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1. Introduction

Let F (¢) be the set of functions computable by some machine using no more
than ¢ (x) machine steps on ali but finitely many arguments x. If we crder the & -classes
under set inclusion as ¢ varies over the racursive functions, then it is natural to ask
how rich a structure is obtained. We show that this structure is very rich indeed.
If R is any recursive countable partial order and F is any total effective operator,
then we show that there is a recursively enumerable sequence of recursive machine
running times {®,)hen such that if jRk, then F (F (D) © F(Poyy), and if j
and k are incomparable, then F(P;) < P,u, on irfinitcly many argnments,
and F (D)) < Py on infinitely many arguments.

An interesting feature of our proof is that we avoid appealing explicitly to the
continuity of total effective operators; indeed our proof follows directly from a single
appeal to the recursion theorem.

Several investigators have considered this and related problems, and in Section 4
we briefly summacize these investigations and compare them to our own.

2. Preliminaries

For notation from recursive function theory we follow Rcogers [12].
By a partial order we mean a transitive asymmetric relation.

* Work reported here was supported in part by Preject MAC, an MIT research program
sponsored by the Advanced Research Projects Agency, Department of Defense, under QO e
of Naval Research Contract Number N00014-70-A-0362-0006 and the National Science ¥ oun-
dation under contract number GJ00:-4327, Reproduction in whole or in part is permitied for
any purpose of the United States Government.



194 R. MCLL

For each n € N, P, stands for the partial recursive function of n-variables, and ‘®,
stands for the tota! recursive function of n variables.

'We use (a.e.) tc denote “almost everywhere”, which for our purposes stands for
“for ail but finitely many inputs”. Similarly (i.0.) stands for “infiritely often”.

Suppose {po, Py, ...} is an acceptable Godel numbering of ;.
A complexity measure [i] @ = {&,, ¥,, ...} is a sequence of functions in P, satisfying

1. Vie N [dom (¢)) = dom (@,)]
2. Aixy [®(x) = y] is a recursive predicate.

If we think of our Géde! numbering in the usual one-tape Turing machine formalism,
then &,(x) = “the number of steps in the computation «f the ith Turing machine
on argument x” is a complexity measure.

Henceforth let @ be some fixed but arbitrary complexity measure. Then we define
for any total function @

F(t) = {ieN|p,e R, and &, < ¢ (a.e)},
and
F () = {plie F(1)}.
That is, F (¢) is the set cf (indices of) total machines which run in time ¢, and F(¢)
is the set of total functions computabl: within time ¢. F () is called a complexity
class.
A sequence of partial functions ¥ = {y,, p,, ...} is said to be an r.e. sequence
of partial functions if ldix [y,(x)]€ P,.
The following theorem of Blum [4] shows that we can effectively uniformly enlarge
complexity classes F (¢) if ¢ is a sufficiently weli-behaved function.

Theorem (Compression Theorem). Thers.is a g € ‘R, such that for every ®,€ R,,
F (D) @ F (Axg (x, P(x)). g is called a vompression function for P.

An operator is a map which takes functions to functions; we write F(f) (x) to
mean the value of the operator F applied to the function f; evaluated at x. An ope-
rator £: D = P — P, is called an effective vperator if there is an se€ 9, such
that F () (x) = @ye)(x) for all ¢, € D,

An effective operator F is total effective if for every fe R,, f is in the domain
of F and F(f)eR,.

3. The embedding theorem

Theorem. Let D be afixed but arbitrary complexity measure. Let F be any total effective
operator, and let R by any recursive countable partial order on N. Then there exists
an r.e. sequence of recursive functions. Py, P,y ..., Pus «-. Stich that if jRk, then F(p) <
Pi (a.e.), and if j and k are incomparable, then F (p,) < p, (i.c.) and F(p) < p;y (i.0.).
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We begin with a sketch of the proof. Qur result follows from a single application
2f the recursion theorem, which constructs the functions {p,},cy simultaneously.
The self-referential character of the construction implies that if p, is total for every k
26n {Pyhen satisfies the theorem.

We start by equipping our construction with a special function which bounds
tire other functions in the partial order. Without loss of generality we take this func-
tion tc be p,. As in Lemma 3 of [9], each p, will be identically equal to zero until p,
has converged on all arguments less than or equal to k. This guarantees that {k| p, non-
total} is finite.

To show thai p, is toinl for :very k we need to deal carefully with the incompara-
bility conditiuns of the theoren.. ‘We list the R-incomparable pairs, and we service the
kth eniry only after the functious associated with the (k— 1)st entry have converged.
By keeping the ‘ncomparability conditions independent of each other in this way,
a minimality acgument is sufficient to show that {k| p, non-total} is actually empty.

Proof. We assume without loss of generality that 0 is the R-greatest element, i.e.,
that Vk # O, kRO.

