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Abstract

Accurate network flow measurement is important for a variety of network applications, where the “flow” over an edge in the
network is intuitively the rate of data traffic. The problem of efficiently monitoring the network flow can be regarded as finding the
minimum weight weak vertex cover for a given graph. In this paper, we present a (2 − 2

�(G)
)-approximation algorithm solving for

this problem, which improves previous results, where �(G) is the cyclomatic number of G.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

As the internet is growing rapidly, more and more network applications need to know the network running parameters
to monitor network utilization and performance. Network flow is the most important parameter to be measured. The flow
is the rate of data traffic on edges of the network. Unfortunately, accurate network flow measurement is difficult. Most
monitoring technologies typically assume that the measurement instrumentation can be either intelligently distributed
at different points in the underlying network [7] or placed at the endpoints of the end-to-end path whose characteristics
are of interests [8]. Currently, more and more information must be collected at much higher frequencies by network
monitoring processes. Then the overhead the monitoring method imposes on the underlying network can be significant
and adversely impact the network’s throughput as a result.

As usual, a flow f in a directed graph G = (V , E) is a function on the edges with the properties f (u, v) = −f (v, u)

for any edge (u, v) ∈ E ( backflow property) and
∑

u∈V f (u, v) = 0 for any vertex v ∈ V except sinks and sources
(flow conservation property). The flow conservation property implies that we do not need to directly monitor all edges
of the network (by a vertex cover of G) to monitor all flows in the network. If a node has degree k and the flow on k − 1
of its incident edges is already known, then the flow on the remaining edge can easily be calculated. We call a subset
S of V a flow monitoring set if knowledge of the flow on all edges incident to vertices in S is sufficient to compute the
flow on every edge in E.

� This work was supported by grants from National Natural Science Fund (Grant nos. 60273045, 60496321, 60373021, 60573025), the Ministry
of Science and Technology (Grant no. 2001CCA03000), and Shanghai Science and Technology Development Fund (Grant no. 03JC14014).

∗ Corresponding author.
E-mail addresses: 012021133@fudan.edu.cn (Y. Zhang), qge@fudan.edu.cn (Q. Ge), rudolf@fudan.edu.cn (R. Fleischer),

jiangtao@cn.ibm.com (T. Jiang), hzhu@fudan.edu.cn (H. Zhu).

0304-3975/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2006.06.009

http://www.elsevier.com/locate/tcs
mailto:012021133@fudan.edu.cn
mailto:qge@fudan.edu.cn
mailto:rudolf@fudan.edu.cn
mailto:jiangtao@cn.ibm.com
mailto:hzhu@fudan.edu.cn


100 Y. Zhang et al. / Theoretical Computer Science 363 (2006) 99 –105

We are interested in finding a minimum size flow monitoring set of a directed graph G. If the vertices of the graph
also have some non-negative weights, we want to find a minimum weight flow monitoring set. This problem is actually
equivalent to finding a minimum size (or weight) weak vertex cover of the underlying undirected graph. A similar
definition exists for covering the vertices of a graph, the so-called power dominating set [6].

Definition 1.1 (Breibart et al. [2]). Let G = (V , E) be an undirected graph. A subset S of V is a weak vertex cover of
G if eventually every edge in E can be marked by performing the following algorithm.
(1) Mark all edges incident to vertices in S.
(2) As long as there is a vertex with only one unmarked incident edge, mark this edge.

Note that we can w.l.o.g. assume that G has no vertices of degree one. For the flow monitoring problem, the only
edge incident to a vertex of degree one does not need to be monitored because its flow is already determined; either it
is zero or the vertex is a source or sink with known flow.

If each vertex v ∈ V has a weight wv , the minimum weight weak vertex cover problem is to identify a weak vertex
cover of minimum total weight. If a weak vertex cover S contains no redundant vertices, i.e., S − v is not a weak
vertex cover for any v ∈ S, we say S is a minimal weak vertex cover. Solving the minimum flow monitoring set is now
equivalent to finding a minimum size (or weight) weak vertex cover.

Liu et al. showed that S is a weak vertex cover if and only if the subgraph induced by V − S is a forest [9], i.e.,
we cannot infer the flow values on a cycle without monitoring at least one edge of the cycle. They also gave a greedy
algorithm for the minimum size weak vertex cover problem with approximation ratio 2(ln d + 1), where d is the
maximum degree of nodes in G. Zhang and Zhu showed that the minimum size weak vertex cover problem is NP-hard
and gave a (ln d + 1)-approximation algorithm [11]. Their algorithm is based on the concept of the cycle space of a
graph (see [5], for example) which is also important in this paper.

