
Theoretical Computer Science 92 (1992) 191-211

Elsevier

191

Approximate string-matching
with q-grams and maximal
matches*

Esko Ukkonen
Department of’ Computer Science, UnicersitF of Helsinki. Teollisuuskatu 23, SF-00510 Helsinki,

Finland

Abstract

Ukkonen, E., Approximate string-matching with q-grams and maximal matches, Theoretical Com-

puter Science 92 (1992) 191-211.

We study approximate string-matching in connection with two string distance functions that are

computable in linear time. The first function is based on the so-called q-grams. An algorithm is given

for the associated string-matching problem that finds the locally best approximate occurrences of

pattern P, IPI = m, in text T, 1 TI = n, in time O(n log@-q)). The occurrences with distance <k can

be found in time O(nlog k). The other distance function is based on finding maximal common

substrings and allows a form of approximate string-matching in time O(n). Both distances give

a lower bound for the edit distance (in the unit cost model), which leads to fast hybrid algorithms for
the edit distance based string-matching.

1. Introduction

The approximate string-matching problem is to find the approximate occurrences of

a pattern string P in a text string T [6,8]. The approximation quality can be measured

with different string distance functions. Recently, the version of the problem that is

based on the edit distance has received lot of attention [2, 9, 10, 14, 15, 21, 22, 241.

In this paper we study the approximate string-matching in connection with two

other distance measures. The first measure is based on the so-called q-grams and the

second measure on the intuition that if two strings are close to each other then they

must have long matching substrings. Our main motivation is to find alternatives to

*This work was supported by the Academy of Finland and by the Alexander von Humboldt Foundation

(Germany). The work was done during the author’s visit to the Institut fur Informatik, University of

Freiburg, Rheinstrasse 10-12, D-7800 Freiburg, Germany.

0304-3975/92/$05.00 6 1992-Elsevier Science Publishers B.V. All rights reserved

192 E. Ukkonen

the edit distance because it leads to dynamic programming that is often relatively slow.

In fact, computing the edit distance between strings A and B needs time O(1 A 1 IBI)

in the worst case while the two other distances are computable in linear time in

I A / + 1 BI. This suggests that also the approximate string-matching problem could be

solved faster for the two other measures than for the edit distance. It turns out that

this is really the case.

The q-grams (“n-grams”) are simply substrings of length q; the concept dates back

to Shannon [20]. They have been applied, in many variations, e.g. in different spelling

correction methods. Such systems typically preprocess the text (which represents

a static dictionary) to make the subsequent searches for “correct” words faster

[13, 181. In Section 2 we study some properties of a q-gram based string distance

measure. In Section 3 we give algorithms for different string-matching problems that

are based on this measure. For finding the approximate occurrences of P in T that are

locally the best ones according to the q-gram distance, we give a solution with running

time 0(I TI log 1 PI -q)). For the threshold version of the problem, in which one wants

to find the occurrences with a distance <k, an algorithm with running time

0(I TI log k) is given. We only deal with the case without text preprocessing.

The second measure for string distance is defined as the minimum number of

characters that have to be removed from one string such that the remaining fragments

occur as substrings in the other string [7]. In Section 4 a corresponding approximate

string-matching problem is defined and solution algorithms are studied.

The final Section 5 points out some important connections to the edit distance

based string-matching. We show that the two string distance measures studied in

Sections 2, 3, and 4 provide nontrivial lower bounds on the unit cost edit distance of

approximate occurrences of P in T. This leads to the following scheme for solving the

k differences problem (the problem of finding the substrings of T such that the unit

cost edit distance between the substring and P is 6 k, where k is a given threshold

value): Compute at each text location i the lower bound for the edit distance between

P and the potential occurrence of P that ends at i. At the locations where the bound

is d k, check by some dynamic programming method whether or not there really is an

occurrence with at most k differences ending at that location. The dynamic program-

ming can skip over the locations with bound > k.

Methods of this type are expected to be very fast in practice because the lower

bounds can be computed in time 0(I Tl), and because the dynamic programming can

be largely avoided, at least when k is relatively small. Other algorithms with similar

hybrid structure have recently been proposed in [2, 10, 211.

2.. The q-gram distance

The first string-distance measure is based on counting the number of the occur-

rences of different q-grams in the two strings; the strings are the closer relatives the

more they have q-grams in common.

Approximate string-matching with q-grams and maximal matches 193

Let Z be a finite alphabet, and let C* denote the set of all strings over C and Cq all

strings of length q over C, for q = 1, 2, . . . A q-gram is any string u=a1u2 . . . a4 in zq.

Definition. Let x= ui az . . . a,, be a string in Z*, and let u in Cq be a q-gram. If

aiUi+l...Ui+qpl- --2j for some i, then x has an occurrence of v. Let G(x)[v] denote

the total number of the occurrences of u in x. The q-gram projile of x is the vector

G,(x)=(G(x)[u]), OCC~.

The distance between two strings is defined as the L1 norm of the difference of their

q-gram profiles.

Definition. Let x, y be strings in C *, and let q > 0 be an integer. The q-gram distance

between x and y is

(1)

Example. Let x-01000 and y=OOllll be strings in the binary alphabet. Their

2-gram profiles are, listed in the lexicographical order of the 2-grams, (2,1,1,0) and

(1, l,O, 3) and their 2-gram distance is 5.

It is an easy exercise to prove the following properties of the q-gram distance. The

length of a string x is denoted 1x1.

Theorem 2.1. For all x, y, z in C*,

(i) D,(x, y) = D,(y, x);

(ii) D,(x, 4’) d D,(x, 4 + D,k Y);

(iii) I(lxlL(q- l))-_(lylL(q- 1))l dDq(x,y)<(lxIL(q- l))+(lylL(q--l)h
where r 1 s = max(O, r-s);

(iv) Dq(x1x2, yly2)~Dq(x1,y1)+Dq(x2, y2)+2(q- 1);
(v) If h is a non-length-increasing homomorphism on ,I*, then D,(h(x), h(y))<

Dqk 4’).

By the properties (i) and (ii), the q-gram distance is a pseudometric. It is not a metric

as D,(x, y) can be 0 even if x # y. This is the case if x and y have identical q-gram

profiles.

Let x be a string and qdlxl. Let Z,(x)={y~z*: D,(x, y)=O} be the set of strings

with the same q-gram profile as x. The next theorem gives a few observations on the

structure of Z,(x); the proof is left to the reader.

Theorem 2.2. (i) Let x=a,az... u, for some a, in C. Then Z1 (x) consists of all permuta-

tions of aI, a2 ,... ,an.

(ii) All strings in Z,(x) are of length 1x1.

