
Theoretical Computer Science 92 (1992) 145-164

Elsevier

145

A string-matching interpretation
of the equation xmyn = z?’

J. Nk-aud
LITP, Institui Bluise Pascal and LIR. UniversitP de Rouen, Pluca Emile Biondel. F-76134 Mont-

Saint-Aignan, France

M. Crochemore
LITP, Insiitut Blaise Pascal, Universitc: Paris- VII, 2 place Jussieu, F-75251 Paris Cedex 05, France

Neraud, J. and M. Crochemore, A string-matching interpretation of the equation x”y” = zD, Theor-

etical Computer Science 92 (1992) 145-164.

We consider the following problem:

Instance: a finite alphabet A, a biprefix code X = { x, y) whose elements are primitive, wsA*.

Question: find all maximal factors of \I’ which are prefixes of a word of X*.

We present an on-line algorithm which solves the problem in time linear in the length of w, after

a preprocessing phase applied to the set X.

1. Introduction

In computer science, the concept of factorization plays a prominent part in applica-

tions and in the problems that it introduces.

For instance, given a subset X in the free monoid A *, it is of interest to compute the

“rank” of X, i.e. the minimal cardinality of a finite set Y such that X G Y* (i.e. every

word of X is the concatenation of words belonging to Y). It is established [lS] that

this problem is NP-complete and if X has cardinality k then there exists an O(nk)

algorithm, where n stands for the sum of the lengths of the words in X.

As another example the problem of the “shortest common superstring” consists,

given a set of words X, in constructing a word w of minimal length such that every

word of X factorizes w. This is also a classical NP-complete problem [9, 181.

From another point of view, several “pattern-matching” problems are known to

be decidable by linear-time algorithms. Let us mention the classical Knuth-

Morris-Pratt (KMP) algorithm [12], generalized in [l], and an algorithm computing

the longest common factor of two words [S]). All these algorithms make use of

0304-3975/92/$05.00 c 1992-Elsevier Science Publishers B.V. All rights reserved

146 J. NPraud, M. Crochemore

a notion of “failure function” which is also a main feature of the algorithm presented

in this paper. “Failure functions” have recently found an application in text formating

ClOl.
Given a biprefix set X= { x, y} z A* whose elements are primitive, and given

a word w, the problem is to find the longest factors of w which are prefixes of words of

X*. We present an algorithm which solves the problem in a time linear in the length of

w after a preprocessing phase applied to the set X. A simple modification of our

algorithm permits us to compute the longest factors of w which belong to X* in a time

linear in the length of w.

Let us now examine how an on-line algorithm can solve our problem. For a given

word WE A * let q(w) be the longest suffix of w which is prefix of a word of X*. Assume

that we have computed q(w), for a given prefix w of the input word. Let a~.4 such that

cp(wa)#cp(w)a. The word q(w) inducts an “X-interpretation” (cf. [17]) of cp(wa)a-’

which consists in fact in considering the word cp(wu)u -i as a factor of a word of X*.

According to a result concerning the equations of the form xmyn=zPin a free monoid

(cf. [14], [13]), if cp(wu)u- ’ is long enough, then it is possible to precisely describe it.

This leads us to introduce two sets of prefixes of words of X*, namely L and S. Indeed,

for every word WE A * the word v(w) belongs to Lu X* S and, consequently, w be-

longs to A * L u A * X * S. In this way, in a preprocessing phase, we shall compute two

automata whose behaviours are, respectively, A * L and A * X * S. The complexity of

the construction of such automata can be expensive, on account of the cardinality of

the alphabet A. We solve this problem by introducing two particular suffixes of w,

namelyf(W)EL and g(w)ES. In fact, if after the reading of two words w, w’ we are in

the same state of the automaton whose behaviour is A * L (A * X *S), thenf (w) =f(w’)

(g(w) =g(w’)). Consequently, the functions f and g can be defined on the states of the

corresponding automata - thus, f and g are “failure functions”. This allows us to save

space in using “representations” of the above automata. As a consequence, the

processing phase consists in the reading of the input word in parallel on the two

automata. For every prefix w of the input word, we shall compute q(w) using the

preceding “representations”.

Our paper contains the full study of the result published in [6].

2. Preliminaries

2.1. Dezfintions and notations

Given a finite alphabet A, we denote by A* the free monoid it generates, and by

E the word of length 0. For any arbitrary subsets X, Y s A *, we denote by X Y their

(concatenation) product, by X * the submonoid generated by X (we set

X+=X*-{&}), and by XY-’ the set: {uEA*: 3(x,y)~X x Y x=uy}.