This paper is structured as follows. In Section 2 we introduce cycle-rank-proportional graphs which are the basis of
our approximation algorithm. In Section 3 we first show a local-ratio theorem and then give a (2− 2

�(G)
)-approximation

algorithm for the minimum weight weak vertex cover, where �(G) = |E| − |V | + 1 is the cyclomatic number of a
connected graph G. In the last section we give a lower bound for the inapproximability of Minimum Weak Vertex Cover
problem.

2. Cycle-rank-proportional graphs

Let G = {V, E} be a graph with n vertices V and m edges E. For vertices v0, . . . , vk−1 ∈ V , C = v0v1 . . . vk−1v0
is a cycle of length k if (vi, vi+1 mod k) are edges in E, for i = 0, . . . , k − 1. If the vertices of C are pairwise different,
the cycle is simple. We assume from now on that all cycles are simple.

The cycle space C = C(G) is the space spanned by all the edges of all the cycles in G. The dimension of C(G) is the
cyclomatic number �(G) of G. This number is easy to compute, it is �(G) = |E| − |V | + pG, where pG is the number
of connected components of G [5]. For any vertex v ∈ V , let Rv be the decrease of the cyclomatic number of G after
deleting v and all its incident edges and kv the increase in the number of connected components. Then,

Rv = �(G) − �(G − {v})
= (|E| − |V | + pG) − [(|E| − deg(v)) − (|V | − 1) + pG−{v}]
= deg(v) − kv − 1 ,

where deg(v) denotes the degree of v.

Definition 2.1. A vertex weight function w of a graph G = (V , E) is c-cycle-rank-proportional, where c > 0 is a
constant, if w(v) = c · Rv for all v ∈ V .

By the computation above, we could also say w(v) = c · (deg(v) − kv − 1), for all v ∈ V .

Definition 2.2. A cycle C is nearly isolated if it contains at most one vertex incident to at least one vertex not in C.
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We now show a lower and an upper bound for the weight of minimal vertex covers in cycle-rank-proportional graphs
without nearly isolated cycles. This shows that minimal weak vertex covers (which we can easily compute) can serve
as good approximations to the minimum weight weak vertex cover.

Lemma 2.1. Let G = (V , E) be a c-cycle-rank-proportional connected graph, for some c > 0. Then any weak vertex
cover S of G has weight at least c · �(G).

Proof. Since G is connected, �(G) = |E| − |V | + 1. Let S be a weak vertex cover of weight w(S). Note that deleting
a vertex and its incident edges cannot increase Rv of any remaining vertex v. After deleting all the vertices in S and
their incident edges no cycle remains [9], i.e., the cyclomatic number of the remaining graph is zero. Thus,

w(S) = ∑
v∈S

w(v)�c · (|E| − |V | + 1) = c · �(G). �

Lemma 2.2. Let G = (V , E) be a c-cycle-rank-proportional connected graph without nearly isolated cycles, for
some c > 0. Then any minimal weak vertex cover S of G has weight at most 2c · (�(G) − 1).

Proof. Let S be a minimal weak vertex cover of G of weight w(S). The subgraph induced by V − S is a forest F. For
a tree T ∈ F let �(T ) denote the number of edges in E connecting S to T. Since we assumed that G does not have
vertices of degree one, any leaf of T must be connected to some node in S. Thus, �(T )�2.

Let ST be the set of vertices in S connected to T by at least two edges. Since S is minimal, each v ∈ S belongs to
some ST (otherwise S − {v} would also be a weak vertex cover). If T has t vertices, then∑

v∈T

(deg(v) − 2) = ∑
v∈T

deg(u) − 2t = �(T ) + 2(t − 1) − 2t = �(T ) − 2.

Note that ST = ∅ if �(T ) = 2, otherwise G would contain a nearly isolated cycle. Since always |ST |�� 1
2�(T )�, we

also have �(T ) − 2� |ST |. Thus,∑
T ∈F

(�(T ) − 2)�
∑

T ∈F

|ST |� |S|

and

w(S) = c · ∑
v∈S

(deg(v) − kv − 1)

� c · ∑
v∈S

(deg(v) − 1)

= c · ∑
v∈S

(deg(v) − 2) + |S|
� c · ∑

v∈S

(deg(v − 2) + c · ∑
T ∈F

(�(T ) − 2)

= c · ∑
v∈S

(deg(v) − 2) + c · ∑
T ∈F

∑
v∈T

(deg(v) − 2)

= c · ∑
v∈S

(deg(v) − 2) + c · ∑
v∈F

(deg(v) − 2)

= c · ∑
v∈V

(deg(v) − 2)

= 2c(|E| − |V |)
= 2c · (�(G) − 1). �

The previous two lemmas immediately imply the following theorem.