(iii) If x contains at most one occurrence of each (q - 1)-gram then I Z,(x)/ = 1.

194 E. Ukkonen

Given a string y in Z,(x), a new string in Z,(x) can be found by either of the

following two transformations on y:

1. (transposition) If y can be written as y=ylzly,zzy,z,y,z,y, for some (q-l)-

grams z1 and z2 and for some strings yl,..., y5, then the string y,z,y,z2y,z,y,zzy,

where y2 and y, have changed places, is also in Z,(x). If y=y,zy2zy3zy,, where z is

a (q- 1)-gram, then also ylzy3zy2zy, is in Z,(x).

2. (rotation) If y can be written as y = z1 y, z2 y,z, for some (q - 1)-grams z1 and z2 and

for some strings y, and y,, then also z2y2z1y1z2 is in Z,(x).

A large part of Z,(x) can obviously be generated from x by repeatedly applying

rules 1 and 2. Whether or not it is possible to generate the whole Z,(x) in this way

remains open.

It is not difficult to see that D,(x, y) can be evaluated in time linear in 1x1 and 1 yl.

The main task is to compute fast the nonzero part of the q-gram profiles of x and y.

We will present two alternative methods, both based on well-known techniques.

First method. In general we can not assume that a q-gram u as such could serve as

an index. Rather, we need an encoding of v as an integer. A natural encoding is to

interpret v directly as a c-ary integer, where c = 1 C I.

Let u=blb2...bq, and let JE={Ao,A1,...,A,_l}. Then the integer code of the

q-gram u is

ij=&cq-1+b”2cq-2+ . . . +b”,co,

where &=j if bi=Aj. Then, let x=ul . ..a., and let Ui=Ui...Ui+q_,, 1 <i<n-q+ 1, be

the q-grams of x. Obviously,

Ui+,=(u’i-a”i’C’~l).C+d,+q. (2)

By setting d1 =C~=l&~qPi and then applying (2) for 1 didn-q we get the integer

codes for all q-grams of x (cf. [12]). Simultaneously, we count the number of the

.occurrences of each q-gram in an array G [0 : cq - l] by setting G [ai] + G [ai] + 1 for all

i. At the end G[v”] = G(x)[r] for each q-gram v. Moreover, we create a list L of codes

that really occur in x. Assuming that each application of (2) takes constant time (this

holds true at least for small c and q), the total time for computing G and L is 0(I x I).

Let us denote these G and L as G1 and Ll.

Similarly, we get G = G2 and L = L, for a string y in time 0(I y I).

Now (1) gets the form D,(x, Y)=C~~~,+~, I Cl [i?] - G2 [o”] I which, obviously, can be

evaluated in time O(lxl+lyJ).

Theorem 2.3. The q-gram distance D,(x, y) can be evaluated in time 0(I x I + 1 y I) and in

space WW+lxl+l~O.

The 0(I C 1”) space requirement for tables Cl and G2 can, for large C and q, limit the

applicability of this very simple algorithm. As only at most Ix I + j y I - 2(q - 1) elements

of tables Gl and G2 are active and hence the tables are often sparse, their space

requirement can be reduced by standard hashing techniques without increasing the

(expected) running time of the method.

Approximate string-matching with q-grams and maximal matches 195

Second method. Next we represent a space-efficient but more complicated method

that does not use hashing or integer arithmetic. The method codes only the relevant

q-grams with small numbers, that are found using suffix automata [l, 41; suffix trees

[26, 171 could be used as well.

Let Gr(x) be the set of different q-grams of x. Equation (1) can be written as

D&Y)= 1 W~C~I-G(Y)C~II+ c G(y)Cul. (3)
U’E G?-(x) YED - Gr(x)

For evaluating D,(x, y) it therefore suffices to know the q-gram profile of x and

y restricted to Gr(x), and the total number of q-gram occurrences of y such that the

corresponding q-gram does not occur in x.

Let Gr(x)={~;i,..., vI}. For each q-gram u in Cq, the code of v with respect to x is

2; = i, if v = Ui, and V= 0, otherwise. Hence, there are r + 1~ 1 x 1 -q + 2 different codes.

The codes with respect to x for the q-grams of any string can be found by scanning

the string with a modified suffix automaton for x. We first recall some properties of

suffix automata. The suffix automaton SA(x) for x is a minimal deterministic finite-

state automaton recognizing all the suffixes of x, extended with some extra transitions.

It consists of initial state (Start), other states, the goto function defining the goto

transitions between the states on different symbols in C, and thefail function defining

a fail transition for each state different from the start state.

The extra transitions include goto(Sturt, u)=Start for each a in C that does not

appear in x, and all thefuil transitions. A fail transition is followed if the current state

has no goto transition on the next input symbol; such a transition does not consume

any input symbol. The extra transitions extend the language accepted such that SA(x)

accepts all strings yz, where z is a nonempty suffix of x. Hence, M(x) has the next

property.

Lemma 2.4. If SA(x) is in state s after scanning a string u then s = goto(Sturt, z), where

string z is the longest st@x of u that is also u factor (substring) of x.

For each state s, depth(s) denotes the length of the longest acyclic goto path in SA(x)

from Start to s. Thefizil transitions have the following property.

Lemma 2.5 (Crochemore [S]). Let y be a substring of x, and let s be a state of

SA(x), s#Sturt, such that goto(Start, y)=s. Let w be the longest @ix of y such that

s #goto(Start, w). Then, goto(Sturt, w) =fuil(s) and 1 w I = depth(fail(s)).

Crochemore [S] (also [l]) gives an algorithm that constructs SA(x) in time and in

space O(lxll~O.
Next we modify SA(x) such that when it scans a string b, bz . . b,, it outputs the

codes W,, W2, KI,,_~+~ with respect to x for the q-grams wt=bibi+l ...bi+q_l. The

resulting automaton is denoted SA,(x).

196 E. Ukkonen

Let s and z be as in Lemma 2.4. We call d = IzI the depth of the execution at s. The

depth depends on the string scanned and is not determined only by s as there can be

several goto paths of different lengths from Start to s.

To get SA,(x), we change the execution of SA(x) such that the depth d is as large as

possible but stays 6 q. Assume that d d q at state s. If d = q, we reduce d to q - 1 before

reading the next input symbol. This is done as follows: If depth(fail(s))=q- 1, then

d is reduced to q - 1 by taking the fail transition from s. Otherwise, we know by

Lemma 2.5 that both goto(Start, z) = s and goto(Start, z’) = s, where z is the q charac-

ters long suffix of the scanned string and z’ is the q- 1 characters long suffix of z.