Given a word WE A *, we denote by fact(w), pref(w), and sufs(w) the sets, respect-

ively, of all the factors, prefixes, and suffixes of w, i.e. the sets of all the words

A string-matching interpretation of the equation xmy”=zP 141

u satisfying the conditions: WEA*UA*, w~uA*, and w~A*u, respectively. If

u~sufs(w), we say that u is a proper &fix iff u #w. If wEX +, we say that uefact (w)‘is

an X-factor of w iff wgX*uX*. Two words w and w’ are conjugate iff there exist two

other words u and v such that w = uv and w’ = vu; if u and v belong to X + we say that

w and w’ are X-conjugate. w is primitive iff w=x” implies n= 1; otherwise, w is

imprimitive. An occurrence of the factor u in WE A* is a tuple (t, u, v) such that w = t uv;

the integer /t I+ 1 is the position of u in the corresponding occurrence.

For every subset X c A *, we set pref(X) = IJ wax pref (w). An X-interpretation of

the word w is a tuple (s, u, p) such that w = sup, with s~sufs(X) - X, pEpref(X) - X

and UEX*. We say that X is biprejix iff XnXA+=A+XnX=$

2.2. A biprejxity result

In [3], the authors study generalizations of the famous defect theorem [13]. The

results can be extended to obtain the following proposition [16].

Proposition 2.1. Let X be a finite subset of A*. Then there exists a bipre$x set

Y satisfying the following conditions:
_ all the elements of Y are primitive words,

~ x E y*,

- lYl6IXI.

The result of Proposition 2.1 justifies the restriction on the instance X in the

following factorization problem, solution of which is the purpose of this paper.

Problem.

Instance: a finite alphabet A, a biprefix code X = (x, y} whose all elements are

primitive, an input word WE A*.
Question: Find all maximal elements of fuct(w) n pref(X *).

2.3. Aho and Corasick’s algorithm

Consider the following “pattern-matching” problem:

Instance: a finite alphabet A, a finite subset X or A*, an input word w;

Question: does any factor of w belong to X?

A solution can consist of an algorithm with two phases. The preprocessing phase

constructs a deterministic automaton ~2, with transition function 6, initial state i, and

whose behaviour is A*X. In the processing phase we shall decide whether w belongs

to the behaviour of ~2. In time and in space, the complexity of the preprocessing phase

is IA I Cxsx /x 1, which can clearly be expensive, on account of the cardinality (A (of A.
For a given word w, denote by f(w) the longest proper suffix of w which is prefix of

a word of X. Aho and Corasick proved that given two words w, w’EA*, if

6(i, w) = 6(i, w’) then f(w) =f(w’). This allows us to define the “failure function” f on

148 .I. NCraud, M. Crochemore

the states of d. Aho and Corasick’s solution consists in “representing” d by a pair

(d’,f), where 1;4’ is the tree-like automaton whose behaviour is X (note that the

states of ZZ” can be identified as prefixes of X). The complexity of the construction is

linear in the sum of the lengths of the words of X, Cxpx Ix I. In the processing phase, it

is easy to compute the transitions by the following recursive rule:

(1) If the transition 6(p, a) is not defined in d’, we set:

4P, a)=
@f(p),a) if f(p) is defined;

c, otherwise.

Aho and Corasick established that the processing phase has a complexity linear in

the length of the input word. Once more, note that 1 A 1 does not appear.

3. Some results on the X-interpretations

The results of this section are in fact consequences of Fine and Wilf’s theorem [8]

that we first recall.

Theorem 3.1. Given two words x, YE A*, if two powers xp, y4 have a common prejix of

length at least IxI+jyI--g.c.d. (/xl, Iyl), th en x and y are powers of the same word.

In [14, 131, the authors study the equations of the form x”’ y” = zp in a free monoid.

With the concept of X-interpretation [17], the results can be reformulated as

follows [2].

Proposition 3.2. Let X = {x, y } be a biprefix code with primitive elements and such that

1xl>lyl. Let WEX+ such that lw~>,2~x~+2~y~. If w h as an X-interpretation diflerent

from (E, w, E) then one of the two following cases holds:
(i) x and y are conjugate and WEX + v y +;

(ii) x and y are not conjugate, x ‘y u xy ’ contains a unique imprimitive word z, and

w is an X-factor of a word of z +.

In the case where x and y are not conjugate words, the following lemma is a direct

consequence of Fine and Wilf’s result.

Lemma 3.3. Let X = {x, y } be a biprefix code with primitive elements, and such that
(xl>lyl. Zf x +yuxy + contains an imprimitive word t, then one of the two following
cases holds:

(i) t =x2 y and t is the square of a primitive word;
(ii) tExyk and 1 ,<k<(ixl/ly\)+ 1.

According to Proposition 3.2, we introduce the following notation.

A string-matching interpretation of the equation xmyn = zp 149

Notation. Let X be a biprefix primitive code, with 1X1=2.

(1) For a given word WEA*, we denote by cp(w) the longest suffix of w belonging-to

pref(X*).
(2) We denote by cycle the set defined as follows:

_ if x and y are conjugate, we set cycle= X;

~ if x and y are not conjugate, and if there exists a primitive word z and a positive

integer k, such that zk~x2yuxyC, then we set cycle={zk};

~ in all the other cases we set cycle=@

(3) We denote by d the length of every word belonging to cycle.

