. The method ofproof gives lower bounds between 2n and 6n i- 47 depending
on the control principles, where n is the number of states of a deterministic counter
machine computing a function with a non-recursive domain.)

(1) Let A be a control automaton such that L/A E cm(L) for all LE FNL (i.e. A
represents a conflict resolution rule for Petri nets). Then, for each control principle
c E {dfr, live, imp, imp&dfr, imp&nbl, pfin, pfin&nbl}, the problems “L/A E c(L)?”
are undecidable for L E FNL.

(2) For each control principle c E {dfr, live, imp, fair, just, rfair, rjust,
imp&nbl, . . . , rjust&nbl, imp&dfr, . . . , rjust&dfr, pfin, pfin&nbl, preg, crs} theprob
lems “L/A E c(L) ?” are undecidable for L E FNL and arbitrary control automata A.

Proof. The proof uses the simulation of deterministic counter machines by automata
controlled Petri nets. For more details of such simulations the reader is referred to
[7,8, 111. Throughout the proof, all results for a control principle c are results for
c&nbl by Proposition 4.2.

(1) There are counter machines M with two counters such that the Halting
problem is undecidable with respect to different initial counter contents. If M has
n states and A = (P(T), T, 2, h, zO) is a control automaton whereby card(T) =
3n + 28, then a Petri net N can be constructed such that M is simulated in some
sense by N under the control of A if L,/A E crs(L,). Different initial counter
contents of M can be simulated by different initial markings in N. By the simulation
we obtain L,/A E pfln(LN) iff the initial marking of N corresponds to initial counter
contents of M for which M stops. We obtain L,/A E dfr(LN) iff M does not stop
for the corresponding initial counter contents. The undecidability of the Halting
problem implies the undecidability of ‘L,/A E c(LN)’ for c = dfr, pfin, pfin&nbl.

The result concerning liveness was proved in [121 by construction of an appropriate
net N’ from N, thereby we need card(T) 3 6n +47. (The net N’ is constructed in
such a way that LNl/A E live(LNr) iff the underlying counter machine does not stop
for the corresponding intial counter contents, whereby only the assumption L,,/A E
crs(LNf) is made concerning A.)

The result for imp&dfr follows by Theorem 7.1(4).
The net N constructed in [7] for the simulation of M has a ‘stop-place’ pstop such

that the net N becomes dead during the simulation run iff the place pstop is marked
indicating that M stops. Now, we add a transition t to N which takes a token from
P stop and then we have for the new net N”: L&A is impartial (and also nonblocking
with respect to LN”) if M stops (by pfin d imp), but it is not impartial if M does
not stop (by neglecting the new transition t).

(2) Since (1) is a stronger result, it remains to prove (2) for c = fair, just, rfair,
rjust (implying the result for fair&nbl, . . . , rjust&nbl), fair&dfr, . . . , rjust&dfr, preg,
and crs. We can use the simulation of deterministic counter machines by a priority
firing rule (cf. [16]) which can easily be realized by control automata having only
one state. The simulating net does not need more than 2n transitions. Again, we

220 H. D. Burkhard

can construct to a deterministic counter machine M (for which the Halting problem
is not decidable) and a control automaton A = (P(T), 7” {z,}, h, zo) realizing a
deterministic priority firing rule over T with card(T) = 2n) a Petri net N with a
place pstop that can be marked by one token iff M stops. The net N becomes dead
during a simulation run iff pstop is marked. The proof can be finished by appropriate
simple supplements of N and A as given in [ll]. Cl

Remark. The stronger result in Theorem 7.4(1) cannot hold for c = fair, . . . , rjust,
fair&nbl, . . . , rjust&nbl (otherwise we would contradict Theorem 7.3(1)). By related
arguments, Theorem 7.3(l) cannot hold for the control principles referred to in
Theorem 7.4(1) if we consider conflict resolving automata. Moreover, the result as
in Theorem 7.4(1) cannot hold for crs (since, for example, all deterministic control
automata work conflict resolving). The problem whether an assertion as in Theorem
7.4(1) holds is open for c = preg, fair&dfr, . . . , rjust&dfr.

Finally, the properties which are undecidable for automata controlled Petri nets
can be proved to be decidable in the case of finite transition systems (and thus, for
bounded Petri nets, too).

Theorem 7.5. Let c be a control principle as in Theorem 7.4(2). The problem “L/A E
c(L)?” is decidable for arbitrary languages LE PREG and arbitrary control automata
A.

Proof. We have L/A E PREG for all LE PREG and all control automata A by
Theorem 4.4. Hence, Theorem 7.5 is a consequence of Theorem 3.7 and the related
results for c E {rfair, rjust, crs, nbl} proved in [111. Cl

8. Conclusions

It was shown that many problems of control can be studied on a very high level
of abstraction. This framework should be useful to study and to compare different
approaches to systems, controls and their properties, as for example given in [1, 3,
5, 12, 13, 14, 18, 191.