Hence, we can adopt depth d = q - 1 at state s as well (in a way, we just ignore the first

symbol of z). After this the next input symbol is processed normally (follow fail

transitions until a state with a goto transition for the next input is entered, then take

this goto transition), which increases d at most by one. Hence, the depth of the

execution is dq also in the new state entered by reading the next input.

Algorithm 2.6 gives the modified form of the execution.

Algorithm 2.6 The execution of SA,(x) for input b, b2.. . b,.

1. s+-Start; d+O;

2. for i+l,...,m do

3. if depth(fuil(s)) = q - 1 then

s+fail(s); d+q- 1

4. else if d =q then dtq- 1

5. while goto(s, hi) undefined do

stfail(s); d+depth(s)

6. stgoto(s, bi)

7. if s=Start then d+O else d+d+ 1

8. if i>q then output(code(s))

9. enddo

Automaton SA,(x) behaves as described by Algorithm 2.6. It satisfies (as can be

proved by induction) the following counterpart of Lemma 2.4.

Lemma 2.7. If SA,(x) is in a state s after scanning a string u then s=goto(Start,z),

where z is the longest suffix of length <q of u that is also a factor of x. Moreover, the

execution depth d equals IzI at s.

By the lemma, whenever SA,(x) is in a state s and d equals q, an occurrence of the

unique q-gram z of x such that goto(Start, z) = s has been recognized; note that the

(unmodified) SA(x) can be in different states after scanning z, depending on the left

context of z. Hence, SA,(x) should output the code of z, stored in code(s) (line 8 of

Algorithm 2.6). The code fields (they are not present in SA(x)) are set by scanning

string x itself by SA,(x). When a state s is entered with execution depth d = q, the next

Approximate string-matching with q-grams and maximal matches 197

free code number from 1,2, . , Y is assigned to code(s) if code(s) has not been defined

yet. All states s that do not get a code value in this way finally get code(s)=O.

Let ui be the ith q-gram of X, in the left-to-right order of the first occurrence of the

q-grams in x. Then, obviously, the above procedure gives to Ui the code q=i, as

COdf?(gOtO(StLWt, tli))=i.

Distance D,(x, y) can now be evaluated by Algorithm 2.8.

Algorithm 2.8 Evaluation of D,(x, y) with SA,(x).

Construct SA,(x).

Evaluate an array G1 [1 : r] representing the q-gram profile of x: scan x with SA,

and accumulate the distribution of the q-gram codes of x into G1 such that finally

for each oEGr(x), Gl[CJ = G(x)[v].

Evaluate an array Gz[O:r] representing the q-gram profile of y, restricted to the

q-grams of x: scan y with SA,(x) and accumulate the distribution of the q-gram

codes of y into G2 such that finally for each ucGr(x), Gz[C] = G(y)[u], and G,[O]

equals the total number of q-grams in y that do not occur in x.

Evaluate D,(x, y) from (3): D,(x, y) = II= 1 1 Cl [i] - G2 [i] I + G2 [O].

Step 1 of Algorithm 2.8 takes time and space 0(1x1 IZ I). Step 2 needs time

0(1x1) and step 3 time O(lyi). Step 4 requires time 0(1x1) as r=O(lxl).

Theorem 2.9. Algorithm 2.8 evaluates the q-gram distance D,(x, y) in time

O(lxllCl+lyl) and in space O(lxllCl).

If the transitions of the automaton SA,(x) in Algorithm 2.8 have to be implemented

as a balanced search tree at each state instead of direct indexing over C, then the time

bound in Theorem 2.9 becomes 0((Ix I + I yl) log ICI) and the space bound

Wxl log ICI).

3. String-matching with the q-gram distance

In this section we consider the problem of finding the approximate occurrences of

a pattern in a text when the approximation quality is measured with the q-gram

distance.

Definition. Let T= tl t2.. t, be the text and P =pIp2.. pm the pattern, and let q be an

integer, O<q<m. Both T and P are strings in the alphabet C. Let di be the minimum

q-gram distance between P and the substrings of T ending at ti, i.e.

di=min, sjsi+ 1 di(j), where di(j)=D,(P, tj . . ti). Moreover, let Si be the starting

location of the longest substring of T that gives di, i.e. Si is the smallest j such that

198 E. Ukkonen

di= di(j), 1 <j< i+ 1. (The requirement of the longest string is only to make the

problem well-defined; we could require the shortest string as well.) The approximate

string-matching problem with the q-gram distance is to find (di, si) for 1 <i< n.

The following simple properties of di and Si are useful. First, we have

Oddidm-q+l (4)

as the q-gram distance is nonnegative by definition, and di(i-q+2)= m-q+ 1

because t._ , 4+ 2.. ti contains no q-grams but P contains m-q + 1 of them. Moreover,

i-2m+q<Si<i-q+2. (5)

The upper bound holds true because always di(j)=m-q+ 1 for i-q +2< j< i+ 1,

and Si is the smallest starting point of a substring giving di. For the lower bound, we

note first that tj . ti contains more than 2m - 2q + 2 q-grams whenj < i - 2m + q. More

than m-q + 1 of them can not occur in P because P has only (m-q + 1)

q-grams. Therefore, di(j)>m-q+l when j<i-2m+q. On the other hand,

di(i-q+2)=m-q+ 1, and the lower bound follows.

To evaluate di it suffices by (5) to find the minimum of d,(j) for

i - 2m + q d j d i-q + 2. These values di(j) clearly satisfy the recursion.

[di(j)- 1 if th e number of the occurrences of the

di(j- 1)~
i

q-gram U=tj_1...tj+q-2 in tj...ti

is < G(P) [t’],

1 di(j) + 1 otherwise,

where the starting value is given by di(i - q + 2) = m - q + 1. This rule simply says that

the q-gram v at tj-1 makes the distance di(j- 1) smaller (compared to di(j)) if the

number of the occurrences of v in t , . . . ti is not as large as in P; otherwise, v makes the

distance larger.

In (6) we need to know for every q-gram v of T whether or not v occurs in P. This

information is provided by scanning T with the automaton SA,(P), whose construc-

tion was described in Section 2.

Let the different q-grams of P be wi, w2, . . . , wM, in the order of the first occurrence

in P. When SAJP) has scanned w,,, it outputs code h. A q-gram not in P gets code 0.

We denote by Sj the code of the q-gram tjtj+ 1 . . t,j+4_ 1 (the jth q-gram of T),

l<j<n-q+l.

The q-gram profile G,(P) of P is represented as a table G[O: M] such that

G[O] =0 and for h>O, G[h] =G(P)[w,]. The construction of SA,(P) also pro-

duces table G.