(4) If x and y are conjugate, we set L = pref(x’ uy ’) and & = pref(X). If x and y are

not conjugate, we denote by L (L) the set whose elements are all the prefixes of the

X-conjugate words of cycle + (cycle).

(5) We denote by S the set of all the prefixes w of the words of X* such that

1 w 1-c 3 Ix I +2/y/ and by 3 the set of all the words WEX + satisfying the condition:

lwl>,4)xl+2lyl and IwX-‘l<41x1+21yl.

The introduction of the sets S and L is justified by the following straightforward

result.

Lemma 3.4. The function cp and the sets L, S and S satisfy the following properties:

(1) x-‘SX=S;

(2) for every word WEA*, cp(w)~LuX*S;

(3) let WEA* and UEA such that cp(wa)#q(w)a; then cp(wa)a-‘ESUL;

(4) let WEA* and UEA; ifq(wa)~L-& then cp(wa)=cp(w)a.

Examples 3.5. Let A= {a, b}, x= baab, y=aba. uy ’ contains the square of

the primitive word z = baaba. Hence, we have cycle = xy2 = baaba baaba,

L=pref(xyy+yxy+yyx) and L=pref((xyy+yxy+yyx)+).

(a) Let w=babbaabab (see Fig. 1). We have cp(w)=xabeLnS, cp(wa)=

xy=cp(w)a~LnS, but cp(wb)=b#cp(w)b,cp(wb)b-‘=EESnL.
(b) Let w=(y~y)~yxa (see Fig. 2). We have cp(w)=w~L-S, cp(wa)=

(y2x)2y2a#rp(w)a, cp(wa)a-‘EL-S, cp(wb)=cp(w)b.

b a

b a b b a a b

G
X'

Fig. 1.

150 .I. Nhaud, M. Crochemore

- r
ababaababaababaababaababaabaa

L.-JL,_/WWWWW~~
Y Y x Y Y x Y Y Y”

ababaababaababaababaababaabab
WUUL/~WWU~

Y x Y Y x Y Y x Y”

Fig. 2.

According to Lemma 3.4, the preprocessing phase of our algorithm consists in

constructing two automata. These automata will allow us to recognize the factors of

the input word which, respectively, belong to the sets X*S and L.

4. Automaton (9, g)

We now indicate the construction of an automaton for recognizing the factors in

x*s.

4.1. The construction

The first step is to construct an automaton recognizing A*S, which can be easily

done by applying the classical algorithm of Aho and Corasick (cf. Section 2.3). This

automaton is represented by a pair (Y,, g), where YO is the tree-like automaton

recognizing S and g is a failure function. The states of Y,, may be identified as prefixes

w of S, and g is defined as follows: g(w) is the longest proper suffix of w which belongs

to s.

Let o be the transition function of YO. For every word WES we define the

c-transition [l 11: CJ(w, E) = X - ’ w. With these transitions added to the automaton YO

we get the automaton 9. The justification for such transitions is given by the

following: given WE& and UEA, we have wa$pref(S). However, we must be able to

distinguish, in terms of the automata, whether waepref(X*) or not.

4.2. Properties of the automata

Lemma 4.1. Let WES and w’=X-’ w. For every word tE A * and for every

(with p not an X-factor of wt), the two following properties are equivalent:

(i) p is a proper sufix of wt;

(ii) p is a proper sufix of w’t.

word PES

A string-matching interpretation of the equation xmyn =zp 151

Proof of Lemma 4.1. Since w’t is a suffix of wt, trivially, claim (ii) implies claim (i).

Let p be a proper suffix of wt belonging to S. According to the definition, we have

lp/<3/x1+21yl. But, since w’EX-‘w, we have ~w’~~4~~~+2~yl-/xl. Hence,

lw’t~~3~x~+2~yl; thus, p is a suffix of w’t. Cl

As a consequence, the failure function g can be extended to a total function

g:A*pref(X*)+S. Indeed, for all the words WEA*, we haveg(w)=g(cr(e, w)). Thus,

A*X ’ is the behaviour of the automaton represented by the pair (9, g). We shall

compute the transitions of this automaton by applying the following recursive rule

(see Fig. 3):

a b a b a a b a b a a

&-a---+ + + --+ ---+ 4 __)_j II’ -...

ba

b
baa

\
\ \

b
a b a b b a b

\
a a

=\

----+++---+++~---+4~

Fig. 3. Y = haah and y = aba. Two “branches” of the tree-like automaton .Y.

4k3

J \

a

b
f

7

~--~CY$Q~

a b a

--+E--j--++
a
I

b

\.- -

~~ -_Cy\

7 10

Fig. 4. Automata Y, , Y2: the case where x and y are conjugate, x =ababa, y=abaab

152 J. Nhaud, M. Crochemore

(2) If the transition o(p,a) is not defined in 9, we set:

a(g(p), a) if g(p) is defined

otherwise.

5. Automaton (Y,f)

The second step of the preprocessing is to construct an automaton 9, whose

behaviour is A * L, with transition function A.

