Theoretical Computer Science 92 (1992) 145-164 145
Elsevier

A string-matching interpretation
of the equation x™y"=2z?

J. Néraud

LITP, Institut Blaise Pascal and LIR, Université de Rouen, Place Emile Blondel, F-76134 Mont-
Saint-Aignan, France

M. Crochemore
LITP, Institut Blaise Pascal, Université Paris-VII, 2 place Jussieu, F-75251 Paris Cedex 05, France

Abstract

Neéraud, J. and M. Crochemore, A string-matching interpretation of the equation x™y"=z? Theor-
etical Computer Science 92 (1992) 145-164.

We consider the following problem:
Instance: a finite alphabet 4, a biprefix code X ={x, y} whose elements are primitive, we A*.
Question: find all maximal factors of w which are prefixes of a word of X*.
We present an on-line algorithm which solves the problem in time linear in the length of w, after
a preprocessing phase applied to the set X.

1. Introduction

In computer science, the concept of factorization plays a prominent part in applica-
tions and in the problems that it introduces.

For instance, given a subset X in the free monoid A *, it is of interest to compute the
“rank” of X, i.e. the minimal cardinality of a finite set Y such that X < Y* (i.e. every
word of X is the concatenation of words belonging to Y). It is established [15] that
this problem is NP-complete and if X has cardinality k then there exists an O(n*)
algorithm, where n stands for the sum of the lengths of the words in X.

As another example the problem of the “shortest common superstring” consists,
given a set of words X, in constructing a word w of minimal length such that every
word of X factorizes w. This is also a classical NP-complete problem [9, 18].

From another point of view, several “pattern-matching” problems are known to
be decidable by linear-time algorithms. Let us mention the classical Knuth-
Morris-Pratt (KMP) algorithm [12], generalized in [1], and an algorithm computing
the longest common factor of two words [5]). All these algorithms make use of

0304-3975/92/$05.00 € 1992—Elsevier Science Publishers B.V. All rights reserved

146 J. Néraud, M. Crochemore

a notion of “failure function” which is also a main feature of the algorithm presented
in this paper. “Failure functions” have recently found an application in text formating
[10].

Given a biprefix set X={x, y} = A* whose clements are primitive, and given
a word w, the problem is to find the longest factors of w which are prefixes of words of
X *. We present an algorithm which solves the problem in a time linear in the length of
w after a preprocessing phase applied to the set X. A simple modification of our
algorithm permits us to compute the longest factors of w which belong to X * in a time
linear in the length of w.

Let us now examine how an on-line algorithm can solve our problem. For a given
word we 4 * let ¢(w) be the longest suffix of w which is prefix of a word of X *. Assume
that we have computed ¢(w), for a given prefix w of the input word. Let ae 4 such that
o(wa)# @(w)a. The word ¢(w) inducts an “X-interpretation” (cf. [17]) of p(wa)a ™!
which consists in fact in considering the word ¢(wa)a ~! as a factor of a word of X *.
According to a result concerning the equations of the form x™y"=z?in a free monoid
(cf. [14], [13]), if ¢(wa)a ~! is long enough, then it is possible to precisely describe it.
This leads us to introduce two sets of prefixes of words of X *, namely L and S. Indeed,
for every word we A* the word ¢(w) belongs to Lu X*S§ and, consequently, w be-
longs to A*Lu A* X*S. In this way, in a preprocessing phase, we shall compute two
automata whose behaviours are, respectively, A*L and A* X *S. The complexity of
the construction of such automata can be expensive, on account of the cardinality of
the alphabet A. We solve this problem by introducing two particular suffixes of w,
namely f(w)eL and g(w)eS. In fact, if after the reading of two words w, w’ we are in
the same state of the automaton whose behaviouris A* L (A* X *S), then f (w)=f(w")
(g(w)=g(w")). Consequently, the functions f and ¢ can be defined on the states of the
corresponding automata — thus, f and g are “failure functions”. This allows us to save
space in using “representations” of the above automata. As a consequence, the
processing phase consists in the reading of the input word in parallel on the two
automata. For every prefix w of the input word, we shall compute ¢(w) using the
preceding “representations”.

Our paper contains the full study of the result published in [6].

2. Preliminaries
2.1. Defintions and notations

Given a finite alphabet A, we denote by A* the free monoid it generates, and by
g the word of length 0. For any arbitrary subsets X, Y = 4*, we denote by X Y their
(concatenation) product, by X* the submonoid generated by X (we set
X*=X*—{e}), and by X Y ! the set: {ueA*: I(x,y)eX x ¥ x=uy}.