Algorithm 3.1 is a straightforward implementation of recursion (6) for computing

(di, Si). The algorithm uses table C[O : M] for counting the occurrences of the q-grams

Of P in tj . . . ti for j = i-q + 1, . , i - 2m + q. Function Scan makes SA,(P) to scan the

Approximate string-matching with q-grams and maximal matches 199

next text symbol ti and to return the code of the q-gram ending at ti; if i<q, then the

automaton returns 0.

Algorithm 3.1 Evaluation of (di, si), 1 d idn, for text T= tI . t, and pattern

P=p, . ..pm.

1. Construct automaton SA,(P) and q-gram profile G[O: M] (= G,(P))

2. for it1 -q downto 1-2m+q do Tic0

3. for icl,...,n do

4. dtD+m-qf 1

5. C[O:M]tO; St0

6. Ti-,+,tSCUn(SA,(P), ti)

7. forjti-q+ 1 downto i-2m+q do

8. if C[Tj] <G [rj] then

9. dtd- 1; C[tj]cC[Tj] + 1

10. else dtd+ 1

11. if d<D then

12. S+j; D+d

13. enddo

14. (di, si)-(0, S)

15. enddo

Theorem 3.2. Gitlen u puttern P of length m, a text T of length n, and an integer q>O,

Algorithm 3.1 solves the approximate string-matching problem with the q-gram distance

function in time O(mlZl),f p p or re recessing P, and in time 0((m - q)n) for processing T.

The algorithm needs working space O(mlZl).

Proof. The construction of SA,(P) and G[O: M] (line 1) takes time O(mlZl) by the

methods of Section 2. The time for each repetition of the main loop (lines 3315) is

dominated by the initialization of array C, which takes time O(m-q) because

M d m - q + 1, and by the loop (lines 7713) which takes time O(m - q), too. Hence, the

total running time is O((m-q)n) for the main loop; this includes the total time O(n) for

scanning T (line 6). Time O(m1.Z 1 +(m-q)n) for the whole algorithm follows.

A working space of O(miZl) is needed for SA,(P) and O(m) for tables G and C.

Codes Tj seemingly require O(n) space. Fortunately, for each i the code Tj is needed

only for i - 2m + q <j< i - q + 1 (the 2(m - q + 1) latest values). Hence, a buffer of size

O(m) suffices for storing the relevant values TV. q

.Next we develop a method, based on balanced search trees, that implements the

innermost minimization loop (lines 7713) of Algorithm 3.1 in time O(log(m- q)).

We write (6) as

di(j-l)=di(j)+hi(j-l),

200 E. Ukkonen

where hi(j- 1) is + 1 or - 1, as explained in (6). Then solving (6) gives

di(j)=m-q-t 1 +Hi(j), where Hi(j)=CiZ4” hi(k). TO find di we have to find the

minimum of the values Hi(j), i-2m+q<jdi-q+l, for i=l,2,n. We will do

this by maintaining a balanced binary search tree.

At the moment when the minimal Hi(j) can be read from the tree for some i, the tree

has 2(m-q+ 1) leaves, that represent, from left-to-right, the numbers hi(j),

i-2m+q<jd i-q+ 1. Hence, the leftmost leaf stores hi(i-2m+q), the rightmost leaf

stores hi(i- q + l), and the leaves of the subtree rooted at some node v store an interval

of values h,(j).

Each node v has the normal llink, rlink and father fields. An explicit search key is not

needed; logically the key for a leaf ;(storing h;(j) is j. A direct access to i is given by

-@f(j).
Node v has also three special fields: sum, min, and minindex. They are defined as

follows. Assume that the leaves of the subtree rooted at v are nodes Leaf(j), j, ,< j< j,

for some j, <j,. Then

sum(v)= i hi(j)
j=jl

min(v) = (7)

1 minindex(v) = smallest k, j, < k < j, + 1, that gives min (v) above.

Hence, sum stores the total sum of the values hi(j) in the leaves of the subtree, min

stores the smallest partial sum of these values when summed up from right to left, and

minindex stores the left end point of the longest interval giving the smallest sum.

Given the sum, min, and minindex values for nodes v* = rlink(v) and vI = l/ink(v) that

satisfy (7), it is immediate that the following rules give these values for v such that (7) is

again satisfied.

r sum(v) = sum(v,) + sum(v,)

’ min(v) = min(sum(v,) + min(v[), min(v?))

minindex(v) = if sum(v,) + min(vJ <min(v,) then

minindex(v,) else minindex(v,).

(8)

With rule (8) bottom-up building and updating of the tree is possible in constant time

per node.

The root (Root) of the tree satisfying (7) gives the information we need, because

min(Root)=min{Hi(j): 1-2m+q< j<i-q+ l}. Hence, d,=m-q+ 1 +min(Root)

and si = minindex(Root).

Let Bi be the tree described above and Root(Bi) its root; we call Bi the tail sum tree

for sequence (hi(j)), i-2m+q< jdi-q+ 1.

Approximate string-matching with q-grams and maximal matches 201

Tree Bi+I is obtained from Bi by a rather simple transformation. As the leaves of

Bi+r represent sequence (hi+ r (j)), i-2m +q + 1 d jdi-q+2, we have to find out

how hi + 1(j) differs from hi(j).

We call j the change point for i+ 1, denoted j=cp(i+ l), if the following three

conditions are met (recall that Zj is the code of the q-gram starting at tj and G[O : M]

represents the profile G,(P)).

1. rj>O;

2. there are exactly G [Tj] occurrences of the q-gram tj.. . tj + 4 _ 1 in tj . . . ti;

3. rj=zi_,+2 (hence, there are G [Zj] + 1 occurrences of tj . tj+4_ 1 in tj.. . ti + 1).

Note that the change point is not always defined.

Numbers hi+ 1 (j) and hi(j) differ only at the change point as we have

hi+ l(j)=
+ 1 (= -hi(j)) if j=cp(i+ 1)

hi(j) otherwise
(9)

Rule (9) shows how the contribution k,(j) of tj to di(j’), j’ d j, can differ from its

contribution ki+l(j) to di+l(j’). If th ere are G[zj] occurrences of the q-gram

tj...tj+4_1 in tj...ti but G[rj]+l occurrencesin tj...ti+l, then rjcontributes -1 to

d;(j’) but + 1 to di+,(j’); only the G[rj] rightmost occurrences of tj... tj+4_1 in

tj...ti+l can decrease di + 1 (j ‘).

Change point j= cp(i+ 1) can be found in constant time by using queues L[l : M].

Queue L[t] contains indexes r, in increasing order, such that r*=r, hi(r)= - 1, and

tree Bi has a leaf representing hi(r). The size of L[T] is given by S[t]. Obviously, if

Ti-q+z>O and S[Ti_,+z] = G[ri_,+z] then cp(i+ 1) is the head Of L[ri_,+2] (i.e. the

smallest index stored in this list); otherwise, cp(i + 1) is not defined. When j= cp(i+ 1)

is defined, we update the sum field of Leaf(j) to + 1 and remove j from L[z~_,+~].