Let ag = iy, ko), @ = (ig; ky)s ooy @5 = iy, Ky, ... be a recursive listing of all
jncomparable pairs ia R such that if x and y are incomparable, then {x, y) and {y, x)>
both appear infinitely often in the list. As a technical convenience we define max [®] =
0. Let se R, be the s} function of the s-m-n theorem defined by the equation

(Pe((xs ») = ?s(e.x)(y)-

Define ye P, a- follows:
(0 if x < k& or In < k such that Dy, q(n) > x, (1)

‘5‘21‘ [P:te.n() + F (Psce, ) (¥)] + 2 @)
N
[@ste.tn () + F (@see,1,0) ()] +1, (2) (ii)

wheren = um << x [((m = 0)and(x = ko) and (k = ko)) or
p(e,<k. X)) = 1[(m > 0) end (k = k) and [(Vi (0 < i < m))

1 (32, < %) such that {z, = ko) and

(Zi+1 = 74+ Dy 1 )(2))) and (2, = x)]]], if such az n
exists and (1) is not true, and

r;x:x [Psce. () + F Psien) (¥)]+1  otherwise. 3

| JRE

p € P, since all the test computations in clauses (1) and (2) are recursive by the
second complexity measure axiom. By the recursion theorem there is an e such
that y (e, <k, X)) = @k, x)); we apply the s-1-1 version of the s-m-n theorem to
obtain y (e, <k, X)) = 0y 1y(x). To simplify cur notation we now suppress meation
of e and write p(X) = Qge.1)(*). Similarly we write @, (x) for Dy i(x). Our defi-
nition now becomes
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[0 if x < k or In < k such that &, (n) > x, (1)
max [2/x)+F(p) (x)]+ @ O
IRk
() +E(p,) %)), +1 (2) (i

where n=pum < x[((m =0 and (k = ko) and (x = k,)) or
[(m>0) and (k =k,) and [(Vi(0 <i<m))(@z; <x) such
that (2o = ko) and (zi+q = 2+ Dy, (2)) and (z,, = x)]]], if such
an n exists and (1) is not true, and

131::: [p(x)+F(py) (x)]+1 otherwise. ?3)

L JRE

Pilx) = 1

We first establish that at most finitely many of the functions {p,}i.y can be non-
total. Suppose p,(x) diverges. Since p, is defined by (3) at all arguments, p,(x) must
diverge, and so by (1) p,(y) = 0 for all j > x..

We now prove that p, is totai for all k.

Say that a, is serviced at x if p, (x) is defined by (2), and if » is the least m < x
satisfying the body of (2) in the definition of p, (x). We allow the possibility that p, (x)
may diverge. If a, is serviced at x, (2) guarantees that x = z, = k, +"21¢,k‘(z,),

i=
and so g, is serviced at no other argument. Moreover, if a, is serviced at x alnd D (%)
diverges, then for n’ > n, a,, will never be serviced, since a, is cerviced at y only
when y bounds the coraputaiion of ¢,,kn(x).

Let k be an R-minimal element in the finite set {k'| p, non-total}. Then if p,(x)
diverges, it must do so because of (2) (ii). That is, a, is serviced at x for some n,
and p, must be non-total.

But suppose p; () diverges by an instance of (2) (ii) for some y. This means that
i, = k; for some j and a; is serviced at y. If j < n, ther y must equal z,, but since a,
is serviced at x, @ ,,kl(zﬂ) < x and hence p,‘!(z_,) must converge. If j > n, then since a,
is serviced at x and py(x) is assumed to diverge, a, is never serviced. Moreover j
cannot equal n, for then i, would squal k,. Hence p; must be non-total because
of (2) (i) or (3), and so some function p,» such thkat i'Ri, is non-total.

Let i be R-minimal among {i’| i'R i, and i’ non-total}. Then p, must be non-total
by an instance of (2) (ii), say at argument y. Hence i = k; for some j, and a; must

=1
be serviced at y = z, = ko+ Zo%,‘w(z,,,). If j < n, p(y) must converge since a,
i

is serviced at x by assumption; and if j = n, then i, and k, are equal, a contradiciion.

Furtaermore if j > n, then g; will never be serviced. Hence p, is total, and we
con«l«de that p, s ¥, for every k.

If jRE, then F(p))(z) < pz) for all z 2 mg = max [k, j, @, (0), ¥, (1), ..,
@, (k1)1

If j and k arc incomparable, then {j, k) = a,, @5, ..., @y - for some infinite
sequence ng < My < Hy oo < My < we
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" For arguments z > ntg, pu(2) is definec by (2) or (3). Since the sequence of z,’s
is strictly increasing, there is an i, such that for i > iy, z; = m,. At those argu-
ments z, for i > iy, i = n,, py(z;) will be dz=fined by clause (2) and p,(z;) > F(p;) (z)).
A symmetric argvment shows that p; > F(p,) (i.0.), and the theorem is proved.