Given a word we A*, we denote by fact(w), pref (w), and suff (w) the sets, respect-
ively, of all the factors, prefixes, and suffixes of w, i.e. the sets of all the words

A string-matching interpretation of the equation x™y"=z° 147

u satisfying the conditions: wed*uAd*, weud* and weA*u, respectively. If
uesuff (w), we say that u is a proper suffix if uw. If we X *, we say that uefact (w)is
an X-factor of wiff we X *uX*. Two words w and w' are conjugate iff there exist two
other words u and v such that w=uv and w’=ou; if u and v belong to X * we say that
w and w’' are X-conjugate. w is primitive iff w=x" implies n=1; otherwise, w is
imprimitive. An occurrence of the factor u in we A* is a tuple (¢, u, v) such that w=tuv;
the integer |t|+ 1 is the position of u in the corresponding occurrence.

For every subset X € A*, we set pref(X)= UweX pref (w). An X-interpretation of
the word w is a tuple (s, u, p) such that w=sup, with sesuff(X)— X, pepref(X)— X
and ue X *. We say that X is biprefix iff Xn XA =A"XnX=0.

2.2. A biprefixity result

In [3], the authors study generalizations of the famous defect theorem [13]. The
results can be extended to obtain the following proposition [16].

Proposition 2.1. Let X be a finite subset of A*. Then there exists a biprefix set
Y satisfying the following conditions:

— all the elements of Y are primitive words,

- Xc Y

- |Y|<IX].

The result of Proposition 2.1 justifies the restriction on the instance X in the
following factorization problem, solution of which is the purpose of this paper.

Problem.

Instance: a finite alphabet A, a biprefix code X ={x,y} whose all elements are
‘primitive, an input word we A *.

Question: Find all maximal elements of fact(w)n pref (X *).

2.3. Aho and Corasick’s algorithm

Consider the following “pattern-matching” problem:

Instance: a finite alphabet 4, a finite subset X or A*, an input word w;

Question: does any factor of w belong to X?

A solution can consist of an algorithm with two phases. The preprocessing phase
constructs a deterministic automaton ¢, with transition function J, initial state i, and
whose behaviour is A* X. In the processing phase we shall decide whether w belongs
to the behaviour of .. In time and in space, the complexity of the preprocessing phase
is]A| Y _, |x], which can clearly be expensive, on account of the cardinality | 4| of A.

For a given word w, denote by f(w) the longest proper suffix of w which is prefix of
a word of X. Aho and Corasick proved that given two words w,w'eA*, if
o(i, w)y=94(i, w') then f(w)=f(w’). This allows us to define the “failure function” f on

148 J. Néraud, M. Crochemore

the states of .«/. Aho and Corasick’s solution consists in “representing” &/ by a pair
(', f), where &/ is the tree-like automaton whose behaviour is X (note that the
states of ./’ can be identified as prefixes of X). The complexity of the construction is
linear in the sum of the lengths of the words of X, 3’ _, [x|. In the processing phase, it
is easy to compute the transitions by the following recursive rule:

(1 If the transition d(p, a) is not defined in /', we set:

o(f(p)a) if f(p) is defined;
€, otherwise.

o(p, a)={

Aho and Corasick established that the processing phase has a complexity linear in
the length of the input word. Once more, note that | A} does not appear.

3. Some results on the X-interpretations

The results of this section are in fact consequences of Fine and Wilf’s theorem [8]
that we first recall. ’

Theorem 3.1. Given two words x, ye A*, if two powers xP,y? have a common prefix of
length at least |x|+|y|—g.c.d. (Ix|, |y]), then x and y are powers of the same word.

In [14, 13], the authors study the equations of the form x™y"”=z” in a free monoid.
With the concept of X-interpretation [17], the results can be reformulated as
follows [2].

Proposition 3.2. Let X ={x, y} be a biprefix code with primitive elements and such that
Ix|=1y|. Let weX ™ such that \w|=2|x|+2|y|. If w has an X-interpretation different
from (g, w, €) then one of the two following cases holds:

(i) x and y are conjugate and wex* Uy ™,

(i) x and y are not conjugate, x>y uxy* contains a unique imprimitive word z, and
w is an X-factor of a word of z ™.

In the case where x and y are not conjugate words, the following lemma is a direct
consequence of Fine and Wilf’s result.

Lemma 3.3. Let X={x, y} be a biprefix code with primitive elements, and such that
[x|=(yl. If x*yuxy™ contains an imprimitive word t, then one of the two following
cases holds:

(i) t=x2%y and t is the square of a primitive word,

(i) texy* and 1<k<(x|/lyD+1.

According to Proposition 3.2, we introduce the following notation.

A string-matching interpretation of the equation x™y" =z? 149

Notation. Let X be a biprefix primitive code, with | X|=2.

(1) For a given word we A *, we denote by ¢(w) the longest suffix of w belonging'to
pref (X*).

(2) We denote by cycle the set defined as follows:

— if x and y are conjugate, we set cycle= X;

— if x and y are not conjugate, and if there exists a primitive word z and a positive
integer k, such that z¥ex2yuxy *, then we set cycle={z*};

— in all the other cases we set cycle=0.