Theorem 2.1. Let G = (V , E) be a c-cycle-rank-proportional connected graph without nearly isolated cycles, for
some c > 0. Then any minimal weak vertex cover S of G is a (2 − 2

�(G)
)-approximation to the minimum weight weak

vertex cover of G.



102 Y. Zhang et al. / Theoretical Computer Science 363 (2006) 99 –105

In the next section we will show that we can achieve the same approximation ratio for arbitrary graphs without any
restrictions on the weight function.

3. The approximation algorithm

We will first introduce the local-ratio theorem [12,10], which was used by Bar Yehuda and Even to design a 2-
approximation algorithm for the vertex cover problem. Then we give our algorithm to find a minimum weight weak
vertex cover approximation in a graph with arbitrary positive weight function.

3.1. The local-ratio theorem

Theorem 3.1 ([12]). If a feasible solution is r-approximation w.r.t a pair of weight functions W1 and W2 then it is
also an r-approximation w.r.t W1 + W2.

To use this theorem, we decompose our given weight function w into several weight functions.

Definition 3.1. Let G = (V , E) be an undirected graph with vertex weight function w. A set of weight functions {wi |i
= 1, . . . , k} is a decomposition of w if, for i = 1, . . . , k, wi is also defined on the vertices in V and

∑
i wi(v)�w(v)

for all v ∈ V .

Similar to the local-ratio theorem in [1], we propose the following theorem:

Theorem 3.2. Let G = (V , E) be an undirected graph with vertex weight function w. Let {wi |i = 1, . . . , k} be a
decomposition of w, and let S be a weak vertex cover of G such that w(S) = ∑

i wi(S). Then,

w(S)

w(Opt(G, w))
� max

i

{
wi(S)

wi(Opt(G, wi))

}
,

where Opt(G, w) denotes a minimum weight weak vertex cover of G with respect to weight function w.

Proof. Since {wi} is a decomposition of w, for any set U ⊆ V , w(U)�
∑

i wi(U). Let G(wi) be the subgraph of G
induced by all vertices satisfying wi(v) > 0. If S is a weak vertex cover of G, then its restriction to any subgraph of G
is a weak vertex cover as well. Therefore, wi(opt(G, w))�wi(Opt(G, wi)) for all i and

w(S)

w(Opt(G, w))
�

∑
i wi(S)∑

i wi(Opt(G, w))
�

∑
i wi(S)∑

i wi(Opt(G, wi))
� max

i

{
wi(S)

wi(Opt(G, wi))

}
. �

3.2. Description and analysis of the algorithm

In the following algorithm, we decompose the weight function w of G into cycle-rank-proportional weight functions.
Since the weight of any minimal weak vertex cover is within 2 − 2

�(G)
of the weight of a minimum weight weak vertex

cover in cycle-rank-proportional graphs, we obtain an approximation algorithm for the minimum weight weak vertex
cover problem with an approximation ratio of 2 − 2

�(G)
. We now state our new approximation algorithm

WVC.
WVC(G, w)

1. find k, the number of connected components of G;
2. �(G) = |E| − |V | + k; S = ∅;
3. j = 0; wj = w; s = �(G);
4. while V (wj ) �= ∅ and s > 0 do

// V (wj ) is the largest subset of V such that wj(v) > 0 for any v ∈ V (wj )

5. if a nearly isolated cycle v1 . . . vkv1 exists in G(V (wj ))
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6. then
7. select the vertex vi with the minimum weight in {v1, . . . , vk};
8. wj(v) =

{
wj(vi) if v ∈ {v1, . . . , vk},
0 otherwise.

9. else
10. � = min

{
wj (v)

deg(v,G(V (wj )))−kv−1 | v ∈ V (wj )
}

;

// deg(v, G(V (wj ))) is the degree of v in G(V (wj ))

11. wj(v) = � · [deg(v, G(V (wj ))) − kv − 1] for all v ∈ V (wj ); fi
12. wj+1 = wj − wj ;
13. Sj = V (wj ) − V (wj+1);
14. compute kj+1, the number of connected components of G(V (wj+1));
15. s = |E(wj+1)| − |V (wj+1)| + kj+1;
16. j = j + 1; od
17. for t = j − 1 downto 0 do
18. S = S ∪ St ;
19. for every v ∈ St do
20. if V (wt ) − (S − v) induces no cycle in G(V (wt ))

21. then remove v from S;
22. od
23. od
24. return S

The following two observations are obvious.

Claim 3.1. For all j, w(v)�
∑

j wj (v) for each v ∈ V .

Claim 3.2. The set S computed by algorithm WVC satisfies w(S) = ∑
i wi(S).

We can now prove our main result.