The other changes to Bi include deleting the leftmost leaf Leaf(i - 2m + q), because it

does not belong to Bi+ 1. The rightmost leaf of Bi+ 1 should represent

This has no predecessor in Bi. Therefore, we insert a new rightmost leaf, pointed by

Leaf(i - q + 2).

Algorithm 3.3 summarizes the transformation of Bi into Bi+ 1.

Algorithm 3.3 Updating a tail sum tree Bi into Bi+ 1.

Delete(l) removes leaf ,I from Bi, rebalances the tree, and updates the nodes with (8);

Ckange(;l, k), where 2 is a leaf, sets sum(A)tk, and updates the nodes on the path

from k to Root with (8);

Insert(j, k) creates a new rightmost leaf ,I such that Leaf(j)=& sets

sum(/Z)ck, rebalances the tree, and updates the nodes with (8);

202 E. Ukkonen

Enqueue and Dequeue are the standard queue operations of adding a tail element

and removing the head element.

1. Delete(Leuf(i - 2m + q))

2. if Head(L[ri_zm+4])=i-2m+q then

3. Dequeue(LC~i-~~+~l)
4. SiLTi--2m+ql+*--l
5. if Zi-q+2 >0 and S[ri-,+2]=G[ri-,+2] then

6. j+Dequeue(.L[zi_,+2]) % j=cp(i+ 1)

7. S[rt_,+J+* - 1

8. Change(Leaf(j), 1)

9. Insert(i-q+2, if ~~~~~~ >O then - 1 else 1)

10. E?tqL@W(L[si_,+2], i-9+2)

11. S[Ti-,+21+*-t 1

The approximate string-matching problem can now be solved with Algorithm 3.4

that uses Algorithm 3.3 as a subroutine.

Algorithm 3.4 Evaluation of (di, si), 1 <i < II, for text T= tI . . . t, and pattern

P=p, . . . pm using a tail sum tree.

1. Construct SA,(P) and G[O: M]

2. Construct the initial tail sum tree B,, representing

h,(j)=1 for -2m+q<j< -q+l

3. for itO,...,n-I do

4. Ti-q+2cScan(SAq(P), ti+lJ

5. Update Bi to Bi+r with Algorithm 3.3

6. (di+l,si+r)t(min(Root(Bi+I))+m-q+ 1, t?li?lideX(ROOt(Bi+ 1)))

enddo

Theorem 3.5. Given a pattern P of length m, a text T of length n, and an integer q>O,

Algorithm 3.4 solves the approximate string-matching problem with the q-gram distance

function in time O(ml C 1) for preprocessing P and in time O(n log (m - q)) for processing

T. The algorithm needs working space O(mlZl).

Proof. The preprocessing phase is the same as for Algorithm 3.1 and, hence,

needs time and space O(mIZl). The initial tail sum tree (a balanced binary tree with

2~-24 + 1 leaves) can be constructed by standard methods in time and space

O(m-9).
The main loop makes n calls to Algorithm 3.3. Each call includes one deletion, at

most one change, and one insertion to a balanced binary tree of height O(log (m - q)).

Each operation also includes re-establishing conditions (8). All this can be performed

Approximate string-matching with q-grams and maximal matches 203

in O(log(m-q)) time if our tail sum tree is implemented by augmenting some

standard balanced tree scheme such as the red-black trees (see e.g. [3, Theorem 15.11).

The operations on queues L in Algorithm 3.3 clearly take time O(1). The total time for

scanning T (line 4) is again O(n). Hence, the main loop takes time O(n log (m - q)).
A working space of O(m) suffices for the tail sum tree, the lists L, and the relevant

values TV. 0

The balanced tree in Algorithm 3.4 creates a considerable overhead compared to

the simple Algorithm 3.1. However, the tree is used in a very restricted fashion: all

deletions remove the leftmost leaf, all insertions create a rightmost leaf, and the size of

the tree remains unchanged.

Therefore, it is rather easy to design a tailor-made tree structure with smaller

overhead for this particular application. In this structure, the tail sum tree B is

represented as a subtree of a larger balanced binary tree C that has twice as many

leaves as B has. Tree B circularly glides over C when new leaves are inserted and old

ones are deleted. The shape of C can be kept unchanged which means that no

time-consuming rebalancing operations are needed. We leave the details of the

construction as an exercise to the interested reader.

Next we consider a natural variation of the approximate string-matching problem.

Definition. The threshold problem is to find, for a given integer k 3 0, all text locations

i such that the q-gram distance di is <k.

Lemma 3.6. If didk then i-m+l-k<si<i-m+l+k.

Proof. To derive a contradiction, assume first that Si > i-m + 1 + k. Then the string

t,<...ti contains <(m-q+l-k) q-grams. Hence, more than k of the (m-q+l)

q-grams of P are missing, therefore d, > k, a contradiction. The case si < i-m + 1 - k is

similar. 0

By the lemma, one can test whether or not di< k by computing

d=min,(i)-k~j~,(i)+kdi(j), where u(i) denotes i-m+ 1. If d<k, then we know that

dig k because di=d. If d > k, then also d,> k. As d is the minimum of only 2k+ 1

elements, it turns out that it can be found for each i in time O(log k). Only a minor

modification to Algorithm 3.4 is needed.

Theorem 3.7. Given a pattern P of length m and a text T of length n in alphabet C, and

k 3 0, the threshold problem can be solved in time O(ml Z I) for preprocessing P and
O(n log k) for processing T. The working space requirement is O(mlC I).

Proof. Let a(i)= i-m+ 1. Then by Lemma 3.6, if dig k, we can write

di=Fi+Hi+m-q+ 1, where
i-q+1

j=a(i)+k+l

204 E. Ukkonen

and

Fi = rnin
n(i)+k

2 hi(j).
a(i)-k<sCa(i)+k j=s

Values Fi can be found in O(logk) time for each i by using a tail sum tree that

represents hi(j) for a(i) - li < j < a(i) + k. Each Hi can be found in 0(1) time for each

i because

Hi+,=Hi-hi(a(i)+k+l)+hi+,(i-q+2)+d,

where A =2 if cp(i+ l)>a(i+ l)+ k+ 1 and A =O, otherwise. Change point cp(i+ 1)

can be found in O(1) time using queues L, as in Algorithm 3.4. Cl

Another variation of interest is to find the distances between P and substrings of

T of a fixed length, i.e. we want to evaluate values di(i-6) for some fixed 620.

A linear-time method, based on straightforward bookkeeping, is easy to develop.