(3) We denote by d the length of every word belonging to cycle.

(4) If x and y are conjugate, we set L=pref(x"uy) and L=pref(X).If x and y are
not conjugate, we denote by L (L) the set whose elements are all the prefixes of the
X-conjugate words of cycle* (cycle).

(5) We denote by S the set of all the prefixes w of the words of X* such that
lwl<3|x|+2|y} and by S the set of all the words weX * satisfying the condition:
lw|=4]x|+2|y| and |wX | <d|x| +2]y].

The introduction of the sets S and L is justified by the following straightforward
result.

Lemma 3.4. The function ¢ and the sets L, S and S satisfy the following properties:

(1) X 'SX=S5;

(2) for every word we A*, p(w)eLUX*S;

(3) let we A* and ac A such that (wa)# @(w)a; then p(wa)a 'eSUL;

(4) let we A* and ae A; if p(wa)e L— L then go(wa)=¢p(w)a.
Examples 3.5. Let A={a,b}, x=baab, y=aba. xy* contains the square of
the primitive word z=baaba. Hence, we have cycle=xy?=baaba baaba,
L=pref(xyy+yxy+yyx) and L=pref((xyy+yxy+yyx)™).

(a) Let w=babbaabab (see Fig. 1). We have ¢@(w)=xabelnS, o¢(wa)=
xy=g@(w)acLNS, but (wb)=b#@(w)b, p(wb)b '=eeSNL.

(b) Let w=(yxy)®’yxa (see Fig. 2). We have ¢@(w)=wel—S, ¢@(wa)=
(y2x)?y?a#o(w)a, p(wa)a~'eL—S, p(wb)=qp(w)b.

b a b

C\bayb
\-/\—/

X y

/x\y’
b a b b a a b a b b
~—
x’

Fig. 1.

150 J. Néraud, M. Crochemore

X y p. y y x vy’
AANAANAS AN AOANASNASN N A
ababaababaababaababaababaabaa

y y x y y x y y y"

ababaababaababaababaababaabatnb

V_/\/\./\/\/v_/__.—

y x y y x v y x y"
Fig. 2.

According to Lemma 3.4, the preprocessing phase of our algorithm consists in
constructing two automata. These automata will allow us to recognize the factors of
the input word which, respectively, belong to the sets X *S and L.

4. Automaton (%, g)

We now indicate the construction of an automaton for recognizing the factors in
X*8.

4.1. The construction

The first step is to construct an automaton recognizing A* S, which can be easily
done by applying the classical algorithm of Aho and Corasick (cf. Section 2.3). This
automaton is represented by a pair (¥, g), where &, is the tree-like automaton
recognizing S and ¢ is a failure function. The states of ¥, may be identified as prefixes
wof §, and g is defined as follows: g(w) is the longest proper suffix of w which belongs
to S.

Let ¢ be the transition function of &,. For every word weS we define the
e-transition [11]: a(w, €)= X ~'w. With these transitions added to the automaton %,
we get the automaton .%. The justification for such transitions is given by the
following: given weS, and ae A, we have wagpref(S). However, we must be able to
distinguish, in terms of the automata, whether waepref (X *) or not.

4.2. Properties of the automata

Lemma 4.1. Let weS and w'=X ~'w. For every word te A* and for every word peS
(with p not an X-factor of wt), the two following properties are equivalent:

(i) p is a proper suffix of wt;

(i) p is a proper suffix of w't.

A string-matching interpretation of the equation x™y" = z? 151

Proof of Lemma 4.1. Since w't is a suffix of wt, trivially, claim (ii) implies claim (i).

Let p be a proper suffix of wt belonging to S. According to the definition, we have
[pl<3|x|+2ly|. But, since w'eX 'w, we have |w'|=4|x|+2|y|—|x|. Hence,
|w't|=3|x|+2]|y|; thus, pis a suffix of w't. O

As a consequence, the failure function g can be extended to a total function
g:A* pref (X *)—S. Indeed, for all the words we A *, we have g(w)=g(o(g, w)). Thus,
A*X * is the behaviour of the automaton represented by the pair (%, g). We shall
compute the transitions of this automaton by applying the following recursive rule
(see Fig. 3):

a b a b a a b a b a a

.,‘El P

Fig. 4. Automata &, ¥, the case where x and y are conjugate, x =ababa, y =abaab.

152 J. Néraud, M. Crochemore

2) If the transition ¢(p, a) is not defined in &%, we set:

(p. a)= al(glp), a) if g(p) is defined
e = g, otherwise.

5. Automaton (%, f)

The second step of the preprocessing is to construct an automaton &£, whose
behaviour is 4* L, with transition function A.