Coollary, Let @ be a fixed but arbitrary complexity measure. Let F be any totul
~Hfective operator, and let R be any countable partial order on N. Then there exisis
an r.e. sequence of recursive measure functions @y, Ppcyys --- Sich that if jRk, then
F(D.;)) < Dy (a.e.) and F(F (Poiy)) G F (Prry), and if j and k are incomparable,
then F (®y;) < Dy (i-0), and E (Do) < Py (i0.).

Proof. Mostowski [11] has shown that there is a countable partial order R* into
which any countable partial order may be embedded. Morzover, Sacks [13] has
shown that R* is recursive.

We assume \.ithout loss of generality that F is at least as large as the identity
operator, and that the compression furction, g, for @ is strictly increasing in its
second argument. Blum [4] has shown that there is an /% € ‘¥, such that for all i it
is the case that ¢,(x) < A (x, D,(x)) (a.c.). We assume that h is strictly increasing
in its second argument. To prove the corollary, apply the theorem to R*, rewrite
clause (2) as

max [pix)+h (x, g (x, F (D) O]+ [P0, (*) + b (x, g (x, E (D) GN]+ 1,

JRE
and we rewrite clause (3) as
max [p,(x)+h (v, g (x, £ (2,) N]+1.

JRk

It is easy to see that the theorem goes through as before, and the monotonicity
restrictions on g and » guarantee that the functions {@,, },.y satisfy the corollary.

4. Relation to other work, and open problems

McCreight [5] is the first investigator to prove an embedding theorem for sub-
recursive classes. He shows that any countable partial order can be embeddec. in
the complexity classes ordered under set inclusion. However, his theorein is weaker
than our results in that the functions of his partial order are “separated” by compo-
ition with a fixed recursive function, whereas our functions are separated by a total
effective operator. In [6] Enderton also proves a univers:l embedding theorem
for subrecursive classes. His notion of a subrecursive class is quite weak, however,
and his result is an immedizte corollary of McCreight’s theorem.

Early work on the structv-e of subrecursive classes was done by Feferman (71,
Meyer and Ritchie [10], ard Basu [3]. Feferman shows that dense chains exist
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for various notions of subrecursive classes. Meyer and Riichie define what they call
elementary honest classes, and they show the 2xistence of dznse chains and infinite
anti-chains for such classes. Moreover, they are able to exhibit certain functions f
such that dense chains of classes will exist between f and the iterate of £, Ax [f*)(x)].
Basu builds dense chains of subrecursive classes, where these classcs are closed
under the application of a fixed recursive operator.

Machtey [8] has announced universal embedding theorems for both the “honest”
primitive recursive degrees and the “dishonest” primitive recursive degrees. Both
of these theorems follow immediately from our results.

We also note that Alton [1,2] has independently established our embedding
theorsm.

We leave open the question of the size of the functions in our embedding theorem.
That is, given F, what is a reasonable upper bound on the size of p, in terms of F
(recall that p, bounds all the functions {p;};x on all arguments).

The author wishes to acknowledge the gencrous assistance of Professor Albert
R. Meyer in the conception and preparaticn of this paper.

Refercnces

[1] D. Alton, Diversity of speed-ups and embeddability in computational complexity, J. Sym-
bolic Leogic (to appear).
{2] D. Alton, Operator embeddability in computational complexity, Notices Am. Math. Soc.
(1972) A-763.
{31 S. K. Basu, On classes of computable functions, ACM Symp. on Theory of Computing (1969)
55-61.
{4] M. Blum, A machine-independent theory of the complexity of recursive functions, J. ACM 14
(1967) 332-336.
[5] E. McCreight, Clzsses of computable functions defined by bounds on computation, Doctoral
Disser:ation, Department of Computer Science, Carnegie-Mellon University (1969).
[6] H. Bnderton, Degrees of computational complexity, J. Comput. System Sci. 6 (1972) 389-396.
{71 S. Feferman, Classifications of recursive functions by means of hierarchies, Trans. Am.
Math. Soc. 104 (1962) 101-122.
[8] M. Machtey, Augmented loop languages and classes of computable functions, J. Comput.
System Sci. 6 (1972) 603-624.
{91 A. Meyer and P. Fischer, Computational speed-u; by effective operators, J. Symbolic Log-
ic 37 (1972) 55-68.
[10] A. Meyer and D. Ritchie, Classification of functions by computational compiexity, Proc.
of the Hawaii Internl. Conf. on Sys. Sciences (1968) 17-19.
{11] A. Mostowski, Uber gewisse universelie Relationen, Ann. Polon. Math. 17 (1938)
117-118.
{12] H. Rogers, Jr., Theory of Recursive Functlons and Effective Computability (McGraw-Hill,
New York, 1967).

{13] G. Sacks, Degrees of Unsoivability, Annals of Math. Studies, No. 55 (Am. Math. Soc.,
Princeton, N.J., 1963).