We formulate it as Algorithm 3.8; a similar method in the special case q= 1 is given

in [lo].

Algorithm 3.8 Evaluation of Di = di(i - 6), 6 + I< i < n, for text T= tl . . . t,, and pattern

P=p, . . . pm, and integer 620. We assume that 6+ 1 >q; otherwise the problem is

trivial as then each Di = m ~ q + 1.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

Construct SA,(P) and G[O: M]

Scan(SA,(P), tr . ..t._r)

for i+q,...,d do

ti_,+,cSCan(SA,(P),ti)

G[ri-,+,]+*-I

enddo

D+lG[O]I+...+IG[MII

for ita+l,...,n do

zi-,+,tSCUn(SA,(P),ti)

G[ti_,+l]c*-1

if G[ti-,+r]>O then DtD-1 else D+D+l

DieD % Di=di(i-8)

G[Ti-a]+*+ 1
if G[T~-~]<O then D&D-l else D+-D+l

enddo

In Algorithm 3.8, array G is initialized (line l), as before, to represent the q-gram

profile of P. During the main loop at line 11 G satisfies the invariant G[c] =

G,(P)[o]-Gq(ti_a... ti)[v] for the q-grams v of P, and G[O] counts (in negative) the

number of other q-grams in ti_a.. . ti. Moreover, D satisfies the invariant

D =CFo) G [j] 1. Hence, D = D4(ti-d.. ti, P), i.e. the algorithm is correct. Clearly, it

needs time O(n) for processing T.

Approximate string-matching with y-grams and maximal matches 205

Theorem 3.9. Algorithm 3.8 evaluates the q-gram distances di(i - 6) for 6 + 1 < i ,< n

in time O(n) for processing T. The preprocessing time and working space are as-in

Theorem 3.7.

4. String-matching with maximal matches

The string-matching problem studied in this section uses as the distance measure

the minimum number of characters in one string that have to be removed so that the

remaining substrings, between the removed characters, are also substrings of the

second string. This measure and a string distance metric based on it were introduced

by Ehrenfeucht and Haussler [7]. Our interest is mainly motivated by the application,

to be presented in Section 5, of the methods of this section in speeding up the edit

distance based string-matching.

Following [7] we set the next definitions. A nonempty string x = ala2.. . a, in C * of

length n has n places, the places from 1 to II. A marking of x is a (possibly empty) subset

M of the places of x. The set {Ui: iEM} is called the set of the (M-) marked characters of

x. A substring of x is either the empty string or a string aiai+ 1 . ..aj for some i, j such

that 1 d i d j d n. For any string y, marking M is said to make x compatible with y if any

substring of x that does not contain any M-marked characters is also a substring of y.

For x, y in .Z*, let Dc(x, y) be the minimal number of places in any marking of x that

makes x compatible with y. Function DC is the distance measure we use in this section.

Clearly, 0 d Dc(x, y) < Ix 1 and Dc(x, y) = 0 if and only if x is a substring of y.

Let M,(x, y) be the unique marking S of x such that x=xrsr ..x,s,x,+ 1, where

symbols Si are the S-marked characters of x, all strings Xi occur as substrings in y but

strings XiSi are not substrings of y, 1 <i < r.

Proposition 4.1 (Ehrenfeucht and Haussler [7]). For any x,y in C*, Dc(x, y)=

lM,(x,~)l.

This gives a fast method for computing Dc(x,y). The method “greedily” finds the

maximal matches between x and y, in a left-to-right scan of x. First construct the suffix

automaton SA(y) in time 0(lyl IC I). Then scan x with SA(y) until no goto-transitions

can be applied on the next input, say a. Then the scanned part of x is the longest prefix

of x that is a substring of y. Hence, this part is x1 in the above definition of M,(x,y),

and u=sl. The process is repeated with the remaining part of x beyond a until the

whole x is scanned. This gives MI (x, y) in total time 0(I x I + I y I I Z I).

To define our approximate string-matching problem that is based on DC, let again

P=p 1 . ..p.,, and T= tI t, be the pattern and the text. We want to find the DC

distances between the substrings of T of some fixed length, say e, and P. Hence, the

problem is to compute distances dci(i-e+1)=Dc(ti_,+,ti_e+2...ti,P) for

i = e, e + 1,. . , n.

206 E. Ukkonen

By directly applying Proposition 4.1, value dci(i- e + 1) can be found by scanning

ti_ e+ 1 . . . ti with SA (P). This gives dci(i- e + 1) in time O(e); hence, all such values are

obtained in time O(en).

The method has a variant with smaller overhead which avoids repeated scanning of

overlapping parts of T with SA(P). We first evaluate values_& denoting the length of

the longest prefix of ti ti + 1. . . t, that is also a substring of P, 1< i < n. All valuesh can be

found by scanning T only once with SA(P) in time O(n), see [24]. Then the first place

inthemarkingM,(ti_,+,...ti,P)isi-e+l+fi_e+l. Generally, if j is in the marking

then j+ 1 +fj+ 1 will be there, too, as long as j+ 1 +A+ 1 <i. Finding the marking still

takes time O(e), giving the total time O(en).

This method additionally gives an efficient solution to the threshold version of the

problem in which we are asked to evaluate dci(i-e+ 1) accurately only if its value

is <k for some fixed k30. In that case the construction of the marking

Ml(ti-e+l ... ti, P) can be finished immediately when its size exceeds k. Hence, the time

requirement is O(k) per marking and O(kn) for the whole algorithm.

Next we develop a useful approximate method with running time O(n). We use the

global marking M,(7’, P) of T. From it the values dci(i-e+ 1) can be read with an

error at most 1.

Let M(i, j)={rEM,(T,P): i<r<j} be the restriction of M,(T,P) to interval [i,j].

Clearly, marking M(i, j) makes ti.. tj compatible with P. Define dc:(i--e+ l)=

IM(i-e+ 1, i)l.

Theorem 4.2. dci(i-e+ l)<dc;(i-e+ l)<dci(i-e+ l)+ 1.

Proof. Let the elements of Ml(ti_,+l . ..ti.P) be (j, ,j.) in increasing order. Since

the marking M(i-e+ 1,i) makes ti-e+l... ti compatible with P and it is a restriction

of a minimal marking, it must contain for each 1 <k d r exactly one element j such

that j,_ i <j < j,. Moreover, because of minimality there is at most one element of

M(i-e+ 1, i) larger than j,. Hence, the theorem follows. 0

The evaluation of dcj(i - e + 1) reduces to the evaluation of the size of M(i - e + 1, i).

Let Ck denote the number of the elements j in M,(T, P) such that j< k.