-7.1. The construction

Automaton _Yl: In a first step we construct an automaton recognizing A*L, by

applying the algorithm of Aho and Corasick. This automaton is represented by a pair

(LPI ,f), where SY1 is the tree-like automaton whose behaviour is L, andfis the failure

function, The states of _Y1 may be identified as elements of L (E being the initial state),

and f is defined as follows: for every word WE&, f(w) is the longest proper suffix of

w which is prefix of &. Let /2, be the transition function of Y1.

Automaton 6p2: The second step is to construct an automaton _YZ recognizing L.

Let & be the transition function of _YZ and let Q be the set of the states.

(a) Case I: x and y are not conjugate words (cf. Fig. 5). Let w be the unique word in

cycle and, for all the integers in { 1,. . . , 1 w I} let Wi be the letter of w with position i. We

set:

- Q={O,..., lwl-l},
_ all the states are terminal,
_ initial state: 0,
_ the transitions are defined as follows:

;12(i,wi+i)=i+l (Odi<lwl-2) and AZ(IWI -1, w,,,)=O.

Case 2: x and y are conjugate words (cf. Fig. 4). Recall that, in this case, we

have 1x1 =lyl.

- Q={O,...,2lxl},
~ all the states are terminal,
_ initial state: 0,
_ the transitions are defined as follows:

For all the integers in (1,. . . , 1x1}, let Xi (yi) be the letter of x (y) with position i.

We set:

&(i,xi)=i+l (I<i<(x/-1),

~“2(i+(XI,yi)=IXl+i+l (lbi<lX(-1),

Mx/,-qxl)= 1 and &(21x1, YI,I)=IxI+ 1,

&(O,.s)=l and &(O,&)=IxI+l.

A string-matching interpretation of the equation xmyn= zp 153

b

\ \ \
\

\

\

\

\

\

b

\ \
6

a
/

\

\
a

;a 1
I
I “\ \

I

\
\t

“9
b

a t 9 yb’

&I

Y ri

I

. .

i
a

Fig. 5. Automata 9,. Ypz: the case where Y and y are not conjugate, x = baab, y = aba, xy* imprimitive.

Automaton Y: Let w be an X-conjugate word of a word of cycle. By construction

there exists a unique state qE& (0, X ‘) such that (q, w, q) is a path of Yz and we set

B(w, E)=q. The automaton Y is defined as the disjoint union of _Pr and 5Fz. Its

transition function is the union of 1r, & and 0, and its initial state is E, the initial state

of 31.

5.2. Properties of the automaton 9

As in Section 4.2, we shall extend the function f to all the states of the auto-

maton 9.

154 J. NPmud, M. Crochemore

Lemma 5.1. Let WEL and aEA such that wa$L. Then the longest proper sujix of wa

belonging to L is an element of &.

Proof of Lemma 5.1. Since wa#L, the length of f(wa)a -’ is upper-bounded by the

minimal period (cf. [7]) of every word belonging to cycle. Hence, S(wa)a - ’ belongs

to &. 0

Lemma 5.2. Let wand w’be two words ofL such that I.(&, w)=/l(e, w’). Iflw161w’l,

then w is an X-factor of w’ and a sufix of w’.

Proof of Lemma 5.2. The result is trivial if WE&L. In the other case, we can assume

that w’ is the shortest word such that A(E, w)= i(~, w’). By construction of 9, we have

w’=xl.. .x,. x’, with x1. ..x, X-conjugate of a word of cycle and x’Epref (X). By.

construction of the automaton 9, the word w belongs to the set:

+(xz.x,_l.x n...xl)+ xz...x,.x’.

Hence,

WE(X~...X,)+x’+X,(X~...X,)+X’+X,_~.X,(X~...x,)+X’+~~~

Thus, w’ is an X-factor of w and a suffix of w. 0

Lemma 5.3. Let w, w’~Lsuch that A(&, w)=~(E, w’). Thenfor every word tEA* andfor

every word pi&, the ,following properties are equivalent:

(i) p is a proper sujj5x qf wt;

(ii) p is a proper suJfix of w’t.

Proof of Lemma 5.3. If WE&-L then we have w’ = w and the result is trivial.

Assume that w, w’$L, with 1~1 <I w’/, without loss of generality. According to

Lemma 5.2, the word w is a suffix of w’; thus, wt is a suffix of w’t. Hence, claim (ii)

implies claim (i).

Moreover, if p is a proper suffix of wt (with pi&), then we have Ipj <d. Hence, p is

a proper suffix of w’t. 0

Given a word WEA*, let L, be the sets of the words w’ such that A(&, w)=J.(&, w’).

As a consequence of Lemma 5.3, L, is totally ordered by the relation 3 defined by:
.

w 3 w’ iff w is a suffix of w’.

A similar remark can be made in Section 4.2. This can be got closer with a result

concerning the suffix automaton [4].