5.1. The construction

Automaton £+ In a first step we construct an automaton recognizing A* L by
applying the algorithm of Aho and Corasick. This automaton is represented by a pair
(&%1.f), where &, is the tree-like automaton whose behaviour is L, and f'is the failure
function. The states of ¥, may be identified as elements of L (& being the initial state),
and f is defined as follows: for every word we L, f(w) is the longest proper suffix of
w which is prefix of L. Let 4, be the transition function of .%;.

Automaton &,: The second step is to construct an automaton &, recognizing L.
Let i, be the transition function of ¥, and let Q be the set of the states.

(a) Case I. x and y are not conjugate words (cf. Fig. 5). Let w be the unique word in

cycle and, for all the integers ie {1,..., |w|} let w; be the letter of w with position i. We
set:
- Q={Oa’ lWl_l},

all the states are terminal,
initial state: O,
the transitions are defined as follows:

!

haliywie)=i+1 (0<i<iwl—2) and Ay(jwl—1,w,)=0.

Case 2. x and y are conjugate words (cf. Fig. 4). Recall that, in this case, we
have |x|=|y|. ’
- 0={0,....2Ix]}.
— all the states are terminal,
— initial state: 0,
— the transitions are defined as follows:

For all the integers ie{1,..., | x|}, let x; (y;) be the letter of x (y) with position i.
We set:

A x)=i+1 (I<ig|x]—1)

AGi+]x, y)=Ix|+i+1 (I<i<g|x|-1),
Aalxl, x;x)=1 and A (2|x|, yjx)=Ix|+1,
A2(0,e)=1 and 4,(0,e)=|x|+1.

A string-matching interpretation of the equation x™y"=z? 153

Fig. 5. Automata ¥, ¥, the case where x and y are not conjugate, x = baab, y=aba, xy? imprimitive.

Automaton &: Let w be an X-conjugate word of a word of cycle. By construction
there exists a unique state ge, (0, X *) such that (g, w, q) is a path of %, and we set
B(w, €)=g. The automaton % is defined as the disjoint union of %, and %,. Its
transition function is the union of 4y, A, and 8, and its initial state is g, the initial state

of &;.

5.2. Properties of the automaton ¥

As in Section 4.2, we shall extend the function f to all the states of the auto-

maton %.

154 J. Néraud, M. Crochemore

Lemma S5.1. Let welL and ac A such that wa¢ L. Then the longest proper suffix of wa
belonging to L is an element of L.

Proof of Lemma 5.1. Since waé¢ L, the length of f(wa)a ! is upper-bounded by the
minimal period (cf. [7]) of every word belonging to cycle. Hence, f(wa)a ™! belongs
toL O

Lemma 5.2. Let w and w' be two words of L such that A(g, wy=A(g, w). If |w|<|w'|,
then w is an X-factor of w' and a suffix of w'.

Proof of Lemma 5.2. The result is trivial if we L — L. In the other case, we can assume
that w’ is the shortest word such that A(g, w)=A(g, w’). By construction of ., we have
w'=Xxy...x,.x, with x;...x, X-conjugate of a word of cycle and x’epref(X). By
construction of the automaton %, the word w belongs to the set:

(cp X)) T X (X X X) X X (X X Xy e X 2) T Xy X X

F(Xp Xy X X)) Xp X, X

Hence,
+

We(x; ... X)X+ x (X1 X)) T X X X (X X)X

Fx5. Xy (X1 x,) T
Thus, w' is an X-factor of w and a suffix of w. O

Lemma 5.3. Let w,w'e L such that A(e, w)=A(g, w"). Then for every word te A* and for
every word peL, the following properties are equivalent:

(1) p is a proper suffix of wt;

(i) p is a proper suffix of w't.

Proof of Lemma 5.3. If we L — L then we have w'=w and the result is trivial.
Assume that w,w'¢ L, with |w|<|w’|, without loss of generality. According to
Lemma 5.2, the word w is a suffix of w’; thus, wt is a suffix of w't. Hence, claim (ii)
implies claim (1).
Moreover, if p is a proper suffix of wr (with pe L), then we have |p| <d. Hence, p is
a proper suffix of w't. O

Given a word we A *, let L,, be the sets of the words w’ such that A(g, w)=4A(e, w’).
As a consequence of Lemma 5.3, L,, is totally ordered by the relation > defined by:

w>=w' iff wis a suffix of w'.

A similar remark can be made in Section 4.2. This can be got closer with a result
concerning the suffix automaton [4].

A string-matching interpretation of the equation x™y"=zP 155

As a consequence, the failure function f can be extended to a total function
A*L—L. Thus, A*L is the behaviour of the automaton represented by the pair
(&, f). We shall compute the transitions of this automaton by applying the following
recursive rule:

3) If the transition A(p, a) is not defined in %, then

; _JA(f(p)a) if f(p) is defined,
Hpa)= g, otherwise.

We finally add to the preprocessing phase the computation of the lengths of all the
words weSu L.