Then dc’,(i-e+l)=IM(i-e+l,i)l=Ci--Ci_.. Numbers Ck can be evaluated to-

gether with the construction of M,(T, P); actually we need only the numbers Ck, not

an explicit M,(T, P). Marking M,(T, P) starts withf, + 1, and generally, if it contains

j it also contains j+fi+ 1 + 1 provided that this value is d n.

Summarized, we get the following procedure for evaluating numbers Ck.

C+O; j+O

repeat

J+j+fj+i+l

for k+j,...,J-1 do Ck+C

ccc+1

j+J

until j=n+ 1.

Approximate string-matching with q-grams and maximal matches 207

This algorithm clearly runs in O(n) time because the values h can be provided by

scanning T with SA(P) in time O(n).

Finally, we get each dci(i - e + 1) = Ci - Ci -e in constant time. By a careful program-

ming, a buffer of size O(e) suffices for the relevant part of vectors C andf: Additional

working space O(mlZl) is needed for SA(P).

We have obtained Theorem 4.3.

Theorem 4.3. Given a pattern P of length m, a text T of length n, and an integer e,

the distances dc;(i-e+ 1) for e< idn can be evaluated in time O(n) and in space

O(m/Zl + e). The preprocessing time ef P is O(ml Cl).

So, we have a linear-time algorithm for finding a very good approximation for

values dci(i- e+ 1). Finding such an accurate algorithm remains open.

5. Speeding-up edit distance based string-matching

The edit distance DE(x,y) between strings x and y is defined as the minimum

possible number of editing steps that convert x into y [16,25]. We restrict our

consideration to the case where each editing step is a rewriting rule of the form a+&

(a deletion), E-+a (an insertion), or a-+b (a change) where a, b in C are any symbols,

a# b, and E is the empty string. Each symbol of x is allowed to be rewritten by some

editing operation at most once.

The associated approximate pattern-matching problem with threshold is, given

pattern P and text T as before, and an integer k 2 0, to find all i such that the minimum

of the edit distances between P and the substrings of Tending at ti is d k; the problem

is also known as the k diflerences problem. Hence, if we let dei = min, <j<i DE(P, tj . . ti),

the problem is to find all i such that dei < k.
NOW, let di(j)=D,(P, tj... ti) be as in Section 3, for some q>O.

Theorem 5.1. For 1~ i < n, di(i - m + 1)/(2q) < dei.

Proof. Let d = dei. The theorem follows if we show that at most dq of the q-grams of

P are missing in ti_m+ 1 . ti (here tj=E ifj< l), as then di(i-m+ 1)<2dq.

Let P’ be the substring of Tending at ti such that DE(P, P’)=d. String P’ can be

obtained from P with at most d insertions, deletions and changes. A deletion or

a change at character pi of P destroys at most q q-grams of P, namely, those that

contain pi. An insertion between pi and pi+l destroys at most (q- 1) q-grams of P,
namely, those that contain both pi and pi+ 1. Hence, at most d,q+dz(q- 1) q-grams of

P are missing in P’, where dI is the total number of deletions and changes, and d2 is the

total number of insertions. As (P’(<m + dz, string ti_m+ 1 . . . ti contains all q-grams of

P’ except for at most dZ. Hence, at most dlq+d2(q- l)+d, =dq of the q-grams of

P are not present in ti-m+l . . . ti, which proves the theorem. 0

208 E. Ukkonen

A similar proof shows that we also have di/(2q) < dei, where di = minjc i di(j), and

that for all strings x,y, we have D,(x,y)/(2q)<DE(x,y).

Values de, can be found by evaluating table (Dji), 0 <i< n, 0 <j < m, where

Dji=min,Qi,~iDE(ti,...ti,P1... pj) from recursion Dji=ITliIl{Dj_,,i+ 1, Dj,i-I + 1, if

pj=tithenDj_1,i_1 elseDj_,,i_, + 1 > with initial conditions Do, i = 0 for 0 < i < n and

D, ,, =j for 1 <j< m. This dynamic programming method solves the problem as

dei=D,i, see [19,22]. In particular, the k differences problem can be solved in O(kn)

time by a “diagonal” modification of this method [9,24]. Such algorithms can be

speeded-up by the following hybrid method.

First, evaluate by Algorithm 3.8 the distances di(i-m+ 1) for 1 < i<n. Mark all

i such that di(i - m + 1)/(2q) < k. Then evaluate dei only for the marked i. As only such

dei can be <k by Theorem 5.1, we get the solution of the k differences problem.

By Theorem 3.9, the marking phase takes time O(n), with O(mlZl) time for pre-

processing P.

A diuyonul e Of (Oji) consists of entries Dji such that i-j = e. If dei 6 k, it is easy to see

that to find dei = Dmi correctly, it suffices to restrict the evaluation of (Dji) to 2k + 1

successive diagonals with the diagonal of D,i in the middle. The simplest way to do

this is just to apply the above recursion for (Dji), restricted to these diagonals. This

takes time O(km).

An asymptotically faster method is obtained by restricting the algorithm of [9] or

[24] to the 2k+ 1 diagonals. This gives a method requiring time O(k’) for the

evaluation of the diagonals. It also needs time O(m’) for preprocessing P (this can be

improved to O(m) by using lowest common ancestor algorithms). Moreover, the

method scans ti-m-k+ 1 . ti. However, we have to scan over this string anyway when

marking i.

If the relevant diagonals for different marked i overlap, their evaluation can be

combined such that each diagonal is evaluated at most once. As the method spends

time O(k) per diagonal, the total time for evaluating the marked values de; is always

O(kn). The marking and dynamic programming phases can be combined so that

repeated scanning of T is not necessary.

Summarizing, we have the following result.

Theorem 5.2. The k dzreerences problem can be solved in time O(min(n + rk2, kn)), where

r is the number of indexes i such that di(i-m+ 1)/(2q)< k. The method needs time

O(m 1 C I+ m2) for the preprocessing of P.

Grossi and Luccio [lo] propose a similar method for the special case where q = 1

and the only editing operation used in the definition of the edit distance is the change

(the k mismatches problem).

The string distance measure of Section 4 can be used in the above scheme as well.

Let dci(j) and dci(j) be as in Theorem 4.2.

Theorem 5.3. For 1 <i<n, dci(i-m+ 1 +dei)- 1 <dei.

Approximate string-matching with q-grams and maximal matches 209

Proof. Let d = de,, and let P’ be the substring of Tending at ti such that DE(P, P’) = d.