A string-matching interpretation of the equation xmyn=zP 155

As a consequence, the failure function f can be extended to a total function

A *L+&. Thus, A* L is the behaviour of the automaton represented by the pair

(_!Z,f). We shall compute the transitions of this automaton by applying the following

recursive rule:

(3) If the transition j_(p, a) is not defined in 9, then

J.(P, a)=
J.(f(p),a) if f(p) is defined,

c, otherwise.

We finally add to the preprocessing phase the computation of the lengths of all the

words WESUL.

6. A special case of failure

6.1. Description

Recall that we denoted by CJJ (w) the longest suffix of w belonging to pref(X*).

Assume that we have cp(wa) # cp(w)a, with SEA and cp(wa)&S. According to Proposi-

tion 3.2, the word w’= q(wa)a 1 belongs to L-L. Let w1 be the shortest suffix of

w such that w1 is an X-factor of w and such that w’ is a suffix of wl. We have also

wi EL.

We now study this condition more precisely.

The following comes from the definition of the period of a word:

(4) Let t, t’ be two conjugate words, and let pcpref(t +), qEpref(t +).

For every YEA*, we have prEpref(t+) iff qrEpref(t’+).

We now establish two lemmas.

Lemma 6.1. Let WEL-L. and aeA such that wa$L. Assume that there exists a &fix

w’ of w such that w’a is a prejix of a word in X *. If w’$S then there exists a word
W”E Ln X * such that w’ = w”. x A y, where x A y is the longest common prefix of x
and y.

Proof of Lemma 6.1. Let w” be the longest prefix of w’ which belongs to X*. If w’ is

an X-factor of w then clearly, w’EL. Otherwise, since 1 w’l > 3 IxI+21yl, and again

according to Proposition 3.2, we have W’E L. Assume that w’ # w”. x A y. Then one of

the following cases may occur:

(1) w’=w”.xr\y.r(r~A’).SinceX={x,y)isabiprefixset,thereexistsaunique

word tEX+, such that x A y r and x A y ra are two prefixes of t. This implies w’a~ L,
which contradicts wa$L (according to (4)).

(2) w’=w”r, with raGpref(x r\y); thus, &‘acL, which, once more, contradicts

wa#L.
In each case, we obtain a contradiction. Hence, we obtain w’= w”. x A y. I7

156 J. Niraud, M. Crochemore

Lemma 6.2. Let x A y be the longest common pre$x of x and y and let w = u!(x A y)~ L,

with ueX*, where F is an X-conjugate word of a word belonging to cycle. Assume that
for a given aeA we have wa$L and let tEA*, pEpref(X*), such that wat$X*p. Then the

following conditions are equivalent:

(i) p is a proper SufJix of wat;
(ii) p is a proper su#ix of E (x A y) at.

Proof of Lemma 6.2. Trivially, claim (ii) implies claim (i). Conversely, let p be

a proper suffix of wat. Assume that w . x A y . at is a suffix of p. According to Lemma

6.1, since X is a biprefix set, we havepgX*F. x A y . at; thus, p is an X-factor of wat,

which contradicts the hypothesis of Lemma 6.2. Consequently, p is a proper suffix

of wat. Cl

As a consequence of the preceding results, we introduce the following notation: Let

WEA*, and aEA. We say that (w, a) satisfies the condition (5) iff:

(i) Let w‘ be the longest suffix of w which belongs to L. The word w’ has an

X-interpretation (r, d, x A y), where x A y is the longest common prefix of the words

x and y,

(ii) x A y . aEpref (X),

(iii) d.xr\y.a#S.

6.2. Deciding whether the condition (5) holds

First, we introduce three new notations.

Sets start(i): Assume that xy ’ u x2 y contains an imprimitive word zk (with z primi-

tive). Since all the X-conjugate words of the word of cycle have the same smallest

period, each of them has exactly k X-interpretations. Let (ri, di, pi) (1 <i< k) be

different X-interpretations of zk. We set start(i) = A(&, zkri . X * . x A y) (1 <i < k).

Assume that x and y are conjugate: x =UV, y=~u. We set start(l)=A(~, y+uy),

start(2) = A(E, x + vx), and k = 2.

Clearly, the sets start(i) (1 <i < k) will be computed in the preprocessing phase.

Function n. According to Lemma 6.2, we define the following partial function rc:

Let WEL, such that there exists iE[l, k], with A(&, w)Estart(i). We denote by z(w) the

unique suffix of w which satisfies 7c(w) = w. x A y, where w is an X-conjugate word of

a word of cycle.
According to this definition, the function can be defined on the states of 6p2; thus, it

can be computed in the preprocessing phase.

Function shift: With the preceding notation, let WE A*, and let D(w) be the subset of

A*, whose elements satisfy the following:
_ every word in D(w) is a suffix of w and belongs to L;

A string-matching interpretation of the equation xmyn=zP 157

_ if wr and w2 are two elements of D(w), with 1 w1) < 1 w2 1, then w1 is not an X-factor
of w2.
Clearly, the cardinality of D(w) is k. Moreover, since X is a biprefix set, at most one

of the elements of D(w) belongs to X * .x A y. If such a word w’ exists, then there exists
an integer i such that i(c, w)~srart (i). We set shift (w, i) = s, with w = SW’. Since X is
a biprefix code, the following lemma is clear.

