Appendix A: Report on the First International Clobber Tournament

J.P. Grossman
Department of Mathematics and Statistics, Dalhousie University, Halifax, Canada B3H 3 J5

Received 5 July 2002; received in revised form 29 April 2003; accepted 29 April 2003

1. Introduction

Clobber is a new game that was introduced at the 2002 Dagstuhl seminar on Algorithmic and Combinatorial Game Theory [1]. The seminar featured a clobber tournament in which 26 players from a various countries vied for the title of Clobber World Champion. After four rounds of play, the two finalists were Jiri Sgall and Tomás Tichý, both of the Czech Republic. In the following sections we present, with commentary, the games played in their best-of-three match.

All games were played on a 5×6 board starting with the checkerboard pattern shown in Fig. 1. We use ' x ' to denote a black stone and ' o ' to denote a white stone; by convention black moves first and is Left for the purpose of computing game values. A player moves by picking up one of their own stones and "clobbering" an adjacent stone (horizontally or vertically) of the opposite colour. The clobbered stone is removed and replaced with the one that was moved. The last player to move wins the game.

2. Game 1

Jiri Tomáš

1.	$\mathrm{f} 2-\mathrm{e} 2$	$\mathrm{~d} 5-\mathrm{d} 4$
2.	$\mathrm{c} 1-\mathrm{c} 2$	$\mathrm{~b} 3-\mathrm{c} 3$ (diagram)

White begins to form a potentially strong group of stones in the center. 3. a5-b5 d1-d2? (diagram)

[^0]> 5 xoxoxo
> 4 oxoxox
> 3 xoxoxo
> 2 oxoxox
> 1 xoxoxo
> abcdef

Fig. 1. Initial position.
$\mathrm{f3}-\mathrm{e} 3$ is a better way to strengthen the center group; $\mathrm{d} 1-\mathrm{d} 2$ isolates the white stone on fl and gives black the opportunity to move the stone on e3. Alternately, e4-f4 creates a \downarrow in the top right corner by isolating the black stone on e5. Computer analysis shows that either of these moves is winning, whereas $\mathrm{d} 1-\mathrm{d} 2$ is not.

4. e3-f3 d2-c2?? (diagram) e3-f3 was not a winning move, but d2-c2 creates an \uparrow in the bottom right corner, which is very good for black.	xx xo	xx
	4 oxooox	4 ooo
	3 x 00	3 x oo
	2 oxo	2×0
	xo xo	$1 \mathrm{xo} x \mathrm{o}$
	abcdef	abcdef

5. b2-a2! a4-b4?? (diagram)

After 4. ... d2-c2??
After 5. ... a4-b4??

Black creates another \uparrow in the bottom left corner, and white again assists black by turning it into a $\Uparrow *$. The game is essentially over at this point.
6. e5-e4 f5-f4
7. e4-f4 (diagram)

The game has decomposed into components with values $\Uparrow *$ (bottom left), 0 (centre), 0 (right) and \uparrow (bottom right).
7. ... b1-a1
8. a2-a1 c4-c5
9. b5-b4 f1-e1
10. e2-e1 black wins

5 xx
4 ooo x
3 x oo x
2 x o x
1 xox xo abcdef

After 7. e4-f4

3. Game 2

Tomáš Jiri

		5	xX x 0	5	XX 00
1. c1-c2	a4-b4	4	OOOOX	4	OOO x
2. b2-b3	d5-d4	3	x X X O ${ }^{\text {o }}$	3	xxxx o
3. a5-b5	d1-d2 (diagram)	2	o xoox	2	0 xoox
		1	xox x	1	xox -
Computer	lysis shows that black's		abcdef		abcdef

After 3. ... d1-d2 After 4. ... e4-e5?
4. e3-d3 e4-e5? (diagram)
e4-f4 is a stronger move as it creates a \downarrow in the top right corner.
5. f4-f3

This seems like a good move as it capitalizes on White's mistake by removing two white stones from play. But f2-e2 and f2-f1 are both stronger moves as they create an $\uparrow *$ in the top right corner. Alternately, a3-a2 creates an \uparrow in the bottom left corner. All three of these moves are winning, whereas $\mathrm{f} 4-\mathrm{f} 3$ is not.
5. ... f1-f2
6. e1-e2 d2-e2 (diagram)

This looks like a good move as it creates

5	xX 00	5	xX 00
4	OOO	4	Oo
3	$\mathrm{xXXXX}^{\text {x }}$	3	OXX X
2	0 X 00	2	x X 00
1	x o	1	x 0
	abcdef		abcdef

After 6. ... d2-e2 After 7. ... b4-b3
7. a3-a2! b4-b3 (diagram)
8. c3-b3??