As P’ can be obtained from P in d editing steps, P’ can be written as

7c1Q1~2Q2...77+1, where each aj is the result of an insertion or a change, or one or

more symbols immediately to the left of (the original version of) ai in P has been

removed by a deletion. Each 71j, 1 <j< y + 1, is either empty or a substring of

P because no editing operation has been applied on it. Hence, a marking of a,, . . , a,

makes P’ compatible with P. Therefore Dc(P’, P)bg<d. As lP’J am-d, then

also dci(i-m+ 1 +d)<d. Then, by Theorem 4.2, dcj(i-m+ 1 +d)-1 <d, as

required. 0

To evaluate values de< that are <k, we first evaluate dcj(i- m + 1 + k) for 1 <i < n.

By Theorem 4.3, this can be done in time O(n), with O(m1 Cl) preprocessing time for P.

If the value is <k-t 1, index i is marked. We claim that then every i such

that dei < k will get a mark. To see this, assume that de, < k. Then by Theorem 5.3,

dcj(i-m+ 1 +dei)- 1 <k. AS dcl(i-m+ 1 -dei)>dej(i-m+ 1 +k), it follows that

dcf(i - m + 1 + k) d k + 1, i.e. i will be marked.

For marked i, values dei are then evaluated by dynamic programming as in the

previous method. Hence, we have the following theorem.

Theorem 5.4. The k d#erences problem can be solved in time O(min(n +r’k2, kn)),

where r’ is the number of indexes i such that de:(i - m + 1 + k) d k + 1. The method needs

time 0 (ml C I+ m2) for the preprocessing of P.

A similar method has recently been independently proposed and analyzed by

Chang and Lawler [2].

In a separate paper [l l] the performance of several algorithms for the k differences

problem is experimentally compared. The hybrid methods of Theorems 5.2 and 5.4

were often found to be the fastest among the compared algorithms. Finally, note that

the two phases of the hybrid methods (1. marking, 2. checking by dynamic program-

ming) can be combined so that the resulting algorithm is on-line with respect to T.

Only one scan over T is needed, using a window of size O(m).

6. Conclusion

*We presented fast approximate pattern-matching methods for strings. The approx-

imation quality was measured with two string distance functions, one based on

q-grams, the other on maximal matches. For finding the locally best approximate

occurrences of pattern P in text T with respect to the q-gram distance we gave an

0(1 TI log(IPI -4)) algorithm. Whether or not this is optimal, remains open.

210 E. Ukkonen

Both distances were shown to have a simple relation to the unit cost edit distance.

This leads to efficient hybrid methods for solving the so-called k differences problem*of

string-matching. A problem for further study is to generalize this approach to edit

distances that are more general than the rather restricted unit cost distance of the

k differences problem. Then one should allow a larger variety of editing operations

and their costs.

References

[I] A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, T. Chen and J. Seiferas, The smallest automaton

recognizing the subwords of a text, Theoret. Compuc. Sci. 40 (1985) 31-55.

[2] W.I. Chang and E.L. Lawler, Approximate string matching in sublinear expected time, in: Proc. IEEE

1990 Ann. Symp. on Foundations of Computer Science (1990) 116-124.

[3] T.H. Cormen, C.E. Leiserson and R.L. Rivest, Introduction to Algorithms (The MIT Press, Cambridge,

MA, 1990).

[4] M. Crochemore, Transducers and repetitions, Theoret. Comput. Sci. 45 (1986) 63389.

[S] M. Crochemore, String matching with constraints, in: Proc. MFCS’88 Symp. Lecture Notes in

Computer Science, Vol. 324 (Springer, Berlin, 1988) 44-58.

[6] G.R. Dowling and P. Hall, Approximate string matching, ACM Comput. Surueys 12 (1980) 381402.

[7] A. Ehrenfeucht and D. Haussler, A new distance metric on strings computable in linear time, Discrete

Appl. Math. 20 (1988) 191-203.

[S] Z. Galil and R. Giancarlo, Data structures and algorithms for approximate string matching, J.
Complexity 4 (1988) 33-72.

[9] Z. Galil and K. Park, An improved algorithm for approximate string-matching, in: Automata,
Languages, and Programming (ICALP.89) Lecture Notes in Computer Science, Vol. 372 (Springer,

Berlin, 1989) 394-404.

[lo] R. Grossi and F. Luccio, Simple and efficient string matching with k mismatches, Inform. Process.
Lett. 33 (1989) 113-120.

[ll] P. Jokinen, J. Tarhio, and E. Ukkonen, A comparison of approximate string-matching algorithms,

submitted.

1121 R.M. Karp and M.O. Rabin, Efficient randomized pattern matching, IBM J. Res. Develop. 31 (1987)

249-260.

1131 T. Kohonen and E. Reuhkala, A very fast associative method for the recognition and correction of

misspelt words, based on redundant hash-addressing, in: Proc. 4th Joint Con& on Pattern Recognition,
Kyoto, Japan (1978) 8077809.

[14] G. Landau and U. Vishkin, Fast string matching with k differences, J. Comput. System Sci. 37 (1988)

63378.
[15] G. Landau and U. Vishkin, Fast parallel and serial approximate string matching, J. Algorithms 10

(1989) 157-169.

1161 V.1 Levenshtein, Binary codes of correcting deletions, insertions and reversals, Souiet Phys. Dokl. 10

(1966) 707-710.

1171 E.M. McCreight, A space-economical suffix tree construction algorithm, J. ACM 23 (1976) 262-272.

[18] 0. Owolabi and D.R. McGregor, Fast approximate string matching, SojiwareePractice and Experi-
ence 18 (1988) 387-393.

[19] P.H. Sellers, The theory and computation of evolutionary distances: pattern recognition, .I. Algo-

rithms 1 (1980) 3599373.

[20] C.E. Shannon, A mathematical theory of communications, The Bell Systems Tech. J. 27 (1948)
379423.

[21] J. Tarhio and E. Ukkonen, Boyer-Moore approach to approximate string matching, in: Proc. 2nd
Stand. Workshop on Algorithm Theory (SWAT’90), Lecture Notes in Computer Science, Vol. 447

(Springer, Berlin, 1990) 348-359.

Appro.ximate string-matching with q-grams and maximal matches 211

[22] E. Ukkonen, Finding approximate patterns in strings, J. Algorithms 6 (1985) 132-137.
[23] E. Ukkonen, Algorithms for approximate string matching, Inform. and Conrrol 64 (1985) 100-l 18.

1241 E. Ukkonen and D. Wood, Approximate string matching with suffix automata, Report A-1990-4,

Department of Computer Science, University of Helsinki, 1990.

[25] R.E. Wagner and M.J. Fisher, The string-to-string correction problem, J. ACM 21 (1974) 168-173.

[26] P. Weiner, Linear pattern matching algorithms, in: Proc. 14th IEEE Ann. Symp. on Switching and
Automata Theory (1973) l-l 1.