Lemma 6.3. Let WGL, and let w’ be a prejx of w. With the preceding notations, assume

that there exists an integer iE[l, k] such that J.(E, w)Estart(i) and ;I(E, w’)Estart(i).
Then we have shif (w, i) = shift (w’, i).

Let WEL, with w >d (cf. notations in Section 3), and let w be the prefix of w whose
length is d. As a consequence of Lemma 6.3, if there exists an integer i~[1, k] such that
%(E, w)E-start (i), then we have shift (w, i) = shi@ (y, i). This allows us to compute the
values of shift in the preprocessing phase.

As consequence, from an algorithmic point of view, we shall decide whether the
condition (5) holds as follows.

(6) The pair (w, a)~ A * x A satisfies the condition (5) iff the following holds:
(i) There exists a positive integer in{ 1, k) such that @a, w)estart (i);

(ii) ~(z(w), a)+@;
(iii) if w’ is the longest suffix of w which belongs to L then (shif(w, i)) - l w’$S.

6.3. Example

Let x = buababaub and y=aba. xy2 contains the imprimitive word (baaba)3; thus,

cycle = (xy2 f and k = 3 (see Fig. 6).
Since x A y = E, the sets start(i) (I< i < 3) are the following:

start(l)=i(E, xyy+yxyfyyx)=(O, 9, 121,

start(2)=iu(E, xyyba+xyybaaba +yxyab)= {2,5, 14),

start(3) = ,I(E, xyybaab + .~yybuababa + yyxa) = (4,7,10>.

The function z takes the following values:

shift takes the values shown in Table 1.

158 J. Nbraud, M. Crochemore

/
12

a
1

13

b

1
14

a
0

f
b

5

/’ a

a a

Fig. 6.

Table 1

w

XY2
YXY
Y2X

1 2 3

E ba baab
E ab ababaab
E abaab a

Let w=y(xyy)2baabaEL. We have wa$L, I”(&, w)~start(2), and shif(w, 2)=

shift(yxy, 2)=ab. Hence, the condition (5) is satisfied, and: rr(w)=xyy, rc(w)a~S.

7. The processing phase

7.1. Notation

According to Lemma 3.4, for a given word WEA*, q(w) is the longest of the two

following words:
_ the longest suffix of w belonging to L,
_ the longest suffix of w belonging to X * S.

The first word belongs in fact to (L - &) u & and the second to (X * S - S) u S. This

leads us to introduce the following new notation.

A string-matching interpretation 01 the equation xmyn=zP 159

Notation. Let WEA*.

(1) Let w’ be the longest suffix of w belonging to L. If 1 w’l> d (cf. Section 3) then we

set L(w)= {w’}, otherwise we set L(w)=@

(2) We denote by I(w) the set whose unique element is the longest suffix of

w belonging to L.

(3) If ((p(w)(>3(x(+2(y(then we set S(w)={cp(w)j, otherwise we set S(w)=@

(4) We denote by s(w) the set whose unique element is the longest suffix of

w belonging to S.

Moreover, if (w, a) satisfies the condition (5), we set S1 (wa) = {d. x A y a}; other-

wise we set S1(wa)=e).

The following result follows from the definitions.

Lemma 7.1. q(w) is the lonyesh word belonging to L(w)ul(w)S(w)us(w).

7.2. Computation of L(w), l(w), S(w) and s(w)

Our on-line algorithm must read all the prefixes of the input word. In the initializa-

tion step, we set L(w)=S(w)=& and q(w)=&. A ssume that we have read the prefix w,

and let UEA.

Lemma 7.2. The tuple (L(wa), l(wu), S(wu),s(wu)) can be computed using the tuple

(L(w), l(w), S(w), s(w)) and the functions f; g, 7c, shift.

Proof of Lemma 7.2. Let WE A* and UEA. Different cases may occur:

(1) One of the two following conditions holds:

~ L(w)#@ and L(wa)=L(w)u,
_ L(w)=$ and l(wu)=l(w)a.

In examining the sets S(wu) and s(wa) two new cases may occur:

(1.1) One of the two following cases holds:

~ S(w)#@ and S(wu)=S(w)u,

~ S(w)=@ and s(wu)=s(w)u.

In the second case, we have S(wu)#$ iff the length of its element is at least

3 Ix I+ 2 I y I. If this condition holds then we have S(wu) = s(w)u.

(1.2) One of the two following cases holds:

~ S(w)#@ and S(wu)#S(w)u,

~ S(w)=$ and s(wu)#s(w)u.

(1.2.1) Assume that S(w)#@ and S(wa)#S(w)a.

Assume that L(w)#fl and let WOES, w~EL(w). Since (wl(>(w2(, the word w2 is

a suffix of wl. Since w,u~L, according to (4), the word w,u belongs to L; thus,

S(wu)= { ~,a}, which contradicts the condition (1.2.1). Hence, we have L(w)=@

Moreover:

L(wu)=
l(w)a if the word in I(wa) has a length at least d,

9 otherwise.