6. A special case of failure

6.1. Description

Recall that we denoted by ¢(w) the longest suffix of w belonging to pref (X *).
Assume that we have ¢(wa)# @(w)a, with ae 4 and ¢(wa)¢S. According to Proposi-
tion 3.2, the word w'=¢@{wa)a ! belongs to L— L. Let w, be the shortest suffix of
w such that w, is an X-factor of w and such that w’ is a suffix of w,. We have also
w,€eL.

We now study this condition more precisely.

The following comes from the definition of the period of a word:

4) Let t,t' be two conjugate words, and let pepref(t ™), gepref (¢t ™).
For every reA*, we have prepref(t™) iff grepref(t'™).

We now establish two lemmas.

Lemma 6.1. Let wel — L and ac A such that waé L. Assume that there exists a suffix
w' of w such that w'a is a prefix of a word in X*. If w'¢S then there exists a word
w'eLnX* such that w'=w".x Ay, where x Ay is the longest common prefix of x
and y.

Proof of Lemma 6.1. Let w” be the longest prefix of w’ which belongs to X *. If w' is
an X-factor of w then clearly, w'e L. Otherwise, since |w’|>3|x|+2]|y|, and again
according to Proposition 3.2, we have w'e L. Assume that w’#w” . x A y. Then one of
the following cases may occur:

(1) w=w".xAy.r(red™). Since X ={x, y} is a biprefix set, there exists a unique
word te X ¥, such that x A y.r and x A y.ra are two prefixes of ¢. This implies w'ae L,
which contradicts wa¢ L (according to (4)).

(2) w'=w"r, with raepref(x A y); thus, w'aeL, which, once more, contradicts
waé L.

In each case, we obtain a contradiction. Hence, we obtain w'=w".xAy. [

156 J. Néraud, M. Crochemore

Lemma 6.2. Let x Ay be the longest common prefix of x and y and let w=uw(x A y)eL,
with ue X *, where w is an X-conjugate word of a word belonging to cycle. Assume that
for a given ae A we have wa¢ L and let te A*, pepref (X *), such that wat¢ X * p. Then the
following conditions are equivalent:

(i) p is a proper suffix of wat;

(i) p is a proper suffix of w(x A y)at.

Proof of Lemma 6.2. Trivially, claim (ii) implies claim (i). Conversely, let p be
a proper suffix of wat. Assume that w.x A y.at is a suffix of p. According to Lemma
6.1, since X is a biprefix set, we have pe X *w.x A y.at; thus, p is an X-factor of wat,
which contradicts the hypothesis of Lemma 6.2. Consequently, p is a proper suffix
of wat. [

As a consequence of the preceding results, we introduce the following notation: Let
weA*, and ae A. We say that (w, a) satisfies the condition (5) iff:

(i) Let w’ be the longest suffix of w which belongs to L. The word w' has an
X-interpretation (r, d, x A y), where x A y is the longest common prefix of the words
x and y,

() x Ay.aepref(X),

(i) d.x A y.aé¢Ss.

6.2. Deciding whether the condition (5) holds

First, we introduce three new notations.
Sets start (i): Assume that xy ¥ Ux?y contains an imprimitive word z* (with z primi-
tive). Since all the X-conjugate words of the word of cycle have the same smallest
period, each of them has exactly k X-interpretations. Let (r;, d;, p;) (1<i<k) be
different X-interpretations of z*. We set start (i)=A(e, z*r;. X *. x A y) (1<i<k).

Assume that x and y are conjugate: x=uv, y=vu. We set start(1)=A(g, y+uy),
start(2)=A(g, x +vx), and k=2.

Clearly, the sets start(i) (1 <i<k) will be computed in the preprocessing phase.

Function n. According to Lemma 6.2, we define the following partial function m:
Let we L, such that there exists ie[1, k], with A(g, w)estart(i). We denote by n(w) the
unique suffix of w which satisfies 7(w)=w. x A y, where w is an X-conjugate word of
a word of cycle.

According to this definition, the function can be defined on the states of %, ; thus, it
can be computed in the preprocessing phase.

Function shift: With the preceding notation, let we 4*, and let D(w) be the subset of
A*, whose elements satisfy the following:
— every word in D(w) is a suffix of w and belongs to L;

A string-matching interpretation of the equation x™y"=z" 157

- if w, and w, are two elements of D(w), with |w,]<|w,|, then w, is not an X-factor

of w,.

Clearly, the cardinality of D(w) is k. Moreover, since X is a biprefix set, at most one
of the elements of D(w) belongs to X *. x A y. If such a word w’ exists, then there exists
an integer i such that i(g, w)estart (i}). We set shift{w, i)=s, with w=sw'". Since X is
a biprefix code, the following lemma is clear.

Lemma 6.3. Let wel, and let w' be a prefix of w. With the preceding notations, assume
that there exists an integer i€[1, k] such that A(g,w)estart(i) and A(g,w')estart(i).
Then we have shift (w,i)=shift (w’,).