The use of our approach is restricted by considering systems to be equivalent if
they have the same external behaviour regarding abstract languages (but there may
be possibilities for different controls based on different internal structures). In some
cases this problem can be overcome by other notions of external behaviour. To be
closer to concurrency, the alphabet T may be chosen as the powerset of another
set of actions. In such models the max-semantics [19,5] can be considered (with
appropriate definitions reflecting liveness and fairness properties). Another approach
to concurrency by partially ordered sequences may lead to the study of the corre-
sponding behaviour and controls with regard to languages of partially ordered
sequences. The general notion of control principles opens the way to further

ConrroZs for concurrent systems 221

examinations of properties like invariance and unitarity; stochastic controls may
be studied by measuring the sets c(L).

Acknowledgment

I want to express my thanks to P.H. Starke and H.W. Pohl for various helpful
discussions.

References

[l] A. Arnold and M. Nivat, Controlling behaviours of systems, some basic concepts and some
applications, in: P. Dembiriski, ed., Mathemarical Foundurions of Computer Science, Lecture Notes
in Comp. Sci. 88 (Springer, Berlin, 1980) 113-122.

[2] K.R. Apt, A. Pnueli and J. Stavi, Fair termination revisited-with delay, Publ. du L.I.T.P. (Univ.
Paris VII, 1982) 82-51.

[3] E. Best, Relational semantics of concurrent programs (with some applications), Proc. IFIP TC-2
Conf: on Formal Descriptions of Programming Concepts, Garmisch-Partenkirchen, 1982.

[4] L. Budach, Environments, labyrinths and automata, in: M. Karpiriski, ed., Fundamentals ofcomputa-
rion theory, Lecture Notes in Comp. Sci. 56 (Springer, Berlin, 1977) 54-64.

[5] H.D. Burkhard, Ordered firing in Petri nets, Elektron. Informationsuerarbeitung und Kybernetik
17(2/3) (1981) 71-86.

[6] H.D. Burkhard, Two pumping lemmata for Petri nets, Elektron. Informationsuerarbeirung und
Kybernetik 17(7) (1981) 349-362.

[7] H.D. Burkhard, What gives Petri nets more computational power, Preprint 45, Sekt. Mathematik
d. Humboldt-Univ. Berlin, 1982.

[8] H.D. Burkhard, Control of Petri nets by finite automata, Fundamenta Znformaticae VI.2 (1983)
185-215.

[9] H.D. Burkhard, On the control of concurrent systems with respect to fairness and liveness conditions,
Proc. Internat. Summer School of the Programming Language LOGLAN-82, Zaborbw, Poland, 1983.

[lo] H.D. Burkhard, Fair and live controls for finite transition systems, Internat. Symp. on ‘Diskrete
Mathematik’, Berlin, 1983, in: Seminarberichte der Sekr. Math. 56 (Humboldt-Univ. Berlin, 1984)
9-16.

[Ill H.D. Burkhard, Untersuchung von Steuerungsproblemen nebenl:ufiger Systeme auf der Basis
abstrakter Steuersprachen, in: Seminarberichte der Sekt. Math. 58 (Humboldt-Univ. Berlin, 1984).

[121 H.D. Burkhard and P.H. Starke, A note on the impact of conflict resolution to liveness and deadlock
in Petri nets, Fundamenta Informaticae VII.4 (1984).

[131 L. Czaja, Are infinite behaviours of parallel system schemata necessary?, in: A. Salwicki, ed., Logics
ofPrograms and Their Application, Lecture Notes in Comp. Sci. 148 (Springer, Berlin, 1983) 108- 117.

[14] H. Carstensen and R. Valk, Infinite behaviour and fairness in Petri nets, in: Proc. 4th European
Workshop on Application and Theory of Petri Nets, Toulouse (1983) 104-123.

[15] M. Hack, The recursive equivalence of the reachability problem and the liveness problem for Petri
nets and vector addition systems, in: 15th Ann. Symp. on Switching and Automata Theory (1974)
156-164.

[16] M. Hack, Petri net languages, C.S.G. Memo 124, Project MAC, M.I.T., 1975.
[17] S.R. Kosaraju, Decidability of reachability in vector addition systems, in: Proc. 14th Ann, ACM

Symp. on Theory of Computing (1982) 267-281.
[18] D. Lehmann, A. Pnueli and J. Stavi, Impartiality, justice, fairness: The ethics of concurrent

termination, in: S. Even and 0. Kariv, eds., Automata, Languages and Programming, Lecture Notes
in Comp. Sci. 115 (Springer, Berlin, 1981) 264-277.

[191 A. Salwicki and T. Mueldner, On the algorithmic properties of concurrent programs, in: E. Engeler,
ed., Logic of Programs, Lecture Notes in Comp. Sci. 125 (Springer, Berlin, 1981) 169-197.

222 H. D. Burkhard

[203 R. Valk and M. Jar&en, The residue of vector sets with applications to decidability problems in
Petri nets, Bericht IFI-HH-B-101/84, Fachbereich Informatik, Univ. Hamburg (earlier version in:
Proc. 4th Europ. Workshop on Applikation and 7Reor-y of Petri Nets, Toulouse (1983) 342-363).

[21] R. Valk and G. Vidal-Maquet, Petri nets and regular languages, J. Comput. System. Sci. 23(3) (1981)
299-325.