160 J. NPraud, M. Crochemore

In a similar way,

{

S(wa)=pl,

there exists an integer n such that s(wa)= { g”(w)a}.

(1.2.2) Assume that S(w)=fl and s(wa)#s(w)a.

If S(wa)#$, then we have S(wu)=s(w)a. But, since s(wa)#s(w)a, the word in

s(wu) has length at most 31x1+2 lyl- 1; thus, it cannot belong to S(wu). Hence:

i

S(wa)=$,

there exists an integer n such that s(wu)= { g”(w)a).

(2) One of the following conditions holds:
_ L(w)#@ and L(wa)#L(w)a,

~ L(w)=$ and I(wu)#l(w)u.

According to (4), with the first condition, we have L(wu)=@. With the second

condition, there exists an integer n such that I(wu)= { fn(w)u}.

(2.1) One of the two following cases holds:
_ S(w)#$ and S(wu)=S(w)u,
_ S(w)=@ and s(wu)=s(w)u.

In the second case:

Sl(WQ) iff condition (5) holds,

S(wa)=
otherwise

i

s(w)u if the element of this set has length

31~1+2i~i,
(19 , otherwise.

(2.2) One of the two following cases holds:
_ S(w)#@ and S(wu)#S(wb,
_ S(w)=@ and s(wu)#s(w)u.

Here

Si(wu) iff condition (5) holds,

6 otherwise,

there exists an integer II such that s(wu)= { g”(w)u}.

Since the conditions L(wu)=L(w)u, I(wu)=l(w)u, S(wu)=S(w)u and

s(wu) = s(w)u can easily be decided in examining the transitions of automata Y and

9, we obtain our lemma. 0

7.3. Scheme of the algorithm

From an algorithmic point of view, the preceding results lead to the introduction of

function that we denoe by sufJix. Given the tuple of sets (L(w), l(w), S(w), s(w)), and

given the letter a, s@x computes the tuple (L(wu), l(wu), S(wu), s(wu)).

The different cases are summarized in the arrays of Tables 2 and 3. The results will

be easily translated in terms of length.

A string-matching interpretation of the equation xmyn=zP 161

Table 2

L(wa) /(wa)

L(w)#pJ, L(wa)=L(w)a L(w)a
L(w)=$ I(wa)=l(w)a I(w)anAd

L(w)#@ L(wa)#L(w)a $
L(w)=@ l(wa)#!(w)a fl

Table 3

S(wa) s(wa)

S(w)#$, S(wa)=S(w)a S(w)a is(
S(w)=& s(wu)=s(w)a “S,(w)a A (s(w)anA3f”l+ZI’f) s(ws)a

S(w)#@, S(wa)#S(w)a S,(w)a A (s(w)anA3ix’+2~r~) {dwa)]
S(w)=$ s(wa)#s(w)u S,(W) (dwa))

a Given two sets of words E and F, we set:

E
Er\F=

if F=0, or F if E=@l

E if E#@ and F#0

We can now give the scheme of an algorithm for computing the longest factor

w which belongs to pref(X*) (with minimal position). After reading every prefix of the

input word, let qS (qL) be the corresponding state of Y (9).

Algorithm

begin

qst&; qL+-E; W+E;

while not end of the input word do

begin

read the next letter a;

qs+4qs, a); 4L.+4q,, a); {step I]

(Uwa), l(wa), S(wa), s(wa))+=@x(Uwa), l(wa), S(wa), s(wa));
cp(wa)+longest word of L(wu)ul(wu)uS(wu)us(wu); {step 21
if (w, a) satisfies condition (5) then qstc(E, TC(W)U)); {step 31
wcwu;

if q(w) strictly longer than the previous one then

memorize its length and position

end

end.

162 J. NPmud, M. Crochemore

_ In step (1) qs and qL are computed by the transition functions in (P,f) and (9, y).

Step (2) is justified by Lemmas 7.1 and 7.2. Step (3) is the direct consequence ‘of

Lemma 6.2.
- In step (2) any element of L(wa) u l(wa) u S(wa) u s(wa) is determined by its length

and its position.

7.4. The full algorithm

For every prefix w of the input word, the longest word in S(w)u s(w) (L(w) u I(w))

is characterized by its length, which we denote by L, (e,). We set d,= 1 cp(w)l, and we

denote by w(i) the letter of a with position i. The longest factor of w which belongs to

pref(X*) and whose position is minimal is characterized by its length e,,, and its

position i,,,.

In the full algorithm, each of the steps 1,2, 3 has been divided in smaller steps,

namely 1.1, 1.2, 1.3 ,...