Let weL, with w>d (cf. notations in Section 3), and let w be the prefix of w whose
length is d. As a consequence of Lemma 6.3, if there exists an integer i[1, k] such that
Ae, w)estart (i), then we have shift (w, i)=shift (w, i). This allows us to compute the
values of shift in the preprocessing phase.

As consequence, from an algorithmic point of view, we shall decide whether the
condition (5) holds as follows.

{6) The pair (w, a)e A* x A satisfies the condition (5) iff the following holds:
(i) There exists a positive integer ie{1,...,k} such that i(g, w)estart(i);
(i) a(n(w),a)#@;
(iii) if w’is the longest suffix of w which belongs to L then (shift(w, i)) ~*w’¢S.
6.3. Example
Let x = baababaab and y=aba. xy? contains the imprimitive word (baaba)?; thus,
cycle={xy?} and k=3 (see Fig. 6).
Since x A y=¢, the sets start(i) (I <i<3) are the following:
start(1)=A(e, xyy+yxy+yyx)={0,9, 12},
start(2)=A(g, xyyba+ xyybaaba + yxyab)={2,5, 14},
start(3)=A(e, xyybaab + xyybaababa + yyxa)={4, 7, 10}.
The function = takes the following values:
7(0)=(5)=7(10) = xyy,
n(2)=n(N)=n(12)=yxy,
n@d)=n(9=n{14)=yyx.

shift takes the values shown in Table 1.

158 J. Néraud, M. Crochemore

a a
Fig. 6.
Table 1
i
w 1 2 3
xy? £ ba baab
yxy € ab ababaab
yix 3 abaab a

Let w=y(xyy)*baabacL. We have wag¢L, A(e, w)estart(2), and shift(w,2)=
shift(yxy, 2)=ab. Hence, the condition (5) is satisfied, and: n(w)=xyy, n(w)aeS.

7. The processing phase

7.1. Notation

According to Lemma 3.4, for a given word weA*, ¢(w) is the longest of the two
following words:
— the longest suffix of w belonging to L,
— the longest suffix of w belonging to X *S.

The first word belongs in fact to (L — L)u L and the second to (X*S—S)uS. This
leads us to introduce the following new notation.

A string-matching interpretation of the equation x™y" = zP 159

Notation. Let weA*.

(1) Let w' be the longest suffix of w belonging to L. If |[w’| > d (cf. Section 3) then we
set L(w)={w’}, otherwise we set L(w)=0.

(2) We denote by I[(w) the set whose unique element is the longest suffix of
w belonging to L.

(3) If |@(w)|=3|x[+2|y| then we set S(w)={@(w)}, otherwise we set S(w)=0.

(4) We denote by s(w) the set whose unique element is the longest suffix of
w belonging to S.

Moreover, if {w, a) satisfies the condition (5), we set S;(wa)={d.x A y.a}; other-
wise we set S (wa)=0.

The following result follows from the definitions.

Lemma 7.1. @(w) is the longest word belonging to L(w)yul(w)S(w)us(w).

7.2. Computation of L(w), l(w), S(w) and s(w)

Our on-line algorithm must read all the prefixes of the input word. In the initializa-
tion step, we set L(w)=S(w)=0, and ¢(w)=¢. Assume that we have read the prefix w,
and let ae A.

Lemma 7.2. The tuple (L(wa),l(wa),S(wa),s(wa)) can be computed using the tuple
(L(w), l(w), S(w), s(w)) and the functions f, g, r, shift.

Proof of Lemma 7.2. Let weA* and aeA. Different cases may occur:
(1) One of the two following conditions holds:
— L(w)#® and L(wa)=L(w)a,
— L(w)=@ and I(wa)=I(w)a.

In examining the sets S(wa) and s(wa) two new cases may occur:

(1.1) One of the two following cases holds:
— S(w)#@ and S(wa)=S(w)a,
— S(w)=0 and s(wa)=s(w)a.

In the second case, we have S(wa)#§ iff the length of its element is at least
3|x|+2]y|. If this condition holds then we have S(wa)=s(w)a.

(1.2) One of the two following cases holds:
— S(w)#0 and S(wa)#S(w)a,
— S(w)=0 and s(wa) #s(w)a.

(1.2.1) Assume that S(w)#@ and S(wa)#S(w)a.

Assume that L(w)# and let w,eS(w), woeL(w). Since |w,|>|w,|, the word w, is
a suffix of wy. Since w,ael, according to (4), the word w,a belongs to L; thus,
S(wa)={w,a}, which contradicts the condition (1.2.1). Hence, we have L(w)=§.
Moreover:

(w)a if the word in [(wa) has a length at least d,
L(wa)= .
¢ otherwise.