A blunder, which quickly loses to c4-c5 (by symmetry). Correct is c5-c4.
8. ... b1-al
9. f3-f2 (diagram)

White still has an easy win with c4-c5.
$5 \quad \mathrm{xx}$ oo a \downarrow, but black can counter with a3-a2, creating an \uparrow and leaving a position in the center which is a second player win. abcdef abcdef

Unfortunately, white somehow missed this move and thought that the game was lost.

400
3 x x
2 x x ox
1 o abcdef

After 9.f3-f2
9. ... resigns??

4. Game 3

Jiri Tomás

1. f2-e2 f3-e3
2. d4-c4 (diagram)

This is a weak move as it allows white to create an \uparrow with e4-e5.
2. ... b5-b4
3. $\mathrm{b} 2-\mathrm{c} 2 \mathrm{~b} 3-\mathrm{c} 3$
4. a5-a4 b4-c4 (diagram)

White is threatening d5-e5! Computer analysis shows that black's only winning move is e5-e4.
5. d2-d1 b1-c1! (diagram)

White has created a $\downarrow *$ in the bottom left corner.
6. c5-d5 e4-e5
7. a1-a2 c1-d1 (diagram)
8. c2-c3 c4-c3
9. resigns

xoxoxo	5		xoxo
4 oxx ox	4	x	o ox
3 xoxoo	3	x	ooo
oxoxx	2	o	xxx
1 xoxoxo	1	x	xoxo
abcdef			cdef

After 2. d4-c4
After 4. ... b4-c4

5		xoxo	5			oo
4	x	o ox	4	x	o	x
3	x	ooo	3	x	oo	
2	o	x x	2	x	x	x
1	x	oxxo	1			x 0

abcdef abcdef

The position has value \Downarrow and is easily played by white, so black is wise to resign.

5. Discussion

Tomás Tichý is the current Clobber World Champion after very nearly losing the match in Game 2 to Jiri, who mistakenly resigned from a winning position. It is clear from the games that a basic knowledge of game-theoretic values is of great assistance in the middle- and end-game. At the start of the game the position has not yet begun to decompose, and players must rely on other principles to guide their choice of moves. One fairly successful strategy that was independently discovered by many players in the tournament is to try to group stones together in mutually protective arrangements. Beyond this, however, little is known regarding what constitutes "good" play towards the beginning of a game.

The 5×6 board was chosen to be large enough to be interesting yet small enough to be accessible to complete beginners and also to allow for shorter games. Since the tournament, however, computer analysis has determined that this game is a second

Table 1
Perfect-play outcomes for rectangular boards up to 5×6

Board	Outcome
$6 \times n(n=1,2,3,4,5)$	2nd player win
$5 \times 5($ both configurations $)$	2nd player win
$5 \times n(n=2,3$ (both configurations), 4)	1 st player win
xoxox $(x$ moves first)	o wins
oxoxo (x moves first)	x wins
4×4	1 st player win
4×3	2 2nd player win
4×2	1 st player win
4×1	1 st player win
3×3 (both configurations)	1 st player win
3×2	2 nd player win
3×1 (both configurations)	1 st player win
2×2	1 st player win
2×1	1 st player win

player win. This makes the 5×6 board somewhat less appealing; 8×8 or larger would be more appropriate for future tournaments. Table 1 lists the perfect-play outcomes for all rectangular board sizes up to 5×6. In each case the initial configuration is a checkerboard pattern; note that for $\operatorname{od} d \times$ odd boards there are two initial configurations (which, as it turns out, only affects the outcome in the 5×1 case).

References

[1] J.P. Grossman, Richard Nowakowski, Michael Albert, David Wolfe, An Introduction to Clobber, in preparation.

[^0]: E-mail address: jpg@ai.mit.edu (J.P. Grossman).