Theorem 3.3. For an undirected weighted graph G, algorithm WVC computes a minimum weight weak vertex cover

approximation with approximation ratio 2 − 2
�(G)

.

Proof. Algorithm WVC contains two main loops. The first loop decomposes the weight function w into functions
{w0, . . . , wj−1}, where each wi is cycle-rank-proportional for G. In line 13 we set Si to be the set of vertices of weight
zero after the ith iteration.

In the second loop, we collect the Si , for 0� i�j − 1, and remove redundant vertices. If the set S computed by the
algorithm is a weak vertex cover of G and its restriction to any wi is a minimal weak vertex cover of G(wi), then the
algorithm is correct.

After the first phase, S ⊆ Sj−1 because some redundant vertices will be removed. It is easy to see that S is a weak
vertex cover of G(wj−1) and its restriction to wj−1 is a minimal weak vertex cover. Suppose in the ith phase S is a
weak vertex cover of G(wj−i ) and its restriction to wj−i is a minimal weak vertex cover. Now we consider the (i +1)th
phase. G(wj−i ) is a subgraph of G(wj−i−1) and V (wj−i−1) = V (wj−i ) ∪ Sj−i−1. Hence, S = S ∪ Sj−i−1 is a weak
vertex cover of G(wj−i−1). After the removal of redundant vertices, S is a minimal weak vertex cover of G(wj−i−1)

because V (wj−i−1) = V (wj−i−1). When the last phase ends, S is a weak vertex cover of G(w0) = G and a minimal
weak vertex cover of G(w0).

Each G(wi) must be either a nearly isolated cycle or a cycle-rank-proportional graph. The analysis in Section 2
shows that the total weight of a minimal weak vertex cover of a cycle-rank-proportional graph is within 2 − 2

�(G)
of the

minimum weight weak vertex cover. For a nearly isolated cycle, we choose the vertex with minimum weight among
all its vertices, i.e., the vertex chosen by the algorithm has the same weight as the optimum value in the weighted
subgraph.
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According to Theorem 3.2, the approximation ratio of our algorithm is bounded by the maximal approximation ratio
of the minimal weak vertex covers of the decompositions. Therefore, the total weight of the set S computed by the
algorithm is within a factor of 2 − 2

�(G)
of the optimum. �

Theorem 3.4. The running time of algorithm WVC is

O(|V | · (|E| + |V |) · min{�(G), |V |}).

Proof. Line 1 can be finished in time O(|E| + |V |) by using BFS [3]. Lines 2 and 3 run in constant time. Line 5
takes time O(|V |) because it may check all the vertices. Since w is a vector of rank |V |, lines 6–8 take time O(|V |).
Computing kv takes O(|E| + |V |) by using BFS, hence line 11 can be finished in time O(|V | · (|E| + |V |)). Lines
12–16 take time O(|V |+ |E|) time. Notice that the while loop is executed for at most min{�(G), |V |} iterations. Hence
the total running time of the while loop is O(|V | · (|E| + |V |) · min{�(G), |V |}).

Since j � min{�(G), |V |} and lines 18–21 take time O(|V |), the total running time of the for loop is O(|V | ·
min{�(G), |V |}). Therefore, the total time of algorithm WVC is O(|V | · (|E| + |V |) · min{�(G), |V |}). �

4. Inapproximability result

In this section, we present the inapproximability result for the Minimum Weak Vertex Cover problem.
Obviously, the reduction in [11], which reduces Vertex Cover to Weak Vertex Cover, “preserves” the size of optimal

solutions. That is, any optimal solution for an instance I of Vertex Cover is still optimal for the corresponding instance
I ′ of Weak Vertex Cover made by the reduction in [11]. On the other hand, we can alter the optimal solution for the
instance I ′ of Weak Vertex Cover, which is reduced from an instance I of Vertex Cover, to the optimal solution for I
without increasing the number of the vertices. Formally,

Lemma 4.1. Let � be the reduction in [11] from the Vertex Cover problem to the Weak Vertex Cover problem, I be
any instance of the Vertex Cover problem and opt(I ) be the optimal solution of I. For any constant m, n such that
0�m, n� |I |, we have

|opt(I )|�m ⇒ |opt(�(I ))|�m,

|opt(I )|�n ⇒ |opt(�(I ))|�n.

Together with the inapproximability result for the Minimum Vertex Cover problem by Dinur and Safra [4], i.e., no

polynomial-time algorithm can solve the Minimum Vertex Cover problem within approximation ratio 10
√

5 − 21 ≈
1.36, we have the following theorem, which gives a lower bound for the inapproximability of Minimum Weak Vertex
Cover problem.

Theorem 4.1. There is no polynomial time algorithm that can approximate the Minimum Weak Vertex Cover problem
within � = 1.36, unless P = NP .
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