160 J. Néraud, M. Crochemore

In a similar way,

{S(Wa)=¢,

there exists an integer n such that s(wa)=/{g"(w)a}.

(1.2.2) Assume that S(w)=0 and s(wa)#s(w)a.
If S(wa)#®, then we have S(wa)=s(w)a. But, since s(wa)#s(w)a, the word in
s(wa) has length at most 3|x|+2|y|—1; thus, it cannot belong to S(wa). Hence:

{S(wa)=¢,

there exists an integer n such that s(wa)={g"(w)a}.

(2) One of the following conditions holds:
— L(w)#0 and L(wa)# L(w)a,
— L(w)=0 and I(wa)#I(w)a.
According to (4), with the first condition, we have L(wa)=@. With the second
condition, there exists an integer n such that I[(wa)={ f"(w)a}.
(2.1) One of the two following cases holds:
~ S(w)#@ and S(wa)=S(w)a,
— S(w)=0 and s(wa)=s(w)a.
In the second case:

Sy(wa) iff condition (5) holds,

S(wa)= . s(w)a if the element of this set has length
otherwise 31x|+2]yl,
@, otherwise.

(2.2) One of the two following cases holds:
— S(w)#® and S(wa)#S(w)a,
~ S(w)=0 and s(wa)#s(w)a.
Here

S, (wa) iff condition (5) holds,
S(wa)= .
@, otherwise,
there exists an integer n such that s(wa)={g"(w)a}.

Since the conditions L(wa)=L(w)a, [(wa)=Il(w)a, S(wa)=S(w)a and
s{wa)=s(w)a can easily be decided in examining the transitions of automata & and
#, we obtain our lemma. {J

7.3. Scheme of the algorithm

_From an algorithmic point of view, the preceding results lead to the introduction of
function that we denoe by suffix. Given the tuple of sets (L(w), [(w), S(w), s(w)), and
given the letter a, suffix computes the tuple (L(wa), [(wa), S(wa), s(wa)).

The different cases are summarized in the arrays of Tables 2 and 3. The results will
be easily translated in terms of length.

A string-matching interpretation of the equation x™y"=zP 161

Table 2
L({wa) I(wa)

L(w);é¢, L{wa)=L(w)a L(w)a -
L(w)=9, l(wa)=1(w)a liw)an A? l(w)a
L(w)#¢, L(wa)# L(w)a ¢ {fiwa)}
L(w)=8, l(wa)#I(w)a ¢ {f(wa)}
Table 3

S(wa) s(wa)
S(w)#0, S(wa)=S(w)a S(w)a {g(wa)}
S(w)=9, s(wa)=s(w)a S, (wha A (s(whan A3y g(w)a
S(w)#@, S(wa)#S(w)a Siw)a n (s(wyanA31+200) 0 {g(wa)}
S(w)=0, s(wa)#s(w)a Si{wa) {g(wa)}

* Given two sets of words E and F, we set:
E if F=0, or Fif E=0
EAF= .
E if E#0 and F#0

We can now give the scheme of an algorithm for computing the longest factor
w which belongs to pref (X *) (with minimal position). After reading every prefix of the
input word, let g, (q;) be the corresponding state of & (%Z).

Algorithm
begin

gy €; pe=g; Weg;
while not end of the input word do

begin
read the next letter q;
4s—0(qs, a); qreA(qy, a); {step 1}
(L(wa), l(wa), S(wa), s(wa))esuffix (L(wa), [(wa), S(wa), s(wa));
¢@(wa)«longest word of L(wa)ul(wa)u S(wa)us(wa); {step 2}
if (w, a) satisfies condition (5) then g,«o (g, n(w)a)); {step 3}
wewa;

if ¢(w) strictly longer than the previous one then
memorize its length and position
end
end.

162

— Instep (1), g, and g, are computed by the transition functions in (%, f) and (&, g).
Step (2) is justified by Lemmas 7.1 and 7.2. Step (3) is the direct consequence “of

J. Néraud, M. Crochemore

Lemma 6.2.

- In step (2), any element of L{wa)ul(wa)u S(wa)us(wa)is determined by its length

and its position.

7.4. The full algorithm

For every prefix w of the input word, the longest word in S(w)usiw) (L(w)ul(w))
is characterized by its length, which we denote by /; (£,). We set /,=|p(w)|, and we
denote by w(i) the letter of a with position i. The longest factor of w which belongs to
pref(X*) and whose position is minimal is characterized by its length ¢,,,, and its

position i,,.

In the full algorithm, each of the steps 1,2, 3 has been divided in smaller steps,

namely 1.1, 1.2, 1.3,...