Algorithm

begin

qs+&; %+Lf;+G.+E;
i4-0; i,,,+O; l,,,+l~+l,~l~+lL+O;

while i<lwl do

begin

d,tO;

i+i+ 1; acw(i);

G.+-eL,; qt+qL.; {step of memorization}

while (a(q,, a)=$ and qs#E) do

begin qs+g(qs) (1.13; (s+lqsl (3.1) end;

if o(qs, a)#fl then {otherwise we have qs=E}

begin qscc(qsr a) (1.2); d,t/,+ 1 j3.2) end;

while (A(qL, a)=$ and qL#.s) do

begin qL+f(qL) j2.1); fL+lqLI (3.3) end;
if i(q,, a)#pi then {otherwise we have qs=E}

begin qL+-A(qL, a) {2.2}; PLcLL+ 1 {3.4} end;

if (there exists jE[1, k] such that qiEstart(j) and a(n(qt),a)#$

and eL-shif(qO,j)+l >f,) then {cf. 3.6)

begin

/,+L’L-sh$(q,,j)+l; 13.5)

qs+4n(qL), a);
end

L,+max (l,, LL);
if 6,3L,,, then begin L,,,td,; i,,, c i - emax + 1 end

if (qt is a state of Y1 and qL is a state of ZZ) then qo+qL (3.6)

end

end.

A string-matching interpretation of the equation xmyn=zp 163

8. The complexity

8.1. The preprocessing phase

Since & cpref($), as a direct consequence of [l], we have the following result.

Proposition 8.1. The preprocessing has a complexity in time and in space proportional

to Ipref(S)I.

8.2. The processing phase

Theorem 8.2. Let X = {x, y} be a bipre$x code whose elements are primitive words, and

let WEA*. Then the computation of the longest factors of w which belongs to pref (X*)

can be implemented so that it works in time 0(1 WI).

Proof.

~ Step (1) allows us to process the word w by applying the rules (2) and (3) at most

2.2 1 w 1 times. Indeed, if L’ is the prefix of the word w already processed, the numbers

21 v I - 1 qS / and 2 1 v I- / qL / increase strictly [11; moreover, & c S.

~ The length of the elements of S and L, and of the partial function shijt, are computed

in the preprocessing phase. Since qL and qS are computed in step (l), the complete

process of step (2) requires a time linear in IwI.

- Since step (3) requires constant time, the complete process of our algorithm requires

time O(lwl). 0

References

[l] A. Aho and M. Corasick, Efficient string matching: an aid to bibliographic search, Comm. ACM 18(6)

(1975) 333-340.

[2] E. Barbin and M. Lerest, Sur la combinatoire des codes d deux mots, Theoret. Comput. Sci. 41 (1985)

61-80.

[3] J. Berstel, D. Perrin, J.F. Perrot and A. Restivo, Sur le thkor2me du dkfaut, J. Algebra, 60 (1) (1979)

169-l 80.

[4] M. Crochemore, Transducers and repetition, Theoret. Comput. Sri. 45 (1986) 63-86.

[5] M. Crochemore, Longest common factor of two words, in: TAPSOFT’87, Lecture Notes in Com-

puter Science, Vol. 249 (Springer, Berlin, 1987) 26-36.

[6] M. Crochemore and J. Niraud, Unitary monoid with two generators: an algorithmic point of view, in:

CAAP’YO, Lecture Notes in Computer Science, Vol. 431 (Springer, Berlin, 1990) 117-131.

[7] J.P. Duval, Ptriodes et rCpCtitions des mots du monoide libre, Theoret. Comput. Sri. 9 (1979) 17-26.

[S] N. Fine and H. Wilf, Uniqueness theorem for periodic functions, Proc. Amer. Math. Sot. 16 (1965)

109-t 14.

[9] M. Carey and D. Johnson, Computers and intractability. A Guide to the Theory of’NP-Completeness

(W.H. Freeman, 1978).

[lo] D. Hirschberg and L. Larmore, New applications of failure functions, J. ACM 34(3) (1987) 616-625.

[l l] J. Hopcroft and J. Ullman, Introducrion to Automata Theory, Languages and Computation (Addison-
Wesley, Reading, MA, 1979).

164 J. Nlraud, M. Crochemore

[12] D. Knuth, M. Morris and V. Pratt, Fast pattern matching in strings, SIAM J. Comput. 6 (1977)

323-350.

[13] A. Lentin, Equations dans le monoide libre (Gautier Villars, Paris, 1972)

[14] A. Lentin and M.P. Shltzenberger, A combinatorial problem in the theory of free monoids, in: Proc.
Uniaersity of North California (1967) 128-144.

1151 J. Neraud, Elementariness of a finite set of words is co-NP-complete. Theoret. Inform. Appl. 24 (5)

(1990) 459-470.

[16] J. Neraud, On the deficit of a finite set of words, Semigroup Forum 41 (1990) l-21.

[17] M.P. Schiitzenberger, A property of finitely generated submonoids, in: G. Pollak, ed., Algebraic
Theory of Semigroups (North-Holland, Amsterdam, 1979) 5455576.

[lS] J. Tarhio and E. Ukkonen, A greedy approximation algorithm for constructing shortest common

superstrings, Theoret. Comput. Sci. 57 (1988) 131-145.