Algorithm

begin

4s—€; Qo —qLqL—E;
“_07 imax(_o; lmax<_l<p4_ls(_l;“_lL(_'0;

while i <|w| do

begin

£p=0;
j—i+1; ae—w(i);
Lie—41 qreqr; {step of memorization}
while (6(q,, a)=0 and g,#¢) do
begin g,<—g(q,) {1.1}; Zy—lqsl {3.1} end;
if 6(q,, a)#0 then {otherwise we have g,=¢}
begin g,<o(q,,a) {1.2}; /4y<{i+1 {32} end;
while (1(q,,a)=¢ and g, #¢) do
begin q;—f(q.) {21}; Zr<lql {33} end;
if A(qy,a)#0 then {otherwise we have g,=¢}
begin g, < i(q.,a) {2.2}; /p<{.+1 {34} end;
if (there exists je[1, k] such that gjestart (j) and o(n(qL),a)#9
and /}-shift (qo,j)+1>7,) then {cf. 3.6}

begin
{1 —shift (qo, j)+1; {3.5}
gs—o(nlqgL). a);

end

{o—max (s, £1);
if £,/ nax then begin ¢, 7] inax—i—max+ 1 end
if (g; is a state of &, and g, is a state of &) then go—q, {3.6}

end
end.

A string-matching interpretation of the equation x™y" =z? 163
8. The complexity

8.1. The preprocessing phase

Since L <pref(S), as a direct consequence of [1], we have the following result.

Proposition 8.1. The preprocessing has a complexity in time and in space proportional
to |pref (S)|.

8.2. The processing phase

Theorem 8.2. Let X ={x, y} be a biprefix code whose elements are primitive words, and
let we A*. Then the computation of the longest factors of w which belongs to pref (X *)
can be implemented so that it works in time O(|w|).

Proof.

— Step (1) allows us to process the word w by applying the rules (2) and (3) at most
2-2|w| times. Indeed, if v is the prefix of the word w already processed, the numbers
2|v|—]qs] and 2|v|—|q. | increase strictly [1]; moreover, L < §S.

— The length of the elements of S and L, and of the partial function shift, are computed
in the preprocessing phase. Since g, and ¢, are computed in step (1), the complete
process of step (2) requires a time linear in |w]|.

— Since step (3) requires constant time, the complete process of our algorithm requires
time O(jw|). O

References

[1] A. Aho and M. Corasick, Efficient string matching: an aid to bibliographic search, Comm. ACM 18(6)
(1975) 333-340.
[2] E. Barbin and M. Lerest, Sur la combinatoire des codes a deux mots, Theoret. Comput. Sci. 41 (1985)
61-80.
[3] J. Berstel, D. Perrin, J.F. Perrot and A. Restivo, Sur le théoréme du défaut, J. Algebra, 60 (1) (1979)
169-180.
[4] M. Crochemore, Transducers and repetition, Theoret. Comput. Sci. 45 (1986) 63-86.
[5] M. Crochemore, Longest common factor of two words, in: TAPSOFT 87, Lecture Notes in Com-
puter Science, Vol. 249 (Springer, Berlin, 1987) 26-36.
[6] M. Crochemore and J. Néraud, Unitary monoid with two generators: an algorithmic point of view, in:
CAAP’90, Lecture Notes in Computer Science, Vol. 431 (Springer, Berlin, 1990) 117-131.
[7] J.P. Duval, Périodes et répétitions des mots du monoide libre, Theoret. Comput. Sci. 9 (1979) 17-26.
[8] N. Fine and H. Wilf, Uniqueness theorem for periodic functions, Proc. Amer. Math. Soc. 16 (1965)
109-114.
[9] M. Garey and D. Johnson, Computers and intractability. A Guide to the Theory of NP-Completeness
(W.H. Freeman, 1978).
[10} D. Hirschberg and L. Larmore, New applications of failure functions, J. ACM 34(3) (1987) 616-625.
[t1] J. Hopcroft and J. Ullman, Introduction to Automata Theory, Languages and Computation (Addison-
Wesley, Reading, MA, 1979).

164 J. Néraud, M. Crochemore

{12] D. Knuth, M. Morris and V. Pratt, Fast pattern matching in strings, SIAM J. Comput. 6 (1977)
323-330.

[13] A. Lentin, Equations dans le monoide libre (Gautier Villars, Paris, 1972)

[14] A. Lentin and M.P. Shiitzenberger, A combinatorial problem in the theory of free monoids, in: Proc.
University of North California (1967) 128—-144.

[15] J. Néraud, Elementariness of a finite set of words is co-NP-complete. Theoret. Inform. Appl. 24 (5}
(1990) 459-470.

[16] J. Néraud, On the deficit of a finite set of words, Semigroup Forum 41 (1990) 1-21.

[17] M.P. Schiitzenberger, A property of finitely generated submonoids, in: G. Pollak, ed., Algebraic
Theory of Semigroups (North-Holland, Amsterdam, 1979) 545-576.

[18] J. Tarhio and E. Ukkonen, A greedy approximation algorithm for constructing shortest common
superstrings, Theoret. Comput. Sci. 57 (1988) 131-145.

